]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
Merge tag 'platform-drivers-x86-v4.3-2' of git://git.infradead.org/users/dvhart/linux...
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
36
37 #include <trace/events/kvm.h>
38
39 #include "sys_regs.h"
40
41 #include "trace.h"
42
43 /*
44  * All of this file is extremly similar to the ARM coproc.c, but the
45  * types are different. My gut feeling is that it should be pretty
46  * easy to merge, but that would be an ABI breakage -- again. VFP
47  * would also need to be abstracted.
48  *
49  * For AArch32, we only take care of what is being trapped. Anything
50  * that has to do with init and userspace access has to go via the
51  * 64bit interface.
52  */
53
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
56
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
59
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
62 {
63         u32 ccsidr;
64
65         /* Make sure noone else changes CSSELR during this! */
66         local_irq_disable();
67         /* Put value into CSSELR */
68         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69         isb();
70         /* Read result out of CCSIDR */
71         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72         local_irq_enable();
73
74         return ccsidr;
75 }
76
77 /*
78  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
79  */
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81                         const struct sys_reg_params *p,
82                         const struct sys_reg_desc *r)
83 {
84         if (!p->is_write)
85                 return read_from_write_only(vcpu, p);
86
87         kvm_set_way_flush(vcpu);
88         return true;
89 }
90
91 /*
92  * Generic accessor for VM registers. Only called as long as HCR_TVM
93  * is set. If the guest enables the MMU, we stop trapping the VM
94  * sys_regs and leave it in complete control of the caches.
95  */
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97                           const struct sys_reg_params *p,
98                           const struct sys_reg_desc *r)
99 {
100         unsigned long val;
101         bool was_enabled = vcpu_has_cache_enabled(vcpu);
102
103         BUG_ON(!p->is_write);
104
105         val = *vcpu_reg(vcpu, p->Rt);
106         if (!p->is_aarch32) {
107                 vcpu_sys_reg(vcpu, r->reg) = val;
108         } else {
109                 if (!p->is_32bit)
110                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
111                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
112         }
113
114         kvm_toggle_cache(vcpu, was_enabled);
115         return true;
116 }
117
118 /*
119  * Trap handler for the GICv3 SGI generation system register.
120  * Forward the request to the VGIC emulation.
121  * The cp15_64 code makes sure this automatically works
122  * for both AArch64 and AArch32 accesses.
123  */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125                            const struct sys_reg_params *p,
126                            const struct sys_reg_desc *r)
127 {
128         u64 val;
129
130         if (!p->is_write)
131                 return read_from_write_only(vcpu, p);
132
133         val = *vcpu_reg(vcpu, p->Rt);
134         vgic_v3_dispatch_sgi(vcpu, val);
135
136         return true;
137 }
138
139 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
140                         const struct sys_reg_params *p,
141                         const struct sys_reg_desc *r)
142 {
143         if (p->is_write)
144                 return ignore_write(vcpu, p);
145         else
146                 return read_zero(vcpu, p);
147 }
148
149 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
150                            const struct sys_reg_params *p,
151                            const struct sys_reg_desc *r)
152 {
153         if (p->is_write) {
154                 return ignore_write(vcpu, p);
155         } else {
156                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
157                 return true;
158         }
159 }
160
161 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
162                                    const struct sys_reg_params *p,
163                                    const struct sys_reg_desc *r)
164 {
165         if (p->is_write) {
166                 return ignore_write(vcpu, p);
167         } else {
168                 u32 val;
169                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
170                 *vcpu_reg(vcpu, p->Rt) = val;
171                 return true;
172         }
173 }
174
175 /*
176  * We want to avoid world-switching all the DBG registers all the
177  * time:
178  * 
179  * - If we've touched any debug register, it is likely that we're
180  *   going to touch more of them. It then makes sense to disable the
181  *   traps and start doing the save/restore dance
182  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
183  *   then mandatory to save/restore the registers, as the guest
184  *   depends on them.
185  * 
186  * For this, we use a DIRTY bit, indicating the guest has modified the
187  * debug registers, used as follow:
188  *
189  * On guest entry:
190  * - If the dirty bit is set (because we're coming back from trapping),
191  *   disable the traps, save host registers, restore guest registers.
192  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
193  *   set the dirty bit, disable the traps, save host registers,
194  *   restore guest registers.
195  * - Otherwise, enable the traps
196  *
197  * On guest exit:
198  * - If the dirty bit is set, save guest registers, restore host
199  *   registers and clear the dirty bit. This ensure that the host can
200  *   now use the debug registers.
201  */
202 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
203                             const struct sys_reg_params *p,
204                             const struct sys_reg_desc *r)
205 {
206         if (p->is_write) {
207                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
208                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
209         } else {
210                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
211         }
212
213         trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt));
214
215         return true;
216 }
217
218 /*
219  * reg_to_dbg/dbg_to_reg
220  *
221  * A 32 bit write to a debug register leave top bits alone
222  * A 32 bit read from a debug register only returns the bottom bits
223  *
224  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
225  * hyp.S code switches between host and guest values in future.
226  */
227 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
228                               const struct sys_reg_params *p,
229                               u64 *dbg_reg)
230 {
231         u64 val = *vcpu_reg(vcpu, p->Rt);
232
233         if (p->is_32bit) {
234                 val &= 0xffffffffUL;
235                 val |= ((*dbg_reg >> 32) << 32);
236         }
237
238         *dbg_reg = val;
239         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
240 }
241
242 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
243                               const struct sys_reg_params *p,
244                               u64 *dbg_reg)
245 {
246         u64 val = *dbg_reg;
247
248         if (p->is_32bit)
249                 val &= 0xffffffffUL;
250
251         *vcpu_reg(vcpu, p->Rt) = val;
252 }
253
254 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
255                             const struct sys_reg_params *p,
256                             const struct sys_reg_desc *rd)
257 {
258         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
259
260         if (p->is_write)
261                 reg_to_dbg(vcpu, p, dbg_reg);
262         else
263                 dbg_to_reg(vcpu, p, dbg_reg);
264
265         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
266
267         return true;
268 }
269
270 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
271                 const struct kvm_one_reg *reg, void __user *uaddr)
272 {
273         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
274
275         if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
276                 return -EFAULT;
277         return 0;
278 }
279
280 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
281         const struct kvm_one_reg *reg, void __user *uaddr)
282 {
283         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
284
285         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
286                 return -EFAULT;
287         return 0;
288 }
289
290 static inline void reset_bvr(struct kvm_vcpu *vcpu,
291                              const struct sys_reg_desc *rd)
292 {
293         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
294 }
295
296 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
297                             const struct sys_reg_params *p,
298                             const struct sys_reg_desc *rd)
299 {
300         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
301
302         if (p->is_write)
303                 reg_to_dbg(vcpu, p, dbg_reg);
304         else
305                 dbg_to_reg(vcpu, p, dbg_reg);
306
307         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
308
309         return true;
310 }
311
312 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
313                 const struct kvm_one_reg *reg, void __user *uaddr)
314 {
315         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
316
317         if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
318                 return -EFAULT;
319
320         return 0;
321 }
322
323 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324         const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
327
328         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
329                 return -EFAULT;
330         return 0;
331 }
332
333 static inline void reset_bcr(struct kvm_vcpu *vcpu,
334                              const struct sys_reg_desc *rd)
335 {
336         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
337 }
338
339 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
340                             const struct sys_reg_params *p,
341                             const struct sys_reg_desc *rd)
342 {
343         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
344
345         if (p->is_write)
346                 reg_to_dbg(vcpu, p, dbg_reg);
347         else
348                 dbg_to_reg(vcpu, p, dbg_reg);
349
350         trace_trap_reg(__func__, rd->reg, p->is_write,
351                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
352
353         return true;
354 }
355
356 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
357                 const struct kvm_one_reg *reg, void __user *uaddr)
358 {
359         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
360
361         if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
362                 return -EFAULT;
363         return 0;
364 }
365
366 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
367         const struct kvm_one_reg *reg, void __user *uaddr)
368 {
369         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
370
371         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
372                 return -EFAULT;
373         return 0;
374 }
375
376 static inline void reset_wvr(struct kvm_vcpu *vcpu,
377                              const struct sys_reg_desc *rd)
378 {
379         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
380 }
381
382 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
383                             const struct sys_reg_params *p,
384                             const struct sys_reg_desc *rd)
385 {
386         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
387
388         if (p->is_write)
389                 reg_to_dbg(vcpu, p, dbg_reg);
390         else
391                 dbg_to_reg(vcpu, p, dbg_reg);
392
393         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
394
395         return true;
396 }
397
398 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
399                 const struct kvm_one_reg *reg, void __user *uaddr)
400 {
401         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
402
403         if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
404                 return -EFAULT;
405         return 0;
406 }
407
408 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
409         const struct kvm_one_reg *reg, void __user *uaddr)
410 {
411         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
412
413         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
414                 return -EFAULT;
415         return 0;
416 }
417
418 static inline void reset_wcr(struct kvm_vcpu *vcpu,
419                              const struct sys_reg_desc *rd)
420 {
421         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
422 }
423
424 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
425 {
426         u64 amair;
427
428         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
429         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434         u64 mpidr;
435
436         /*
437          * Map the vcpu_id into the first three affinity level fields of
438          * the MPIDR. We limit the number of VCPUs in level 0 due to a
439          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440          * of the GICv3 to be able to address each CPU directly when
441          * sending IPIs.
442          */
443         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
450 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
451         /* DBGBVRn_EL1 */                                               \
452         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
453           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
454         /* DBGBCRn_EL1 */                                               \
455         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
456           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
457         /* DBGWVRn_EL1 */                                               \
458         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
459           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
460         /* DBGWCRn_EL1 */                                               \
461         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
462           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
463
464 /*
465  * Architected system registers.
466  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
467  *
468  * We could trap ID_DFR0 and tell the guest we don't support performance
469  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
470  * NAKed, so it will read the PMCR anyway.
471  *
472  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
473  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
474  * all PM registers, which doesn't crash the guest kernel at least.
475  *
476  * Debug handling: We do trap most, if not all debug related system
477  * registers. The implementation is good enough to ensure that a guest
478  * can use these with minimal performance degradation. The drawback is
479  * that we don't implement any of the external debug, none of the
480  * OSlock protocol. This should be revisited if we ever encounter a
481  * more demanding guest...
482  */
483 static const struct sys_reg_desc sys_reg_descs[] = {
484         /* DC ISW */
485         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
486           access_dcsw },
487         /* DC CSW */
488         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
489           access_dcsw },
490         /* DC CISW */
491         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
492           access_dcsw },
493
494         DBG_BCR_BVR_WCR_WVR_EL1(0),
495         DBG_BCR_BVR_WCR_WVR_EL1(1),
496         /* MDCCINT_EL1 */
497         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
498           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
499         /* MDSCR_EL1 */
500         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
501           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
502         DBG_BCR_BVR_WCR_WVR_EL1(2),
503         DBG_BCR_BVR_WCR_WVR_EL1(3),
504         DBG_BCR_BVR_WCR_WVR_EL1(4),
505         DBG_BCR_BVR_WCR_WVR_EL1(5),
506         DBG_BCR_BVR_WCR_WVR_EL1(6),
507         DBG_BCR_BVR_WCR_WVR_EL1(7),
508         DBG_BCR_BVR_WCR_WVR_EL1(8),
509         DBG_BCR_BVR_WCR_WVR_EL1(9),
510         DBG_BCR_BVR_WCR_WVR_EL1(10),
511         DBG_BCR_BVR_WCR_WVR_EL1(11),
512         DBG_BCR_BVR_WCR_WVR_EL1(12),
513         DBG_BCR_BVR_WCR_WVR_EL1(13),
514         DBG_BCR_BVR_WCR_WVR_EL1(14),
515         DBG_BCR_BVR_WCR_WVR_EL1(15),
516
517         /* MDRAR_EL1 */
518         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
519           trap_raz_wi },
520         /* OSLAR_EL1 */
521         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
522           trap_raz_wi },
523         /* OSLSR_EL1 */
524         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
525           trap_oslsr_el1 },
526         /* OSDLR_EL1 */
527         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
528           trap_raz_wi },
529         /* DBGPRCR_EL1 */
530         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
531           trap_raz_wi },
532         /* DBGCLAIMSET_EL1 */
533         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
534           trap_raz_wi },
535         /* DBGCLAIMCLR_EL1 */
536         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
537           trap_raz_wi },
538         /* DBGAUTHSTATUS_EL1 */
539         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
540           trap_dbgauthstatus_el1 },
541
542         /* TEECR32_EL1 */
543         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
544           NULL, reset_val, TEECR32_EL1, 0 },
545         /* TEEHBR32_EL1 */
546         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
547           NULL, reset_val, TEEHBR32_EL1, 0 },
548
549         /* MDCCSR_EL1 */
550         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
551           trap_raz_wi },
552         /* DBGDTR_EL0 */
553         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
554           trap_raz_wi },
555         /* DBGDTR[TR]X_EL0 */
556         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
557           trap_raz_wi },
558
559         /* DBGVCR32_EL2 */
560         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
561           NULL, reset_val, DBGVCR32_EL2, 0 },
562
563         /* MPIDR_EL1 */
564         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
565           NULL, reset_mpidr, MPIDR_EL1 },
566         /* SCTLR_EL1 */
567         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
568           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
569         /* CPACR_EL1 */
570         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
571           NULL, reset_val, CPACR_EL1, 0 },
572         /* TTBR0_EL1 */
573         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
574           access_vm_reg, reset_unknown, TTBR0_EL1 },
575         /* TTBR1_EL1 */
576         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
577           access_vm_reg, reset_unknown, TTBR1_EL1 },
578         /* TCR_EL1 */
579         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
580           access_vm_reg, reset_val, TCR_EL1, 0 },
581
582         /* AFSR0_EL1 */
583         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
584           access_vm_reg, reset_unknown, AFSR0_EL1 },
585         /* AFSR1_EL1 */
586         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
587           access_vm_reg, reset_unknown, AFSR1_EL1 },
588         /* ESR_EL1 */
589         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
590           access_vm_reg, reset_unknown, ESR_EL1 },
591         /* FAR_EL1 */
592         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
593           access_vm_reg, reset_unknown, FAR_EL1 },
594         /* PAR_EL1 */
595         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
596           NULL, reset_unknown, PAR_EL1 },
597
598         /* PMINTENSET_EL1 */
599         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
600           trap_raz_wi },
601         /* PMINTENCLR_EL1 */
602         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
603           trap_raz_wi },
604
605         /* MAIR_EL1 */
606         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
607           access_vm_reg, reset_unknown, MAIR_EL1 },
608         /* AMAIR_EL1 */
609         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
610           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
611
612         /* VBAR_EL1 */
613         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
614           NULL, reset_val, VBAR_EL1, 0 },
615
616         /* ICC_SGI1R_EL1 */
617         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
618           access_gic_sgi },
619         /* ICC_SRE_EL1 */
620         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
621           trap_raz_wi },
622
623         /* CONTEXTIDR_EL1 */
624         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
625           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
626         /* TPIDR_EL1 */
627         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
628           NULL, reset_unknown, TPIDR_EL1 },
629
630         /* CNTKCTL_EL1 */
631         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
632           NULL, reset_val, CNTKCTL_EL1, 0},
633
634         /* CSSELR_EL1 */
635         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
636           NULL, reset_unknown, CSSELR_EL1 },
637
638         /* PMCR_EL0 */
639         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
640           trap_raz_wi },
641         /* PMCNTENSET_EL0 */
642         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
643           trap_raz_wi },
644         /* PMCNTENCLR_EL0 */
645         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
646           trap_raz_wi },
647         /* PMOVSCLR_EL0 */
648         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
649           trap_raz_wi },
650         /* PMSWINC_EL0 */
651         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
652           trap_raz_wi },
653         /* PMSELR_EL0 */
654         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
655           trap_raz_wi },
656         /* PMCEID0_EL0 */
657         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
658           trap_raz_wi },
659         /* PMCEID1_EL0 */
660         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
661           trap_raz_wi },
662         /* PMCCNTR_EL0 */
663         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
664           trap_raz_wi },
665         /* PMXEVTYPER_EL0 */
666         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
667           trap_raz_wi },
668         /* PMXEVCNTR_EL0 */
669         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
670           trap_raz_wi },
671         /* PMUSERENR_EL0 */
672         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
673           trap_raz_wi },
674         /* PMOVSSET_EL0 */
675         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
676           trap_raz_wi },
677
678         /* TPIDR_EL0 */
679         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
680           NULL, reset_unknown, TPIDR_EL0 },
681         /* TPIDRRO_EL0 */
682         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
683           NULL, reset_unknown, TPIDRRO_EL0 },
684
685         /* DACR32_EL2 */
686         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
687           NULL, reset_unknown, DACR32_EL2 },
688         /* IFSR32_EL2 */
689         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
690           NULL, reset_unknown, IFSR32_EL2 },
691         /* FPEXC32_EL2 */
692         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
693           NULL, reset_val, FPEXC32_EL2, 0x70 },
694 };
695
696 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
697                         const struct sys_reg_params *p,
698                         const struct sys_reg_desc *r)
699 {
700         if (p->is_write) {
701                 return ignore_write(vcpu, p);
702         } else {
703                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
704                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
705                 u32 el3 = !!((pfr >> 12) & 0xf);
706
707                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
708                                           (((dfr >> 12) & 0xf) << 24) |
709                                           (((dfr >> 28) & 0xf) << 20) |
710                                           (6 << 16) | (el3 << 14) | (el3 << 12));
711                 return true;
712         }
713 }
714
715 static bool trap_debug32(struct kvm_vcpu *vcpu,
716                          const struct sys_reg_params *p,
717                          const struct sys_reg_desc *r)
718 {
719         if (p->is_write) {
720                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
721                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
722         } else {
723                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
724         }
725
726         return true;
727 }
728
729 /* AArch32 debug register mappings
730  *
731  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
732  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
733  *
734  * All control registers and watchpoint value registers are mapped to
735  * the lower 32 bits of their AArch64 equivalents. We share the trap
736  * handlers with the above AArch64 code which checks what mode the
737  * system is in.
738  */
739
740 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
741                             const struct sys_reg_params *p,
742                             const struct sys_reg_desc *rd)
743 {
744         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
745
746         if (p->is_write) {
747                 u64 val = *dbg_reg;
748
749                 val &= 0xffffffffUL;
750                 val |= *vcpu_reg(vcpu, p->Rt) << 32;
751                 *dbg_reg = val;
752
753                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
754         } else {
755                 *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32;
756         }
757
758         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
759
760         return true;
761 }
762
763 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
764         /* DBGBVRn */                                                   \
765         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
766         /* DBGBCRn */                                                   \
767         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
768         /* DBGWVRn */                                                   \
769         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
770         /* DBGWCRn */                                                   \
771         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
772
773 #define DBGBXVR(n)                                                      \
774         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
775
776 /*
777  * Trapped cp14 registers. We generally ignore most of the external
778  * debug, on the principle that they don't really make sense to a
779  * guest. Revisit this one day, would this principle change.
780  */
781 static const struct sys_reg_desc cp14_regs[] = {
782         /* DBGIDR */
783         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
784         /* DBGDTRRXext */
785         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
786
787         DBG_BCR_BVR_WCR_WVR(0),
788         /* DBGDSCRint */
789         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
790         DBG_BCR_BVR_WCR_WVR(1),
791         /* DBGDCCINT */
792         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
793         /* DBGDSCRext */
794         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
795         DBG_BCR_BVR_WCR_WVR(2),
796         /* DBGDTR[RT]Xint */
797         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
798         /* DBGDTR[RT]Xext */
799         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
800         DBG_BCR_BVR_WCR_WVR(3),
801         DBG_BCR_BVR_WCR_WVR(4),
802         DBG_BCR_BVR_WCR_WVR(5),
803         /* DBGWFAR */
804         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
805         /* DBGOSECCR */
806         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
807         DBG_BCR_BVR_WCR_WVR(6),
808         /* DBGVCR */
809         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
810         DBG_BCR_BVR_WCR_WVR(7),
811         DBG_BCR_BVR_WCR_WVR(8),
812         DBG_BCR_BVR_WCR_WVR(9),
813         DBG_BCR_BVR_WCR_WVR(10),
814         DBG_BCR_BVR_WCR_WVR(11),
815         DBG_BCR_BVR_WCR_WVR(12),
816         DBG_BCR_BVR_WCR_WVR(13),
817         DBG_BCR_BVR_WCR_WVR(14),
818         DBG_BCR_BVR_WCR_WVR(15),
819
820         /* DBGDRAR (32bit) */
821         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
822
823         DBGBXVR(0),
824         /* DBGOSLAR */
825         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
826         DBGBXVR(1),
827         /* DBGOSLSR */
828         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
829         DBGBXVR(2),
830         DBGBXVR(3),
831         /* DBGOSDLR */
832         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
833         DBGBXVR(4),
834         /* DBGPRCR */
835         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
836         DBGBXVR(5),
837         DBGBXVR(6),
838         DBGBXVR(7),
839         DBGBXVR(8),
840         DBGBXVR(9),
841         DBGBXVR(10),
842         DBGBXVR(11),
843         DBGBXVR(12),
844         DBGBXVR(13),
845         DBGBXVR(14),
846         DBGBXVR(15),
847
848         /* DBGDSAR (32bit) */
849         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
850
851         /* DBGDEVID2 */
852         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
853         /* DBGDEVID1 */
854         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
855         /* DBGDEVID */
856         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
857         /* DBGCLAIMSET */
858         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
859         /* DBGCLAIMCLR */
860         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
861         /* DBGAUTHSTATUS */
862         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
863 };
864
865 /* Trapped cp14 64bit registers */
866 static const struct sys_reg_desc cp14_64_regs[] = {
867         /* DBGDRAR (64bit) */
868         { Op1( 0), CRm( 1), .access = trap_raz_wi },
869
870         /* DBGDSAR (64bit) */
871         { Op1( 0), CRm( 2), .access = trap_raz_wi },
872 };
873
874 /*
875  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
876  * depending on the way they are accessed (as a 32bit or a 64bit
877  * register).
878  */
879 static const struct sys_reg_desc cp15_regs[] = {
880         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
881
882         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
883         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
884         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
885         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
886         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
887         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
888         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
889         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
890         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
891         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
892         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
893
894         /*
895          * DC{C,I,CI}SW operations:
896          */
897         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
898         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
899         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
900
901         /* PMU */
902         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
903         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
904         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
905         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
906         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
907         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
908         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
909         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
910         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
911         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
912         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
913         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
914         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
915
916         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
917         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
918         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
919         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
920
921         /* ICC_SRE */
922         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
923
924         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
925 };
926
927 static const struct sys_reg_desc cp15_64_regs[] = {
928         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
929         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
930         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
931 };
932
933 /* Target specific emulation tables */
934 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
935
936 void kvm_register_target_sys_reg_table(unsigned int target,
937                                        struct kvm_sys_reg_target_table *table)
938 {
939         target_tables[target] = table;
940 }
941
942 /* Get specific register table for this target. */
943 static const struct sys_reg_desc *get_target_table(unsigned target,
944                                                    bool mode_is_64,
945                                                    size_t *num)
946 {
947         struct kvm_sys_reg_target_table *table;
948
949         table = target_tables[target];
950         if (mode_is_64) {
951                 *num = table->table64.num;
952                 return table->table64.table;
953         } else {
954                 *num = table->table32.num;
955                 return table->table32.table;
956         }
957 }
958
959 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
960                                          const struct sys_reg_desc table[],
961                                          unsigned int num)
962 {
963         unsigned int i;
964
965         for (i = 0; i < num; i++) {
966                 const struct sys_reg_desc *r = &table[i];
967
968                 if (params->Op0 != r->Op0)
969                         continue;
970                 if (params->Op1 != r->Op1)
971                         continue;
972                 if (params->CRn != r->CRn)
973                         continue;
974                 if (params->CRm != r->CRm)
975                         continue;
976                 if (params->Op2 != r->Op2)
977                         continue;
978
979                 return r;
980         }
981         return NULL;
982 }
983
984 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
985 {
986         kvm_inject_undefined(vcpu);
987         return 1;
988 }
989
990 /*
991  * emulate_cp --  tries to match a sys_reg access in a handling table, and
992  *                call the corresponding trap handler.
993  *
994  * @params: pointer to the descriptor of the access
995  * @table: array of trap descriptors
996  * @num: size of the trap descriptor array
997  *
998  * Return 0 if the access has been handled, and -1 if not.
999  */
1000 static int emulate_cp(struct kvm_vcpu *vcpu,
1001                       const struct sys_reg_params *params,
1002                       const struct sys_reg_desc *table,
1003                       size_t num)
1004 {
1005         const struct sys_reg_desc *r;
1006
1007         if (!table)
1008                 return -1;      /* Not handled */
1009
1010         r = find_reg(params, table, num);
1011
1012         if (r) {
1013                 /*
1014                  * Not having an accessor means that we have
1015                  * configured a trap that we don't know how to
1016                  * handle. This certainly qualifies as a gross bug
1017                  * that should be fixed right away.
1018                  */
1019                 BUG_ON(!r->access);
1020
1021                 if (likely(r->access(vcpu, params, r))) {
1022                         /* Skip instruction, since it was emulated */
1023                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1024                 }
1025
1026                 /* Handled */
1027                 return 0;
1028         }
1029
1030         /* Not handled */
1031         return -1;
1032 }
1033
1034 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1035                                 struct sys_reg_params *params)
1036 {
1037         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1038         int cp;
1039
1040         switch(hsr_ec) {
1041         case ESR_ELx_EC_CP15_32:
1042         case ESR_ELx_EC_CP15_64:
1043                 cp = 15;
1044                 break;
1045         case ESR_ELx_EC_CP14_MR:
1046         case ESR_ELx_EC_CP14_64:
1047                 cp = 14;
1048                 break;
1049         default:
1050                 WARN_ON((cp = -1));
1051         }
1052
1053         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1054                 cp, *vcpu_pc(vcpu));
1055         print_sys_reg_instr(params);
1056         kvm_inject_undefined(vcpu);
1057 }
1058
1059 /**
1060  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1061  * @vcpu: The VCPU pointer
1062  * @run:  The kvm_run struct
1063  */
1064 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1065                             const struct sys_reg_desc *global,
1066                             size_t nr_global,
1067                             const struct sys_reg_desc *target_specific,
1068                             size_t nr_specific)
1069 {
1070         struct sys_reg_params params;
1071         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1072         int Rt2 = (hsr >> 10) & 0xf;
1073
1074         params.is_aarch32 = true;
1075         params.is_32bit = false;
1076         params.CRm = (hsr >> 1) & 0xf;
1077         params.Rt = (hsr >> 5) & 0xf;
1078         params.is_write = ((hsr & 1) == 0);
1079
1080         params.Op0 = 0;
1081         params.Op1 = (hsr >> 16) & 0xf;
1082         params.Op2 = 0;
1083         params.CRn = 0;
1084
1085         /*
1086          * Massive hack here. Store Rt2 in the top 32bits so we only
1087          * have one register to deal with. As we use the same trap
1088          * backends between AArch32 and AArch64, we get away with it.
1089          */
1090         if (params.is_write) {
1091                 u64 val = *vcpu_reg(vcpu, params.Rt);
1092                 val &= 0xffffffff;
1093                 val |= *vcpu_reg(vcpu, Rt2) << 32;
1094                 *vcpu_reg(vcpu, params.Rt) = val;
1095         }
1096
1097         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1098                 goto out;
1099         if (!emulate_cp(vcpu, &params, global, nr_global))
1100                 goto out;
1101
1102         unhandled_cp_access(vcpu, &params);
1103
1104 out:
1105         /* Do the opposite hack for the read side */
1106         if (!params.is_write) {
1107                 u64 val = *vcpu_reg(vcpu, params.Rt);
1108                 val >>= 32;
1109                 *vcpu_reg(vcpu, Rt2) = val;
1110         }
1111
1112         return 1;
1113 }
1114
1115 /**
1116  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1117  * @vcpu: The VCPU pointer
1118  * @run:  The kvm_run struct
1119  */
1120 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1121                             const struct sys_reg_desc *global,
1122                             size_t nr_global,
1123                             const struct sys_reg_desc *target_specific,
1124                             size_t nr_specific)
1125 {
1126         struct sys_reg_params params;
1127         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1128
1129         params.is_aarch32 = true;
1130         params.is_32bit = true;
1131         params.CRm = (hsr >> 1) & 0xf;
1132         params.Rt  = (hsr >> 5) & 0xf;
1133         params.is_write = ((hsr & 1) == 0);
1134         params.CRn = (hsr >> 10) & 0xf;
1135         params.Op0 = 0;
1136         params.Op1 = (hsr >> 14) & 0x7;
1137         params.Op2 = (hsr >> 17) & 0x7;
1138
1139         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1140                 return 1;
1141         if (!emulate_cp(vcpu, &params, global, nr_global))
1142                 return 1;
1143
1144         unhandled_cp_access(vcpu, &params);
1145         return 1;
1146 }
1147
1148 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1149 {
1150         const struct sys_reg_desc *target_specific;
1151         size_t num;
1152
1153         target_specific = get_target_table(vcpu->arch.target, false, &num);
1154         return kvm_handle_cp_64(vcpu,
1155                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1156                                 target_specific, num);
1157 }
1158
1159 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1160 {
1161         const struct sys_reg_desc *target_specific;
1162         size_t num;
1163
1164         target_specific = get_target_table(vcpu->arch.target, false, &num);
1165         return kvm_handle_cp_32(vcpu,
1166                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1167                                 target_specific, num);
1168 }
1169
1170 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1171 {
1172         return kvm_handle_cp_64(vcpu,
1173                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1174                                 NULL, 0);
1175 }
1176
1177 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1178 {
1179         return kvm_handle_cp_32(vcpu,
1180                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1181                                 NULL, 0);
1182 }
1183
1184 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1185                            const struct sys_reg_params *params)
1186 {
1187         size_t num;
1188         const struct sys_reg_desc *table, *r;
1189
1190         table = get_target_table(vcpu->arch.target, true, &num);
1191
1192         /* Search target-specific then generic table. */
1193         r = find_reg(params, table, num);
1194         if (!r)
1195                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1196
1197         if (likely(r)) {
1198                 /*
1199                  * Not having an accessor means that we have
1200                  * configured a trap that we don't know how to
1201                  * handle. This certainly qualifies as a gross bug
1202                  * that should be fixed right away.
1203                  */
1204                 BUG_ON(!r->access);
1205
1206                 if (likely(r->access(vcpu, params, r))) {
1207                         /* Skip instruction, since it was emulated */
1208                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1209                         return 1;
1210                 }
1211                 /* If access function fails, it should complain. */
1212         } else {
1213                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1214                         *vcpu_pc(vcpu));
1215                 print_sys_reg_instr(params);
1216         }
1217         kvm_inject_undefined(vcpu);
1218         return 1;
1219 }
1220
1221 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1222                               const struct sys_reg_desc *table, size_t num)
1223 {
1224         unsigned long i;
1225
1226         for (i = 0; i < num; i++)
1227                 if (table[i].reset)
1228                         table[i].reset(vcpu, &table[i]);
1229 }
1230
1231 /**
1232  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1233  * @vcpu: The VCPU pointer
1234  * @run:  The kvm_run struct
1235  */
1236 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1237 {
1238         struct sys_reg_params params;
1239         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1240
1241         trace_kvm_handle_sys_reg(esr);
1242
1243         params.is_aarch32 = false;
1244         params.is_32bit = false;
1245         params.Op0 = (esr >> 20) & 3;
1246         params.Op1 = (esr >> 14) & 0x7;
1247         params.CRn = (esr >> 10) & 0xf;
1248         params.CRm = (esr >> 1) & 0xf;
1249         params.Op2 = (esr >> 17) & 0x7;
1250         params.Rt = (esr >> 5) & 0x1f;
1251         params.is_write = !(esr & 1);
1252
1253         return emulate_sys_reg(vcpu, &params);
1254 }
1255
1256 /******************************************************************************
1257  * Userspace API
1258  *****************************************************************************/
1259
1260 static bool index_to_params(u64 id, struct sys_reg_params *params)
1261 {
1262         switch (id & KVM_REG_SIZE_MASK) {
1263         case KVM_REG_SIZE_U64:
1264                 /* Any unused index bits means it's not valid. */
1265                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1266                               | KVM_REG_ARM_COPROC_MASK
1267                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1268                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1269                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1270                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1271                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1272                         return false;
1273                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1274                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1275                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1276                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1277                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1278                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1279                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1280                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1281                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1282                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1283                 return true;
1284         default:
1285                 return false;
1286         }
1287 }
1288
1289 /* Decode an index value, and find the sys_reg_desc entry. */
1290 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1291                                                     u64 id)
1292 {
1293         size_t num;
1294         const struct sys_reg_desc *table, *r;
1295         struct sys_reg_params params;
1296
1297         /* We only do sys_reg for now. */
1298         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1299                 return NULL;
1300
1301         if (!index_to_params(id, &params))
1302                 return NULL;
1303
1304         table = get_target_table(vcpu->arch.target, true, &num);
1305         r = find_reg(&params, table, num);
1306         if (!r)
1307                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1308
1309         /* Not saved in the sys_reg array? */
1310         if (r && !r->reg)
1311                 r = NULL;
1312
1313         return r;
1314 }
1315
1316 /*
1317  * These are the invariant sys_reg registers: we let the guest see the
1318  * host versions of these, so they're part of the guest state.
1319  *
1320  * A future CPU may provide a mechanism to present different values to
1321  * the guest, or a future kvm may trap them.
1322  */
1323
1324 #define FUNCTION_INVARIANT(reg)                                         \
1325         static void get_##reg(struct kvm_vcpu *v,                       \
1326                               const struct sys_reg_desc *r)             \
1327         {                                                               \
1328                 u64 val;                                                \
1329                                                                         \
1330                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1331                              : "=r" (val));                             \
1332                 ((struct sys_reg_desc *)r)->val = val;                  \
1333         }
1334
1335 FUNCTION_INVARIANT(midr_el1)
1336 FUNCTION_INVARIANT(ctr_el0)
1337 FUNCTION_INVARIANT(revidr_el1)
1338 FUNCTION_INVARIANT(id_pfr0_el1)
1339 FUNCTION_INVARIANT(id_pfr1_el1)
1340 FUNCTION_INVARIANT(id_dfr0_el1)
1341 FUNCTION_INVARIANT(id_afr0_el1)
1342 FUNCTION_INVARIANT(id_mmfr0_el1)
1343 FUNCTION_INVARIANT(id_mmfr1_el1)
1344 FUNCTION_INVARIANT(id_mmfr2_el1)
1345 FUNCTION_INVARIANT(id_mmfr3_el1)
1346 FUNCTION_INVARIANT(id_isar0_el1)
1347 FUNCTION_INVARIANT(id_isar1_el1)
1348 FUNCTION_INVARIANT(id_isar2_el1)
1349 FUNCTION_INVARIANT(id_isar3_el1)
1350 FUNCTION_INVARIANT(id_isar4_el1)
1351 FUNCTION_INVARIANT(id_isar5_el1)
1352 FUNCTION_INVARIANT(clidr_el1)
1353 FUNCTION_INVARIANT(aidr_el1)
1354
1355 /* ->val is filled in by kvm_sys_reg_table_init() */
1356 static struct sys_reg_desc invariant_sys_regs[] = {
1357         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1358           NULL, get_midr_el1 },
1359         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1360           NULL, get_revidr_el1 },
1361         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1362           NULL, get_id_pfr0_el1 },
1363         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1364           NULL, get_id_pfr1_el1 },
1365         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1366           NULL, get_id_dfr0_el1 },
1367         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1368           NULL, get_id_afr0_el1 },
1369         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1370           NULL, get_id_mmfr0_el1 },
1371         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1372           NULL, get_id_mmfr1_el1 },
1373         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1374           NULL, get_id_mmfr2_el1 },
1375         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1376           NULL, get_id_mmfr3_el1 },
1377         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1378           NULL, get_id_isar0_el1 },
1379         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1380           NULL, get_id_isar1_el1 },
1381         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1382           NULL, get_id_isar2_el1 },
1383         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1384           NULL, get_id_isar3_el1 },
1385         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1386           NULL, get_id_isar4_el1 },
1387         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1388           NULL, get_id_isar5_el1 },
1389         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1390           NULL, get_clidr_el1 },
1391         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1392           NULL, get_aidr_el1 },
1393         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1394           NULL, get_ctr_el0 },
1395 };
1396
1397 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1398 {
1399         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1400                 return -EFAULT;
1401         return 0;
1402 }
1403
1404 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1405 {
1406         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1407                 return -EFAULT;
1408         return 0;
1409 }
1410
1411 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1412 {
1413         struct sys_reg_params params;
1414         const struct sys_reg_desc *r;
1415
1416         if (!index_to_params(id, &params))
1417                 return -ENOENT;
1418
1419         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1420         if (!r)
1421                 return -ENOENT;
1422
1423         return reg_to_user(uaddr, &r->val, id);
1424 }
1425
1426 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1427 {
1428         struct sys_reg_params params;
1429         const struct sys_reg_desc *r;
1430         int err;
1431         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1432
1433         if (!index_to_params(id, &params))
1434                 return -ENOENT;
1435         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1436         if (!r)
1437                 return -ENOENT;
1438
1439         err = reg_from_user(&val, uaddr, id);
1440         if (err)
1441                 return err;
1442
1443         /* This is what we mean by invariant: you can't change it. */
1444         if (r->val != val)
1445                 return -EINVAL;
1446
1447         return 0;
1448 }
1449
1450 static bool is_valid_cache(u32 val)
1451 {
1452         u32 level, ctype;
1453
1454         if (val >= CSSELR_MAX)
1455                 return false;
1456
1457         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1458         level = (val >> 1);
1459         ctype = (cache_levels >> (level * 3)) & 7;
1460
1461         switch (ctype) {
1462         case 0: /* No cache */
1463                 return false;
1464         case 1: /* Instruction cache only */
1465                 return (val & 1);
1466         case 2: /* Data cache only */
1467         case 4: /* Unified cache */
1468                 return !(val & 1);
1469         case 3: /* Separate instruction and data caches */
1470                 return true;
1471         default: /* Reserved: we can't know instruction or data. */
1472                 return false;
1473         }
1474 }
1475
1476 static int demux_c15_get(u64 id, void __user *uaddr)
1477 {
1478         u32 val;
1479         u32 __user *uval = uaddr;
1480
1481         /* Fail if we have unknown bits set. */
1482         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1483                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1484                 return -ENOENT;
1485
1486         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1487         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1488                 if (KVM_REG_SIZE(id) != 4)
1489                         return -ENOENT;
1490                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1491                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1492                 if (!is_valid_cache(val))
1493                         return -ENOENT;
1494
1495                 return put_user(get_ccsidr(val), uval);
1496         default:
1497                 return -ENOENT;
1498         }
1499 }
1500
1501 static int demux_c15_set(u64 id, void __user *uaddr)
1502 {
1503         u32 val, newval;
1504         u32 __user *uval = uaddr;
1505
1506         /* Fail if we have unknown bits set. */
1507         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1508                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1509                 return -ENOENT;
1510
1511         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1512         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1513                 if (KVM_REG_SIZE(id) != 4)
1514                         return -ENOENT;
1515                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1516                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1517                 if (!is_valid_cache(val))
1518                         return -ENOENT;
1519
1520                 if (get_user(newval, uval))
1521                         return -EFAULT;
1522
1523                 /* This is also invariant: you can't change it. */
1524                 if (newval != get_ccsidr(val))
1525                         return -EINVAL;
1526                 return 0;
1527         default:
1528                 return -ENOENT;
1529         }
1530 }
1531
1532 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1533 {
1534         const struct sys_reg_desc *r;
1535         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1536
1537         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1538                 return demux_c15_get(reg->id, uaddr);
1539
1540         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1541                 return -ENOENT;
1542
1543         r = index_to_sys_reg_desc(vcpu, reg->id);
1544         if (!r)
1545                 return get_invariant_sys_reg(reg->id, uaddr);
1546
1547         if (r->get_user)
1548                 return (r->get_user)(vcpu, r, reg, uaddr);
1549
1550         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1551 }
1552
1553 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1554 {
1555         const struct sys_reg_desc *r;
1556         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1557
1558         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1559                 return demux_c15_set(reg->id, uaddr);
1560
1561         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1562                 return -ENOENT;
1563
1564         r = index_to_sys_reg_desc(vcpu, reg->id);
1565         if (!r)
1566                 return set_invariant_sys_reg(reg->id, uaddr);
1567
1568         if (r->set_user)
1569                 return (r->set_user)(vcpu, r, reg, uaddr);
1570
1571         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1572 }
1573
1574 static unsigned int num_demux_regs(void)
1575 {
1576         unsigned int i, count = 0;
1577
1578         for (i = 0; i < CSSELR_MAX; i++)
1579                 if (is_valid_cache(i))
1580                         count++;
1581
1582         return count;
1583 }
1584
1585 static int write_demux_regids(u64 __user *uindices)
1586 {
1587         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1588         unsigned int i;
1589
1590         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1591         for (i = 0; i < CSSELR_MAX; i++) {
1592                 if (!is_valid_cache(i))
1593                         continue;
1594                 if (put_user(val | i, uindices))
1595                         return -EFAULT;
1596                 uindices++;
1597         }
1598         return 0;
1599 }
1600
1601 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1602 {
1603         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1604                 KVM_REG_ARM64_SYSREG |
1605                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1606                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1607                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1608                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1609                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1610 }
1611
1612 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1613 {
1614         if (!*uind)
1615                 return true;
1616
1617         if (put_user(sys_reg_to_index(reg), *uind))
1618                 return false;
1619
1620         (*uind)++;
1621         return true;
1622 }
1623
1624 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1625 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1626 {
1627         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1628         unsigned int total = 0;
1629         size_t num;
1630
1631         /* We check for duplicates here, to allow arch-specific overrides. */
1632         i1 = get_target_table(vcpu->arch.target, true, &num);
1633         end1 = i1 + num;
1634         i2 = sys_reg_descs;
1635         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1636
1637         BUG_ON(i1 == end1 || i2 == end2);
1638
1639         /* Walk carefully, as both tables may refer to the same register. */
1640         while (i1 || i2) {
1641                 int cmp = cmp_sys_reg(i1, i2);
1642                 /* target-specific overrides generic entry. */
1643                 if (cmp <= 0) {
1644                         /* Ignore registers we trap but don't save. */
1645                         if (i1->reg) {
1646                                 if (!copy_reg_to_user(i1, &uind))
1647                                         return -EFAULT;
1648                                 total++;
1649                         }
1650                 } else {
1651                         /* Ignore registers we trap but don't save. */
1652                         if (i2->reg) {
1653                                 if (!copy_reg_to_user(i2, &uind))
1654                                         return -EFAULT;
1655                                 total++;
1656                         }
1657                 }
1658
1659                 if (cmp <= 0 && ++i1 == end1)
1660                         i1 = NULL;
1661                 if (cmp >= 0 && ++i2 == end2)
1662                         i2 = NULL;
1663         }
1664         return total;
1665 }
1666
1667 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1668 {
1669         return ARRAY_SIZE(invariant_sys_regs)
1670                 + num_demux_regs()
1671                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1672 }
1673
1674 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1675 {
1676         unsigned int i;
1677         int err;
1678
1679         /* Then give them all the invariant registers' indices. */
1680         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1681                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1682                         return -EFAULT;
1683                 uindices++;
1684         }
1685
1686         err = walk_sys_regs(vcpu, uindices);
1687         if (err < 0)
1688                 return err;
1689         uindices += err;
1690
1691         return write_demux_regids(uindices);
1692 }
1693
1694 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1695 {
1696         unsigned int i;
1697
1698         for (i = 1; i < n; i++) {
1699                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1700                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1701                         return 1;
1702                 }
1703         }
1704
1705         return 0;
1706 }
1707
1708 void kvm_sys_reg_table_init(void)
1709 {
1710         unsigned int i;
1711         struct sys_reg_desc clidr;
1712
1713         /* Make sure tables are unique and in order. */
1714         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1715         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1716         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1717         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1718         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1719         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1720
1721         /* We abuse the reset function to overwrite the table itself. */
1722         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1723                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1724
1725         /*
1726          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1727          *
1728          *   If software reads the Cache Type fields from Ctype1
1729          *   upwards, once it has seen a value of 0b000, no caches
1730          *   exist at further-out levels of the hierarchy. So, for
1731          *   example, if Ctype3 is the first Cache Type field with a
1732          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1733          *   ignored.
1734          */
1735         get_clidr_el1(NULL, &clidr); /* Ugly... */
1736         cache_levels = clidr.val;
1737         for (i = 0; i < 7; i++)
1738                 if (((cache_levels >> (i*3)) & 7) == 0)
1739                         break;
1740         /* Clear all higher bits. */
1741         cache_levels &= (1 << (i*3))-1;
1742 }
1743
1744 /**
1745  * kvm_reset_sys_regs - sets system registers to reset value
1746  * @vcpu: The VCPU pointer
1747  *
1748  * This function finds the right table above and sets the registers on the
1749  * virtual CPU struct to their architecturally defined reset values.
1750  */
1751 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1752 {
1753         size_t num;
1754         const struct sys_reg_desc *table;
1755
1756         /* Catch someone adding a register without putting in reset entry. */
1757         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1758
1759         /* Generic chip reset first (so target could override). */
1760         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1761
1762         table = get_target_table(vcpu->arch.target, true, &num);
1763         reset_sys_reg_descs(vcpu, table, num);
1764
1765         for (num = 1; num < NR_SYS_REGS; num++)
1766                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1767                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1768 }