]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/include/asm/mmu-hash64.h
807014dde821058429b41a5d825759d50d4d9ed7
[karo-tx-linux.git] / arch / powerpc / include / asm / mmu-hash64.h
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17
18 /*
19  * This is necessary to get the definition of PGTABLE_RANGE which we
20  * need for various slices related matters. Note that this isn't the
21  * complete pgtable.h but only a portion of it.
22  */
23 #include <asm/pgtable-ppc64.h>
24 #include <asm/bug.h>
25
26 /*
27  * Segment table
28  */
29
30 #define STE_ESID_V      0x80
31 #define STE_ESID_KS     0x20
32 #define STE_ESID_KP     0x10
33 #define STE_ESID_N      0x08
34
35 #define STE_VSID_SHIFT  12
36
37 /* Location of cpu0's segment table */
38 #define STAB0_PAGE      0x8
39 #define STAB0_OFFSET    (STAB0_PAGE << 12)
40 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
41
42 #ifndef __ASSEMBLY__
43 extern char initial_stab[];
44 #endif /* ! __ASSEMBLY */
45
46 /*
47  * SLB
48  */
49
50 #define SLB_NUM_BOLTED          3
51 #define SLB_CACHE_ENTRIES       8
52 #define SLB_MIN_SIZE            32
53
54 /* Bits in the SLB ESID word */
55 #define SLB_ESID_V              ASM_CONST(0x0000000008000000) /* valid */
56
57 /* Bits in the SLB VSID word */
58 #define SLB_VSID_SHIFT          12
59 #define SLB_VSID_SHIFT_1T       24
60 #define SLB_VSID_SSIZE_SHIFT    62
61 #define SLB_VSID_B              ASM_CONST(0xc000000000000000)
62 #define SLB_VSID_B_256M         ASM_CONST(0x0000000000000000)
63 #define SLB_VSID_B_1T           ASM_CONST(0x4000000000000000)
64 #define SLB_VSID_KS             ASM_CONST(0x0000000000000800)
65 #define SLB_VSID_KP             ASM_CONST(0x0000000000000400)
66 #define SLB_VSID_N              ASM_CONST(0x0000000000000200) /* no-execute */
67 #define SLB_VSID_L              ASM_CONST(0x0000000000000100)
68 #define SLB_VSID_C              ASM_CONST(0x0000000000000080) /* class */
69 #define SLB_VSID_LP             ASM_CONST(0x0000000000000030)
70 #define SLB_VSID_LP_00          ASM_CONST(0x0000000000000000)
71 #define SLB_VSID_LP_01          ASM_CONST(0x0000000000000010)
72 #define SLB_VSID_LP_10          ASM_CONST(0x0000000000000020)
73 #define SLB_VSID_LP_11          ASM_CONST(0x0000000000000030)
74 #define SLB_VSID_LLP            (SLB_VSID_L|SLB_VSID_LP)
75
76 #define SLB_VSID_KERNEL         (SLB_VSID_KP)
77 #define SLB_VSID_USER           (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
78
79 #define SLBIE_C                 (0x08000000)
80 #define SLBIE_SSIZE_SHIFT       25
81
82 /*
83  * Hash table
84  */
85
86 #define HPTES_PER_GROUP 8
87
88 #define HPTE_V_SSIZE_SHIFT      62
89 #define HPTE_V_AVPN_SHIFT       7
90 #define HPTE_V_AVPN             ASM_CONST(0x3fffffffffffff80)
91 #define HPTE_V_AVPN_VAL(x)      (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
92 #define HPTE_V_COMPARE(x,y)     (!(((x) ^ (y)) & 0xffffffffffffff80UL))
93 #define HPTE_V_BOLTED           ASM_CONST(0x0000000000000010)
94 #define HPTE_V_LOCK             ASM_CONST(0x0000000000000008)
95 #define HPTE_V_LARGE            ASM_CONST(0x0000000000000004)
96 #define HPTE_V_SECONDARY        ASM_CONST(0x0000000000000002)
97 #define HPTE_V_VALID            ASM_CONST(0x0000000000000001)
98
99 #define HPTE_R_PP0              ASM_CONST(0x8000000000000000)
100 #define HPTE_R_TS               ASM_CONST(0x4000000000000000)
101 #define HPTE_R_KEY_HI           ASM_CONST(0x3000000000000000)
102 #define HPTE_R_RPN_SHIFT        12
103 #define HPTE_R_RPN              ASM_CONST(0x0ffffffffffff000)
104 #define HPTE_R_PP               ASM_CONST(0x0000000000000003)
105 #define HPTE_R_N                ASM_CONST(0x0000000000000004)
106 #define HPTE_R_G                ASM_CONST(0x0000000000000008)
107 #define HPTE_R_M                ASM_CONST(0x0000000000000010)
108 #define HPTE_R_I                ASM_CONST(0x0000000000000020)
109 #define HPTE_R_W                ASM_CONST(0x0000000000000040)
110 #define HPTE_R_WIMG             ASM_CONST(0x0000000000000078)
111 #define HPTE_R_C                ASM_CONST(0x0000000000000080)
112 #define HPTE_R_R                ASM_CONST(0x0000000000000100)
113 #define HPTE_R_KEY_LO           ASM_CONST(0x0000000000000e00)
114
115 #define HPTE_V_1TB_SEG          ASM_CONST(0x4000000000000000)
116 #define HPTE_V_VRMA_MASK        ASM_CONST(0x4001ffffff000000)
117
118 /* Values for PP (assumes Ks=0, Kp=1) */
119 #define PP_RWXX 0       /* Supervisor read/write, User none */
120 #define PP_RWRX 1       /* Supervisor read/write, User read */
121 #define PP_RWRW 2       /* Supervisor read/write, User read/write */
122 #define PP_RXRX 3       /* Supervisor read,       User read */
123 #define PP_RXXX (HPTE_R_PP0 | 2)        /* Supervisor read, user none */
124
125 /* Fields for tlbiel instruction in architecture 2.06 */
126 #define TLBIEL_INVAL_SEL_MASK   0xc00   /* invalidation selector */
127 #define  TLBIEL_INVAL_PAGE      0x000   /* invalidate a single page */
128 #define  TLBIEL_INVAL_SET_LPID  0x800   /* invalidate a set for current LPID */
129 #define  TLBIEL_INVAL_SET       0xc00   /* invalidate a set for all LPIDs */
130 #define TLBIEL_INVAL_SET_MASK   0xfff000        /* set number to inval. */
131 #define TLBIEL_INVAL_SET_SHIFT  12
132
133 #define POWER7_TLB_SETS         128     /* # sets in POWER7 TLB */
134
135 #ifndef __ASSEMBLY__
136
137 struct hash_pte {
138         __be64 v;
139         __be64 r;
140 };
141
142 extern struct hash_pte *htab_address;
143 extern unsigned long htab_size_bytes;
144 extern unsigned long htab_hash_mask;
145
146 /*
147  * Page size definition
148  *
149  *    shift : is the "PAGE_SHIFT" value for that page size
150  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
151  *            directly to a slbmte "vsid" value
152  *    penc  : is the HPTE encoding mask for the "LP" field:
153  *
154  */
155 struct mmu_psize_def
156 {
157         unsigned int    shift;  /* number of bits */
158         int             penc[MMU_PAGE_COUNT];   /* HPTE encoding */
159         unsigned int    tlbiel; /* tlbiel supported for that page size */
160         unsigned long   avpnm;  /* bits to mask out in AVPN in the HPTE */
161         unsigned long   sllp;   /* SLB L||LP (exact mask to use in slbmte) */
162 };
163 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
164
165 static inline int shift_to_mmu_psize(unsigned int shift)
166 {
167         int psize;
168
169         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
170                 if (mmu_psize_defs[psize].shift == shift)
171                         return psize;
172         return -1;
173 }
174
175 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
176 {
177         if (mmu_psize_defs[mmu_psize].shift)
178                 return mmu_psize_defs[mmu_psize].shift;
179         BUG();
180 }
181
182 #endif /* __ASSEMBLY__ */
183
184 /*
185  * Segment sizes.
186  * These are the values used by hardware in the B field of
187  * SLB entries and the first dword of MMU hashtable entries.
188  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
189  */
190 #define MMU_SEGSIZE_256M        0
191 #define MMU_SEGSIZE_1T          1
192
193 /*
194  * encode page number shift.
195  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
196  * 12 bits. This enable us to address upto 76 bit va.
197  * For hpt hash from a va we can ignore the page size bits of va and for
198  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
199  * we work in all cases including 4k page size.
200  */
201 #define VPN_SHIFT       12
202
203 /*
204  * HPTE Large Page (LP) details
205  */
206 #define LP_SHIFT        12
207 #define LP_BITS         8
208 #define LP_MASK(i)      ((0xFF >> (i)) << LP_SHIFT)
209
210 #ifndef __ASSEMBLY__
211
212 static inline int segment_shift(int ssize)
213 {
214         if (ssize == MMU_SEGSIZE_256M)
215                 return SID_SHIFT;
216         return SID_SHIFT_1T;
217 }
218
219 /*
220  * The current system page and segment sizes
221  */
222 extern int mmu_linear_psize;
223 extern int mmu_virtual_psize;
224 extern int mmu_vmalloc_psize;
225 extern int mmu_vmemmap_psize;
226 extern int mmu_io_psize;
227 extern int mmu_kernel_ssize;
228 extern int mmu_highuser_ssize;
229 extern u16 mmu_slb_size;
230 extern unsigned long tce_alloc_start, tce_alloc_end;
231
232 /*
233  * If the processor supports 64k normal pages but not 64k cache
234  * inhibited pages, we have to be prepared to switch processes
235  * to use 4k pages when they create cache-inhibited mappings.
236  * If this is the case, mmu_ci_restrictions will be set to 1.
237  */
238 extern int mmu_ci_restrictions;
239
240 /*
241  * This computes the AVPN and B fields of the first dword of a HPTE,
242  * for use when we want to match an existing PTE.  The bottom 7 bits
243  * of the returned value are zero.
244  */
245 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
246                                              int ssize)
247 {
248         unsigned long v;
249         /*
250          * The AVA field omits the low-order 23 bits of the 78 bits VA.
251          * These bits are not needed in the PTE, because the
252          * low-order b of these bits are part of the byte offset
253          * into the virtual page and, if b < 23, the high-order
254          * 23-b of these bits are always used in selecting the
255          * PTEGs to be searched
256          */
257         v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
258         v <<= HPTE_V_AVPN_SHIFT;
259         v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
260         return v;
261 }
262
263 /*
264  * This function sets the AVPN and L fields of the HPTE  appropriately
265  * using the base page size and actual page size.
266  */
267 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
268                                           int actual_psize, int ssize)
269 {
270         unsigned long v;
271         v = hpte_encode_avpn(vpn, base_psize, ssize);
272         if (actual_psize != MMU_PAGE_4K)
273                 v |= HPTE_V_LARGE;
274         return v;
275 }
276
277 /*
278  * This function sets the ARPN, and LP fields of the HPTE appropriately
279  * for the page size. We assume the pa is already "clean" that is properly
280  * aligned for the requested page size
281  */
282 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
283                                           int actual_psize)
284 {
285         /* A 4K page needs no special encoding */
286         if (actual_psize == MMU_PAGE_4K)
287                 return pa & HPTE_R_RPN;
288         else {
289                 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
290                 unsigned int shift = mmu_psize_defs[actual_psize].shift;
291                 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
292         }
293 }
294
295 /*
296  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
297  */
298 static inline unsigned long hpt_vpn(unsigned long ea,
299                                     unsigned long vsid, int ssize)
300 {
301         unsigned long mask;
302         int s_shift = segment_shift(ssize);
303
304         mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
305         return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
306 }
307
308 /*
309  * This hashes a virtual address
310  */
311 static inline unsigned long hpt_hash(unsigned long vpn,
312                                      unsigned int shift, int ssize)
313 {
314         int mask;
315         unsigned long hash, vsid;
316
317         /* VPN_SHIFT can be atmost 12 */
318         if (ssize == MMU_SEGSIZE_256M) {
319                 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
320                 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
321                         ((vpn & mask) >> (shift - VPN_SHIFT));
322         } else {
323                 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
324                 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
325                 hash = vsid ^ (vsid << 25) ^
326                         ((vpn & mask) >> (shift - VPN_SHIFT)) ;
327         }
328         return hash & 0x7fffffffffUL;
329 }
330
331 extern int __hash_page_4K(unsigned long ea, unsigned long access,
332                           unsigned long vsid, pte_t *ptep, unsigned long trap,
333                           unsigned int local, int ssize, int subpage_prot);
334 extern int __hash_page_64K(unsigned long ea, unsigned long access,
335                            unsigned long vsid, pte_t *ptep, unsigned long trap,
336                            unsigned int local, int ssize);
337 struct mm_struct;
338 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
339 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
340 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
341                      pte_t *ptep, unsigned long trap, int local, int ssize,
342                      unsigned int shift, unsigned int mmu_psize);
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 extern int __hash_page_thp(unsigned long ea, unsigned long access,
345                            unsigned long vsid, pmd_t *pmdp, unsigned long trap,
346                            int local, int ssize, unsigned int psize);
347 #else
348 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
349                                   unsigned long vsid, pmd_t *pmdp,
350                                   unsigned long trap, int local,
351                                   int ssize, unsigned int psize)
352 {
353         BUG();
354         return -1;
355 }
356 #endif
357 extern void hash_failure_debug(unsigned long ea, unsigned long access,
358                                unsigned long vsid, unsigned long trap,
359                                int ssize, int psize, int lpsize,
360                                unsigned long pte);
361 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
362                              unsigned long pstart, unsigned long prot,
363                              int psize, int ssize);
364 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
365 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
366
367 extern void hpte_init_native(void);
368 extern void hpte_init_lpar(void);
369 extern void hpte_init_beat(void);
370 extern void hpte_init_beat_v3(void);
371
372 extern void stabs_alloc(void);
373 extern void slb_initialize(void);
374 extern void slb_flush_and_rebolt(void);
375 extern void stab_initialize(unsigned long stab);
376
377 extern void slb_vmalloc_update(void);
378 extern void slb_set_size(u16 size);
379 #endif /* __ASSEMBLY__ */
380
381 /*
382  * VSID allocation (256MB segment)
383  *
384  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
385  * from mmu context id and effective segment id of the address.
386  *
387  * For user processes max context id is limited to ((1ul << 19) - 5)
388  * for kernel space, we use the top 4 context ids to map address as below
389  * NOTE: each context only support 64TB now.
390  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
391  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
392  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
393  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
394  *
395  * The proto-VSIDs are then scrambled into real VSIDs with the
396  * multiplicative hash:
397  *
398  *      VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
399  *
400  * VSID_MULTIPLIER is prime, so in particular it is
401  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
402  * Because the modulus is 2^n-1 we can compute it efficiently without
403  * a divide or extra multiply (see below). The scramble function gives
404  * robust scattering in the hash table (at least based on some initial
405  * results).
406  *
407  * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
408  * bad address. This enables us to consolidate bad address handling in
409  * hash_page.
410  *
411  * We also need to avoid the last segment of the last context, because that
412  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
413  * because of the modulo operation in vsid scramble. But the vmemmap
414  * (which is what uses region 0xf) will never be close to 64TB in size
415  * (it's 56 bytes per page of system memory).
416  */
417
418 #define CONTEXT_BITS            19
419 #define ESID_BITS               18
420 #define ESID_BITS_1T            6
421
422 /*
423  * 256MB segment
424  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
425  * available for user + kernel mapping. The top 4 contexts are used for
426  * kernel mapping. Each segment contains 2^28 bytes. Each
427  * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
428  * (19 == 37 + 28 - 46).
429  */
430 #define MAX_USER_CONTEXT        ((ASM_CONST(1) << CONTEXT_BITS) - 5)
431
432 /*
433  * This should be computed such that protovosid * vsid_mulitplier
434  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
435  */
436 #define VSID_MULTIPLIER_256M    ASM_CONST(12538073)     /* 24-bit prime */
437 #define VSID_BITS_256M          (CONTEXT_BITS + ESID_BITS)
438 #define VSID_MODULUS_256M       ((1UL<<VSID_BITS_256M)-1)
439
440 #define VSID_MULTIPLIER_1T      ASM_CONST(12538073)     /* 24-bit prime */
441 #define VSID_BITS_1T            (CONTEXT_BITS + ESID_BITS_1T)
442 #define VSID_MODULUS_1T         ((1UL<<VSID_BITS_1T)-1)
443
444
445 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
446
447 /*
448  * This macro generates asm code to compute the VSID scramble
449  * function.  Used in slb_allocate() and do_stab_bolted.  The function
450  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
451  *
452  *      rt = register continaing the proto-VSID and into which the
453  *              VSID will be stored
454  *      rx = scratch register (clobbered)
455  *
456  *      - rt and rx must be different registers
457  *      - The answer will end up in the low VSID_BITS bits of rt.  The higher
458  *        bits may contain other garbage, so you may need to mask the
459  *        result.
460  */
461 #define ASM_VSID_SCRAMBLE(rt, rx, size)                                 \
462         lis     rx,VSID_MULTIPLIER_##size@h;                            \
463         ori     rx,rx,VSID_MULTIPLIER_##size@l;                         \
464         mulld   rt,rt,rx;               /* rt = rt * MULTIPLIER */      \
465                                                                         \
466         srdi    rx,rt,VSID_BITS_##size;                                 \
467         clrldi  rt,rt,(64-VSID_BITS_##size);                            \
468         add     rt,rt,rx;               /* add high and low bits */     \
469         /* NOTE: explanation based on VSID_BITS_##size = 36             \
470          * Now, r3 == VSID (mod 2^36-1), and lies between 0 and         \
471          * 2^36-1+2^28-1.  That in particular means that if r3 >=       \
472          * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has     \
473          * the bit clear, r3 already has the answer we want, if it      \
474          * doesn't, the answer is the low 36 bits of r3+1.  So in all   \
475          * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
476         addi    rx,rt,1;                                                \
477         srdi    rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */   \
478         add     rt,rt,rx
479
480 /* 4 bits per slice and we have one slice per 1TB */
481 #define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
482
483 #ifndef __ASSEMBLY__
484
485 #ifdef CONFIG_PPC_SUBPAGE_PROT
486 /*
487  * For the sub-page protection option, we extend the PGD with one of
488  * these.  Basically we have a 3-level tree, with the top level being
489  * the protptrs array.  To optimize speed and memory consumption when
490  * only addresses < 4GB are being protected, pointers to the first
491  * four pages of sub-page protection words are stored in the low_prot
492  * array.
493  * Each page of sub-page protection words protects 1GB (4 bytes
494  * protects 64k).  For the 3-level tree, each page of pointers then
495  * protects 8TB.
496  */
497 struct subpage_prot_table {
498         unsigned long maxaddr;  /* only addresses < this are protected */
499         unsigned int **protptrs[2];
500         unsigned int *low_prot[4];
501 };
502
503 #define SBP_L1_BITS             (PAGE_SHIFT - 2)
504 #define SBP_L2_BITS             (PAGE_SHIFT - 3)
505 #define SBP_L1_COUNT            (1 << SBP_L1_BITS)
506 #define SBP_L2_COUNT            (1 << SBP_L2_BITS)
507 #define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
508 #define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
509
510 extern void subpage_prot_free(struct mm_struct *mm);
511 extern void subpage_prot_init_new_context(struct mm_struct *mm);
512 #else
513 static inline void subpage_prot_free(struct mm_struct *mm) {}
514 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
515 #endif /* CONFIG_PPC_SUBPAGE_PROT */
516
517 typedef unsigned long mm_context_id_t;
518 struct spinlock;
519
520 typedef struct {
521         mm_context_id_t id;
522         u16 user_psize;         /* page size index */
523
524 #ifdef CONFIG_PPC_MM_SLICES
525         u64 low_slices_psize;   /* SLB page size encodings */
526         unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
527 #else
528         u16 sllp;               /* SLB page size encoding */
529 #endif
530         unsigned long vdso_base;
531 #ifdef CONFIG_PPC_SUBPAGE_PROT
532         struct subpage_prot_table spt;
533 #endif /* CONFIG_PPC_SUBPAGE_PROT */
534 #ifdef CONFIG_PPC_ICSWX
535         struct spinlock *cop_lockp; /* guard acop and cop_pid */
536         unsigned long acop;     /* mask of enabled coprocessor types */
537         unsigned int cop_pid;   /* pid value used with coprocessors */
538 #endif /* CONFIG_PPC_ICSWX */
539 #ifdef CONFIG_PPC_64K_PAGES
540         /* for 4K PTE fragment support */
541         void *pte_frag;
542 #endif
543 } mm_context_t;
544
545
546 #if 0
547 /*
548  * The code below is equivalent to this function for arguments
549  * < 2^VSID_BITS, which is all this should ever be called
550  * with.  However gcc is not clever enough to compute the
551  * modulus (2^n-1) without a second multiply.
552  */
553 #define vsid_scramble(protovsid, size) \
554         ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
555
556 #else /* 1 */
557 #define vsid_scramble(protovsid, size) \
558         ({                                                               \
559                 unsigned long x;                                         \
560                 x = (protovsid) * VSID_MULTIPLIER_##size;                \
561                 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
562                 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
563         })
564 #endif /* 1 */
565
566 /* Returns the segment size indicator for a user address */
567 static inline int user_segment_size(unsigned long addr)
568 {
569         /* Use 1T segments if possible for addresses >= 1T */
570         if (addr >= (1UL << SID_SHIFT_1T))
571                 return mmu_highuser_ssize;
572         return MMU_SEGSIZE_256M;
573 }
574
575 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
576                                      int ssize)
577 {
578         /*
579          * Bad address. We return VSID 0 for that
580          */
581         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
582                 return 0;
583
584         if (ssize == MMU_SEGSIZE_256M)
585                 return vsid_scramble((context << ESID_BITS)
586                                      | (ea >> SID_SHIFT), 256M);
587         return vsid_scramble((context << ESID_BITS_1T)
588                              | (ea >> SID_SHIFT_1T), 1T);
589 }
590
591 /*
592  * This is only valid for addresses >= PAGE_OFFSET
593  *
594  * For kernel space, we use the top 4 context ids to map address as below
595  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
596  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
597  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
598  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
599  */
600 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
601 {
602         unsigned long context;
603
604         /*
605          * kernel take the top 4 context from the available range
606          */
607         context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
608         return get_vsid(context, ea, ssize);
609 }
610 #endif /* __ASSEMBLY__ */
611
612 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */