]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/blackfin/mach-common/ints-priority.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / blackfin / mach-common / ints-priority.c
1 /*
2  * Set up the interrupt priorities
3  *
4  * Copyright  2004-2009 Analog Devices Inc.
5  *                 2003 Bas Vermeulen <bas@buyways.nl>
6  *                 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7  *            2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8  *                 1999 D. Jeff Dionne <jeff@uclinux.org>
9  *                 1996 Roman Zippel
10  *
11  * Licensed under the GPL-2
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/syscore_ops.h>
20 #include <asm/delay.h>
21 #ifdef CONFIG_IPIPE
22 #include <linux/ipipe.h>
23 #endif
24 #include <asm/traps.h>
25 #include <asm/blackfin.h>
26 #include <asm/gpio.h>
27 #include <asm/irq_handler.h>
28 #include <asm/dpmc.h>
29 #include <asm/traps.h>
30
31 /*
32  * NOTES:
33  * - we have separated the physical Hardware interrupt from the
34  * levels that the LINUX kernel sees (see the description in irq.h)
35  * -
36  */
37
38 #ifndef CONFIG_SMP
39 /* Initialize this to an actual value to force it into the .data
40  * section so that we know it is properly initialized at entry into
41  * the kernel but before bss is initialized to zero (which is where
42  * it would live otherwise).  The 0x1f magic represents the IRQs we
43  * cannot actually mask out in hardware.
44  */
45 unsigned long bfin_irq_flags = 0x1f;
46 EXPORT_SYMBOL(bfin_irq_flags);
47 #endif
48
49 #ifdef CONFIG_PM
50 unsigned long bfin_sic_iwr[3];  /* Up to 3 SIC_IWRx registers */
51 unsigned vr_wakeup;
52 #endif
53
54 #ifndef SEC_GCTL
55 static struct ivgx {
56         /* irq number for request_irq, available in mach-bf5xx/irq.h */
57         unsigned int irqno;
58         /* corresponding bit in the SIC_ISR register */
59         unsigned int isrflag;
60 } ivg_table[NR_PERI_INTS];
61
62 static struct ivg_slice {
63         /* position of first irq in ivg_table for given ivg */
64         struct ivgx *ifirst;
65         struct ivgx *istop;
66 } ivg7_13[IVG13 - IVG7 + 1];
67
68
69 /*
70  * Search SIC_IAR and fill tables with the irqvalues
71  * and their positions in the SIC_ISR register.
72  */
73 static void __init search_IAR(void)
74 {
75         unsigned ivg, irq_pos = 0;
76         for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
77                 int irqN;
78
79                 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
80
81                 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
82                         int irqn;
83                         u32 iar =
84                                 bfin_read32((unsigned long *)SIC_IAR0 +
85 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
86         defined(CONFIG_BF538) || defined(CONFIG_BF539)
87                                 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
88 #else
89                                 (irqN >> 3)
90 #endif
91                                 );
92                         for (irqn = irqN; irqn < irqN + 4; ++irqn) {
93                                 int iar_shift = (irqn & 7) * 4;
94                                 if (ivg == (0xf & (iar >> iar_shift))) {
95                                         ivg_table[irq_pos].irqno = IVG7 + irqn;
96                                         ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
97                                         ivg7_13[ivg].istop++;
98                                         irq_pos++;
99                                 }
100                         }
101                 }
102         }
103 }
104 #endif
105
106 /*
107  * This is for core internal IRQs
108  */
109 void bfin_ack_noop(struct irq_data *d)
110 {
111         /* Dummy function.  */
112 }
113
114 static void bfin_core_mask_irq(struct irq_data *d)
115 {
116         bfin_irq_flags &= ~(1 << d->irq);
117         if (!hard_irqs_disabled())
118                 hard_local_irq_enable();
119 }
120
121 static void bfin_core_unmask_irq(struct irq_data *d)
122 {
123         bfin_irq_flags |= 1 << d->irq;
124         /*
125          * If interrupts are enabled, IMASK must contain the same value
126          * as bfin_irq_flags.  Make sure that invariant holds.  If interrupts
127          * are currently disabled we need not do anything; one of the
128          * callers will take care of setting IMASK to the proper value
129          * when reenabling interrupts.
130          * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
131          * what we need.
132          */
133         if (!hard_irqs_disabled())
134                 hard_local_irq_enable();
135         return;
136 }
137
138 #ifndef SEC_GCTL
139 void bfin_internal_mask_irq(unsigned int irq)
140 {
141         unsigned long flags = hard_local_irq_save();
142 #ifdef SIC_IMASK0
143         unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
144         unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
145         bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
146                         ~(1 << mask_bit));
147 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
148         bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
149                         ~(1 << mask_bit));
150 # endif
151 #else
152         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
153                         ~(1 << BFIN_SYSIRQ(irq)));
154 #endif /* end of SIC_IMASK0 */
155         hard_local_irq_restore(flags);
156 }
157
158 static void bfin_internal_mask_irq_chip(struct irq_data *d)
159 {
160         bfin_internal_mask_irq(d->irq);
161 }
162
163 #ifdef CONFIG_SMP
164 void bfin_internal_unmask_irq_affinity(unsigned int irq,
165                 const struct cpumask *affinity)
166 #else
167 void bfin_internal_unmask_irq(unsigned int irq)
168 #endif
169 {
170         unsigned long flags = hard_local_irq_save();
171
172 #ifdef SIC_IMASK0
173         unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
174         unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
175 # ifdef CONFIG_SMP
176         if (cpumask_test_cpu(0, affinity))
177 # endif
178                 bfin_write_SIC_IMASK(mask_bank,
179                                 bfin_read_SIC_IMASK(mask_bank) |
180                                 (1 << mask_bit));
181 # ifdef CONFIG_SMP
182         if (cpumask_test_cpu(1, affinity))
183                 bfin_write_SICB_IMASK(mask_bank,
184                                 bfin_read_SICB_IMASK(mask_bank) |
185                                 (1 << mask_bit));
186 # endif
187 #else
188         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
189                         (1 << BFIN_SYSIRQ(irq)));
190 #endif
191         hard_local_irq_restore(flags);
192 }
193
194 #ifdef CONFIG_SMP
195 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
196 {
197         bfin_internal_unmask_irq_affinity(d->irq, d->affinity);
198 }
199
200 static int bfin_internal_set_affinity(struct irq_data *d,
201                                       const struct cpumask *mask, bool force)
202 {
203         bfin_internal_mask_irq(d->irq);
204         bfin_internal_unmask_irq_affinity(d->irq, mask);
205
206         return 0;
207 }
208 #else
209 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
210 {
211         bfin_internal_unmask_irq(d->irq);
212 }
213 #endif
214
215 #if defined(CONFIG_PM)
216 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
217 {
218         u32 bank, bit, wakeup = 0;
219         unsigned long flags;
220         bank = BFIN_SYSIRQ(irq) / 32;
221         bit = BFIN_SYSIRQ(irq) % 32;
222
223         switch (irq) {
224 #ifdef IRQ_RTC
225         case IRQ_RTC:
226         wakeup |= WAKE;
227         break;
228 #endif
229 #ifdef IRQ_CAN0_RX
230         case IRQ_CAN0_RX:
231         wakeup |= CANWE;
232         break;
233 #endif
234 #ifdef IRQ_CAN1_RX
235         case IRQ_CAN1_RX:
236         wakeup |= CANWE;
237         break;
238 #endif
239 #ifdef IRQ_USB_INT0
240         case IRQ_USB_INT0:
241         wakeup |= USBWE;
242         break;
243 #endif
244 #ifdef CONFIG_BF54x
245         case IRQ_CNT:
246         wakeup |= ROTWE;
247         break;
248 #endif
249         default:
250         break;
251         }
252
253         flags = hard_local_irq_save();
254
255         if (state) {
256                 bfin_sic_iwr[bank] |= (1 << bit);
257                 vr_wakeup  |= wakeup;
258
259         } else {
260                 bfin_sic_iwr[bank] &= ~(1 << bit);
261                 vr_wakeup  &= ~wakeup;
262         }
263
264         hard_local_irq_restore(flags);
265
266         return 0;
267 }
268
269 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
270 {
271         return bfin_internal_set_wake(d->irq, state);
272 }
273 #else
274 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
275 {
276         return 0;
277 }
278 # define bfin_internal_set_wake_chip NULL
279 #endif
280
281 #else /* SEC_GCTL */
282 static void bfin_sec_preflow_handler(struct irq_data *d)
283 {
284         unsigned long flags = hard_local_irq_save();
285         unsigned int sid = BFIN_SYSIRQ(d->irq);
286
287         bfin_write_SEC_SCI(0, SEC_CSID, sid);
288
289         hard_local_irq_restore(flags);
290 }
291
292 static void bfin_sec_mask_ack_irq(struct irq_data *d)
293 {
294         unsigned long flags = hard_local_irq_save();
295         unsigned int sid = BFIN_SYSIRQ(d->irq);
296
297         bfin_write_SEC_SCI(0, SEC_CSID, sid);
298
299         hard_local_irq_restore(flags);
300 }
301
302 static void bfin_sec_unmask_irq(struct irq_data *d)
303 {
304         unsigned long flags = hard_local_irq_save();
305         unsigned int sid = BFIN_SYSIRQ(d->irq);
306
307         bfin_write32(SEC_END, sid);
308
309         hard_local_irq_restore(flags);
310 }
311
312 static void bfin_sec_enable_ssi(unsigned int sid)
313 {
314         unsigned long flags = hard_local_irq_save();
315         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
316
317         reg_sctl |= SEC_SCTL_SRC_EN;
318         bfin_write_SEC_SCTL(sid, reg_sctl);
319
320         hard_local_irq_restore(flags);
321 }
322
323 static void bfin_sec_disable_ssi(unsigned int sid)
324 {
325         unsigned long flags = hard_local_irq_save();
326         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
327
328         reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
329         bfin_write_SEC_SCTL(sid, reg_sctl);
330
331         hard_local_irq_restore(flags);
332 }
333
334 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
335 {
336         unsigned long flags = hard_local_irq_save();
337         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
338
339         reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
340         bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
341
342         hard_local_irq_restore(flags);
343 }
344
345 static void bfin_sec_enable_sci(unsigned int sid)
346 {
347         unsigned long flags = hard_local_irq_save();
348         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
349
350         if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
351                 reg_sctl |= SEC_SCTL_FAULT_EN;
352         else
353                 reg_sctl |= SEC_SCTL_INT_EN;
354         bfin_write_SEC_SCTL(sid, reg_sctl);
355
356         hard_local_irq_restore(flags);
357 }
358
359 static void bfin_sec_disable_sci(unsigned int sid)
360 {
361         unsigned long flags = hard_local_irq_save();
362         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
363
364         reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
365         bfin_write_SEC_SCTL(sid, reg_sctl);
366
367         hard_local_irq_restore(flags);
368 }
369
370 static void bfin_sec_enable(struct irq_data *d)
371 {
372         unsigned long flags = hard_local_irq_save();
373         unsigned int sid = BFIN_SYSIRQ(d->irq);
374
375         bfin_sec_enable_sci(sid);
376         bfin_sec_enable_ssi(sid);
377
378         hard_local_irq_restore(flags);
379 }
380
381 static void bfin_sec_disable(struct irq_data *d)
382 {
383         unsigned long flags = hard_local_irq_save();
384         unsigned int sid = BFIN_SYSIRQ(d->irq);
385
386         bfin_sec_disable_sci(sid);
387         bfin_sec_disable_ssi(sid);
388
389         hard_local_irq_restore(flags);
390 }
391
392 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
393 {
394         unsigned long flags = hard_local_irq_save();
395         uint32_t reg_sctl;
396         int i;
397
398         bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
399
400         for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
401                 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
402                 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
403                 bfin_write_SEC_SCTL(i, reg_sctl);
404         }
405
406         hard_local_irq_restore(flags);
407 }
408
409 void bfin_sec_raise_irq(unsigned int irq)
410 {
411         unsigned long flags = hard_local_irq_save();
412         unsigned int sid = BFIN_SYSIRQ(irq);
413
414         bfin_write32(SEC_RAISE, sid);
415
416         hard_local_irq_restore(flags);
417 }
418
419 static void init_software_driven_irq(void)
420 {
421         bfin_sec_set_ssi_coreid(34, 0);
422         bfin_sec_set_ssi_coreid(35, 1);
423
424         bfin_sec_enable_sci(35);
425         bfin_sec_enable_ssi(35);
426         bfin_sec_set_ssi_coreid(36, 0);
427         bfin_sec_set_ssi_coreid(37, 1);
428         bfin_sec_enable_sci(37);
429         bfin_sec_enable_ssi(37);
430 }
431
432 void bfin_sec_resume(void)
433 {
434         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
435         udelay(100);
436         bfin_write_SEC_GCTL(SEC_GCTL_EN);
437         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
438 }
439
440 void handle_sec_sfi_fault(uint32_t gstat)
441 {
442
443 }
444
445 void handle_sec_sci_fault(uint32_t gstat)
446 {
447         uint32_t core_id;
448         uint32_t cstat;
449
450         core_id = gstat & SEC_GSTAT_SCI;
451         cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
452         if (cstat & SEC_CSTAT_ERR) {
453                 switch (cstat & SEC_CSTAT_ERRC) {
454                 case SEC_CSTAT_ACKERR:
455                         printk(KERN_DEBUG "sec ack err\n");
456                         break;
457                 default:
458                         printk(KERN_DEBUG "sec sci unknow err\n");
459                 }
460         }
461
462 }
463
464 void handle_sec_ssi_fault(uint32_t gstat)
465 {
466         uint32_t sid;
467         uint32_t sstat;
468
469         sid = gstat & SEC_GSTAT_SID;
470         sstat = bfin_read_SEC_SSTAT(sid);
471
472 }
473
474 void handle_sec_fault(unsigned int irq, struct irq_desc *desc)
475 {
476         uint32_t sec_gstat;
477
478         raw_spin_lock(&desc->lock);
479
480         sec_gstat = bfin_read32(SEC_GSTAT);
481         if (sec_gstat & SEC_GSTAT_ERR) {
482
483                 switch (sec_gstat & SEC_GSTAT_ERRC) {
484                 case 0:
485                         handle_sec_sfi_fault(sec_gstat);
486                         break;
487                 case SEC_GSTAT_SCIERR:
488                         handle_sec_sci_fault(sec_gstat);
489                         break;
490                 case SEC_GSTAT_SSIERR:
491                         handle_sec_ssi_fault(sec_gstat);
492                         break;
493                 }
494
495
496         }
497
498         raw_spin_unlock(&desc->lock);
499
500         handle_fasteoi_irq(irq, desc);
501 }
502
503 void handle_core_fault(unsigned int irq, struct irq_desc *desc)
504 {
505         struct pt_regs *fp = get_irq_regs();
506
507         raw_spin_lock(&desc->lock);
508
509         switch (irq) {
510         case IRQ_C0_DBL_FAULT:
511                 double_fault_c(fp);
512                 break;
513         case IRQ_C0_HW_ERR:
514                 dump_bfin_process(fp);
515                 dump_bfin_mem(fp);
516                 show_regs(fp);
517                 printk(KERN_NOTICE "Kernel Stack\n");
518                 show_stack(current, NULL);
519                 print_modules();
520                 panic("Core 0 hardware error");
521                 break;
522         case IRQ_C0_NMI_L1_PARITY_ERR:
523                 panic("Core 0 NMI L1 parity error");
524                 break;
525         default:
526                 panic("Core 1 fault %d occurs unexpectedly", irq);
527         }
528
529         raw_spin_unlock(&desc->lock);
530 }
531 #endif /* SEC_GCTL */
532
533 static struct irq_chip bfin_core_irqchip = {
534         .name = "CORE",
535         .irq_mask = bfin_core_mask_irq,
536         .irq_unmask = bfin_core_unmask_irq,
537 };
538
539 #ifndef SEC_GCTL
540 static struct irq_chip bfin_internal_irqchip = {
541         .name = "INTN",
542         .irq_mask = bfin_internal_mask_irq_chip,
543         .irq_unmask = bfin_internal_unmask_irq_chip,
544         .irq_disable = bfin_internal_mask_irq_chip,
545         .irq_enable = bfin_internal_unmask_irq_chip,
546 #ifdef CONFIG_SMP
547         .irq_set_affinity = bfin_internal_set_affinity,
548 #endif
549         .irq_set_wake = bfin_internal_set_wake_chip,
550 };
551 #else
552 static struct irq_chip bfin_sec_irqchip = {
553         .name = "SEC",
554         .irq_mask_ack = bfin_sec_mask_ack_irq,
555         .irq_mask = bfin_sec_mask_ack_irq,
556         .irq_unmask = bfin_sec_unmask_irq,
557         .irq_eoi = bfin_sec_unmask_irq,
558         .irq_disable = bfin_sec_disable,
559         .irq_enable = bfin_sec_enable,
560 };
561 #endif
562
563 void bfin_handle_irq(unsigned irq)
564 {
565 #ifdef CONFIG_IPIPE
566         struct pt_regs regs;    /* Contents not used. */
567         ipipe_trace_irq_entry(irq);
568         __ipipe_handle_irq(irq, &regs);
569         ipipe_trace_irq_exit(irq);
570 #else /* !CONFIG_IPIPE */
571         generic_handle_irq(irq);
572 #endif  /* !CONFIG_IPIPE */
573 }
574
575 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
576 static int mac_stat_int_mask;
577
578 static void bfin_mac_status_ack_irq(unsigned int irq)
579 {
580         switch (irq) {
581         case IRQ_MAC_MMCINT:
582                 bfin_write_EMAC_MMC_TIRQS(
583                         bfin_read_EMAC_MMC_TIRQE() &
584                         bfin_read_EMAC_MMC_TIRQS());
585                 bfin_write_EMAC_MMC_RIRQS(
586                         bfin_read_EMAC_MMC_RIRQE() &
587                         bfin_read_EMAC_MMC_RIRQS());
588                 break;
589         case IRQ_MAC_RXFSINT:
590                 bfin_write_EMAC_RX_STKY(
591                         bfin_read_EMAC_RX_IRQE() &
592                         bfin_read_EMAC_RX_STKY());
593                 break;
594         case IRQ_MAC_TXFSINT:
595                 bfin_write_EMAC_TX_STKY(
596                         bfin_read_EMAC_TX_IRQE() &
597                         bfin_read_EMAC_TX_STKY());
598                 break;
599         case IRQ_MAC_WAKEDET:
600                  bfin_write_EMAC_WKUP_CTL(
601                         bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
602                 break;
603         default:
604                 /* These bits are W1C */
605                 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
606                 break;
607         }
608 }
609
610 static void bfin_mac_status_mask_irq(struct irq_data *d)
611 {
612         unsigned int irq = d->irq;
613
614         mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
615 #ifdef BF537_FAMILY
616         switch (irq) {
617         case IRQ_MAC_PHYINT:
618                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
619                 break;
620         default:
621                 break;
622         }
623 #else
624         if (!mac_stat_int_mask)
625                 bfin_internal_mask_irq(IRQ_MAC_ERROR);
626 #endif
627         bfin_mac_status_ack_irq(irq);
628 }
629
630 static void bfin_mac_status_unmask_irq(struct irq_data *d)
631 {
632         unsigned int irq = d->irq;
633
634 #ifdef BF537_FAMILY
635         switch (irq) {
636         case IRQ_MAC_PHYINT:
637                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
638                 break;
639         default:
640                 break;
641         }
642 #else
643         if (!mac_stat_int_mask)
644                 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
645 #endif
646         mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
647 }
648
649 #ifdef CONFIG_PM
650 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
651 {
652 #ifdef BF537_FAMILY
653         return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
654 #else
655         return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
656 #endif
657 }
658 #else
659 # define bfin_mac_status_set_wake NULL
660 #endif
661
662 static struct irq_chip bfin_mac_status_irqchip = {
663         .name = "MACST",
664         .irq_mask = bfin_mac_status_mask_irq,
665         .irq_unmask = bfin_mac_status_unmask_irq,
666         .irq_set_wake = bfin_mac_status_set_wake,
667 };
668
669 void bfin_demux_mac_status_irq(unsigned int int_err_irq,
670                                struct irq_desc *inta_desc)
671 {
672         int i, irq = 0;
673         u32 status = bfin_read_EMAC_SYSTAT();
674
675         for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
676                 if (status & (1L << i)) {
677                         irq = IRQ_MAC_PHYINT + i;
678                         break;
679                 }
680
681         if (irq) {
682                 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
683                         bfin_handle_irq(irq);
684                 } else {
685                         bfin_mac_status_ack_irq(irq);
686                         pr_debug("IRQ %d:"
687                                         " MASKED MAC ERROR INTERRUPT ASSERTED\n",
688                                         irq);
689                 }
690         } else
691                 printk(KERN_ERR
692                                 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
693                                 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
694                                 "(EMAC_SYSTAT=0x%X)\n",
695                                 __func__, __FILE__, __LINE__, status);
696 }
697 #endif
698
699 static inline void bfin_set_irq_handler(unsigned irq, irq_flow_handler_t handle)
700 {
701 #ifdef CONFIG_IPIPE
702         handle = handle_level_irq;
703 #endif
704         __irq_set_handler_locked(irq, handle);
705 }
706
707 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
708 extern void bfin_gpio_irq_prepare(unsigned gpio);
709
710 #if !BFIN_GPIO_PINT
711
712 static void bfin_gpio_ack_irq(struct irq_data *d)
713 {
714         /* AFAIK ack_irq in case mask_ack is provided
715          * get's only called for edge sense irqs
716          */
717         set_gpio_data(irq_to_gpio(d->irq), 0);
718 }
719
720 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
721 {
722         unsigned int irq = d->irq;
723         u32 gpionr = irq_to_gpio(irq);
724
725         if (!irqd_is_level_type(d))
726                 set_gpio_data(gpionr, 0);
727
728         set_gpio_maska(gpionr, 0);
729 }
730
731 static void bfin_gpio_mask_irq(struct irq_data *d)
732 {
733         set_gpio_maska(irq_to_gpio(d->irq), 0);
734 }
735
736 static void bfin_gpio_unmask_irq(struct irq_data *d)
737 {
738         set_gpio_maska(irq_to_gpio(d->irq), 1);
739 }
740
741 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
742 {
743         u32 gpionr = irq_to_gpio(d->irq);
744
745         if (__test_and_set_bit(gpionr, gpio_enabled))
746                 bfin_gpio_irq_prepare(gpionr);
747
748         bfin_gpio_unmask_irq(d);
749
750         return 0;
751 }
752
753 static void bfin_gpio_irq_shutdown(struct irq_data *d)
754 {
755         u32 gpionr = irq_to_gpio(d->irq);
756
757         bfin_gpio_mask_irq(d);
758         __clear_bit(gpionr, gpio_enabled);
759         bfin_gpio_irq_free(gpionr);
760 }
761
762 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
763 {
764         unsigned int irq = d->irq;
765         int ret;
766         char buf[16];
767         u32 gpionr = irq_to_gpio(irq);
768
769         if (type == IRQ_TYPE_PROBE) {
770                 /* only probe unenabled GPIO interrupt lines */
771                 if (test_bit(gpionr, gpio_enabled))
772                         return 0;
773                 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
774         }
775
776         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
777                     IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
778
779                 snprintf(buf, 16, "gpio-irq%d", irq);
780                 ret = bfin_gpio_irq_request(gpionr, buf);
781                 if (ret)
782                         return ret;
783
784                 if (__test_and_set_bit(gpionr, gpio_enabled))
785                         bfin_gpio_irq_prepare(gpionr);
786
787         } else {
788                 __clear_bit(gpionr, gpio_enabled);
789                 return 0;
790         }
791
792         set_gpio_inen(gpionr, 0);
793         set_gpio_dir(gpionr, 0);
794
795         if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
796             == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
797                 set_gpio_both(gpionr, 1);
798         else
799                 set_gpio_both(gpionr, 0);
800
801         if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
802                 set_gpio_polar(gpionr, 1);      /* low or falling edge denoted by one */
803         else
804                 set_gpio_polar(gpionr, 0);      /* high or rising edge denoted by zero */
805
806         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
807                 set_gpio_edge(gpionr, 1);
808                 set_gpio_inen(gpionr, 1);
809                 set_gpio_data(gpionr, 0);
810
811         } else {
812                 set_gpio_edge(gpionr, 0);
813                 set_gpio_inen(gpionr, 1);
814         }
815
816         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
817                 bfin_set_irq_handler(irq, handle_edge_irq);
818         else
819                 bfin_set_irq_handler(irq, handle_level_irq);
820
821         return 0;
822 }
823
824 #ifdef CONFIG_PM
825 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
826 {
827         return gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
828 }
829 #else
830 # define bfin_gpio_set_wake NULL
831 #endif
832
833 static void bfin_demux_gpio_block(unsigned int irq)
834 {
835         unsigned int gpio, mask;
836
837         gpio = irq_to_gpio(irq);
838         mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
839
840         while (mask) {
841                 if (mask & 1)
842                         bfin_handle_irq(irq);
843                 irq++;
844                 mask >>= 1;
845         }
846 }
847
848 void bfin_demux_gpio_irq(unsigned int inta_irq,
849                         struct irq_desc *desc)
850 {
851         unsigned int irq;
852
853         switch (inta_irq) {
854 #if defined(BF537_FAMILY)
855         case IRQ_PF_INTA_PG_INTA:
856                 bfin_demux_gpio_block(IRQ_PF0);
857                 irq = IRQ_PG0;
858                 break;
859         case IRQ_PH_INTA_MAC_RX:
860                 irq = IRQ_PH0;
861                 break;
862 #elif defined(BF533_FAMILY)
863         case IRQ_PROG_INTA:
864                 irq = IRQ_PF0;
865                 break;
866 #elif defined(BF538_FAMILY)
867         case IRQ_PORTF_INTA:
868                 irq = IRQ_PF0;
869                 break;
870 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
871         case IRQ_PORTF_INTA:
872                 irq = IRQ_PF0;
873                 break;
874         case IRQ_PORTG_INTA:
875                 irq = IRQ_PG0;
876                 break;
877         case IRQ_PORTH_INTA:
878                 irq = IRQ_PH0;
879                 break;
880 #elif defined(CONFIG_BF561)
881         case IRQ_PROG0_INTA:
882                 irq = IRQ_PF0;
883                 break;
884         case IRQ_PROG1_INTA:
885                 irq = IRQ_PF16;
886                 break;
887         case IRQ_PROG2_INTA:
888                 irq = IRQ_PF32;
889                 break;
890 #endif
891         default:
892                 BUG();
893                 return;
894         }
895
896         bfin_demux_gpio_block(irq);
897 }
898
899 #else
900
901 #define NR_PINT_BITS            32
902 #define IRQ_NOT_AVAIL           0xFF
903
904 #define PINT_2_BANK(x)          ((x) >> 5)
905 #define PINT_2_BIT(x)           ((x) & 0x1F)
906 #define PINT_BIT(x)             (1 << (PINT_2_BIT(x)))
907
908 static unsigned char irq2pint_lut[NR_PINTS];
909 static unsigned char pint2irq_lut[NR_PINT_SYS_IRQS * NR_PINT_BITS];
910
911 static struct bfin_pint_regs * const pint[NR_PINT_SYS_IRQS] = {
912         (struct bfin_pint_regs *)PINT0_MASK_SET,
913         (struct bfin_pint_regs *)PINT1_MASK_SET,
914         (struct bfin_pint_regs *)PINT2_MASK_SET,
915         (struct bfin_pint_regs *)PINT3_MASK_SET,
916 #ifdef CONFIG_BF60x
917         (struct bfin_pint_regs *)PINT4_MASK_SET,
918         (struct bfin_pint_regs *)PINT5_MASK_SET,
919 #endif
920 };
921
922 inline unsigned int get_irq_base(u32 bank, u8 bmap)
923 {
924         unsigned int irq_base;
925
926 #ifndef CONFIG_BF60x
927         if (bank < 2) {         /*PA-PB */
928                 irq_base = IRQ_PA0 + bmap * 16;
929         } else {                /*PC-PJ */
930                 irq_base = IRQ_PC0 + bmap * 16;
931         }
932 #else
933         irq_base = IRQ_PA0 + bank * 16 + bmap * 16;
934 #endif
935         return irq_base;
936 }
937
938         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
939 void init_pint_lut(void)
940 {
941         u16 bank, bit, irq_base, bit_pos;
942         u32 pint_assign;
943         u8 bmap;
944
945         memset(irq2pint_lut, IRQ_NOT_AVAIL, sizeof(irq2pint_lut));
946
947         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
948
949                 pint_assign = pint[bank]->assign;
950
951                 for (bit = 0; bit < NR_PINT_BITS; bit++) {
952
953                         bmap = (pint_assign >> ((bit / 8) * 8)) & 0xFF;
954
955                         irq_base = get_irq_base(bank, bmap);
956
957                         irq_base += (bit % 8) + ((bit / 8) & 1 ? 8 : 0);
958                         bit_pos = bit + bank * NR_PINT_BITS;
959
960                         pint2irq_lut[bit_pos] = irq_base - SYS_IRQS;
961                         irq2pint_lut[irq_base - SYS_IRQS] = bit_pos;
962                 }
963         }
964 }
965
966 static void bfin_gpio_ack_irq(struct irq_data *d)
967 {
968         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
969         u32 pintbit = PINT_BIT(pint_val);
970         u32 bank = PINT_2_BANK(pint_val);
971
972         if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
973                 if (pint[bank]->invert_set & pintbit)
974                         pint[bank]->invert_clear = pintbit;
975                 else
976                         pint[bank]->invert_set = pintbit;
977         }
978         pint[bank]->request = pintbit;
979
980 }
981
982 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
983 {
984         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
985         u32 pintbit = PINT_BIT(pint_val);
986         u32 bank = PINT_2_BANK(pint_val);
987
988         if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
989                 if (pint[bank]->invert_set & pintbit)
990                         pint[bank]->invert_clear = pintbit;
991                 else
992                         pint[bank]->invert_set = pintbit;
993         }
994
995         pint[bank]->request = pintbit;
996         pint[bank]->mask_clear = pintbit;
997 }
998
999 static void bfin_gpio_mask_irq(struct irq_data *d)
1000 {
1001         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1002
1003         pint[PINT_2_BANK(pint_val)]->mask_clear = PINT_BIT(pint_val);
1004 }
1005
1006 static void bfin_gpio_unmask_irq(struct irq_data *d)
1007 {
1008         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1009         u32 pintbit = PINT_BIT(pint_val);
1010         u32 bank = PINT_2_BANK(pint_val);
1011
1012         pint[bank]->mask_set = pintbit;
1013 }
1014
1015 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
1016 {
1017         unsigned int irq = d->irq;
1018         u32 gpionr = irq_to_gpio(irq);
1019         u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
1020
1021         if (pint_val == IRQ_NOT_AVAIL) {
1022                 printk(KERN_ERR
1023                 "GPIO IRQ %d :Not in PINT Assign table "
1024                 "Reconfigure Interrupt to Port Assignemt\n", irq);
1025                 return -ENODEV;
1026         }
1027
1028         if (__test_and_set_bit(gpionr, gpio_enabled))
1029                 bfin_gpio_irq_prepare(gpionr);
1030
1031         bfin_gpio_unmask_irq(d);
1032
1033         return 0;
1034 }
1035
1036 static void bfin_gpio_irq_shutdown(struct irq_data *d)
1037 {
1038         u32 gpionr = irq_to_gpio(d->irq);
1039
1040         bfin_gpio_mask_irq(d);
1041         __clear_bit(gpionr, gpio_enabled);
1042         bfin_gpio_irq_free(gpionr);
1043 }
1044
1045 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
1046 {
1047         unsigned int irq = d->irq;
1048         int ret;
1049         char buf[16];
1050         u32 gpionr = irq_to_gpio(irq);
1051         u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
1052         u32 pintbit = PINT_BIT(pint_val);
1053         u32 bank = PINT_2_BANK(pint_val);
1054
1055         if (pint_val == IRQ_NOT_AVAIL)
1056                 return -ENODEV;
1057
1058         if (type == IRQ_TYPE_PROBE) {
1059                 /* only probe unenabled GPIO interrupt lines */
1060                 if (test_bit(gpionr, gpio_enabled))
1061                         return 0;
1062                 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
1063         }
1064
1065         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
1066                     IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
1067
1068                 snprintf(buf, 16, "gpio-irq%d", irq);
1069                 ret = bfin_gpio_irq_request(gpionr, buf);
1070                 if (ret)
1071                         return ret;
1072
1073                 if (__test_and_set_bit(gpionr, gpio_enabled))
1074                         bfin_gpio_irq_prepare(gpionr);
1075
1076         } else {
1077                 __clear_bit(gpionr, gpio_enabled);
1078                 return 0;
1079         }
1080
1081         if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
1082                 pint[bank]->invert_set = pintbit;       /* low or falling edge denoted by one */
1083         else
1084                 pint[bank]->invert_clear = pintbit;     /* high or rising edge denoted by zero */
1085
1086         if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
1087             == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
1088                 if (gpio_get_value(gpionr))
1089                         pint[bank]->invert_set = pintbit;
1090                 else
1091                         pint[bank]->invert_clear = pintbit;
1092         }
1093
1094         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
1095                 pint[bank]->edge_set = pintbit;
1096                 bfin_set_irq_handler(irq, handle_edge_irq);
1097         } else {
1098                 pint[bank]->edge_clear = pintbit;
1099                 bfin_set_irq_handler(irq, handle_level_irq);
1100         }
1101
1102         return 0;
1103 }
1104
1105 #ifdef CONFIG_PM
1106 static struct bfin_pm_pint_save save_pint_reg[NR_PINT_SYS_IRQS];
1107 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
1108
1109 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
1110 {
1111         u32 pint_irq;
1112         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1113         u32 bank = PINT_2_BANK(pint_val);
1114
1115         switch (bank) {
1116         case 0:
1117                 pint_irq = IRQ_PINT0;
1118                 break;
1119         case 2:
1120                 pint_irq = IRQ_PINT2;
1121                 break;
1122         case 3:
1123                 pint_irq = IRQ_PINT3;
1124                 break;
1125         case 1:
1126                 pint_irq = IRQ_PINT1;
1127                 break;
1128 #ifdef CONFIG_BF60x
1129         case 4:
1130                 pint_irq = IRQ_PINT4;
1131                 break;
1132         case 5:
1133                 pint_irq = IRQ_PINT5;
1134                 break;
1135 #endif
1136         default:
1137                 return -EINVAL;
1138         }
1139
1140 #ifndef SEC_GCTL
1141         bfin_internal_set_wake(pint_irq, state);
1142 #endif
1143
1144         return 0;
1145 }
1146
1147 void bfin_pint_suspend(void)
1148 {
1149         u32 bank;
1150
1151         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
1152                 save_pint_reg[bank].mask_set = pint[bank]->mask_set;
1153                 save_pint_reg[bank].assign = pint[bank]->assign;
1154                 save_pint_reg[bank].edge_set = pint[bank]->edge_set;
1155                 save_pint_reg[bank].invert_set = pint[bank]->invert_set;
1156         }
1157 }
1158
1159 void bfin_pint_resume(void)
1160 {
1161         u32 bank;
1162
1163         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
1164                 pint[bank]->mask_set = save_pint_reg[bank].mask_set;
1165                 pint[bank]->assign = save_pint_reg[bank].assign;
1166                 pint[bank]->edge_set = save_pint_reg[bank].edge_set;
1167                 pint[bank]->invert_set = save_pint_reg[bank].invert_set;
1168         }
1169 }
1170
1171 #ifdef SEC_GCTL
1172 static int sec_suspend(void)
1173 {
1174         u32 bank;
1175
1176         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
1177                 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
1178         return 0;
1179 }
1180
1181 static void sec_resume(void)
1182 {
1183         u32 bank;
1184
1185         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1186         udelay(100);
1187         bfin_write_SEC_GCTL(SEC_GCTL_EN);
1188         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1189
1190         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
1191                 bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
1192 }
1193
1194 static struct syscore_ops sec_pm_syscore_ops = {
1195         .suspend = sec_suspend,
1196         .resume = sec_resume,
1197 };
1198
1199 #endif
1200 #else
1201 # define bfin_gpio_set_wake NULL
1202 #endif
1203
1204 void bfin_demux_gpio_irq(unsigned int inta_irq,
1205                         struct irq_desc *desc)
1206 {
1207         u32 bank, pint_val;
1208         u32 request, irq;
1209         u32 level_mask;
1210         int umask = 0;
1211         struct irq_chip *chip = irq_desc_get_chip(desc);
1212
1213         if (chip->irq_mask_ack) {
1214                 chip->irq_mask_ack(&desc->irq_data);
1215         } else {
1216                 chip->irq_mask(&desc->irq_data);
1217                 if (chip->irq_ack)
1218                         chip->irq_ack(&desc->irq_data);
1219         }
1220
1221         switch (inta_irq) {
1222         case IRQ_PINT0:
1223                 bank = 0;
1224                 break;
1225         case IRQ_PINT2:
1226                 bank = 2;
1227                 break;
1228         case IRQ_PINT3:
1229                 bank = 3;
1230                 break;
1231         case IRQ_PINT1:
1232                 bank = 1;
1233                 break;
1234 #ifdef CONFIG_BF60x
1235         case IRQ_PINT4:
1236                 bank = 4;
1237                 break;
1238         case IRQ_PINT5:
1239                 bank = 5;
1240                 break;
1241 #endif
1242         default:
1243                 return;
1244         }
1245
1246         pint_val = bank * NR_PINT_BITS;
1247
1248         request = pint[bank]->request;
1249
1250         level_mask = pint[bank]->edge_set & request;
1251
1252         while (request) {
1253                 if (request & 1) {
1254                         irq = pint2irq_lut[pint_val] + SYS_IRQS;
1255                         if (level_mask & PINT_BIT(pint_val)) {
1256                                 umask = 1;
1257                                 chip->irq_unmask(&desc->irq_data);
1258                         }
1259                         bfin_handle_irq(irq);
1260                 }
1261                 pint_val++;
1262                 request >>= 1;
1263         }
1264
1265         if (!umask)
1266                 chip->irq_unmask(&desc->irq_data);
1267 }
1268 #endif
1269
1270 static struct irq_chip bfin_gpio_irqchip = {
1271         .name = "GPIO",
1272         .irq_ack = bfin_gpio_ack_irq,
1273         .irq_mask = bfin_gpio_mask_irq,
1274         .irq_mask_ack = bfin_gpio_mask_ack_irq,
1275         .irq_unmask = bfin_gpio_unmask_irq,
1276         .irq_disable = bfin_gpio_mask_irq,
1277         .irq_enable = bfin_gpio_unmask_irq,
1278         .irq_set_type = bfin_gpio_irq_type,
1279         .irq_startup = bfin_gpio_irq_startup,
1280         .irq_shutdown = bfin_gpio_irq_shutdown,
1281         .irq_set_wake = bfin_gpio_set_wake,
1282 };
1283
1284 void init_exception_vectors(void)
1285 {
1286         /* cannot program in software:
1287          * evt0 - emulation (jtag)
1288          * evt1 - reset
1289          */
1290         bfin_write_EVT2(evt_nmi);
1291         bfin_write_EVT3(trap);
1292         bfin_write_EVT5(evt_ivhw);
1293         bfin_write_EVT6(evt_timer);
1294         bfin_write_EVT7(evt_evt7);
1295         bfin_write_EVT8(evt_evt8);
1296         bfin_write_EVT9(evt_evt9);
1297         bfin_write_EVT10(evt_evt10);
1298         bfin_write_EVT11(evt_evt11);
1299         bfin_write_EVT12(evt_evt12);
1300         bfin_write_EVT13(evt_evt13);
1301         bfin_write_EVT14(evt_evt14);
1302         bfin_write_EVT15(evt_system_call);
1303         CSYNC();
1304 }
1305
1306 #ifndef SEC_GCTL
1307 /*
1308  * This function should be called during kernel startup to initialize
1309  * the BFin IRQ handling routines.
1310  */
1311
1312 int __init init_arch_irq(void)
1313 {
1314         int irq;
1315         unsigned long ilat = 0;
1316
1317         /*  Disable all the peripheral intrs  - page 4-29 HW Ref manual */
1318 #ifdef SIC_IMASK0
1319         bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
1320         bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
1321 # ifdef SIC_IMASK2
1322         bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
1323 # endif
1324 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1325         bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
1326         bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
1327 # endif
1328 #else
1329         bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
1330 #endif
1331
1332         local_irq_disable();
1333
1334 #if BFIN_GPIO_PINT
1335 # ifdef CONFIG_PINTx_REASSIGN
1336         pint[0]->assign = CONFIG_PINT0_ASSIGN;
1337         pint[1]->assign = CONFIG_PINT1_ASSIGN;
1338         pint[2]->assign = CONFIG_PINT2_ASSIGN;
1339         pint[3]->assign = CONFIG_PINT3_ASSIGN;
1340 # endif
1341         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
1342         init_pint_lut();
1343 #endif
1344
1345         for (irq = 0; irq <= SYS_IRQS; irq++) {
1346                 if (irq <= IRQ_CORETMR)
1347                         irq_set_chip(irq, &bfin_core_irqchip);
1348                 else
1349                         irq_set_chip(irq, &bfin_internal_irqchip);
1350
1351                 switch (irq) {
1352 #if BFIN_GPIO_PINT
1353                 case IRQ_PINT0:
1354                 case IRQ_PINT1:
1355                 case IRQ_PINT2:
1356                 case IRQ_PINT3:
1357 #elif defined(BF537_FAMILY)
1358                 case IRQ_PH_INTA_MAC_RX:
1359                 case IRQ_PF_INTA_PG_INTA:
1360 #elif defined(BF533_FAMILY)
1361                 case IRQ_PROG_INTA:
1362 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1363                 case IRQ_PORTF_INTA:
1364                 case IRQ_PORTG_INTA:
1365                 case IRQ_PORTH_INTA:
1366 #elif defined(CONFIG_BF561)
1367                 case IRQ_PROG0_INTA:
1368                 case IRQ_PROG1_INTA:
1369                 case IRQ_PROG2_INTA:
1370 #elif defined(BF538_FAMILY)
1371                 case IRQ_PORTF_INTA:
1372 #endif
1373                         irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1374                         break;
1375 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1376                 case IRQ_MAC_ERROR:
1377                         irq_set_chained_handler(irq,
1378                                                 bfin_demux_mac_status_irq);
1379                         break;
1380 #endif
1381 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1382                 case IRQ_SUPPLE_0:
1383                 case IRQ_SUPPLE_1:
1384                         irq_set_handler(irq, handle_percpu_irq);
1385                         break;
1386 #endif
1387
1388 #ifdef CONFIG_TICKSOURCE_CORETMR
1389                 case IRQ_CORETMR:
1390 # ifdef CONFIG_SMP
1391                         irq_set_handler(irq, handle_percpu_irq);
1392 # else
1393                         irq_set_handler(irq, handle_simple_irq);
1394 # endif
1395                         break;
1396 #endif
1397
1398 #ifdef CONFIG_TICKSOURCE_GPTMR0
1399                 case IRQ_TIMER0:
1400                         irq_set_handler(irq, handle_simple_irq);
1401                         break;
1402 #endif
1403
1404                 default:
1405 #ifdef CONFIG_IPIPE
1406                         irq_set_handler(irq, handle_level_irq);
1407 #else
1408                         irq_set_handler(irq, handle_simple_irq);
1409 #endif
1410                         break;
1411                 }
1412         }
1413
1414         init_mach_irq();
1415
1416 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1417         for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1418                 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1419                                          handle_level_irq);
1420 #endif
1421         /* if configured as edge, then will be changed to do_edge_IRQ */
1422         for (irq = GPIO_IRQ_BASE;
1423                 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1424                 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1425                                          handle_level_irq);
1426         bfin_write_IMASK(0);
1427         CSYNC();
1428         ilat = bfin_read_ILAT();
1429         CSYNC();
1430         bfin_write_ILAT(ilat);
1431         CSYNC();
1432
1433         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1434         /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1435          * local_irq_enable()
1436          */
1437         program_IAR();
1438         /* Therefore it's better to setup IARs before interrupts enabled */
1439         search_IAR();
1440
1441         /* Enable interrupts IVG7-15 */
1442         bfin_irq_flags |= IMASK_IVG15 |
1443                 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1444                 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1445
1446
1447         /* This implicitly covers ANOMALY_05000171
1448          * Boot-ROM code modifies SICA_IWRx wakeup registers
1449          */
1450 #ifdef SIC_IWR0
1451         bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1452 # ifdef SIC_IWR1
1453         /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1454          * will screw up the bootrom as it relies on MDMA0/1 waking it
1455          * up from IDLE instructions.  See this report for more info:
1456          * http://blackfin.uclinux.org/gf/tracker/4323
1457          */
1458         if (ANOMALY_05000435)
1459                 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1460         else
1461                 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1462 # endif
1463 # ifdef SIC_IWR2
1464         bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1465 # endif
1466 #else
1467         bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1468 #endif
1469         return 0;
1470 }
1471
1472 #ifdef CONFIG_DO_IRQ_L1
1473 __attribute__((l1_text))
1474 #endif
1475 static int vec_to_irq(int vec)
1476 {
1477         struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1478         struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1479         unsigned long sic_status[3];
1480         if (likely(vec == EVT_IVTMR_P))
1481                 return IRQ_CORETMR;
1482 #ifdef SIC_ISR
1483         sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1484 #else
1485         if (smp_processor_id()) {
1486 # ifdef SICB_ISR0
1487                 /* This will be optimized out in UP mode. */
1488                 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1489                 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1490 # endif
1491         } else {
1492                 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1493                 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1494         }
1495 #endif
1496 #ifdef SIC_ISR2
1497         sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1498 #endif
1499
1500         for (;; ivg++) {
1501                 if (ivg >= ivg_stop)
1502                         return -1;
1503 #ifdef SIC_ISR
1504                 if (sic_status[0] & ivg->isrflag)
1505 #else
1506                 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1507 #endif
1508                         return ivg->irqno;
1509         }
1510 }
1511
1512 #else /* SEC_GCTL */
1513
1514 /*
1515  * This function should be called during kernel startup to initialize
1516  * the BFin IRQ handling routines.
1517  */
1518
1519 int __init init_arch_irq(void)
1520 {
1521         int irq;
1522         unsigned long ilat = 0;
1523
1524         bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1525
1526         local_irq_disable();
1527
1528 #if BFIN_GPIO_PINT
1529 # ifdef CONFIG_PINTx_REASSIGN
1530         pint[0]->assign = CONFIG_PINT0_ASSIGN;
1531         pint[1]->assign = CONFIG_PINT1_ASSIGN;
1532         pint[2]->assign = CONFIG_PINT2_ASSIGN;
1533         pint[3]->assign = CONFIG_PINT3_ASSIGN;
1534         pint[4]->assign = CONFIG_PINT4_ASSIGN;
1535         pint[5]->assign = CONFIG_PINT5_ASSIGN;
1536 # endif
1537         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
1538         init_pint_lut();
1539 #endif
1540
1541         for (irq = 0; irq <= SYS_IRQS; irq++) {
1542                 if (irq <= IRQ_CORETMR) {
1543                         irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1544                                 handle_simple_irq);
1545 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1546                         if (irq == IRQ_CORETMR)
1547                                 irq_set_handler(irq, handle_percpu_irq);
1548 #endif
1549                 } else if (irq >= BFIN_IRQ(21) && irq <= BFIN_IRQ(26)) {
1550                         irq_set_chip(irq, &bfin_sec_irqchip);
1551                         irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1552                 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1553                         irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1554                                 handle_percpu_irq);
1555                 } else {
1556                         irq_set_chip(irq, &bfin_sec_irqchip);
1557                         if (irq == IRQ_SEC_ERR)
1558                                 irq_set_handler(irq, handle_sec_fault);
1559                         else if (irq >= IRQ_C0_DBL_FAULT && irq < CORE_IRQS)
1560                                 irq_set_handler(irq, handle_core_fault);
1561                         else
1562                                 irq_set_handler(irq, handle_fasteoi_irq);
1563                         __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1564                 }
1565         }
1566         for (irq = GPIO_IRQ_BASE;
1567                 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1568                 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1569                                         handle_level_irq);
1570
1571         bfin_write_IMASK(0);
1572         CSYNC();
1573         ilat = bfin_read_ILAT();
1574         CSYNC();
1575         bfin_write_ILAT(ilat);
1576         CSYNC();
1577
1578         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1579
1580         bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1581
1582         bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1583
1584         /* Enable interrupts IVG7-15 */
1585         bfin_irq_flags |= IMASK_IVG15 |
1586             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1587             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1588
1589
1590         bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1591         bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1592         bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1593         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1594         udelay(100);
1595         bfin_write_SEC_GCTL(SEC_GCTL_EN);
1596         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1597         bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1598
1599         init_software_driven_irq();
1600
1601 #ifdef CONFIG_PM
1602         register_syscore_ops(&sec_pm_syscore_ops);
1603 #endif
1604
1605         return 0;
1606 }
1607
1608 #ifdef CONFIG_DO_IRQ_L1
1609 __attribute__((l1_text))
1610 #endif
1611 static int vec_to_irq(int vec)
1612 {
1613         if (likely(vec == EVT_IVTMR_P))
1614                 return IRQ_CORETMR;
1615
1616         return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1617 }
1618 #endif  /* SEC_GCTL */
1619
1620 #ifdef CONFIG_DO_IRQ_L1
1621 __attribute__((l1_text))
1622 #endif
1623 void do_irq(int vec, struct pt_regs *fp)
1624 {
1625         int irq = vec_to_irq(vec);
1626         if (irq == -1)
1627                 return;
1628         asm_do_IRQ(irq, fp);
1629 }
1630
1631 #ifdef CONFIG_IPIPE
1632
1633 int __ipipe_get_irq_priority(unsigned irq)
1634 {
1635         int ient, prio;
1636
1637         if (irq <= IRQ_CORETMR)
1638                 return irq;
1639
1640 #ifdef SEC_GCTL
1641         if (irq >= BFIN_IRQ(0))
1642                 return IVG11;
1643 #else
1644         for (ient = 0; ient < NR_PERI_INTS; ient++) {
1645                 struct ivgx *ivg = ivg_table + ient;
1646                 if (ivg->irqno == irq) {
1647                         for (prio = 0; prio <= IVG13-IVG7; prio++) {
1648                                 if (ivg7_13[prio].ifirst <= ivg &&
1649                                     ivg7_13[prio].istop > ivg)
1650                                         return IVG7 + prio;
1651                         }
1652                 }
1653         }
1654 #endif
1655
1656         return IVG15;
1657 }
1658
1659 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1660 #ifdef CONFIG_DO_IRQ_L1
1661 __attribute__((l1_text))
1662 #endif
1663 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1664 {
1665         struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1666         struct ipipe_domain *this_domain = __ipipe_current_domain;
1667         int irq, s = 0;
1668
1669         irq = vec_to_irq(vec);
1670         if (irq == -1)
1671                 return 0;
1672
1673         if (irq == IRQ_SYSTMR) {
1674 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1675                 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1676 #endif
1677                 /* This is basically what we need from the register frame. */
1678                 __raw_get_cpu_var(__ipipe_tick_regs).ipend = regs->ipend;
1679                 __raw_get_cpu_var(__ipipe_tick_regs).pc = regs->pc;
1680                 if (this_domain != ipipe_root_domain)
1681                         __raw_get_cpu_var(__ipipe_tick_regs).ipend &= ~0x10;
1682                 else
1683                         __raw_get_cpu_var(__ipipe_tick_regs).ipend |= 0x10;
1684         }
1685
1686         /*
1687          * We don't want Linux interrupt handlers to run at the
1688          * current core priority level (i.e. < EVT15), since this
1689          * might delay other interrupts handled by a high priority
1690          * domain. Here is what we do instead:
1691          *
1692          * - we raise the SYNCDEFER bit to prevent
1693          * __ipipe_handle_irq() to sync the pipeline for the root
1694          * stage for the incoming interrupt. Upon return, that IRQ is
1695          * pending in the interrupt log.
1696          *
1697          * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1698          * that _schedule_and_signal_from_int will eventually sync the
1699          * pipeline from EVT15.
1700          */
1701         if (this_domain == ipipe_root_domain) {
1702                 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1703                 barrier();
1704         }
1705
1706         ipipe_trace_irq_entry(irq);
1707         __ipipe_handle_irq(irq, regs);
1708         ipipe_trace_irq_exit(irq);
1709
1710         if (user_mode(regs) &&
1711             !ipipe_test_foreign_stack() &&
1712             (current->ipipe_flags & PF_EVTRET) != 0) {
1713                 /*
1714                  * Testing for user_regs() does NOT fully eliminate
1715                  * foreign stack contexts, because of the forged
1716                  * interrupt returns we do through
1717                  * __ipipe_call_irqtail. In that case, we might have
1718                  * preempted a foreign stack context in a high
1719                  * priority domain, with a single interrupt level now
1720                  * pending after the irqtail unwinding is done. In
1721                  * which case user_mode() is now true, and the event
1722                  * gets dispatched spuriously.
1723                  */
1724                 current->ipipe_flags &= ~PF_EVTRET;
1725                 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1726         }
1727
1728         if (this_domain == ipipe_root_domain) {
1729                 set_thread_flag(TIF_IRQ_SYNC);
1730                 if (!s) {
1731                         __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1732                         return !test_bit(IPIPE_STALL_FLAG, &p->status);
1733                 }
1734         }
1735
1736         return 0;
1737 }
1738
1739 #endif /* CONFIG_IPIPE */