]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/mm/dma-default.c
6c0fd13fa8e875a159a45cf8a6a49394bcb60dcb
[karo-tx-linux.git] / arch / mips / mm / dma-default.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24
25 #include <dma-coherence.h>
26
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0;     /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
31
32 static int __init setcoherentio(char *str)
33 {
34         coherentio = 1;
35         pr_info("Hardware DMA cache coherency (command line)\n");
36         return 0;
37 }
38 early_param("coherentio", setcoherentio);
39
40 static int __init setnocoherentio(char *str)
41 {
42         coherentio = 0;
43         pr_info("Software DMA cache coherency (command line)\n");
44         return 0;
45 }
46 early_param("nocoherentio", setnocoherentio);
47 #endif
48
49 static inline struct page *dma_addr_to_page(struct device *dev,
50         dma_addr_t dma_addr)
51 {
52         return pfn_to_page(
53                 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
54 }
55
56 /*
57  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58  * speculatively fill random cachelines with stale data at any time,
59  * requiring an extra flush post-DMA.
60  *
61  * Warning on the terminology - Linux calls an uncached area coherent;
62  * MIPS terminology calls memory areas with hardware maintained coherency
63  * coherent.
64  *
65  * Note that the R14000 and R16000 should also be checked for in this
66  * condition.  However this function is only called on non-I/O-coherent
67  * systems and only the R10000 and R12000 are used in such systems, the
68  * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
69  */
70 static inline int cpu_needs_post_dma_flush(struct device *dev)
71 {
72         return !plat_device_is_coherent(dev) &&
73                (boot_cpu_type() == CPU_R10000 ||
74                 boot_cpu_type() == CPU_R12000 ||
75                 boot_cpu_type() == CPU_BMIPS5000);
76 }
77
78 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79 {
80         gfp_t dma_flag;
81
82         /* ignore region specifiers */
83         gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84
85 #ifdef CONFIG_ISA
86         if (dev == NULL)
87                 dma_flag = __GFP_DMA;
88         else
89 #endif
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91              if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
92                         dma_flag = __GFP_DMA;
93         else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94                         dma_flag = __GFP_DMA32;
95         else
96 #endif
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99                 dma_flag = __GFP_DMA32;
100         else
101 #endif
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
104                 dma_flag = __GFP_DMA;
105         else
106 #endif
107                 dma_flag = 0;
108
109         /* Don't invoke OOM killer */
110         gfp |= __GFP_NORETRY;
111
112         return gfp | dma_flag;
113 }
114
115 void *dma_alloc_noncoherent(struct device *dev, size_t size,
116         dma_addr_t * dma_handle, gfp_t gfp)
117 {
118         void *ret;
119
120         gfp = massage_gfp_flags(dev, gfp);
121
122         ret = (void *) __get_free_pages(gfp, get_order(size));
123
124         if (ret != NULL) {
125                 memset(ret, 0, size);
126                 *dma_handle = plat_map_dma_mem(dev, ret, size);
127         }
128
129         return ret;
130 }
131 EXPORT_SYMBOL(dma_alloc_noncoherent);
132
133 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
134         dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
135 {
136         void *ret;
137         struct page *page = NULL;
138         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
139
140         gfp = massage_gfp_flags(dev, gfp);
141
142         if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
143                 page = dma_alloc_from_contiguous(dev,
144                                         count, get_order(size));
145         if (!page)
146                 page = alloc_pages(gfp, get_order(size));
147
148         if (!page)
149                 return NULL;
150
151         ret = page_address(page);
152         memset(ret, 0, size);
153         *dma_handle = plat_map_dma_mem(dev, ret, size);
154         if (!plat_device_is_coherent(dev)) {
155                 dma_cache_wback_inv((unsigned long) ret, size);
156                 if (!hw_coherentio)
157                         ret = UNCAC_ADDR(ret);
158         }
159
160         return ret;
161 }
162
163
164 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
165         dma_addr_t dma_handle)
166 {
167         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
168         free_pages((unsigned long) vaddr, get_order(size));
169 }
170 EXPORT_SYMBOL(dma_free_noncoherent);
171
172 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
173         dma_addr_t dma_handle, struct dma_attrs *attrs)
174 {
175         unsigned long addr = (unsigned long) vaddr;
176         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
177         struct page *page = NULL;
178
179         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
180
181         if (!plat_device_is_coherent(dev) && !hw_coherentio)
182                 addr = CAC_ADDR(addr);
183
184         page = virt_to_page((void *) addr);
185
186         if (!dma_release_from_contiguous(dev, page, count))
187                 __free_pages(page, get_order(size));
188 }
189
190 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
191         void *cpu_addr, dma_addr_t dma_addr, size_t size,
192         struct dma_attrs *attrs)
193 {
194         unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
195         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
196         unsigned long addr = (unsigned long)cpu_addr;
197         unsigned long off = vma->vm_pgoff;
198         unsigned long pfn;
199         int ret = -ENXIO;
200
201         if (!plat_device_is_coherent(dev) && !hw_coherentio)
202                 addr = CAC_ADDR(addr);
203
204         pfn = page_to_pfn(virt_to_page((void *)addr));
205
206         if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
207                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
208         else
209                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
210
211         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
212                 return ret;
213
214         if (off < count && user_count <= (count - off)) {
215                 ret = remap_pfn_range(vma, vma->vm_start,
216                                       pfn + off,
217                                       user_count << PAGE_SHIFT,
218                                       vma->vm_page_prot);
219         }
220
221         return ret;
222 }
223
224 static inline void __dma_sync_virtual(void *addr, size_t size,
225         enum dma_data_direction direction)
226 {
227         switch (direction) {
228         case DMA_TO_DEVICE:
229                 dma_cache_wback((unsigned long)addr, size);
230                 break;
231
232         case DMA_FROM_DEVICE:
233                 dma_cache_inv((unsigned long)addr, size);
234                 break;
235
236         case DMA_BIDIRECTIONAL:
237                 dma_cache_wback_inv((unsigned long)addr, size);
238                 break;
239
240         default:
241                 BUG();
242         }
243 }
244
245 /*
246  * A single sg entry may refer to multiple physically contiguous
247  * pages. But we still need to process highmem pages individually.
248  * If highmem is not configured then the bulk of this loop gets
249  * optimized out.
250  */
251 static inline void __dma_sync(struct page *page,
252         unsigned long offset, size_t size, enum dma_data_direction direction)
253 {
254         size_t left = size;
255
256         do {
257                 size_t len = left;
258
259                 if (PageHighMem(page)) {
260                         void *addr;
261
262                         if (offset + len > PAGE_SIZE) {
263                                 if (offset >= PAGE_SIZE) {
264                                         page += offset >> PAGE_SHIFT;
265                                         offset &= ~PAGE_MASK;
266                                 }
267                                 len = PAGE_SIZE - offset;
268                         }
269
270                         addr = kmap_atomic(page);
271                         __dma_sync_virtual(addr + offset, len, direction);
272                         kunmap_atomic(addr);
273                 } else
274                         __dma_sync_virtual(page_address(page) + offset,
275                                            size, direction);
276                 offset = 0;
277                 page++;
278                 left -= len;
279         } while (left);
280 }
281
282 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
283         size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
284 {
285         if (cpu_needs_post_dma_flush(dev))
286                 __dma_sync(dma_addr_to_page(dev, dma_addr),
287                            dma_addr & ~PAGE_MASK, size, direction);
288         plat_post_dma_flush(dev);
289         plat_unmap_dma_mem(dev, dma_addr, size, direction);
290 }
291
292 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
293         int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
294 {
295         int i;
296         struct scatterlist *sg;
297
298         for_each_sg(sglist, sg, nents, i) {
299                 if (!plat_device_is_coherent(dev))
300                         __dma_sync(sg_page(sg), sg->offset, sg->length,
301                                    direction);
302 #ifdef CONFIG_NEED_SG_DMA_LENGTH
303                 sg->dma_length = sg->length;
304 #endif
305                 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
306                                   sg->offset;
307         }
308
309         return nents;
310 }
311
312 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
313         unsigned long offset, size_t size, enum dma_data_direction direction,
314         struct dma_attrs *attrs)
315 {
316         if (!plat_device_is_coherent(dev))
317                 __dma_sync(page, offset, size, direction);
318
319         return plat_map_dma_mem_page(dev, page) + offset;
320 }
321
322 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
323         int nhwentries, enum dma_data_direction direction,
324         struct dma_attrs *attrs)
325 {
326         int i;
327         struct scatterlist *sg;
328
329         for_each_sg(sglist, sg, nhwentries, i) {
330                 if (!plat_device_is_coherent(dev) &&
331                     direction != DMA_TO_DEVICE)
332                         __dma_sync(sg_page(sg), sg->offset, sg->length,
333                                    direction);
334                 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
335         }
336 }
337
338 static void mips_dma_sync_single_for_cpu(struct device *dev,
339         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
340 {
341         if (cpu_needs_post_dma_flush(dev))
342                 __dma_sync(dma_addr_to_page(dev, dma_handle),
343                            dma_handle & ~PAGE_MASK, size, direction);
344         plat_post_dma_flush(dev);
345 }
346
347 static void mips_dma_sync_single_for_device(struct device *dev,
348         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
349 {
350         if (!plat_device_is_coherent(dev))
351                 __dma_sync(dma_addr_to_page(dev, dma_handle),
352                            dma_handle & ~PAGE_MASK, size, direction);
353 }
354
355 static void mips_dma_sync_sg_for_cpu(struct device *dev,
356         struct scatterlist *sglist, int nelems,
357         enum dma_data_direction direction)
358 {
359         int i;
360         struct scatterlist *sg;
361
362         if (cpu_needs_post_dma_flush(dev)) {
363                 for_each_sg(sglist, sg, nelems, i) {
364                         __dma_sync(sg_page(sg), sg->offset, sg->length,
365                                    direction);
366                 }
367         }
368         plat_post_dma_flush(dev);
369 }
370
371 static void mips_dma_sync_sg_for_device(struct device *dev,
372         struct scatterlist *sglist, int nelems,
373         enum dma_data_direction direction)
374 {
375         int i;
376         struct scatterlist *sg;
377
378         if (!plat_device_is_coherent(dev)) {
379                 for_each_sg(sglist, sg, nelems, i) {
380                         __dma_sync(sg_page(sg), sg->offset, sg->length,
381                                    direction);
382                 }
383         }
384 }
385
386 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
387 {
388         return 0;
389 }
390
391 int mips_dma_supported(struct device *dev, u64 mask)
392 {
393         return plat_dma_supported(dev, mask);
394 }
395
396 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
397                          enum dma_data_direction direction)
398 {
399         BUG_ON(direction == DMA_NONE);
400
401         if (!plat_device_is_coherent(dev))
402                 __dma_sync_virtual(vaddr, size, direction);
403 }
404
405 EXPORT_SYMBOL(dma_cache_sync);
406
407 static struct dma_map_ops mips_default_dma_map_ops = {
408         .alloc = mips_dma_alloc_coherent,
409         .free = mips_dma_free_coherent,
410         .mmap = mips_dma_mmap,
411         .map_page = mips_dma_map_page,
412         .unmap_page = mips_dma_unmap_page,
413         .map_sg = mips_dma_map_sg,
414         .unmap_sg = mips_dma_unmap_sg,
415         .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
416         .sync_single_for_device = mips_dma_sync_single_for_device,
417         .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
418         .sync_sg_for_device = mips_dma_sync_sg_for_device,
419         .mapping_error = mips_dma_mapping_error,
420         .dma_supported = mips_dma_supported
421 };
422
423 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
424 EXPORT_SYMBOL(mips_dma_map_ops);
425
426 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
427
428 static int __init mips_dma_init(void)
429 {
430         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
431
432         return 0;
433 }
434 fs_initcall(mips_dma_init);