]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/include/asm/dma.h
powerpc: Remove the remaining CONFIG_PPC_ISERIES pieces
[karo-tx-linux.git] / arch / powerpc / include / asm / dma.h
1 #ifndef _ASM_POWERPC_DMA_H
2 #define _ASM_POWERPC_DMA_H
3 #ifdef __KERNEL__
4
5 /*
6  * Defines for using and allocating dma channels.
7  * Written by Hennus Bergman, 1992.
8  * High DMA channel support & info by Hannu Savolainen
9  * and John Boyd, Nov. 1992.
10  * Changes for ppc sound by Christoph Nadig
11  */
12
13 /*
14  * Note: Adapted for PowerPC by Gary Thomas
15  * Modified by Cort Dougan <cort@cs.nmt.edu>
16  *
17  * None of this really applies for Power Macintoshes.  There is
18  * basically just enough here to get kernel/dma.c to compile.
19  *
20  * There may be some comments or restrictions made here which are
21  * not valid for the PReP platform.  Take what you read
22  * with a grain of salt.
23  */
24
25 #include <asm/io.h>
26 #include <linux/spinlock.h>
27 #include <asm/system.h>
28
29 #ifndef MAX_DMA_CHANNELS
30 #define MAX_DMA_CHANNELS        8
31 #endif
32
33 /* The maximum address that we can perform a DMA transfer to on this platform */
34 /* Doesn't really apply... */
35 #define MAX_DMA_ADDRESS         (~0UL)
36
37 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
38 #define dma_outb        outb_p
39 #else
40 #define dma_outb        outb
41 #endif
42
43 #define dma_inb         inb
44
45 /*
46  * NOTES about DMA transfers:
47  *
48  *  controller 1: channels 0-3, byte operations, ports 00-1F
49  *  controller 2: channels 4-7, word operations, ports C0-DF
50  *
51  *  - ALL registers are 8 bits only, regardless of transfer size
52  *  - channel 4 is not used - cascades 1 into 2.
53  *  - channels 0-3 are byte - addresses/counts are for physical bytes
54  *  - channels 5-7 are word - addresses/counts are for physical words
55  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
56  *  - transfer count loaded to registers is 1 less than actual count
57  *  - controller 2 offsets are all even (2x offsets for controller 1)
58  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
59  *  - page registers for 0-3 use bit 0, represent 64K pages
60  *
61  * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
62  * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
63  * Note that addresses loaded into registers must be _physical_ addresses,
64  * not logical addresses (which may differ if paging is active).
65  *
66  *  Address mapping for channels 0-3:
67  *
68  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
69  *    |  ...  |   |  ... |   |  ... |
70  *    |  ...  |   |  ... |   |  ... |
71  *    |  ...  |   |  ... |   |  ... |
72  *   P7  ...  P0  A7 ... A0  A7 ... A0
73  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
74  *
75  *  Address mapping for channels 5-7:
76  *
77  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
78  *    |  ...  |   \   \   ... \  \  \  ... \  \
79  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
80  *    |  ...  |     \   \   ... \  \  \  ... \
81  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
82  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
83  *
84  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
85  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
86  * the hardware level, so odd-byte transfers aren't possible).
87  *
88  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
89  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
90  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
91  *
92  */
93
94 /* 8237 DMA controllers */
95 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
96 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
97
98 /* DMA controller registers */
99 #define DMA1_CMD_REG            0x08    /* command register (w) */
100 #define DMA1_STAT_REG           0x08    /* status register (r) */
101 #define DMA1_REQ_REG            0x09    /* request register (w) */
102 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
103 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
104 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
105 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
106 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
107 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
108 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
109
110 #define DMA2_CMD_REG            0xD0    /* command register (w) */
111 #define DMA2_STAT_REG           0xD0    /* status register (r) */
112 #define DMA2_REQ_REG            0xD2    /* request register (w) */
113 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
114 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
115 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
116 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
117 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
118 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
119 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
120
121 #define DMA_ADDR_0              0x00    /* DMA address registers */
122 #define DMA_ADDR_1              0x02
123 #define DMA_ADDR_2              0x04
124 #define DMA_ADDR_3              0x06
125 #define DMA_ADDR_4              0xC0
126 #define DMA_ADDR_5              0xC4
127 #define DMA_ADDR_6              0xC8
128 #define DMA_ADDR_7              0xCC
129
130 #define DMA_CNT_0               0x01    /* DMA count registers */
131 #define DMA_CNT_1               0x03
132 #define DMA_CNT_2               0x05
133 #define DMA_CNT_3               0x07
134 #define DMA_CNT_4               0xC2
135 #define DMA_CNT_5               0xC6
136 #define DMA_CNT_6               0xCA
137 #define DMA_CNT_7               0xCE
138
139 #define DMA_LO_PAGE_0           0x87    /* DMA page registers */
140 #define DMA_LO_PAGE_1           0x83
141 #define DMA_LO_PAGE_2           0x81
142 #define DMA_LO_PAGE_3           0x82
143 #define DMA_LO_PAGE_5           0x8B
144 #define DMA_LO_PAGE_6           0x89
145 #define DMA_LO_PAGE_7           0x8A
146
147 #define DMA_HI_PAGE_0           0x487   /* DMA page registers */
148 #define DMA_HI_PAGE_1           0x483
149 #define DMA_HI_PAGE_2           0x481
150 #define DMA_HI_PAGE_3           0x482
151 #define DMA_HI_PAGE_5           0x48B
152 #define DMA_HI_PAGE_6           0x489
153 #define DMA_HI_PAGE_7           0x48A
154
155 #define DMA1_EXT_REG            0x40B
156 #define DMA2_EXT_REG            0x4D6
157
158 #ifndef __powerpc64__
159     /* in arch/ppc/kernel/setup.c -- Cort */
160     extern unsigned int DMA_MODE_WRITE;
161     extern unsigned int DMA_MODE_READ;
162     extern unsigned long ISA_DMA_THRESHOLD;
163 #else
164     #define DMA_MODE_READ       0x44    /* I/O to memory, no autoinit, increment, single mode */
165     #define DMA_MODE_WRITE      0x48    /* memory to I/O, no autoinit, increment, single mode */
166 #endif
167
168 #define DMA_MODE_CASCADE        0xC0    /* pass thru DREQ->HRQ, DACK<-HLDA only */
169
170 #define DMA_AUTOINIT            0x10
171
172 extern spinlock_t dma_spin_lock;
173
174 static __inline__ unsigned long claim_dma_lock(void)
175 {
176         unsigned long flags;
177         spin_lock_irqsave(&dma_spin_lock, flags);
178         return flags;
179 }
180
181 static __inline__ void release_dma_lock(unsigned long flags)
182 {
183         spin_unlock_irqrestore(&dma_spin_lock, flags);
184 }
185
186 /* enable/disable a specific DMA channel */
187 static __inline__ void enable_dma(unsigned int dmanr)
188 {
189         unsigned char ucDmaCmd = 0x00;
190
191         if (dmanr != 4) {
192                 dma_outb(0, DMA2_MASK_REG);     /* This may not be enabled */
193                 dma_outb(ucDmaCmd, DMA2_CMD_REG);       /* Enable group */
194         }
195         if (dmanr <= 3) {
196                 dma_outb(dmanr, DMA1_MASK_REG);
197                 dma_outb(ucDmaCmd, DMA1_CMD_REG);       /* Enable group */
198         } else {
199                 dma_outb(dmanr & 3, DMA2_MASK_REG);
200         }
201 }
202
203 static __inline__ void disable_dma(unsigned int dmanr)
204 {
205         if (dmanr <= 3)
206                 dma_outb(dmanr | 4, DMA1_MASK_REG);
207         else
208                 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
209 }
210
211 /* Clear the 'DMA Pointer Flip Flop'.
212  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
213  * Use this once to initialize the FF to a known state.
214  * After that, keep track of it. :-)
215  * --- In order to do that, the DMA routines below should ---
216  * --- only be used while interrupts are disabled! ---
217  */
218 static __inline__ void clear_dma_ff(unsigned int dmanr)
219 {
220         if (dmanr <= 3)
221                 dma_outb(0, DMA1_CLEAR_FF_REG);
222         else
223                 dma_outb(0, DMA2_CLEAR_FF_REG);
224 }
225
226 /* set mode (above) for a specific DMA channel */
227 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
228 {
229         if (dmanr <= 3)
230                 dma_outb(mode | dmanr, DMA1_MODE_REG);
231         else
232                 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
233 }
234
235 /* Set only the page register bits of the transfer address.
236  * This is used for successive transfers when we know the contents of
237  * the lower 16 bits of the DMA current address register, but a 64k boundary
238  * may have been crossed.
239  */
240 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
241 {
242         switch (dmanr) {
243         case 0:
244                 dma_outb(pagenr, DMA_LO_PAGE_0);
245                 dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
246                 break;
247         case 1:
248                 dma_outb(pagenr, DMA_LO_PAGE_1);
249                 dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
250                 break;
251         case 2:
252                 dma_outb(pagenr, DMA_LO_PAGE_2);
253                 dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
254                 break;
255         case 3:
256                 dma_outb(pagenr, DMA_LO_PAGE_3);
257                 dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
258                 break;
259         case 5:
260                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
261                 dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
262                 break;
263         case 6:
264                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
265                 dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
266                 break;
267         case 7:
268                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
269                 dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
270                 break;
271         }
272 }
273
274 /* Set transfer address & page bits for specific DMA channel.
275  * Assumes dma flipflop is clear.
276  */
277 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
278 {
279         if (dmanr <= 3) {
280                 dma_outb(phys & 0xff,
281                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
282                 dma_outb((phys >> 8) & 0xff,
283                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
284         } else {
285                 dma_outb((phys >> 1) & 0xff,
286                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
287                 dma_outb((phys >> 9) & 0xff,
288                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
289         }
290         set_dma_page(dmanr, phys >> 16);
291 }
292
293
294 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
295  * a specific DMA channel.
296  * You must ensure the parameters are valid.
297  * NOTE: from a manual: "the number of transfers is one more
298  * than the initial word count"! This is taken into account.
299  * Assumes dma flip-flop is clear.
300  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
301  */
302 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
303 {
304         count--;
305         if (dmanr <= 3) {
306                 dma_outb(count & 0xff,
307                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
308                 dma_outb((count >> 8) & 0xff,
309                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
310         } else {
311                 dma_outb((count >> 1) & 0xff,
312                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
313                 dma_outb((count >> 9) & 0xff,
314                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
315         }
316 }
317
318
319 /* Get DMA residue count. After a DMA transfer, this
320  * should return zero. Reading this while a DMA transfer is
321  * still in progress will return unpredictable results.
322  * If called before the channel has been used, it may return 1.
323  * Otherwise, it returns the number of _bytes_ left to transfer.
324  *
325  * Assumes DMA flip-flop is clear.
326  */
327 static __inline__ int get_dma_residue(unsigned int dmanr)
328 {
329         unsigned int io_port = (dmanr <= 3)
330             ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
331             : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
332
333         /* using short to get 16-bit wrap around */
334         unsigned short count;
335
336         count = 1 + dma_inb(io_port);
337         count += dma_inb(io_port) << 8;
338
339         return (dmanr <= 3) ? count : (count << 1);
340 }
341
342 /* These are in kernel/dma.c: */
343
344 /* reserve a DMA channel */
345 extern int request_dma(unsigned int dmanr, const char *device_id);
346 /* release it again */
347 extern void free_dma(unsigned int dmanr);
348
349 #ifdef CONFIG_PCI
350 extern int isa_dma_bridge_buggy;
351 #else
352 #define isa_dma_bridge_buggy    (0)
353 #endif
354
355 #endif /* __KERNEL__ */
356 #endif  /* _ASM_POWERPC_DMA_H */