]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
36
37 #include <trace/events/kvm.h>
38
39 #include "sys_regs.h"
40
41 /*
42  * All of this file is extremly similar to the ARM coproc.c, but the
43  * types are different. My gut feeling is that it should be pretty
44  * easy to merge, but that would be an ABI breakage -- again. VFP
45  * would also need to be abstracted.
46  *
47  * For AArch32, we only take care of what is being trapped. Anything
48  * that has to do with init and userspace access has to go via the
49  * 64bit interface.
50  */
51
52 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
53 static u32 cache_levels;
54
55 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
56 #define CSSELR_MAX 12
57
58 /* Which cache CCSIDR represents depends on CSSELR value. */
59 static u32 get_ccsidr(u32 csselr)
60 {
61         u32 ccsidr;
62
63         /* Make sure noone else changes CSSELR during this! */
64         local_irq_disable();
65         /* Put value into CSSELR */
66         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
67         isb();
68         /* Read result out of CCSIDR */
69         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
70         local_irq_enable();
71
72         return ccsidr;
73 }
74
75 /*
76  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
77  */
78 static bool access_dcsw(struct kvm_vcpu *vcpu,
79                         const struct sys_reg_params *p,
80                         const struct sys_reg_desc *r)
81 {
82         if (!p->is_write)
83                 return read_from_write_only(vcpu, p);
84
85         kvm_set_way_flush(vcpu);
86         return true;
87 }
88
89 /*
90  * Generic accessor for VM registers. Only called as long as HCR_TVM
91  * is set. If the guest enables the MMU, we stop trapping the VM
92  * sys_regs and leave it in complete control of the caches.
93  */
94 static bool access_vm_reg(struct kvm_vcpu *vcpu,
95                           const struct sys_reg_params *p,
96                           const struct sys_reg_desc *r)
97 {
98         unsigned long val;
99         bool was_enabled = vcpu_has_cache_enabled(vcpu);
100
101         BUG_ON(!p->is_write);
102
103         val = *vcpu_reg(vcpu, p->Rt);
104         if (!p->is_aarch32) {
105                 vcpu_sys_reg(vcpu, r->reg) = val;
106         } else {
107                 if (!p->is_32bit)
108                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
109                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
110         }
111
112         kvm_toggle_cache(vcpu, was_enabled);
113         return true;
114 }
115
116 /*
117  * Trap handler for the GICv3 SGI generation system register.
118  * Forward the request to the VGIC emulation.
119  * The cp15_64 code makes sure this automatically works
120  * for both AArch64 and AArch32 accesses.
121  */
122 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
123                            const struct sys_reg_params *p,
124                            const struct sys_reg_desc *r)
125 {
126         u64 val;
127
128         if (!p->is_write)
129                 return read_from_write_only(vcpu, p);
130
131         val = *vcpu_reg(vcpu, p->Rt);
132         vgic_v3_dispatch_sgi(vcpu, val);
133
134         return true;
135 }
136
137 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
138                         const struct sys_reg_params *p,
139                         const struct sys_reg_desc *r)
140 {
141         if (p->is_write)
142                 return ignore_write(vcpu, p);
143         else
144                 return read_zero(vcpu, p);
145 }
146
147 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
148                            const struct sys_reg_params *p,
149                            const struct sys_reg_desc *r)
150 {
151         if (p->is_write) {
152                 return ignore_write(vcpu, p);
153         } else {
154                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
155                 return true;
156         }
157 }
158
159 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
160                                    const struct sys_reg_params *p,
161                                    const struct sys_reg_desc *r)
162 {
163         if (p->is_write) {
164                 return ignore_write(vcpu, p);
165         } else {
166                 u32 val;
167                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
168                 *vcpu_reg(vcpu, p->Rt) = val;
169                 return true;
170         }
171 }
172
173 /*
174  * We want to avoid world-switching all the DBG registers all the
175  * time:
176  * 
177  * - If we've touched any debug register, it is likely that we're
178  *   going to touch more of them. It then makes sense to disable the
179  *   traps and start doing the save/restore dance
180  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181  *   then mandatory to save/restore the registers, as the guest
182  *   depends on them.
183  * 
184  * For this, we use a DIRTY bit, indicating the guest has modified the
185  * debug registers, used as follow:
186  *
187  * On guest entry:
188  * - If the dirty bit is set (because we're coming back from trapping),
189  *   disable the traps, save host registers, restore guest registers.
190  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191  *   set the dirty bit, disable the traps, save host registers,
192  *   restore guest registers.
193  * - Otherwise, enable the traps
194  *
195  * On guest exit:
196  * - If the dirty bit is set, save guest registers, restore host
197  *   registers and clear the dirty bit. This ensure that the host can
198  *   now use the debug registers.
199  */
200 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
201                             const struct sys_reg_params *p,
202                             const struct sys_reg_desc *r)
203 {
204         if (p->is_write) {
205                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
206                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
207         } else {
208                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
209         }
210
211         return true;
212 }
213
214 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
215 {
216         u64 amair;
217
218         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
219         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
220 }
221
222 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
223 {
224         u64 mpidr;
225
226         /*
227          * Map the vcpu_id into the first three affinity level fields of
228          * the MPIDR. We limit the number of VCPUs in level 0 due to a
229          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
230          * of the GICv3 to be able to address each CPU directly when
231          * sending IPIs.
232          */
233         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
234         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
235         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
236         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
237 }
238
239 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
240 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
241         /* DBGBVRn_EL1 */                                               \
242         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
243           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
244         /* DBGBCRn_EL1 */                                               \
245         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
246           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
247         /* DBGWVRn_EL1 */                                               \
248         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
249           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
250         /* DBGWCRn_EL1 */                                               \
251         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
252           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
253
254 /*
255  * Architected system registers.
256  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
257  *
258  * We could trap ID_DFR0 and tell the guest we don't support performance
259  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
260  * NAKed, so it will read the PMCR anyway.
261  *
262  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
263  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
264  * all PM registers, which doesn't crash the guest kernel at least.
265  *
266  * Debug handling: We do trap most, if not all debug related system
267  * registers. The implementation is good enough to ensure that a guest
268  * can use these with minimal performance degradation. The drawback is
269  * that we don't implement any of the external debug, none of the
270  * OSlock protocol. This should be revisited if we ever encounter a
271  * more demanding guest...
272  */
273 static const struct sys_reg_desc sys_reg_descs[] = {
274         /* DC ISW */
275         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
276           access_dcsw },
277         /* DC CSW */
278         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
279           access_dcsw },
280         /* DC CISW */
281         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
282           access_dcsw },
283
284         DBG_BCR_BVR_WCR_WVR_EL1(0),
285         DBG_BCR_BVR_WCR_WVR_EL1(1),
286         /* MDCCINT_EL1 */
287         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
288           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
289         /* MDSCR_EL1 */
290         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
291           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
292         DBG_BCR_BVR_WCR_WVR_EL1(2),
293         DBG_BCR_BVR_WCR_WVR_EL1(3),
294         DBG_BCR_BVR_WCR_WVR_EL1(4),
295         DBG_BCR_BVR_WCR_WVR_EL1(5),
296         DBG_BCR_BVR_WCR_WVR_EL1(6),
297         DBG_BCR_BVR_WCR_WVR_EL1(7),
298         DBG_BCR_BVR_WCR_WVR_EL1(8),
299         DBG_BCR_BVR_WCR_WVR_EL1(9),
300         DBG_BCR_BVR_WCR_WVR_EL1(10),
301         DBG_BCR_BVR_WCR_WVR_EL1(11),
302         DBG_BCR_BVR_WCR_WVR_EL1(12),
303         DBG_BCR_BVR_WCR_WVR_EL1(13),
304         DBG_BCR_BVR_WCR_WVR_EL1(14),
305         DBG_BCR_BVR_WCR_WVR_EL1(15),
306
307         /* MDRAR_EL1 */
308         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
309           trap_raz_wi },
310         /* OSLAR_EL1 */
311         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
312           trap_raz_wi },
313         /* OSLSR_EL1 */
314         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
315           trap_oslsr_el1 },
316         /* OSDLR_EL1 */
317         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
318           trap_raz_wi },
319         /* DBGPRCR_EL1 */
320         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
321           trap_raz_wi },
322         /* DBGCLAIMSET_EL1 */
323         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
324           trap_raz_wi },
325         /* DBGCLAIMCLR_EL1 */
326         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
327           trap_raz_wi },
328         /* DBGAUTHSTATUS_EL1 */
329         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
330           trap_dbgauthstatus_el1 },
331
332         /* TEECR32_EL1 */
333         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
334           NULL, reset_val, TEECR32_EL1, 0 },
335         /* TEEHBR32_EL1 */
336         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
337           NULL, reset_val, TEEHBR32_EL1, 0 },
338
339         /* MDCCSR_EL1 */
340         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
341           trap_raz_wi },
342         /* DBGDTR_EL0 */
343         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
344           trap_raz_wi },
345         /* DBGDTR[TR]X_EL0 */
346         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
347           trap_raz_wi },
348
349         /* DBGVCR32_EL2 */
350         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
351           NULL, reset_val, DBGVCR32_EL2, 0 },
352
353         /* MPIDR_EL1 */
354         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
355           NULL, reset_mpidr, MPIDR_EL1 },
356         /* SCTLR_EL1 */
357         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
358           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
359         /* CPACR_EL1 */
360         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
361           NULL, reset_val, CPACR_EL1, 0 },
362         /* TTBR0_EL1 */
363         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
364           access_vm_reg, reset_unknown, TTBR0_EL1 },
365         /* TTBR1_EL1 */
366         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
367           access_vm_reg, reset_unknown, TTBR1_EL1 },
368         /* TCR_EL1 */
369         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
370           access_vm_reg, reset_val, TCR_EL1, 0 },
371
372         /* AFSR0_EL1 */
373         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
374           access_vm_reg, reset_unknown, AFSR0_EL1 },
375         /* AFSR1_EL1 */
376         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
377           access_vm_reg, reset_unknown, AFSR1_EL1 },
378         /* ESR_EL1 */
379         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
380           access_vm_reg, reset_unknown, ESR_EL1 },
381         /* FAR_EL1 */
382         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
383           access_vm_reg, reset_unknown, FAR_EL1 },
384         /* PAR_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
386           NULL, reset_unknown, PAR_EL1 },
387
388         /* PMINTENSET_EL1 */
389         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
390           trap_raz_wi },
391         /* PMINTENCLR_EL1 */
392         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
393           trap_raz_wi },
394
395         /* MAIR_EL1 */
396         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
397           access_vm_reg, reset_unknown, MAIR_EL1 },
398         /* AMAIR_EL1 */
399         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
400           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
401
402         /* VBAR_EL1 */
403         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
404           NULL, reset_val, VBAR_EL1, 0 },
405
406         /* ICC_SGI1R_EL1 */
407         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
408           access_gic_sgi },
409         /* ICC_SRE_EL1 */
410         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
411           trap_raz_wi },
412
413         /* CONTEXTIDR_EL1 */
414         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
415           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
416         /* TPIDR_EL1 */
417         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
418           NULL, reset_unknown, TPIDR_EL1 },
419
420         /* CNTKCTL_EL1 */
421         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
422           NULL, reset_val, CNTKCTL_EL1, 0},
423
424         /* CSSELR_EL1 */
425         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
426           NULL, reset_unknown, CSSELR_EL1 },
427
428         /* PMCR_EL0 */
429         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
430           trap_raz_wi },
431         /* PMCNTENSET_EL0 */
432         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
433           trap_raz_wi },
434         /* PMCNTENCLR_EL0 */
435         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
436           trap_raz_wi },
437         /* PMOVSCLR_EL0 */
438         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
439           trap_raz_wi },
440         /* PMSWINC_EL0 */
441         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
442           trap_raz_wi },
443         /* PMSELR_EL0 */
444         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
445           trap_raz_wi },
446         /* PMCEID0_EL0 */
447         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
448           trap_raz_wi },
449         /* PMCEID1_EL0 */
450         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
451           trap_raz_wi },
452         /* PMCCNTR_EL0 */
453         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
454           trap_raz_wi },
455         /* PMXEVTYPER_EL0 */
456         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
457           trap_raz_wi },
458         /* PMXEVCNTR_EL0 */
459         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
460           trap_raz_wi },
461         /* PMUSERENR_EL0 */
462         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
463           trap_raz_wi },
464         /* PMOVSSET_EL0 */
465         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
466           trap_raz_wi },
467
468         /* TPIDR_EL0 */
469         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
470           NULL, reset_unknown, TPIDR_EL0 },
471         /* TPIDRRO_EL0 */
472         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
473           NULL, reset_unknown, TPIDRRO_EL0 },
474
475         /* DACR32_EL2 */
476         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
477           NULL, reset_unknown, DACR32_EL2 },
478         /* IFSR32_EL2 */
479         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
480           NULL, reset_unknown, IFSR32_EL2 },
481         /* FPEXC32_EL2 */
482         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
483           NULL, reset_val, FPEXC32_EL2, 0x70 },
484 };
485
486 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
487                         const struct sys_reg_params *p,
488                         const struct sys_reg_desc *r)
489 {
490         if (p->is_write) {
491                 return ignore_write(vcpu, p);
492         } else {
493                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
494                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
495                 u32 el3 = !!((pfr >> 12) & 0xf);
496
497                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
498                                           (((dfr >> 12) & 0xf) << 24) |
499                                           (((dfr >> 28) & 0xf) << 20) |
500                                           (6 << 16) | (el3 << 14) | (el3 << 12));
501                 return true;
502         }
503 }
504
505 static bool trap_debug32(struct kvm_vcpu *vcpu,
506                          const struct sys_reg_params *p,
507                          const struct sys_reg_desc *r)
508 {
509         if (p->is_write) {
510                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
511                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
512         } else {
513                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
514         }
515
516         return true;
517 }
518
519 #define DBG_BCR_BVR_WCR_WVR(n)                                  \
520         /* DBGBVRn */                                           \
521         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,    \
522           NULL, (cp14_DBGBVR0 + (n) * 2) },                     \
523         /* DBGBCRn */                                           \
524         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,    \
525           NULL, (cp14_DBGBCR0 + (n) * 2) },                     \
526         /* DBGWVRn */                                           \
527         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,    \
528           NULL, (cp14_DBGWVR0 + (n) * 2) },                     \
529         /* DBGWCRn */                                           \
530         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,    \
531           NULL, (cp14_DBGWCR0 + (n) * 2) }
532
533 #define DBGBXVR(n)                                              \
534         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,    \
535           NULL, cp14_DBGBXVR0 + n * 2 }
536
537 /*
538  * Trapped cp14 registers. We generally ignore most of the external
539  * debug, on the principle that they don't really make sense to a
540  * guest. Revisit this one day, whould this principle change.
541  */
542 static const struct sys_reg_desc cp14_regs[] = {
543         /* DBGIDR */
544         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
545         /* DBGDTRRXext */
546         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
547
548         DBG_BCR_BVR_WCR_WVR(0),
549         /* DBGDSCRint */
550         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
551         DBG_BCR_BVR_WCR_WVR(1),
552         /* DBGDCCINT */
553         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
554         /* DBGDSCRext */
555         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
556         DBG_BCR_BVR_WCR_WVR(2),
557         /* DBGDTR[RT]Xint */
558         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
559         /* DBGDTR[RT]Xext */
560         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
561         DBG_BCR_BVR_WCR_WVR(3),
562         DBG_BCR_BVR_WCR_WVR(4),
563         DBG_BCR_BVR_WCR_WVR(5),
564         /* DBGWFAR */
565         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
566         /* DBGOSECCR */
567         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
568         DBG_BCR_BVR_WCR_WVR(6),
569         /* DBGVCR */
570         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
571         DBG_BCR_BVR_WCR_WVR(7),
572         DBG_BCR_BVR_WCR_WVR(8),
573         DBG_BCR_BVR_WCR_WVR(9),
574         DBG_BCR_BVR_WCR_WVR(10),
575         DBG_BCR_BVR_WCR_WVR(11),
576         DBG_BCR_BVR_WCR_WVR(12),
577         DBG_BCR_BVR_WCR_WVR(13),
578         DBG_BCR_BVR_WCR_WVR(14),
579         DBG_BCR_BVR_WCR_WVR(15),
580
581         /* DBGDRAR (32bit) */
582         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
583
584         DBGBXVR(0),
585         /* DBGOSLAR */
586         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
587         DBGBXVR(1),
588         /* DBGOSLSR */
589         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
590         DBGBXVR(2),
591         DBGBXVR(3),
592         /* DBGOSDLR */
593         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
594         DBGBXVR(4),
595         /* DBGPRCR */
596         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
597         DBGBXVR(5),
598         DBGBXVR(6),
599         DBGBXVR(7),
600         DBGBXVR(8),
601         DBGBXVR(9),
602         DBGBXVR(10),
603         DBGBXVR(11),
604         DBGBXVR(12),
605         DBGBXVR(13),
606         DBGBXVR(14),
607         DBGBXVR(15),
608
609         /* DBGDSAR (32bit) */
610         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
611
612         /* DBGDEVID2 */
613         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
614         /* DBGDEVID1 */
615         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
616         /* DBGDEVID */
617         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
618         /* DBGCLAIMSET */
619         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
620         /* DBGCLAIMCLR */
621         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
622         /* DBGAUTHSTATUS */
623         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
624 };
625
626 /* Trapped cp14 64bit registers */
627 static const struct sys_reg_desc cp14_64_regs[] = {
628         /* DBGDRAR (64bit) */
629         { Op1( 0), CRm( 1), .access = trap_raz_wi },
630
631         /* DBGDSAR (64bit) */
632         { Op1( 0), CRm( 2), .access = trap_raz_wi },
633 };
634
635 /*
636  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
637  * depending on the way they are accessed (as a 32bit or a 64bit
638  * register).
639  */
640 static const struct sys_reg_desc cp15_regs[] = {
641         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
642
643         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
644         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
645         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
646         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
647         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
648         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
649         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
650         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
651         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
652         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
653         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
654
655         /*
656          * DC{C,I,CI}SW operations:
657          */
658         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
659         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
660         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
661
662         /* PMU */
663         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
664         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
665         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
666         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
667         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
668         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
669         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
670         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
671         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
672         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
673         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
674         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
675         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
676
677         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
678         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
679         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
680         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
681
682         /* ICC_SRE */
683         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
684
685         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
686 };
687
688 static const struct sys_reg_desc cp15_64_regs[] = {
689         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
690         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
691         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
692 };
693
694 /* Target specific emulation tables */
695 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
696
697 void kvm_register_target_sys_reg_table(unsigned int target,
698                                        struct kvm_sys_reg_target_table *table)
699 {
700         target_tables[target] = table;
701 }
702
703 /* Get specific register table for this target. */
704 static const struct sys_reg_desc *get_target_table(unsigned target,
705                                                    bool mode_is_64,
706                                                    size_t *num)
707 {
708         struct kvm_sys_reg_target_table *table;
709
710         table = target_tables[target];
711         if (mode_is_64) {
712                 *num = table->table64.num;
713                 return table->table64.table;
714         } else {
715                 *num = table->table32.num;
716                 return table->table32.table;
717         }
718 }
719
720 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
721                                          const struct sys_reg_desc table[],
722                                          unsigned int num)
723 {
724         unsigned int i;
725
726         for (i = 0; i < num; i++) {
727                 const struct sys_reg_desc *r = &table[i];
728
729                 if (params->Op0 != r->Op0)
730                         continue;
731                 if (params->Op1 != r->Op1)
732                         continue;
733                 if (params->CRn != r->CRn)
734                         continue;
735                 if (params->CRm != r->CRm)
736                         continue;
737                 if (params->Op2 != r->Op2)
738                         continue;
739
740                 return r;
741         }
742         return NULL;
743 }
744
745 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
746 {
747         kvm_inject_undefined(vcpu);
748         return 1;
749 }
750
751 /*
752  * emulate_cp --  tries to match a sys_reg access in a handling table, and
753  *                call the corresponding trap handler.
754  *
755  * @params: pointer to the descriptor of the access
756  * @table: array of trap descriptors
757  * @num: size of the trap descriptor array
758  *
759  * Return 0 if the access has been handled, and -1 if not.
760  */
761 static int emulate_cp(struct kvm_vcpu *vcpu,
762                       const struct sys_reg_params *params,
763                       const struct sys_reg_desc *table,
764                       size_t num)
765 {
766         const struct sys_reg_desc *r;
767
768         if (!table)
769                 return -1;      /* Not handled */
770
771         r = find_reg(params, table, num);
772
773         if (r) {
774                 /*
775                  * Not having an accessor means that we have
776                  * configured a trap that we don't know how to
777                  * handle. This certainly qualifies as a gross bug
778                  * that should be fixed right away.
779                  */
780                 BUG_ON(!r->access);
781
782                 if (likely(r->access(vcpu, params, r))) {
783                         /* Skip instruction, since it was emulated */
784                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
785                 }
786
787                 /* Handled */
788                 return 0;
789         }
790
791         /* Not handled */
792         return -1;
793 }
794
795 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
796                                 struct sys_reg_params *params)
797 {
798         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
799         int cp;
800
801         switch(hsr_ec) {
802         case ESR_ELx_EC_CP15_32:
803         case ESR_ELx_EC_CP15_64:
804                 cp = 15;
805                 break;
806         case ESR_ELx_EC_CP14_MR:
807         case ESR_ELx_EC_CP14_64:
808                 cp = 14;
809                 break;
810         default:
811                 WARN_ON((cp = -1));
812         }
813
814         kvm_err("Unsupported guest CP%d access at: %08lx\n",
815                 cp, *vcpu_pc(vcpu));
816         print_sys_reg_instr(params);
817         kvm_inject_undefined(vcpu);
818 }
819
820 /**
821  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
822  * @vcpu: The VCPU pointer
823  * @run:  The kvm_run struct
824  */
825 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
826                             const struct sys_reg_desc *global,
827                             size_t nr_global,
828                             const struct sys_reg_desc *target_specific,
829                             size_t nr_specific)
830 {
831         struct sys_reg_params params;
832         u32 hsr = kvm_vcpu_get_hsr(vcpu);
833         int Rt2 = (hsr >> 10) & 0xf;
834
835         params.is_aarch32 = true;
836         params.is_32bit = false;
837         params.CRm = (hsr >> 1) & 0xf;
838         params.Rt = (hsr >> 5) & 0xf;
839         params.is_write = ((hsr & 1) == 0);
840
841         params.Op0 = 0;
842         params.Op1 = (hsr >> 16) & 0xf;
843         params.Op2 = 0;
844         params.CRn = 0;
845
846         /*
847          * Massive hack here. Store Rt2 in the top 32bits so we only
848          * have one register to deal with. As we use the same trap
849          * backends between AArch32 and AArch64, we get away with it.
850          */
851         if (params.is_write) {
852                 u64 val = *vcpu_reg(vcpu, params.Rt);
853                 val &= 0xffffffff;
854                 val |= *vcpu_reg(vcpu, Rt2) << 32;
855                 *vcpu_reg(vcpu, params.Rt) = val;
856         }
857
858         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
859                 goto out;
860         if (!emulate_cp(vcpu, &params, global, nr_global))
861                 goto out;
862
863         unhandled_cp_access(vcpu, &params);
864
865 out:
866         /* Do the opposite hack for the read side */
867         if (!params.is_write) {
868                 u64 val = *vcpu_reg(vcpu, params.Rt);
869                 val >>= 32;
870                 *vcpu_reg(vcpu, Rt2) = val;
871         }
872
873         return 1;
874 }
875
876 /**
877  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
878  * @vcpu: The VCPU pointer
879  * @run:  The kvm_run struct
880  */
881 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
882                             const struct sys_reg_desc *global,
883                             size_t nr_global,
884                             const struct sys_reg_desc *target_specific,
885                             size_t nr_specific)
886 {
887         struct sys_reg_params params;
888         u32 hsr = kvm_vcpu_get_hsr(vcpu);
889
890         params.is_aarch32 = true;
891         params.is_32bit = true;
892         params.CRm = (hsr >> 1) & 0xf;
893         params.Rt  = (hsr >> 5) & 0xf;
894         params.is_write = ((hsr & 1) == 0);
895         params.CRn = (hsr >> 10) & 0xf;
896         params.Op0 = 0;
897         params.Op1 = (hsr >> 14) & 0x7;
898         params.Op2 = (hsr >> 17) & 0x7;
899
900         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
901                 return 1;
902         if (!emulate_cp(vcpu, &params, global, nr_global))
903                 return 1;
904
905         unhandled_cp_access(vcpu, &params);
906         return 1;
907 }
908
909 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
910 {
911         const struct sys_reg_desc *target_specific;
912         size_t num;
913
914         target_specific = get_target_table(vcpu->arch.target, false, &num);
915         return kvm_handle_cp_64(vcpu,
916                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
917                                 target_specific, num);
918 }
919
920 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
921 {
922         const struct sys_reg_desc *target_specific;
923         size_t num;
924
925         target_specific = get_target_table(vcpu->arch.target, false, &num);
926         return kvm_handle_cp_32(vcpu,
927                                 cp15_regs, ARRAY_SIZE(cp15_regs),
928                                 target_specific, num);
929 }
930
931 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
932 {
933         return kvm_handle_cp_64(vcpu,
934                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
935                                 NULL, 0);
936 }
937
938 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
939 {
940         return kvm_handle_cp_32(vcpu,
941                                 cp14_regs, ARRAY_SIZE(cp14_regs),
942                                 NULL, 0);
943 }
944
945 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
946                            const struct sys_reg_params *params)
947 {
948         size_t num;
949         const struct sys_reg_desc *table, *r;
950
951         table = get_target_table(vcpu->arch.target, true, &num);
952
953         /* Search target-specific then generic table. */
954         r = find_reg(params, table, num);
955         if (!r)
956                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
957
958         if (likely(r)) {
959                 /*
960                  * Not having an accessor means that we have
961                  * configured a trap that we don't know how to
962                  * handle. This certainly qualifies as a gross bug
963                  * that should be fixed right away.
964                  */
965                 BUG_ON(!r->access);
966
967                 if (likely(r->access(vcpu, params, r))) {
968                         /* Skip instruction, since it was emulated */
969                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
970                         return 1;
971                 }
972                 /* If access function fails, it should complain. */
973         } else {
974                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
975                         *vcpu_pc(vcpu));
976                 print_sys_reg_instr(params);
977         }
978         kvm_inject_undefined(vcpu);
979         return 1;
980 }
981
982 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
983                               const struct sys_reg_desc *table, size_t num)
984 {
985         unsigned long i;
986
987         for (i = 0; i < num; i++)
988                 if (table[i].reset)
989                         table[i].reset(vcpu, &table[i]);
990 }
991
992 /**
993  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
994  * @vcpu: The VCPU pointer
995  * @run:  The kvm_run struct
996  */
997 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
998 {
999         struct sys_reg_params params;
1000         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1001
1002         params.is_aarch32 = false;
1003         params.is_32bit = false;
1004         params.Op0 = (esr >> 20) & 3;
1005         params.Op1 = (esr >> 14) & 0x7;
1006         params.CRn = (esr >> 10) & 0xf;
1007         params.CRm = (esr >> 1) & 0xf;
1008         params.Op2 = (esr >> 17) & 0x7;
1009         params.Rt = (esr >> 5) & 0x1f;
1010         params.is_write = !(esr & 1);
1011
1012         return emulate_sys_reg(vcpu, &params);
1013 }
1014
1015 /******************************************************************************
1016  * Userspace API
1017  *****************************************************************************/
1018
1019 static bool index_to_params(u64 id, struct sys_reg_params *params)
1020 {
1021         switch (id & KVM_REG_SIZE_MASK) {
1022         case KVM_REG_SIZE_U64:
1023                 /* Any unused index bits means it's not valid. */
1024                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1025                               | KVM_REG_ARM_COPROC_MASK
1026                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1027                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1028                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1029                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1030                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1031                         return false;
1032                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1033                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1034                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1035                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1036                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1037                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1038                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1039                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1040                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1041                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1042                 return true;
1043         default:
1044                 return false;
1045         }
1046 }
1047
1048 /* Decode an index value, and find the sys_reg_desc entry. */
1049 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1050                                                     u64 id)
1051 {
1052         size_t num;
1053         const struct sys_reg_desc *table, *r;
1054         struct sys_reg_params params;
1055
1056         /* We only do sys_reg for now. */
1057         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1058                 return NULL;
1059
1060         if (!index_to_params(id, &params))
1061                 return NULL;
1062
1063         table = get_target_table(vcpu->arch.target, true, &num);
1064         r = find_reg(&params, table, num);
1065         if (!r)
1066                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1067
1068         /* Not saved in the sys_reg array? */
1069         if (r && !r->reg)
1070                 r = NULL;
1071
1072         return r;
1073 }
1074
1075 /*
1076  * These are the invariant sys_reg registers: we let the guest see the
1077  * host versions of these, so they're part of the guest state.
1078  *
1079  * A future CPU may provide a mechanism to present different values to
1080  * the guest, or a future kvm may trap them.
1081  */
1082
1083 #define FUNCTION_INVARIANT(reg)                                         \
1084         static void get_##reg(struct kvm_vcpu *v,                       \
1085                               const struct sys_reg_desc *r)             \
1086         {                                                               \
1087                 u64 val;                                                \
1088                                                                         \
1089                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1090                              : "=r" (val));                             \
1091                 ((struct sys_reg_desc *)r)->val = val;                  \
1092         }
1093
1094 FUNCTION_INVARIANT(midr_el1)
1095 FUNCTION_INVARIANT(ctr_el0)
1096 FUNCTION_INVARIANT(revidr_el1)
1097 FUNCTION_INVARIANT(id_pfr0_el1)
1098 FUNCTION_INVARIANT(id_pfr1_el1)
1099 FUNCTION_INVARIANT(id_dfr0_el1)
1100 FUNCTION_INVARIANT(id_afr0_el1)
1101 FUNCTION_INVARIANT(id_mmfr0_el1)
1102 FUNCTION_INVARIANT(id_mmfr1_el1)
1103 FUNCTION_INVARIANT(id_mmfr2_el1)
1104 FUNCTION_INVARIANT(id_mmfr3_el1)
1105 FUNCTION_INVARIANT(id_isar0_el1)
1106 FUNCTION_INVARIANT(id_isar1_el1)
1107 FUNCTION_INVARIANT(id_isar2_el1)
1108 FUNCTION_INVARIANT(id_isar3_el1)
1109 FUNCTION_INVARIANT(id_isar4_el1)
1110 FUNCTION_INVARIANT(id_isar5_el1)
1111 FUNCTION_INVARIANT(clidr_el1)
1112 FUNCTION_INVARIANT(aidr_el1)
1113
1114 /* ->val is filled in by kvm_sys_reg_table_init() */
1115 static struct sys_reg_desc invariant_sys_regs[] = {
1116         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1117           NULL, get_midr_el1 },
1118         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1119           NULL, get_revidr_el1 },
1120         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1121           NULL, get_id_pfr0_el1 },
1122         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1123           NULL, get_id_pfr1_el1 },
1124         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1125           NULL, get_id_dfr0_el1 },
1126         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1127           NULL, get_id_afr0_el1 },
1128         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1129           NULL, get_id_mmfr0_el1 },
1130         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1131           NULL, get_id_mmfr1_el1 },
1132         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1133           NULL, get_id_mmfr2_el1 },
1134         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1135           NULL, get_id_mmfr3_el1 },
1136         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1137           NULL, get_id_isar0_el1 },
1138         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1139           NULL, get_id_isar1_el1 },
1140         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1141           NULL, get_id_isar2_el1 },
1142         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1143           NULL, get_id_isar3_el1 },
1144         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1145           NULL, get_id_isar4_el1 },
1146         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1147           NULL, get_id_isar5_el1 },
1148         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1149           NULL, get_clidr_el1 },
1150         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1151           NULL, get_aidr_el1 },
1152         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1153           NULL, get_ctr_el0 },
1154 };
1155
1156 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1157 {
1158         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1159                 return -EFAULT;
1160         return 0;
1161 }
1162
1163 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1164 {
1165         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1166                 return -EFAULT;
1167         return 0;
1168 }
1169
1170 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1171 {
1172         struct sys_reg_params params;
1173         const struct sys_reg_desc *r;
1174
1175         if (!index_to_params(id, &params))
1176                 return -ENOENT;
1177
1178         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1179         if (!r)
1180                 return -ENOENT;
1181
1182         return reg_to_user(uaddr, &r->val, id);
1183 }
1184
1185 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1186 {
1187         struct sys_reg_params params;
1188         const struct sys_reg_desc *r;
1189         int err;
1190         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1191
1192         if (!index_to_params(id, &params))
1193                 return -ENOENT;
1194         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1195         if (!r)
1196                 return -ENOENT;
1197
1198         err = reg_from_user(&val, uaddr, id);
1199         if (err)
1200                 return err;
1201
1202         /* This is what we mean by invariant: you can't change it. */
1203         if (r->val != val)
1204                 return -EINVAL;
1205
1206         return 0;
1207 }
1208
1209 static bool is_valid_cache(u32 val)
1210 {
1211         u32 level, ctype;
1212
1213         if (val >= CSSELR_MAX)
1214                 return false;
1215
1216         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1217         level = (val >> 1);
1218         ctype = (cache_levels >> (level * 3)) & 7;
1219
1220         switch (ctype) {
1221         case 0: /* No cache */
1222                 return false;
1223         case 1: /* Instruction cache only */
1224                 return (val & 1);
1225         case 2: /* Data cache only */
1226         case 4: /* Unified cache */
1227                 return !(val & 1);
1228         case 3: /* Separate instruction and data caches */
1229                 return true;
1230         default: /* Reserved: we can't know instruction or data. */
1231                 return false;
1232         }
1233 }
1234
1235 static int demux_c15_get(u64 id, void __user *uaddr)
1236 {
1237         u32 val;
1238         u32 __user *uval = uaddr;
1239
1240         /* Fail if we have unknown bits set. */
1241         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1242                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1243                 return -ENOENT;
1244
1245         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1246         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1247                 if (KVM_REG_SIZE(id) != 4)
1248                         return -ENOENT;
1249                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1250                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1251                 if (!is_valid_cache(val))
1252                         return -ENOENT;
1253
1254                 return put_user(get_ccsidr(val), uval);
1255         default:
1256                 return -ENOENT;
1257         }
1258 }
1259
1260 static int demux_c15_set(u64 id, void __user *uaddr)
1261 {
1262         u32 val, newval;
1263         u32 __user *uval = uaddr;
1264
1265         /* Fail if we have unknown bits set. */
1266         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1267                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1268                 return -ENOENT;
1269
1270         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1271         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1272                 if (KVM_REG_SIZE(id) != 4)
1273                         return -ENOENT;
1274                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1275                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1276                 if (!is_valid_cache(val))
1277                         return -ENOENT;
1278
1279                 if (get_user(newval, uval))
1280                         return -EFAULT;
1281
1282                 /* This is also invariant: you can't change it. */
1283                 if (newval != get_ccsidr(val))
1284                         return -EINVAL;
1285                 return 0;
1286         default:
1287                 return -ENOENT;
1288         }
1289 }
1290
1291 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1292 {
1293         const struct sys_reg_desc *r;
1294         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1295
1296         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1297                 return demux_c15_get(reg->id, uaddr);
1298
1299         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1300                 return -ENOENT;
1301
1302         r = index_to_sys_reg_desc(vcpu, reg->id);
1303         if (!r)
1304                 return get_invariant_sys_reg(reg->id, uaddr);
1305
1306         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1307 }
1308
1309 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1310 {
1311         const struct sys_reg_desc *r;
1312         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1313
1314         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1315                 return demux_c15_set(reg->id, uaddr);
1316
1317         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1318                 return -ENOENT;
1319
1320         r = index_to_sys_reg_desc(vcpu, reg->id);
1321         if (!r)
1322                 return set_invariant_sys_reg(reg->id, uaddr);
1323
1324         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1325 }
1326
1327 static unsigned int num_demux_regs(void)
1328 {
1329         unsigned int i, count = 0;
1330
1331         for (i = 0; i < CSSELR_MAX; i++)
1332                 if (is_valid_cache(i))
1333                         count++;
1334
1335         return count;
1336 }
1337
1338 static int write_demux_regids(u64 __user *uindices)
1339 {
1340         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1341         unsigned int i;
1342
1343         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1344         for (i = 0; i < CSSELR_MAX; i++) {
1345                 if (!is_valid_cache(i))
1346                         continue;
1347                 if (put_user(val | i, uindices))
1348                         return -EFAULT;
1349                 uindices++;
1350         }
1351         return 0;
1352 }
1353
1354 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1355 {
1356         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1357                 KVM_REG_ARM64_SYSREG |
1358                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1359                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1360                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1361                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1362                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1363 }
1364
1365 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1366 {
1367         if (!*uind)
1368                 return true;
1369
1370         if (put_user(sys_reg_to_index(reg), *uind))
1371                 return false;
1372
1373         (*uind)++;
1374         return true;
1375 }
1376
1377 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1378 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1379 {
1380         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1381         unsigned int total = 0;
1382         size_t num;
1383
1384         /* We check for duplicates here, to allow arch-specific overrides. */
1385         i1 = get_target_table(vcpu->arch.target, true, &num);
1386         end1 = i1 + num;
1387         i2 = sys_reg_descs;
1388         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1389
1390         BUG_ON(i1 == end1 || i2 == end2);
1391
1392         /* Walk carefully, as both tables may refer to the same register. */
1393         while (i1 || i2) {
1394                 int cmp = cmp_sys_reg(i1, i2);
1395                 /* target-specific overrides generic entry. */
1396                 if (cmp <= 0) {
1397                         /* Ignore registers we trap but don't save. */
1398                         if (i1->reg) {
1399                                 if (!copy_reg_to_user(i1, &uind))
1400                                         return -EFAULT;
1401                                 total++;
1402                         }
1403                 } else {
1404                         /* Ignore registers we trap but don't save. */
1405                         if (i2->reg) {
1406                                 if (!copy_reg_to_user(i2, &uind))
1407                                         return -EFAULT;
1408                                 total++;
1409                         }
1410                 }
1411
1412                 if (cmp <= 0 && ++i1 == end1)
1413                         i1 = NULL;
1414                 if (cmp >= 0 && ++i2 == end2)
1415                         i2 = NULL;
1416         }
1417         return total;
1418 }
1419
1420 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1421 {
1422         return ARRAY_SIZE(invariant_sys_regs)
1423                 + num_demux_regs()
1424                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1425 }
1426
1427 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1428 {
1429         unsigned int i;
1430         int err;
1431
1432         /* Then give them all the invariant registers' indices. */
1433         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1434                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1435                         return -EFAULT;
1436                 uindices++;
1437         }
1438
1439         err = walk_sys_regs(vcpu, uindices);
1440         if (err < 0)
1441                 return err;
1442         uindices += err;
1443
1444         return write_demux_regids(uindices);
1445 }
1446
1447 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1448 {
1449         unsigned int i;
1450
1451         for (i = 1; i < n; i++) {
1452                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1453                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1454                         return 1;
1455                 }
1456         }
1457
1458         return 0;
1459 }
1460
1461 void kvm_sys_reg_table_init(void)
1462 {
1463         unsigned int i;
1464         struct sys_reg_desc clidr;
1465
1466         /* Make sure tables are unique and in order. */
1467         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1468         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1469         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1470         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1471         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1472         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1473
1474         /* We abuse the reset function to overwrite the table itself. */
1475         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1476                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1477
1478         /*
1479          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1480          *
1481          *   If software reads the Cache Type fields from Ctype1
1482          *   upwards, once it has seen a value of 0b000, no caches
1483          *   exist at further-out levels of the hierarchy. So, for
1484          *   example, if Ctype3 is the first Cache Type field with a
1485          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1486          *   ignored.
1487          */
1488         get_clidr_el1(NULL, &clidr); /* Ugly... */
1489         cache_levels = clidr.val;
1490         for (i = 0; i < 7; i++)
1491                 if (((cache_levels >> (i*3)) & 7) == 0)
1492                         break;
1493         /* Clear all higher bits. */
1494         cache_levels &= (1 << (i*3))-1;
1495 }
1496
1497 /**
1498  * kvm_reset_sys_regs - sets system registers to reset value
1499  * @vcpu: The VCPU pointer
1500  *
1501  * This function finds the right table above and sets the registers on the
1502  * virtual CPU struct to their architecturally defined reset values.
1503  */
1504 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1505 {
1506         size_t num;
1507         const struct sys_reg_desc *table;
1508
1509         /* Catch someone adding a register without putting in reset entry. */
1510         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1511
1512         /* Generic chip reset first (so target could override). */
1513         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1514
1515         table = get_target_table(vcpu->arch.target, true, &num);
1516         reset_sys_reg_descs(vcpu, table, num);
1517
1518         for (num = 1; num < NR_SYS_REGS; num++)
1519                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1520                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1521 }