]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
Merge remote-tracking branches 'asoc/topic/tas2552', 'asoc/topic/tegra', 'asoc/topic...
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35
36 #include "sys_regs.h"
37
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58         u32 ccsidr;
59
60         /* Make sure noone else changes CSSELR during this! */
61         local_irq_disable();
62         /* Put value into CSSELR */
63         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64         isb();
65         /* Read result out of CCSIDR */
66         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67         local_irq_enable();
68
69         return ccsidr;
70 }
71
72 static void do_dc_cisw(u32 val)
73 {
74         asm volatile("dc cisw, %x0" : : "r" (val));
75         dsb(ish);
76 }
77
78 static void do_dc_csw(u32 val)
79 {
80         asm volatile("dc csw, %x0" : : "r" (val));
81         dsb(ish);
82 }
83
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86                         const struct sys_reg_params *p,
87                         const struct sys_reg_desc *r)
88 {
89         unsigned long val;
90         int cpu;
91
92         if (!p->is_write)
93                 return read_from_write_only(vcpu, p);
94
95         cpu = get_cpu();
96
97         cpumask_setall(&vcpu->arch.require_dcache_flush);
98         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100         /* If we were already preempted, take the long way around */
101         if (cpu != vcpu->arch.last_pcpu) {
102                 flush_cache_all();
103                 goto done;
104         }
105
106         val = *vcpu_reg(vcpu, p->Rt);
107
108         switch (p->CRm) {
109         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110         case 14:                /* DCCISW */
111                 do_dc_cisw(val);
112                 break;
113
114         case 10:                /* DCCSW */
115                 do_dc_csw(val);
116                 break;
117         }
118
119 done:
120         put_cpu();
121
122         return true;
123 }
124
125 /*
126  * Generic accessor for VM registers. Only called as long as HCR_TVM
127  * is set.
128  */
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130                           const struct sys_reg_params *p,
131                           const struct sys_reg_desc *r)
132 {
133         unsigned long val;
134
135         BUG_ON(!p->is_write);
136
137         val = *vcpu_reg(vcpu, p->Rt);
138         if (!p->is_aarch32) {
139                 vcpu_sys_reg(vcpu, r->reg) = val;
140         } else {
141                 if (!p->is_32bit)
142                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
143                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
144         }
145
146         return true;
147 }
148
149 /*
150  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
151  * guest enables the MMU, we stop trapping the VM sys_regs and leave
152  * it in complete control of the caches.
153  */
154 static bool access_sctlr(struct kvm_vcpu *vcpu,
155                          const struct sys_reg_params *p,
156                          const struct sys_reg_desc *r)
157 {
158         access_vm_reg(vcpu, p, r);
159
160         if (vcpu_has_cache_enabled(vcpu)) {     /* MMU+Caches enabled? */
161                 vcpu->arch.hcr_el2 &= ~HCR_TVM;
162                 stage2_flush_vm(vcpu->kvm);
163         }
164
165         return true;
166 }
167
168 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169                         const struct sys_reg_params *p,
170                         const struct sys_reg_desc *r)
171 {
172         if (p->is_write)
173                 return ignore_write(vcpu, p);
174         else
175                 return read_zero(vcpu, p);
176 }
177
178 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179                            const struct sys_reg_params *p,
180                            const struct sys_reg_desc *r)
181 {
182         if (p->is_write) {
183                 return ignore_write(vcpu, p);
184         } else {
185                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
186                 return true;
187         }
188 }
189
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191                                    const struct sys_reg_params *p,
192                                    const struct sys_reg_desc *r)
193 {
194         if (p->is_write) {
195                 return ignore_write(vcpu, p);
196         } else {
197                 u32 val;
198                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
199                 *vcpu_reg(vcpu, p->Rt) = val;
200                 return true;
201         }
202 }
203
204 /*
205  * We want to avoid world-switching all the DBG registers all the
206  * time:
207  * 
208  * - If we've touched any debug register, it is likely that we're
209  *   going to touch more of them. It then makes sense to disable the
210  *   traps and start doing the save/restore dance
211  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
212  *   then mandatory to save/restore the registers, as the guest
213  *   depends on them.
214  * 
215  * For this, we use a DIRTY bit, indicating the guest has modified the
216  * debug registers, used as follow:
217  *
218  * On guest entry:
219  * - If the dirty bit is set (because we're coming back from trapping),
220  *   disable the traps, save host registers, restore guest registers.
221  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
222  *   set the dirty bit, disable the traps, save host registers,
223  *   restore guest registers.
224  * - Otherwise, enable the traps
225  *
226  * On guest exit:
227  * - If the dirty bit is set, save guest registers, restore host
228  *   registers and clear the dirty bit. This ensure that the host can
229  *   now use the debug registers.
230  */
231 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
232                             const struct sys_reg_params *p,
233                             const struct sys_reg_desc *r)
234 {
235         if (p->is_write) {
236                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
237                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238         } else {
239                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
240         }
241
242         return true;
243 }
244
245 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
246 {
247         u64 amair;
248
249         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
250         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
251 }
252
253 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
254 {
255         /*
256          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
257          */
258         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
259 }
260
261 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
262 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
263         /* DBGBVRn_EL1 */                                               \
264         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
265           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
266         /* DBGBCRn_EL1 */                                               \
267         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
268           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
269         /* DBGWVRn_EL1 */                                               \
270         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
271           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
272         /* DBGWCRn_EL1 */                                               \
273         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
274           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
275
276 /*
277  * Architected system registers.
278  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
279  *
280  * We could trap ID_DFR0 and tell the guest we don't support performance
281  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
282  * NAKed, so it will read the PMCR anyway.
283  *
284  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
285  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286  * all PM registers, which doesn't crash the guest kernel at least.
287  *
288  * Debug handling: We do trap most, if not all debug related system
289  * registers. The implementation is good enough to ensure that a guest
290  * can use these with minimal performance degradation. The drawback is
291  * that we don't implement any of the external debug, none of the
292  * OSlock protocol. This should be revisited if we ever encounter a
293  * more demanding guest...
294  */
295 static const struct sys_reg_desc sys_reg_descs[] = {
296         /* DC ISW */
297         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
298           access_dcsw },
299         /* DC CSW */
300         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
301           access_dcsw },
302         /* DC CISW */
303         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
304           access_dcsw },
305
306         DBG_BCR_BVR_WCR_WVR_EL1(0),
307         DBG_BCR_BVR_WCR_WVR_EL1(1),
308         /* MDCCINT_EL1 */
309         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
310           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
311         /* MDSCR_EL1 */
312         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
313           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
314         DBG_BCR_BVR_WCR_WVR_EL1(2),
315         DBG_BCR_BVR_WCR_WVR_EL1(3),
316         DBG_BCR_BVR_WCR_WVR_EL1(4),
317         DBG_BCR_BVR_WCR_WVR_EL1(5),
318         DBG_BCR_BVR_WCR_WVR_EL1(6),
319         DBG_BCR_BVR_WCR_WVR_EL1(7),
320         DBG_BCR_BVR_WCR_WVR_EL1(8),
321         DBG_BCR_BVR_WCR_WVR_EL1(9),
322         DBG_BCR_BVR_WCR_WVR_EL1(10),
323         DBG_BCR_BVR_WCR_WVR_EL1(11),
324         DBG_BCR_BVR_WCR_WVR_EL1(12),
325         DBG_BCR_BVR_WCR_WVR_EL1(13),
326         DBG_BCR_BVR_WCR_WVR_EL1(14),
327         DBG_BCR_BVR_WCR_WVR_EL1(15),
328
329         /* MDRAR_EL1 */
330         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
331           trap_raz_wi },
332         /* OSLAR_EL1 */
333         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
334           trap_raz_wi },
335         /* OSLSR_EL1 */
336         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
337           trap_oslsr_el1 },
338         /* OSDLR_EL1 */
339         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
340           trap_raz_wi },
341         /* DBGPRCR_EL1 */
342         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
343           trap_raz_wi },
344         /* DBGCLAIMSET_EL1 */
345         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
346           trap_raz_wi },
347         /* DBGCLAIMCLR_EL1 */
348         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
349           trap_raz_wi },
350         /* DBGAUTHSTATUS_EL1 */
351         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
352           trap_dbgauthstatus_el1 },
353
354         /* TEECR32_EL1 */
355         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
356           NULL, reset_val, TEECR32_EL1, 0 },
357         /* TEEHBR32_EL1 */
358         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
359           NULL, reset_val, TEEHBR32_EL1, 0 },
360
361         /* MDCCSR_EL1 */
362         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
363           trap_raz_wi },
364         /* DBGDTR_EL0 */
365         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
366           trap_raz_wi },
367         /* DBGDTR[TR]X_EL0 */
368         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
369           trap_raz_wi },
370
371         /* DBGVCR32_EL2 */
372         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
373           NULL, reset_val, DBGVCR32_EL2, 0 },
374
375         /* MPIDR_EL1 */
376         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
377           NULL, reset_mpidr, MPIDR_EL1 },
378         /* SCTLR_EL1 */
379         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
380           access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
381         /* CPACR_EL1 */
382         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
383           NULL, reset_val, CPACR_EL1, 0 },
384         /* TTBR0_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
386           access_vm_reg, reset_unknown, TTBR0_EL1 },
387         /* TTBR1_EL1 */
388         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
389           access_vm_reg, reset_unknown, TTBR1_EL1 },
390         /* TCR_EL1 */
391         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
392           access_vm_reg, reset_val, TCR_EL1, 0 },
393
394         /* AFSR0_EL1 */
395         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
396           access_vm_reg, reset_unknown, AFSR0_EL1 },
397         /* AFSR1_EL1 */
398         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
399           access_vm_reg, reset_unknown, AFSR1_EL1 },
400         /* ESR_EL1 */
401         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
402           access_vm_reg, reset_unknown, ESR_EL1 },
403         /* FAR_EL1 */
404         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
405           access_vm_reg, reset_unknown, FAR_EL1 },
406         /* PAR_EL1 */
407         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
408           NULL, reset_unknown, PAR_EL1 },
409
410         /* PMINTENSET_EL1 */
411         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
412           trap_raz_wi },
413         /* PMINTENCLR_EL1 */
414         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
415           trap_raz_wi },
416
417         /* MAIR_EL1 */
418         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
419           access_vm_reg, reset_unknown, MAIR_EL1 },
420         /* AMAIR_EL1 */
421         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
422           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
423
424         /* VBAR_EL1 */
425         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
426           NULL, reset_val, VBAR_EL1, 0 },
427
428         /* ICC_SRE_EL1 */
429         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
430           trap_raz_wi },
431
432         /* CONTEXTIDR_EL1 */
433         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
434           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
435         /* TPIDR_EL1 */
436         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
437           NULL, reset_unknown, TPIDR_EL1 },
438
439         /* CNTKCTL_EL1 */
440         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
441           NULL, reset_val, CNTKCTL_EL1, 0},
442
443         /* CSSELR_EL1 */
444         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
445           NULL, reset_unknown, CSSELR_EL1 },
446
447         /* PMCR_EL0 */
448         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
449           trap_raz_wi },
450         /* PMCNTENSET_EL0 */
451         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
452           trap_raz_wi },
453         /* PMCNTENCLR_EL0 */
454         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
455           trap_raz_wi },
456         /* PMOVSCLR_EL0 */
457         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
458           trap_raz_wi },
459         /* PMSWINC_EL0 */
460         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
461           trap_raz_wi },
462         /* PMSELR_EL0 */
463         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
464           trap_raz_wi },
465         /* PMCEID0_EL0 */
466         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
467           trap_raz_wi },
468         /* PMCEID1_EL0 */
469         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
470           trap_raz_wi },
471         /* PMCCNTR_EL0 */
472         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
473           trap_raz_wi },
474         /* PMXEVTYPER_EL0 */
475         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
476           trap_raz_wi },
477         /* PMXEVCNTR_EL0 */
478         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
479           trap_raz_wi },
480         /* PMUSERENR_EL0 */
481         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
482           trap_raz_wi },
483         /* PMOVSSET_EL0 */
484         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
485           trap_raz_wi },
486
487         /* TPIDR_EL0 */
488         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
489           NULL, reset_unknown, TPIDR_EL0 },
490         /* TPIDRRO_EL0 */
491         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
492           NULL, reset_unknown, TPIDRRO_EL0 },
493
494         /* DACR32_EL2 */
495         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
496           NULL, reset_unknown, DACR32_EL2 },
497         /* IFSR32_EL2 */
498         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
499           NULL, reset_unknown, IFSR32_EL2 },
500         /* FPEXC32_EL2 */
501         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
502           NULL, reset_val, FPEXC32_EL2, 0x70 },
503 };
504
505 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
506                         const struct sys_reg_params *p,
507                         const struct sys_reg_desc *r)
508 {
509         if (p->is_write) {
510                 return ignore_write(vcpu, p);
511         } else {
512                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
513                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
514                 u32 el3 = !!((pfr >> 12) & 0xf);
515
516                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
517                                           (((dfr >> 12) & 0xf) << 24) |
518                                           (((dfr >> 28) & 0xf) << 20) |
519                                           (6 << 16) | (el3 << 14) | (el3 << 12));
520                 return true;
521         }
522 }
523
524 static bool trap_debug32(struct kvm_vcpu *vcpu,
525                          const struct sys_reg_params *p,
526                          const struct sys_reg_desc *r)
527 {
528         if (p->is_write) {
529                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
530                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
531         } else {
532                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
533         }
534
535         return true;
536 }
537
538 #define DBG_BCR_BVR_WCR_WVR(n)                                  \
539         /* DBGBVRn */                                           \
540         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,    \
541           NULL, (cp14_DBGBVR0 + (n) * 2) },                     \
542         /* DBGBCRn */                                           \
543         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,    \
544           NULL, (cp14_DBGBCR0 + (n) * 2) },                     \
545         /* DBGWVRn */                                           \
546         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,    \
547           NULL, (cp14_DBGWVR0 + (n) * 2) },                     \
548         /* DBGWCRn */                                           \
549         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,    \
550           NULL, (cp14_DBGWCR0 + (n) * 2) }
551
552 #define DBGBXVR(n)                                              \
553         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,    \
554           NULL, cp14_DBGBXVR0 + n * 2 }
555
556 /*
557  * Trapped cp14 registers. We generally ignore most of the external
558  * debug, on the principle that they don't really make sense to a
559  * guest. Revisit this one day, whould this principle change.
560  */
561 static const struct sys_reg_desc cp14_regs[] = {
562         /* DBGIDR */
563         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
564         /* DBGDTRRXext */
565         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
566
567         DBG_BCR_BVR_WCR_WVR(0),
568         /* DBGDSCRint */
569         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
570         DBG_BCR_BVR_WCR_WVR(1),
571         /* DBGDCCINT */
572         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
573         /* DBGDSCRext */
574         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
575         DBG_BCR_BVR_WCR_WVR(2),
576         /* DBGDTR[RT]Xint */
577         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
578         /* DBGDTR[RT]Xext */
579         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
580         DBG_BCR_BVR_WCR_WVR(3),
581         DBG_BCR_BVR_WCR_WVR(4),
582         DBG_BCR_BVR_WCR_WVR(5),
583         /* DBGWFAR */
584         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
585         /* DBGOSECCR */
586         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
587         DBG_BCR_BVR_WCR_WVR(6),
588         /* DBGVCR */
589         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
590         DBG_BCR_BVR_WCR_WVR(7),
591         DBG_BCR_BVR_WCR_WVR(8),
592         DBG_BCR_BVR_WCR_WVR(9),
593         DBG_BCR_BVR_WCR_WVR(10),
594         DBG_BCR_BVR_WCR_WVR(11),
595         DBG_BCR_BVR_WCR_WVR(12),
596         DBG_BCR_BVR_WCR_WVR(13),
597         DBG_BCR_BVR_WCR_WVR(14),
598         DBG_BCR_BVR_WCR_WVR(15),
599
600         /* DBGDRAR (32bit) */
601         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
602
603         DBGBXVR(0),
604         /* DBGOSLAR */
605         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
606         DBGBXVR(1),
607         /* DBGOSLSR */
608         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
609         DBGBXVR(2),
610         DBGBXVR(3),
611         /* DBGOSDLR */
612         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
613         DBGBXVR(4),
614         /* DBGPRCR */
615         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
616         DBGBXVR(5),
617         DBGBXVR(6),
618         DBGBXVR(7),
619         DBGBXVR(8),
620         DBGBXVR(9),
621         DBGBXVR(10),
622         DBGBXVR(11),
623         DBGBXVR(12),
624         DBGBXVR(13),
625         DBGBXVR(14),
626         DBGBXVR(15),
627
628         /* DBGDSAR (32bit) */
629         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
630
631         /* DBGDEVID2 */
632         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
633         /* DBGDEVID1 */
634         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
635         /* DBGDEVID */
636         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
637         /* DBGCLAIMSET */
638         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
639         /* DBGCLAIMCLR */
640         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
641         /* DBGAUTHSTATUS */
642         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
643 };
644
645 /* Trapped cp14 64bit registers */
646 static const struct sys_reg_desc cp14_64_regs[] = {
647         /* DBGDRAR (64bit) */
648         { Op1( 0), CRm( 1), .access = trap_raz_wi },
649
650         /* DBGDSAR (64bit) */
651         { Op1( 0), CRm( 2), .access = trap_raz_wi },
652 };
653
654 /*
655  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
656  * depending on the way they are accessed (as a 32bit or a 64bit
657  * register).
658  */
659 static const struct sys_reg_desc cp15_regs[] = {
660         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
661         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
662         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
663         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
664         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
665         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
666         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
667         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
668         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
669         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
670         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
671
672         /*
673          * DC{C,I,CI}SW operations:
674          */
675         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
676         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
677         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
678
679         /* PMU */
680         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
681         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
682         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
683         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
684         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
685         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
686         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
687         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
688         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
689         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
690         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
691         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
692         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
693
694         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
695         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
696         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
697         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
698
699         /* ICC_SRE */
700         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
701
702         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
703 };
704
705 static const struct sys_reg_desc cp15_64_regs[] = {
706         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
707         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
708 };
709
710 /* Target specific emulation tables */
711 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
712
713 void kvm_register_target_sys_reg_table(unsigned int target,
714                                        struct kvm_sys_reg_target_table *table)
715 {
716         target_tables[target] = table;
717 }
718
719 /* Get specific register table for this target. */
720 static const struct sys_reg_desc *get_target_table(unsigned target,
721                                                    bool mode_is_64,
722                                                    size_t *num)
723 {
724         struct kvm_sys_reg_target_table *table;
725
726         table = target_tables[target];
727         if (mode_is_64) {
728                 *num = table->table64.num;
729                 return table->table64.table;
730         } else {
731                 *num = table->table32.num;
732                 return table->table32.table;
733         }
734 }
735
736 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
737                                          const struct sys_reg_desc table[],
738                                          unsigned int num)
739 {
740         unsigned int i;
741
742         for (i = 0; i < num; i++) {
743                 const struct sys_reg_desc *r = &table[i];
744
745                 if (params->Op0 != r->Op0)
746                         continue;
747                 if (params->Op1 != r->Op1)
748                         continue;
749                 if (params->CRn != r->CRn)
750                         continue;
751                 if (params->CRm != r->CRm)
752                         continue;
753                 if (params->Op2 != r->Op2)
754                         continue;
755
756                 return r;
757         }
758         return NULL;
759 }
760
761 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
762 {
763         kvm_inject_undefined(vcpu);
764         return 1;
765 }
766
767 /*
768  * emulate_cp --  tries to match a sys_reg access in a handling table, and
769  *                call the corresponding trap handler.
770  *
771  * @params: pointer to the descriptor of the access
772  * @table: array of trap descriptors
773  * @num: size of the trap descriptor array
774  *
775  * Return 0 if the access has been handled, and -1 if not.
776  */
777 static int emulate_cp(struct kvm_vcpu *vcpu,
778                       const struct sys_reg_params *params,
779                       const struct sys_reg_desc *table,
780                       size_t num)
781 {
782         const struct sys_reg_desc *r;
783
784         if (!table)
785                 return -1;      /* Not handled */
786
787         r = find_reg(params, table, num);
788
789         if (r) {
790                 /*
791                  * Not having an accessor means that we have
792                  * configured a trap that we don't know how to
793                  * handle. This certainly qualifies as a gross bug
794                  * that should be fixed right away.
795                  */
796                 BUG_ON(!r->access);
797
798                 if (likely(r->access(vcpu, params, r))) {
799                         /* Skip instruction, since it was emulated */
800                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
801                 }
802
803                 /* Handled */
804                 return 0;
805         }
806
807         /* Not handled */
808         return -1;
809 }
810
811 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
812                                 struct sys_reg_params *params)
813 {
814         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
815         int cp;
816
817         switch(hsr_ec) {
818         case ESR_EL2_EC_CP15_32:
819         case ESR_EL2_EC_CP15_64:
820                 cp = 15;
821                 break;
822         case ESR_EL2_EC_CP14_MR:
823         case ESR_EL2_EC_CP14_64:
824                 cp = 14;
825                 break;
826         default:
827                 WARN_ON((cp = -1));
828         }
829
830         kvm_err("Unsupported guest CP%d access at: %08lx\n",
831                 cp, *vcpu_pc(vcpu));
832         print_sys_reg_instr(params);
833         kvm_inject_undefined(vcpu);
834 }
835
836 /**
837  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
838  * @vcpu: The VCPU pointer
839  * @run:  The kvm_run struct
840  */
841 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
842                             const struct sys_reg_desc *global,
843                             size_t nr_global,
844                             const struct sys_reg_desc *target_specific,
845                             size_t nr_specific)
846 {
847         struct sys_reg_params params;
848         u32 hsr = kvm_vcpu_get_hsr(vcpu);
849         int Rt2 = (hsr >> 10) & 0xf;
850
851         params.is_aarch32 = true;
852         params.is_32bit = false;
853         params.CRm = (hsr >> 1) & 0xf;
854         params.Rt = (hsr >> 5) & 0xf;
855         params.is_write = ((hsr & 1) == 0);
856
857         params.Op0 = 0;
858         params.Op1 = (hsr >> 16) & 0xf;
859         params.Op2 = 0;
860         params.CRn = 0;
861
862         /*
863          * Massive hack here. Store Rt2 in the top 32bits so we only
864          * have one register to deal with. As we use the same trap
865          * backends between AArch32 and AArch64, we get away with it.
866          */
867         if (params.is_write) {
868                 u64 val = *vcpu_reg(vcpu, params.Rt);
869                 val &= 0xffffffff;
870                 val |= *vcpu_reg(vcpu, Rt2) << 32;
871                 *vcpu_reg(vcpu, params.Rt) = val;
872         }
873
874         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
875                 goto out;
876         if (!emulate_cp(vcpu, &params, global, nr_global))
877                 goto out;
878
879         unhandled_cp_access(vcpu, &params);
880
881 out:
882         /* Do the opposite hack for the read side */
883         if (!params.is_write) {
884                 u64 val = *vcpu_reg(vcpu, params.Rt);
885                 val >>= 32;
886                 *vcpu_reg(vcpu, Rt2) = val;
887         }
888
889         return 1;
890 }
891
892 /**
893  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
894  * @vcpu: The VCPU pointer
895  * @run:  The kvm_run struct
896  */
897 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
898                             const struct sys_reg_desc *global,
899                             size_t nr_global,
900                             const struct sys_reg_desc *target_specific,
901                             size_t nr_specific)
902 {
903         struct sys_reg_params params;
904         u32 hsr = kvm_vcpu_get_hsr(vcpu);
905
906         params.is_aarch32 = true;
907         params.is_32bit = true;
908         params.CRm = (hsr >> 1) & 0xf;
909         params.Rt  = (hsr >> 5) & 0xf;
910         params.is_write = ((hsr & 1) == 0);
911         params.CRn = (hsr >> 10) & 0xf;
912         params.Op0 = 0;
913         params.Op1 = (hsr >> 14) & 0x7;
914         params.Op2 = (hsr >> 17) & 0x7;
915
916         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
917                 return 1;
918         if (!emulate_cp(vcpu, &params, global, nr_global))
919                 return 1;
920
921         unhandled_cp_access(vcpu, &params);
922         return 1;
923 }
924
925 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
926 {
927         const struct sys_reg_desc *target_specific;
928         size_t num;
929
930         target_specific = get_target_table(vcpu->arch.target, false, &num);
931         return kvm_handle_cp_64(vcpu,
932                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
933                                 target_specific, num);
934 }
935
936 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
937 {
938         const struct sys_reg_desc *target_specific;
939         size_t num;
940
941         target_specific = get_target_table(vcpu->arch.target, false, &num);
942         return kvm_handle_cp_32(vcpu,
943                                 cp15_regs, ARRAY_SIZE(cp15_regs),
944                                 target_specific, num);
945 }
946
947 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
948 {
949         return kvm_handle_cp_64(vcpu,
950                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
951                                 NULL, 0);
952 }
953
954 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
955 {
956         return kvm_handle_cp_32(vcpu,
957                                 cp14_regs, ARRAY_SIZE(cp14_regs),
958                                 NULL, 0);
959 }
960
961 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
962                            const struct sys_reg_params *params)
963 {
964         size_t num;
965         const struct sys_reg_desc *table, *r;
966
967         table = get_target_table(vcpu->arch.target, true, &num);
968
969         /* Search target-specific then generic table. */
970         r = find_reg(params, table, num);
971         if (!r)
972                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
973
974         if (likely(r)) {
975                 /*
976                  * Not having an accessor means that we have
977                  * configured a trap that we don't know how to
978                  * handle. This certainly qualifies as a gross bug
979                  * that should be fixed right away.
980                  */
981                 BUG_ON(!r->access);
982
983                 if (likely(r->access(vcpu, params, r))) {
984                         /* Skip instruction, since it was emulated */
985                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
986                         return 1;
987                 }
988                 /* If access function fails, it should complain. */
989         } else {
990                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
991                         *vcpu_pc(vcpu));
992                 print_sys_reg_instr(params);
993         }
994         kvm_inject_undefined(vcpu);
995         return 1;
996 }
997
998 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
999                               const struct sys_reg_desc *table, size_t num)
1000 {
1001         unsigned long i;
1002
1003         for (i = 0; i < num; i++)
1004                 if (table[i].reset)
1005                         table[i].reset(vcpu, &table[i]);
1006 }
1007
1008 /**
1009  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1010  * @vcpu: The VCPU pointer
1011  * @run:  The kvm_run struct
1012  */
1013 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1014 {
1015         struct sys_reg_params params;
1016         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1017
1018         params.is_aarch32 = false;
1019         params.is_32bit = false;
1020         params.Op0 = (esr >> 20) & 3;
1021         params.Op1 = (esr >> 14) & 0x7;
1022         params.CRn = (esr >> 10) & 0xf;
1023         params.CRm = (esr >> 1) & 0xf;
1024         params.Op2 = (esr >> 17) & 0x7;
1025         params.Rt = (esr >> 5) & 0x1f;
1026         params.is_write = !(esr & 1);
1027
1028         return emulate_sys_reg(vcpu, &params);
1029 }
1030
1031 /******************************************************************************
1032  * Userspace API
1033  *****************************************************************************/
1034
1035 static bool index_to_params(u64 id, struct sys_reg_params *params)
1036 {
1037         switch (id & KVM_REG_SIZE_MASK) {
1038         case KVM_REG_SIZE_U64:
1039                 /* Any unused index bits means it's not valid. */
1040                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1041                               | KVM_REG_ARM_COPROC_MASK
1042                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1043                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1044                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1045                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1046                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1047                         return false;
1048                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1049                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1050                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1051                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1052                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1053                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1054                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1055                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1056                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1057                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1058                 return true;
1059         default:
1060                 return false;
1061         }
1062 }
1063
1064 /* Decode an index value, and find the sys_reg_desc entry. */
1065 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1066                                                     u64 id)
1067 {
1068         size_t num;
1069         const struct sys_reg_desc *table, *r;
1070         struct sys_reg_params params;
1071
1072         /* We only do sys_reg for now. */
1073         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1074                 return NULL;
1075
1076         if (!index_to_params(id, &params))
1077                 return NULL;
1078
1079         table = get_target_table(vcpu->arch.target, true, &num);
1080         r = find_reg(&params, table, num);
1081         if (!r)
1082                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1083
1084         /* Not saved in the sys_reg array? */
1085         if (r && !r->reg)
1086                 r = NULL;
1087
1088         return r;
1089 }
1090
1091 /*
1092  * These are the invariant sys_reg registers: we let the guest see the
1093  * host versions of these, so they're part of the guest state.
1094  *
1095  * A future CPU may provide a mechanism to present different values to
1096  * the guest, or a future kvm may trap them.
1097  */
1098
1099 #define FUNCTION_INVARIANT(reg)                                         \
1100         static void get_##reg(struct kvm_vcpu *v,                       \
1101                               const struct sys_reg_desc *r)             \
1102         {                                                               \
1103                 u64 val;                                                \
1104                                                                         \
1105                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1106                              : "=r" (val));                             \
1107                 ((struct sys_reg_desc *)r)->val = val;                  \
1108         }
1109
1110 FUNCTION_INVARIANT(midr_el1)
1111 FUNCTION_INVARIANT(ctr_el0)
1112 FUNCTION_INVARIANT(revidr_el1)
1113 FUNCTION_INVARIANT(id_pfr0_el1)
1114 FUNCTION_INVARIANT(id_pfr1_el1)
1115 FUNCTION_INVARIANT(id_dfr0_el1)
1116 FUNCTION_INVARIANT(id_afr0_el1)
1117 FUNCTION_INVARIANT(id_mmfr0_el1)
1118 FUNCTION_INVARIANT(id_mmfr1_el1)
1119 FUNCTION_INVARIANT(id_mmfr2_el1)
1120 FUNCTION_INVARIANT(id_mmfr3_el1)
1121 FUNCTION_INVARIANT(id_isar0_el1)
1122 FUNCTION_INVARIANT(id_isar1_el1)
1123 FUNCTION_INVARIANT(id_isar2_el1)
1124 FUNCTION_INVARIANT(id_isar3_el1)
1125 FUNCTION_INVARIANT(id_isar4_el1)
1126 FUNCTION_INVARIANT(id_isar5_el1)
1127 FUNCTION_INVARIANT(clidr_el1)
1128 FUNCTION_INVARIANT(aidr_el1)
1129
1130 /* ->val is filled in by kvm_sys_reg_table_init() */
1131 static struct sys_reg_desc invariant_sys_regs[] = {
1132         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1133           NULL, get_midr_el1 },
1134         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1135           NULL, get_revidr_el1 },
1136         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1137           NULL, get_id_pfr0_el1 },
1138         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1139           NULL, get_id_pfr1_el1 },
1140         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1141           NULL, get_id_dfr0_el1 },
1142         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1143           NULL, get_id_afr0_el1 },
1144         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1145           NULL, get_id_mmfr0_el1 },
1146         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1147           NULL, get_id_mmfr1_el1 },
1148         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1149           NULL, get_id_mmfr2_el1 },
1150         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1151           NULL, get_id_mmfr3_el1 },
1152         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1153           NULL, get_id_isar0_el1 },
1154         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1155           NULL, get_id_isar1_el1 },
1156         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1157           NULL, get_id_isar2_el1 },
1158         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1159           NULL, get_id_isar3_el1 },
1160         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1161           NULL, get_id_isar4_el1 },
1162         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1163           NULL, get_id_isar5_el1 },
1164         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1165           NULL, get_clidr_el1 },
1166         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1167           NULL, get_aidr_el1 },
1168         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1169           NULL, get_ctr_el0 },
1170 };
1171
1172 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1173 {
1174         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1175                 return -EFAULT;
1176         return 0;
1177 }
1178
1179 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1180 {
1181         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1182                 return -EFAULT;
1183         return 0;
1184 }
1185
1186 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1187 {
1188         struct sys_reg_params params;
1189         const struct sys_reg_desc *r;
1190
1191         if (!index_to_params(id, &params))
1192                 return -ENOENT;
1193
1194         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1195         if (!r)
1196                 return -ENOENT;
1197
1198         return reg_to_user(uaddr, &r->val, id);
1199 }
1200
1201 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1202 {
1203         struct sys_reg_params params;
1204         const struct sys_reg_desc *r;
1205         int err;
1206         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1207
1208         if (!index_to_params(id, &params))
1209                 return -ENOENT;
1210         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1211         if (!r)
1212                 return -ENOENT;
1213
1214         err = reg_from_user(&val, uaddr, id);
1215         if (err)
1216                 return err;
1217
1218         /* This is what we mean by invariant: you can't change it. */
1219         if (r->val != val)
1220                 return -EINVAL;
1221
1222         return 0;
1223 }
1224
1225 static bool is_valid_cache(u32 val)
1226 {
1227         u32 level, ctype;
1228
1229         if (val >= CSSELR_MAX)
1230                 return false;
1231
1232         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1233         level = (val >> 1);
1234         ctype = (cache_levels >> (level * 3)) & 7;
1235
1236         switch (ctype) {
1237         case 0: /* No cache */
1238                 return false;
1239         case 1: /* Instruction cache only */
1240                 return (val & 1);
1241         case 2: /* Data cache only */
1242         case 4: /* Unified cache */
1243                 return !(val & 1);
1244         case 3: /* Separate instruction and data caches */
1245                 return true;
1246         default: /* Reserved: we can't know instruction or data. */
1247                 return false;
1248         }
1249 }
1250
1251 static int demux_c15_get(u64 id, void __user *uaddr)
1252 {
1253         u32 val;
1254         u32 __user *uval = uaddr;
1255
1256         /* Fail if we have unknown bits set. */
1257         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1258                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1259                 return -ENOENT;
1260
1261         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1262         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1263                 if (KVM_REG_SIZE(id) != 4)
1264                         return -ENOENT;
1265                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1266                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1267                 if (!is_valid_cache(val))
1268                         return -ENOENT;
1269
1270                 return put_user(get_ccsidr(val), uval);
1271         default:
1272                 return -ENOENT;
1273         }
1274 }
1275
1276 static int demux_c15_set(u64 id, void __user *uaddr)
1277 {
1278         u32 val, newval;
1279         u32 __user *uval = uaddr;
1280
1281         /* Fail if we have unknown bits set. */
1282         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1283                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1284                 return -ENOENT;
1285
1286         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1287         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1288                 if (KVM_REG_SIZE(id) != 4)
1289                         return -ENOENT;
1290                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1291                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1292                 if (!is_valid_cache(val))
1293                         return -ENOENT;
1294
1295                 if (get_user(newval, uval))
1296                         return -EFAULT;
1297
1298                 /* This is also invariant: you can't change it. */
1299                 if (newval != get_ccsidr(val))
1300                         return -EINVAL;
1301                 return 0;
1302         default:
1303                 return -ENOENT;
1304         }
1305 }
1306
1307 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1308 {
1309         const struct sys_reg_desc *r;
1310         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1311
1312         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1313                 return demux_c15_get(reg->id, uaddr);
1314
1315         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1316                 return -ENOENT;
1317
1318         r = index_to_sys_reg_desc(vcpu, reg->id);
1319         if (!r)
1320                 return get_invariant_sys_reg(reg->id, uaddr);
1321
1322         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1323 }
1324
1325 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1326 {
1327         const struct sys_reg_desc *r;
1328         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1329
1330         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1331                 return demux_c15_set(reg->id, uaddr);
1332
1333         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1334                 return -ENOENT;
1335
1336         r = index_to_sys_reg_desc(vcpu, reg->id);
1337         if (!r)
1338                 return set_invariant_sys_reg(reg->id, uaddr);
1339
1340         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1341 }
1342
1343 static unsigned int num_demux_regs(void)
1344 {
1345         unsigned int i, count = 0;
1346
1347         for (i = 0; i < CSSELR_MAX; i++)
1348                 if (is_valid_cache(i))
1349                         count++;
1350
1351         return count;
1352 }
1353
1354 static int write_demux_regids(u64 __user *uindices)
1355 {
1356         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1357         unsigned int i;
1358
1359         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1360         for (i = 0; i < CSSELR_MAX; i++) {
1361                 if (!is_valid_cache(i))
1362                         continue;
1363                 if (put_user(val | i, uindices))
1364                         return -EFAULT;
1365                 uindices++;
1366         }
1367         return 0;
1368 }
1369
1370 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1371 {
1372         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1373                 KVM_REG_ARM64_SYSREG |
1374                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1375                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1376                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1377                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1378                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1379 }
1380
1381 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1382 {
1383         if (!*uind)
1384                 return true;
1385
1386         if (put_user(sys_reg_to_index(reg), *uind))
1387                 return false;
1388
1389         (*uind)++;
1390         return true;
1391 }
1392
1393 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1394 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1395 {
1396         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1397         unsigned int total = 0;
1398         size_t num;
1399
1400         /* We check for duplicates here, to allow arch-specific overrides. */
1401         i1 = get_target_table(vcpu->arch.target, true, &num);
1402         end1 = i1 + num;
1403         i2 = sys_reg_descs;
1404         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1405
1406         BUG_ON(i1 == end1 || i2 == end2);
1407
1408         /* Walk carefully, as both tables may refer to the same register. */
1409         while (i1 || i2) {
1410                 int cmp = cmp_sys_reg(i1, i2);
1411                 /* target-specific overrides generic entry. */
1412                 if (cmp <= 0) {
1413                         /* Ignore registers we trap but don't save. */
1414                         if (i1->reg) {
1415                                 if (!copy_reg_to_user(i1, &uind))
1416                                         return -EFAULT;
1417                                 total++;
1418                         }
1419                 } else {
1420                         /* Ignore registers we trap but don't save. */
1421                         if (i2->reg) {
1422                                 if (!copy_reg_to_user(i2, &uind))
1423                                         return -EFAULT;
1424                                 total++;
1425                         }
1426                 }
1427
1428                 if (cmp <= 0 && ++i1 == end1)
1429                         i1 = NULL;
1430                 if (cmp >= 0 && ++i2 == end2)
1431                         i2 = NULL;
1432         }
1433         return total;
1434 }
1435
1436 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1437 {
1438         return ARRAY_SIZE(invariant_sys_regs)
1439                 + num_demux_regs()
1440                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1441 }
1442
1443 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1444 {
1445         unsigned int i;
1446         int err;
1447
1448         /* Then give them all the invariant registers' indices. */
1449         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1450                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1451                         return -EFAULT;
1452                 uindices++;
1453         }
1454
1455         err = walk_sys_regs(vcpu, uindices);
1456         if (err < 0)
1457                 return err;
1458         uindices += err;
1459
1460         return write_demux_regids(uindices);
1461 }
1462
1463 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1464 {
1465         unsigned int i;
1466
1467         for (i = 1; i < n; i++) {
1468                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1469                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1470                         return 1;
1471                 }
1472         }
1473
1474         return 0;
1475 }
1476
1477 void kvm_sys_reg_table_init(void)
1478 {
1479         unsigned int i;
1480         struct sys_reg_desc clidr;
1481
1482         /* Make sure tables are unique and in order. */
1483         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1484         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1485         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1486         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1487         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1488         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1489
1490         /* We abuse the reset function to overwrite the table itself. */
1491         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1492                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1493
1494         /*
1495          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1496          *
1497          *   If software reads the Cache Type fields from Ctype1
1498          *   upwards, once it has seen a value of 0b000, no caches
1499          *   exist at further-out levels of the hierarchy. So, for
1500          *   example, if Ctype3 is the first Cache Type field with a
1501          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1502          *   ignored.
1503          */
1504         get_clidr_el1(NULL, &clidr); /* Ugly... */
1505         cache_levels = clidr.val;
1506         for (i = 0; i < 7; i++)
1507                 if (((cache_levels >> (i*3)) & 7) == 0)
1508                         break;
1509         /* Clear all higher bits. */
1510         cache_levels &= (1 << (i*3))-1;
1511 }
1512
1513 /**
1514  * kvm_reset_sys_regs - sets system registers to reset value
1515  * @vcpu: The VCPU pointer
1516  *
1517  * This function finds the right table above and sets the registers on the
1518  * virtual CPU struct to their architecturally defined reset values.
1519  */
1520 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1521 {
1522         size_t num;
1523         const struct sys_reg_desc *table;
1524
1525         /* Catch someone adding a register without putting in reset entry. */
1526         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1527
1528         /* Generic chip reset first (so target could override). */
1529         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1530
1531         table = get_target_table(vcpu->arch.target, true, &num);
1532         reset_sys_reg_descs(vcpu, table, num);
1533
1534         for (num = 1; num < NR_SYS_REGS; num++)
1535                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1536                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1537 }