]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/setup_64.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / powerpc / kernel / setup_64.c
1 /*
2  * 
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #define DEBUG
14
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69 #include <asm/epapr_hcalls.h>
70
71 #include "setup.h"
72
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78
79 int boot_cpuid = 0;
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82
83 /* Pick defaults since we might want to patch instructions
84  * before we've read this from the device tree.
85  */
86 struct ppc64_caches ppc64_caches = {
87         .dline_size = 0x40,
88         .log_dline_size = 6,
89         .iline_size = 0x40,
90         .log_iline_size = 6
91 };
92 EXPORT_SYMBOL_GPL(ppc64_caches);
93
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 int ucache_bsize;
101
102 #ifdef CONFIG_SMP
103
104 static char *smt_enabled_cmdline;
105
106 /* Look for ibm,smt-enabled OF option */
107 static void check_smt_enabled(void)
108 {
109         struct device_node *dn;
110         const char *smt_option;
111
112         /* Default to enabling all threads */
113         smt_enabled_at_boot = threads_per_core;
114
115         /* Allow the command line to overrule the OF option */
116         if (smt_enabled_cmdline) {
117                 if (!strcmp(smt_enabled_cmdline, "on"))
118                         smt_enabled_at_boot = threads_per_core;
119                 else if (!strcmp(smt_enabled_cmdline, "off"))
120                         smt_enabled_at_boot = 0;
121                 else {
122                         long smt;
123                         int rc;
124
125                         rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
126                         if (!rc)
127                                 smt_enabled_at_boot =
128                                         min(threads_per_core, (int)smt);
129                 }
130         } else {
131                 dn = of_find_node_by_path("/options");
132                 if (dn) {
133                         smt_option = of_get_property(dn, "ibm,smt-enabled",
134                                                      NULL);
135
136                         if (smt_option) {
137                                 if (!strcmp(smt_option, "on"))
138                                         smt_enabled_at_boot = threads_per_core;
139                                 else if (!strcmp(smt_option, "off"))
140                                         smt_enabled_at_boot = 0;
141                         }
142
143                         of_node_put(dn);
144                 }
145         }
146 }
147
148 /* Look for smt-enabled= cmdline option */
149 static int __init early_smt_enabled(char *p)
150 {
151         smt_enabled_cmdline = p;
152         return 0;
153 }
154 early_param("smt-enabled", early_smt_enabled);
155
156 #else
157 #define check_smt_enabled()
158 #endif /* CONFIG_SMP */
159
160 /** Fix up paca fields required for the boot cpu */
161 static void fixup_boot_paca(void)
162 {
163         /* The boot cpu is started */
164         get_paca()->cpu_start = 1;
165         /* Allow percpu accesses to work until we setup percpu data */
166         get_paca()->data_offset = 0;
167 }
168
169 /*
170  * Early initialization entry point. This is called by head.S
171  * with MMU translation disabled. We rely on the "feature" of
172  * the CPU that ignores the top 2 bits of the address in real
173  * mode so we can access kernel globals normally provided we
174  * only toy with things in the RMO region. From here, we do
175  * some early parsing of the device-tree to setup out MEMBLOCK
176  * data structures, and allocate & initialize the hash table
177  * and segment tables so we can start running with translation
178  * enabled.
179  *
180  * It is this function which will call the probe() callback of
181  * the various platform types and copy the matching one to the
182  * global ppc_md structure. Your platform can eventually do
183  * some very early initializations from the probe() routine, but
184  * this is not recommended, be very careful as, for example, the
185  * device-tree is not accessible via normal means at this point.
186  */
187
188 void __init early_setup(unsigned long dt_ptr)
189 {
190         static __initdata struct paca_struct boot_paca;
191
192         /* -------- printk is _NOT_ safe to use here ! ------- */
193
194         /* Identify CPU type */
195         identify_cpu(0, mfspr(SPRN_PVR));
196
197         /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
198         initialise_paca(&boot_paca, 0);
199         setup_paca(&boot_paca);
200         fixup_boot_paca();
201
202         /* Initialize lockdep early or else spinlocks will blow */
203         lockdep_init();
204
205         /* -------- printk is now safe to use ------- */
206
207         /* Enable early debugging if any specified (see udbg.h) */
208         udbg_early_init();
209
210         DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
211
212         /*
213          * Do early initialization using the flattened device
214          * tree, such as retrieving the physical memory map or
215          * calculating/retrieving the hash table size.
216          */
217         early_init_devtree(__va(dt_ptr));
218
219         epapr_paravirt_early_init();
220
221         /* Now we know the logical id of our boot cpu, setup the paca. */
222         setup_paca(&paca[boot_cpuid]);
223         fixup_boot_paca();
224
225         /* Probe the machine type */
226         probe_machine();
227
228         setup_kdump_trampoline();
229
230         DBG("Found, Initializing memory management...\n");
231
232         /* Initialize the hash table or TLB handling */
233         early_init_mmu();
234
235         kvm_cma_reserve();
236
237         /*
238          * Reserve any gigantic pages requested on the command line.
239          * memblock needs to have been initialized by the time this is
240          * called since this will reserve memory.
241          */
242         reserve_hugetlb_gpages();
243
244         DBG(" <- early_setup()\n");
245
246 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
247         /*
248          * This needs to be done *last* (after the above DBG() even)
249          *
250          * Right after we return from this function, we turn on the MMU
251          * which means the real-mode access trick that btext does will
252          * no longer work, it needs to switch to using a real MMU
253          * mapping. This call will ensure that it does
254          */
255         btext_map();
256 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
257 }
258
259 #ifdef CONFIG_SMP
260 void early_setup_secondary(void)
261 {
262         /* Mark interrupts enabled in PACA */
263         get_paca()->soft_enabled = 0;
264
265         /* Initialize the hash table or TLB handling */
266         early_init_mmu_secondary();
267 }
268
269 #endif /* CONFIG_SMP */
270
271 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
272 void smp_release_cpus(void)
273 {
274         unsigned long *ptr;
275         int i;
276
277         DBG(" -> smp_release_cpus()\n");
278
279         /* All secondary cpus are spinning on a common spinloop, release them
280          * all now so they can start to spin on their individual paca
281          * spinloops. For non SMP kernels, the secondary cpus never get out
282          * of the common spinloop.
283          */
284
285         ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
286                         - PHYSICAL_START);
287         *ptr = __pa(generic_secondary_smp_init);
288
289         /* And wait a bit for them to catch up */
290         for (i = 0; i < 100000; i++) {
291                 mb();
292                 HMT_low();
293                 if (spinning_secondaries == 0)
294                         break;
295                 udelay(1);
296         }
297         DBG("spinning_secondaries = %d\n", spinning_secondaries);
298
299         DBG(" <- smp_release_cpus()\n");
300 }
301 #endif /* CONFIG_SMP || CONFIG_KEXEC */
302
303 /*
304  * Initialize some remaining members of the ppc64_caches and systemcfg
305  * structures
306  * (at least until we get rid of them completely). This is mostly some
307  * cache informations about the CPU that will be used by cache flush
308  * routines and/or provided to userland
309  */
310 static void __init initialize_cache_info(void)
311 {
312         struct device_node *np;
313         unsigned long num_cpus = 0;
314
315         DBG(" -> initialize_cache_info()\n");
316
317         for_each_node_by_type(np, "cpu") {
318                 num_cpus += 1;
319
320                 /*
321                  * We're assuming *all* of the CPUs have the same
322                  * d-cache and i-cache sizes... -Peter
323                  */
324                 if (num_cpus == 1) {
325                         const __be32 *sizep, *lsizep;
326                         u32 size, lsize;
327
328                         size = 0;
329                         lsize = cur_cpu_spec->dcache_bsize;
330                         sizep = of_get_property(np, "d-cache-size", NULL);
331                         if (sizep != NULL)
332                                 size = be32_to_cpu(*sizep);
333                         lsizep = of_get_property(np, "d-cache-block-size",
334                                                  NULL);
335                         /* fallback if block size missing */
336                         if (lsizep == NULL)
337                                 lsizep = of_get_property(np,
338                                                          "d-cache-line-size",
339                                                          NULL);
340                         if (lsizep != NULL)
341                                 lsize = be32_to_cpu(*lsizep);
342                         if (sizep == NULL || lsizep == NULL)
343                                 DBG("Argh, can't find dcache properties ! "
344                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
345
346                         ppc64_caches.dsize = size;
347                         ppc64_caches.dline_size = lsize;
348                         ppc64_caches.log_dline_size = __ilog2(lsize);
349                         ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
350
351                         size = 0;
352                         lsize = cur_cpu_spec->icache_bsize;
353                         sizep = of_get_property(np, "i-cache-size", NULL);
354                         if (sizep != NULL)
355                                 size = be32_to_cpu(*sizep);
356                         lsizep = of_get_property(np, "i-cache-block-size",
357                                                  NULL);
358                         if (lsizep == NULL)
359                                 lsizep = of_get_property(np,
360                                                          "i-cache-line-size",
361                                                          NULL);
362                         if (lsizep != NULL)
363                                 lsize = be32_to_cpu(*lsizep);
364                         if (sizep == NULL || lsizep == NULL)
365                                 DBG("Argh, can't find icache properties ! "
366                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
367
368                         ppc64_caches.isize = size;
369                         ppc64_caches.iline_size = lsize;
370                         ppc64_caches.log_iline_size = __ilog2(lsize);
371                         ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
372                 }
373         }
374
375         DBG(" <- initialize_cache_info()\n");
376 }
377
378
379 /*
380  * Do some initial setup of the system.  The parameters are those which 
381  * were passed in from the bootloader.
382  */
383 void __init setup_system(void)
384 {
385         DBG(" -> setup_system()\n");
386
387         /* Apply the CPUs-specific and firmware specific fixups to kernel
388          * text (nop out sections not relevant to this CPU or this firmware)
389          */
390         do_feature_fixups(cur_cpu_spec->cpu_features,
391                           &__start___ftr_fixup, &__stop___ftr_fixup);
392         do_feature_fixups(cur_cpu_spec->mmu_features,
393                           &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
394         do_feature_fixups(powerpc_firmware_features,
395                           &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
396         do_lwsync_fixups(cur_cpu_spec->cpu_features,
397                          &__start___lwsync_fixup, &__stop___lwsync_fixup);
398         do_final_fixups();
399
400         /*
401          * Unflatten the device-tree passed by prom_init or kexec
402          */
403         unflatten_device_tree();
404
405         /*
406          * Fill the ppc64_caches & systemcfg structures with informations
407          * retrieved from the device-tree.
408          */
409         initialize_cache_info();
410
411 #ifdef CONFIG_PPC_RTAS
412         /*
413          * Initialize RTAS if available
414          */
415         rtas_initialize();
416 #endif /* CONFIG_PPC_RTAS */
417
418         /*
419          * Check if we have an initrd provided via the device-tree
420          */
421         check_for_initrd();
422
423         /*
424          * Do some platform specific early initializations, that includes
425          * setting up the hash table pointers. It also sets up some interrupt-mapping
426          * related options that will be used by finish_device_tree()
427          */
428         if (ppc_md.init_early)
429                 ppc_md.init_early();
430
431         /*
432          * We can discover serial ports now since the above did setup the
433          * hash table management for us, thus ioremap works. We do that early
434          * so that further code can be debugged
435          */
436         find_legacy_serial_ports();
437
438         /*
439          * Register early console
440          */
441         register_early_udbg_console();
442
443         /*
444          * Initialize xmon
445          */
446         xmon_setup();
447
448         smp_setup_cpu_maps();
449         check_smt_enabled();
450
451 #ifdef CONFIG_SMP
452         /* Release secondary cpus out of their spinloops at 0x60 now that
453          * we can map physical -> logical CPU ids
454          */
455         smp_release_cpus();
456 #endif
457
458         printk("Starting Linux PPC64 %s\n", init_utsname()->version);
459
460         printk("-----------------------------------------------------\n");
461         printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
462         printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
463         if (ppc64_caches.dline_size != 0x80)
464                 printk("ppc64_caches.dcache_line_size = 0x%x\n",
465                        ppc64_caches.dline_size);
466         if (ppc64_caches.iline_size != 0x80)
467                 printk("ppc64_caches.icache_line_size = 0x%x\n",
468                        ppc64_caches.iline_size);
469 #ifdef CONFIG_PPC_STD_MMU_64
470         if (htab_address)
471                 printk("htab_address                  = 0x%p\n", htab_address);
472         printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
473 #endif /* CONFIG_PPC_STD_MMU_64 */
474         if (PHYSICAL_START > 0)
475                 printk("physical_start                = 0x%llx\n",
476                        (unsigned long long)PHYSICAL_START);
477         printk("-----------------------------------------------------\n");
478
479         DBG(" <- setup_system()\n");
480 }
481
482 /* This returns the limit below which memory accesses to the linear
483  * mapping are guarnateed not to cause a TLB or SLB miss. This is
484  * used to allocate interrupt or emergency stacks for which our
485  * exception entry path doesn't deal with being interrupted.
486  */
487 static u64 safe_stack_limit(void)
488 {
489 #ifdef CONFIG_PPC_BOOK3E
490         /* Freescale BookE bolts the entire linear mapping */
491         if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
492                 return linear_map_top;
493         /* Other BookE, we assume the first GB is bolted */
494         return 1ul << 30;
495 #else
496         /* BookS, the first segment is bolted */
497         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
498                 return 1UL << SID_SHIFT_1T;
499         return 1UL << SID_SHIFT;
500 #endif
501 }
502
503 static void __init irqstack_early_init(void)
504 {
505         u64 limit = safe_stack_limit();
506         unsigned int i;
507
508         /*
509          * Interrupt stacks must be in the first segment since we
510          * cannot afford to take SLB misses on them.
511          */
512         for_each_possible_cpu(i) {
513                 softirq_ctx[i] = (struct thread_info *)
514                         __va(memblock_alloc_base(THREAD_SIZE,
515                                             THREAD_SIZE, limit));
516                 hardirq_ctx[i] = (struct thread_info *)
517                         __va(memblock_alloc_base(THREAD_SIZE,
518                                             THREAD_SIZE, limit));
519         }
520 }
521
522 #ifdef CONFIG_PPC_BOOK3E
523 static void __init exc_lvl_early_init(void)
524 {
525         extern unsigned int interrupt_base_book3e;
526         extern unsigned int exc_debug_debug_book3e;
527
528         unsigned int i;
529
530         for_each_possible_cpu(i) {
531                 critirq_ctx[i] = (struct thread_info *)
532                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
533                 dbgirq_ctx[i] = (struct thread_info *)
534                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
535                 mcheckirq_ctx[i] = (struct thread_info *)
536                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
537         }
538
539         if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
540                 patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
541                              (unsigned long)&exc_debug_debug_book3e, 0);
542 }
543 #else
544 #define exc_lvl_early_init()
545 #endif
546
547 /*
548  * Stack space used when we detect a bad kernel stack pointer, and
549  * early in SMP boots before relocation is enabled.
550  */
551 static void __init emergency_stack_init(void)
552 {
553         u64 limit;
554         unsigned int i;
555
556         /*
557          * Emergency stacks must be under 256MB, we cannot afford to take
558          * SLB misses on them. The ABI also requires them to be 128-byte
559          * aligned.
560          *
561          * Since we use these as temporary stacks during secondary CPU
562          * bringup, we need to get at them in real mode. This means they
563          * must also be within the RMO region.
564          */
565         limit = min(safe_stack_limit(), ppc64_rma_size);
566
567         for_each_possible_cpu(i) {
568                 unsigned long sp;
569                 sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
570                 sp += THREAD_SIZE;
571                 paca[i].emergency_sp = __va(sp);
572         }
573 }
574
575 /*
576  * Called into from start_kernel this initializes bootmem, which is used
577  * to manage page allocation until mem_init is called.
578  */
579 void __init setup_arch(char **cmdline_p)
580 {
581         ppc64_boot_msg(0x12, "Setup Arch");
582
583         *cmdline_p = cmd_line;
584
585         /*
586          * Set cache line size based on type of cpu as a default.
587          * Systems with OF can look in the properties on the cpu node(s)
588          * for a possibly more accurate value.
589          */
590         dcache_bsize = ppc64_caches.dline_size;
591         icache_bsize = ppc64_caches.iline_size;
592
593         /* reboot on panic */
594         panic_timeout = 180;
595
596         if (ppc_md.panic)
597                 setup_panic();
598
599         init_mm.start_code = (unsigned long)_stext;
600         init_mm.end_code = (unsigned long) _etext;
601         init_mm.end_data = (unsigned long) _edata;
602         init_mm.brk = klimit;
603 #ifdef CONFIG_PPC_64K_PAGES
604         init_mm.context.pte_frag = NULL;
605 #endif
606         irqstack_early_init();
607         exc_lvl_early_init();
608         emergency_stack_init();
609
610 #ifdef CONFIG_PPC_STD_MMU_64
611         stabs_alloc();
612 #endif
613         /* set up the bootmem stuff with available memory */
614         do_init_bootmem();
615         sparse_init();
616
617 #ifdef CONFIG_DUMMY_CONSOLE
618         conswitchp = &dummy_con;
619 #endif
620
621         if (ppc_md.setup_arch)
622                 ppc_md.setup_arch();
623
624         paging_init();
625
626         /* Initialize the MMU context management stuff */
627         mmu_context_init();
628
629         /* Interrupt code needs to be 64K-aligned */
630         if ((unsigned long)_stext & 0xffff)
631                 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
632                       (unsigned long)_stext);
633
634         ppc64_boot_msg(0x15, "Setup Done");
635 }
636
637
638 /* ToDo: do something useful if ppc_md is not yet setup. */
639 #define PPC64_LINUX_FUNCTION 0x0f000000
640 #define PPC64_IPL_MESSAGE 0xc0000000
641 #define PPC64_TERM_MESSAGE 0xb0000000
642
643 static void ppc64_do_msg(unsigned int src, const char *msg)
644 {
645         if (ppc_md.progress) {
646                 char buf[128];
647
648                 sprintf(buf, "%08X\n", src);
649                 ppc_md.progress(buf, 0);
650                 snprintf(buf, 128, "%s", msg);
651                 ppc_md.progress(buf, 0);
652         }
653 }
654
655 /* Print a boot progress message. */
656 void ppc64_boot_msg(unsigned int src, const char *msg)
657 {
658         ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
659         printk("[boot]%04x %s\n", src, msg);
660 }
661
662 #ifdef CONFIG_SMP
663 #define PCPU_DYN_SIZE           ()
664
665 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
666 {
667         return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
668                                     __pa(MAX_DMA_ADDRESS));
669 }
670
671 static void __init pcpu_fc_free(void *ptr, size_t size)
672 {
673         free_bootmem(__pa(ptr), size);
674 }
675
676 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
677 {
678         if (cpu_to_node(from) == cpu_to_node(to))
679                 return LOCAL_DISTANCE;
680         else
681                 return REMOTE_DISTANCE;
682 }
683
684 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
685 EXPORT_SYMBOL(__per_cpu_offset);
686
687 void __init setup_per_cpu_areas(void)
688 {
689         const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
690         size_t atom_size;
691         unsigned long delta;
692         unsigned int cpu;
693         int rc;
694
695         /*
696          * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
697          * to group units.  For larger mappings, use 1M atom which
698          * should be large enough to contain a number of units.
699          */
700         if (mmu_linear_psize == MMU_PAGE_4K)
701                 atom_size = PAGE_SIZE;
702         else
703                 atom_size = 1 << 20;
704
705         rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
706                                     pcpu_fc_alloc, pcpu_fc_free);
707         if (rc < 0)
708                 panic("cannot initialize percpu area (err=%d)", rc);
709
710         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
711         for_each_possible_cpu(cpu) {
712                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
713                 paca[cpu].data_offset = __per_cpu_offset[cpu];
714         }
715 }
716 #endif
717
718
719 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
720 struct ppc_pci_io ppc_pci_io;
721 EXPORT_SYMBOL(ppc_pci_io);
722 #endif