]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
KVM: add "new" argument to kvm_arch_commit_memory_region
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cache.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <linux/gfp.h>
56 #include <linux/vmalloc.h>
57 #include <linux/highmem.h>
58 #include <linux/hugetlb.h>
59 #include <linux/module.h>
60
61 #include "book3s.h"
62
63 #define CREATE_TRACE_POINTS
64 #include "trace_hv.h"
65
66 /* #define EXIT_DEBUG */
67 /* #define EXIT_DEBUG_SIMPLE */
68 /* #define EXIT_DEBUG_INT */
69
70 /* Used to indicate that a guest page fault needs to be handled */
71 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
72
73 /* Used as a "null" value for timebase values */
74 #define TB_NIL  (~(u64)0)
75
76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77
78 #if defined(CONFIG_PPC_64K_PAGES)
79 #define MPP_BUFFER_ORDER        0
80 #elif defined(CONFIG_PPC_4K_PAGES)
81 #define MPP_BUFFER_ORDER        3
82 #endif
83
84
85 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
86 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
87
88 static bool kvmppc_ipi_thread(int cpu)
89 {
90         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
91         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
92                 preempt_disable();
93                 if (cpu_first_thread_sibling(cpu) ==
94                     cpu_first_thread_sibling(smp_processor_id())) {
95                         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
96                         msg |= cpu_thread_in_core(cpu);
97                         smp_mb();
98                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
99                         preempt_enable();
100                         return true;
101                 }
102                 preempt_enable();
103         }
104
105 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
106         if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
107                 xics_wake_cpu(cpu);
108                 return true;
109         }
110 #endif
111
112         return false;
113 }
114
115 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
116 {
117         int cpu = vcpu->cpu;
118         wait_queue_head_t *wqp;
119
120         wqp = kvm_arch_vcpu_wq(vcpu);
121         if (waitqueue_active(wqp)) {
122                 wake_up_interruptible(wqp);
123                 ++vcpu->stat.halt_wakeup;
124         }
125
126         if (kvmppc_ipi_thread(cpu + vcpu->arch.ptid))
127                 return;
128
129         /* CPU points to the first thread of the core */
130         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131                 smp_send_reschedule(cpu);
132 }
133
134 /*
135  * We use the vcpu_load/put functions to measure stolen time.
136  * Stolen time is counted as time when either the vcpu is able to
137  * run as part of a virtual core, but the task running the vcore
138  * is preempted or sleeping, or when the vcpu needs something done
139  * in the kernel by the task running the vcpu, but that task is
140  * preempted or sleeping.  Those two things have to be counted
141  * separately, since one of the vcpu tasks will take on the job
142  * of running the core, and the other vcpu tasks in the vcore will
143  * sleep waiting for it to do that, but that sleep shouldn't count
144  * as stolen time.
145  *
146  * Hence we accumulate stolen time when the vcpu can run as part of
147  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148  * needs its task to do other things in the kernel (for example,
149  * service a page fault) in busy_stolen.  We don't accumulate
150  * stolen time for a vcore when it is inactive, or for a vcpu
151  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
152  * a misnomer; it means that the vcpu task is not executing in
153  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154  * the kernel.  We don't have any way of dividing up that time
155  * between time that the vcpu is genuinely stopped, time that
156  * the task is actively working on behalf of the vcpu, and time
157  * that the task is preempted, so we don't count any of it as
158  * stolen.
159  *
160  * Updates to busy_stolen are protected by arch.tbacct_lock;
161  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162  * lock.  The stolen times are measured in units of timebase ticks.
163  * (Note that the != TB_NIL checks below are purely defensive;
164  * they should never fail.)
165  */
166
167 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
168 {
169         struct kvmppc_vcore *vc = vcpu->arch.vcore;
170         unsigned long flags;
171
172         /*
173          * We can test vc->runner without taking the vcore lock,
174          * because only this task ever sets vc->runner to this
175          * vcpu, and once it is set to this vcpu, only this task
176          * ever sets it to NULL.
177          */
178         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
179                 spin_lock_irqsave(&vc->stoltb_lock, flags);
180                 if (vc->preempt_tb != TB_NIL) {
181                         vc->stolen_tb += mftb() - vc->preempt_tb;
182                         vc->preempt_tb = TB_NIL;
183                 }
184                 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
185         }
186         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
187         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
188             vcpu->arch.busy_preempt != TB_NIL) {
189                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
190                 vcpu->arch.busy_preempt = TB_NIL;
191         }
192         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
193 }
194
195 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
196 {
197         struct kvmppc_vcore *vc = vcpu->arch.vcore;
198         unsigned long flags;
199
200         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
201                 spin_lock_irqsave(&vc->stoltb_lock, flags);
202                 vc->preempt_tb = mftb();
203                 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
204         }
205         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
206         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
207                 vcpu->arch.busy_preempt = mftb();
208         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210
211 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
212 {
213         vcpu->arch.shregs.msr = msr;
214         kvmppc_end_cede(vcpu);
215 }
216
217 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
218 {
219         vcpu->arch.pvr = pvr;
220 }
221
222 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
223 {
224         unsigned long pcr = 0;
225         struct kvmppc_vcore *vc = vcpu->arch.vcore;
226
227         if (arch_compat) {
228                 switch (arch_compat) {
229                 case PVR_ARCH_205:
230                         /*
231                          * If an arch bit is set in PCR, all the defined
232                          * higher-order arch bits also have to be set.
233                          */
234                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
235                         break;
236                 case PVR_ARCH_206:
237                 case PVR_ARCH_206p:
238                         pcr = PCR_ARCH_206;
239                         break;
240                 case PVR_ARCH_207:
241                         break;
242                 default:
243                         return -EINVAL;
244                 }
245
246                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
247                         /* POWER7 can't emulate POWER8 */
248                         if (!(pcr & PCR_ARCH_206))
249                                 return -EINVAL;
250                         pcr &= ~PCR_ARCH_206;
251                 }
252         }
253
254         spin_lock(&vc->lock);
255         vc->arch_compat = arch_compat;
256         vc->pcr = pcr;
257         spin_unlock(&vc->lock);
258
259         return 0;
260 }
261
262 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
263 {
264         int r;
265
266         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
267         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
268                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
269         for (r = 0; r < 16; ++r)
270                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
271                        r, kvmppc_get_gpr(vcpu, r),
272                        r+16, kvmppc_get_gpr(vcpu, r+16));
273         pr_err("ctr = %.16lx  lr  = %.16lx\n",
274                vcpu->arch.ctr, vcpu->arch.lr);
275         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
276                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
277         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
278                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
279         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
280                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
281         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
282                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
283         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
284         pr_err("fault dar = %.16lx dsisr = %.8x\n",
285                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
286         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
287         for (r = 0; r < vcpu->arch.slb_max; ++r)
288                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
289                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
290         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
291                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
292                vcpu->arch.last_inst);
293 }
294
295 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
296 {
297         int r;
298         struct kvm_vcpu *v, *ret = NULL;
299
300         mutex_lock(&kvm->lock);
301         kvm_for_each_vcpu(r, v, kvm) {
302                 if (v->vcpu_id == id) {
303                         ret = v;
304                         break;
305                 }
306         }
307         mutex_unlock(&kvm->lock);
308         return ret;
309 }
310
311 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
312 {
313         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
314         vpa->yield_count = cpu_to_be32(1);
315 }
316
317 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
318                    unsigned long addr, unsigned long len)
319 {
320         /* check address is cacheline aligned */
321         if (addr & (L1_CACHE_BYTES - 1))
322                 return -EINVAL;
323         spin_lock(&vcpu->arch.vpa_update_lock);
324         if (v->next_gpa != addr || v->len != len) {
325                 v->next_gpa = addr;
326                 v->len = addr ? len : 0;
327                 v->update_pending = 1;
328         }
329         spin_unlock(&vcpu->arch.vpa_update_lock);
330         return 0;
331 }
332
333 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
334 struct reg_vpa {
335         u32 dummy;
336         union {
337                 __be16 hword;
338                 __be32 word;
339         } length;
340 };
341
342 static int vpa_is_registered(struct kvmppc_vpa *vpap)
343 {
344         if (vpap->update_pending)
345                 return vpap->next_gpa != 0;
346         return vpap->pinned_addr != NULL;
347 }
348
349 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
350                                        unsigned long flags,
351                                        unsigned long vcpuid, unsigned long vpa)
352 {
353         struct kvm *kvm = vcpu->kvm;
354         unsigned long len, nb;
355         void *va;
356         struct kvm_vcpu *tvcpu;
357         int err;
358         int subfunc;
359         struct kvmppc_vpa *vpap;
360
361         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
362         if (!tvcpu)
363                 return H_PARAMETER;
364
365         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
366         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
367             subfunc == H_VPA_REG_SLB) {
368                 /* Registering new area - address must be cache-line aligned */
369                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
370                         return H_PARAMETER;
371
372                 /* convert logical addr to kernel addr and read length */
373                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
374                 if (va == NULL)
375                         return H_PARAMETER;
376                 if (subfunc == H_VPA_REG_VPA)
377                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
378                 else
379                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
380                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
381
382                 /* Check length */
383                 if (len > nb || len < sizeof(struct reg_vpa))
384                         return H_PARAMETER;
385         } else {
386                 vpa = 0;
387                 len = 0;
388         }
389
390         err = H_PARAMETER;
391         vpap = NULL;
392         spin_lock(&tvcpu->arch.vpa_update_lock);
393
394         switch (subfunc) {
395         case H_VPA_REG_VPA:             /* register VPA */
396                 if (len < sizeof(struct lppaca))
397                         break;
398                 vpap = &tvcpu->arch.vpa;
399                 err = 0;
400                 break;
401
402         case H_VPA_REG_DTL:             /* register DTL */
403                 if (len < sizeof(struct dtl_entry))
404                         break;
405                 len -= len % sizeof(struct dtl_entry);
406
407                 /* Check that they have previously registered a VPA */
408                 err = H_RESOURCE;
409                 if (!vpa_is_registered(&tvcpu->arch.vpa))
410                         break;
411
412                 vpap = &tvcpu->arch.dtl;
413                 err = 0;
414                 break;
415
416         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
417                 /* Check that they have previously registered a VPA */
418                 err = H_RESOURCE;
419                 if (!vpa_is_registered(&tvcpu->arch.vpa))
420                         break;
421
422                 vpap = &tvcpu->arch.slb_shadow;
423                 err = 0;
424                 break;
425
426         case H_VPA_DEREG_VPA:           /* deregister VPA */
427                 /* Check they don't still have a DTL or SLB buf registered */
428                 err = H_RESOURCE;
429                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
430                     vpa_is_registered(&tvcpu->arch.slb_shadow))
431                         break;
432
433                 vpap = &tvcpu->arch.vpa;
434                 err = 0;
435                 break;
436
437         case H_VPA_DEREG_DTL:           /* deregister DTL */
438                 vpap = &tvcpu->arch.dtl;
439                 err = 0;
440                 break;
441
442         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
443                 vpap = &tvcpu->arch.slb_shadow;
444                 err = 0;
445                 break;
446         }
447
448         if (vpap) {
449                 vpap->next_gpa = vpa;
450                 vpap->len = len;
451                 vpap->update_pending = 1;
452         }
453
454         spin_unlock(&tvcpu->arch.vpa_update_lock);
455
456         return err;
457 }
458
459 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
460 {
461         struct kvm *kvm = vcpu->kvm;
462         void *va;
463         unsigned long nb;
464         unsigned long gpa;
465
466         /*
467          * We need to pin the page pointed to by vpap->next_gpa,
468          * but we can't call kvmppc_pin_guest_page under the lock
469          * as it does get_user_pages() and down_read().  So we
470          * have to drop the lock, pin the page, then get the lock
471          * again and check that a new area didn't get registered
472          * in the meantime.
473          */
474         for (;;) {
475                 gpa = vpap->next_gpa;
476                 spin_unlock(&vcpu->arch.vpa_update_lock);
477                 va = NULL;
478                 nb = 0;
479                 if (gpa)
480                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
481                 spin_lock(&vcpu->arch.vpa_update_lock);
482                 if (gpa == vpap->next_gpa)
483                         break;
484                 /* sigh... unpin that one and try again */
485                 if (va)
486                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
487         }
488
489         vpap->update_pending = 0;
490         if (va && nb < vpap->len) {
491                 /*
492                  * If it's now too short, it must be that userspace
493                  * has changed the mappings underlying guest memory,
494                  * so unregister the region.
495                  */
496                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
497                 va = NULL;
498         }
499         if (vpap->pinned_addr)
500                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
501                                         vpap->dirty);
502         vpap->gpa = gpa;
503         vpap->pinned_addr = va;
504         vpap->dirty = false;
505         if (va)
506                 vpap->pinned_end = va + vpap->len;
507 }
508
509 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
510 {
511         if (!(vcpu->arch.vpa.update_pending ||
512               vcpu->arch.slb_shadow.update_pending ||
513               vcpu->arch.dtl.update_pending))
514                 return;
515
516         spin_lock(&vcpu->arch.vpa_update_lock);
517         if (vcpu->arch.vpa.update_pending) {
518                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
519                 if (vcpu->arch.vpa.pinned_addr)
520                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
521         }
522         if (vcpu->arch.dtl.update_pending) {
523                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
524                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
525                 vcpu->arch.dtl_index = 0;
526         }
527         if (vcpu->arch.slb_shadow.update_pending)
528                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
529         spin_unlock(&vcpu->arch.vpa_update_lock);
530 }
531
532 /*
533  * Return the accumulated stolen time for the vcore up until `now'.
534  * The caller should hold the vcore lock.
535  */
536 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
537 {
538         u64 p;
539         unsigned long flags;
540
541         spin_lock_irqsave(&vc->stoltb_lock, flags);
542         p = vc->stolen_tb;
543         if (vc->vcore_state != VCORE_INACTIVE &&
544             vc->preempt_tb != TB_NIL)
545                 p += now - vc->preempt_tb;
546         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
547         return p;
548 }
549
550 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
551                                     struct kvmppc_vcore *vc)
552 {
553         struct dtl_entry *dt;
554         struct lppaca *vpa;
555         unsigned long stolen;
556         unsigned long core_stolen;
557         u64 now;
558
559         dt = vcpu->arch.dtl_ptr;
560         vpa = vcpu->arch.vpa.pinned_addr;
561         now = mftb();
562         core_stolen = vcore_stolen_time(vc, now);
563         stolen = core_stolen - vcpu->arch.stolen_logged;
564         vcpu->arch.stolen_logged = core_stolen;
565         spin_lock_irq(&vcpu->arch.tbacct_lock);
566         stolen += vcpu->arch.busy_stolen;
567         vcpu->arch.busy_stolen = 0;
568         spin_unlock_irq(&vcpu->arch.tbacct_lock);
569         if (!dt || !vpa)
570                 return;
571         memset(dt, 0, sizeof(struct dtl_entry));
572         dt->dispatch_reason = 7;
573         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
574         dt->timebase = cpu_to_be64(now + vc->tb_offset);
575         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
576         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
577         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
578         ++dt;
579         if (dt == vcpu->arch.dtl.pinned_end)
580                 dt = vcpu->arch.dtl.pinned_addr;
581         vcpu->arch.dtl_ptr = dt;
582         /* order writing *dt vs. writing vpa->dtl_idx */
583         smp_wmb();
584         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
585         vcpu->arch.dtl.dirty = true;
586 }
587
588 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
589 {
590         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
591                 return true;
592         if ((!vcpu->arch.vcore->arch_compat) &&
593             cpu_has_feature(CPU_FTR_ARCH_207S))
594                 return true;
595         return false;
596 }
597
598 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
599                              unsigned long resource, unsigned long value1,
600                              unsigned long value2)
601 {
602         switch (resource) {
603         case H_SET_MODE_RESOURCE_SET_CIABR:
604                 if (!kvmppc_power8_compatible(vcpu))
605                         return H_P2;
606                 if (value2)
607                         return H_P4;
608                 if (mflags)
609                         return H_UNSUPPORTED_FLAG_START;
610                 /* Guests can't breakpoint the hypervisor */
611                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
612                         return H_P3;
613                 vcpu->arch.ciabr  = value1;
614                 return H_SUCCESS;
615         case H_SET_MODE_RESOURCE_SET_DAWR:
616                 if (!kvmppc_power8_compatible(vcpu))
617                         return H_P2;
618                 if (mflags)
619                         return H_UNSUPPORTED_FLAG_START;
620                 if (value2 & DABRX_HYP)
621                         return H_P4;
622                 vcpu->arch.dawr  = value1;
623                 vcpu->arch.dawrx = value2;
624                 return H_SUCCESS;
625         default:
626                 return H_TOO_HARD;
627         }
628 }
629
630 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
631 {
632         struct kvmppc_vcore *vcore = target->arch.vcore;
633
634         /*
635          * We expect to have been called by the real mode handler
636          * (kvmppc_rm_h_confer()) which would have directly returned
637          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
638          * have useful work to do and should not confer) so we don't
639          * recheck that here.
640          */
641
642         spin_lock(&vcore->lock);
643         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
644             vcore->vcore_state != VCORE_INACTIVE)
645                 target = vcore->runner;
646         spin_unlock(&vcore->lock);
647
648         return kvm_vcpu_yield_to(target);
649 }
650
651 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
652 {
653         int yield_count = 0;
654         struct lppaca *lppaca;
655
656         spin_lock(&vcpu->arch.vpa_update_lock);
657         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
658         if (lppaca)
659                 yield_count = be32_to_cpu(lppaca->yield_count);
660         spin_unlock(&vcpu->arch.vpa_update_lock);
661         return yield_count;
662 }
663
664 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
665 {
666         unsigned long req = kvmppc_get_gpr(vcpu, 3);
667         unsigned long target, ret = H_SUCCESS;
668         int yield_count;
669         struct kvm_vcpu *tvcpu;
670         int idx, rc;
671
672         if (req <= MAX_HCALL_OPCODE &&
673             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
674                 return RESUME_HOST;
675
676         switch (req) {
677         case H_CEDE:
678                 break;
679         case H_PROD:
680                 target = kvmppc_get_gpr(vcpu, 4);
681                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
682                 if (!tvcpu) {
683                         ret = H_PARAMETER;
684                         break;
685                 }
686                 tvcpu->arch.prodded = 1;
687                 smp_mb();
688                 if (vcpu->arch.ceded) {
689                         if (waitqueue_active(&vcpu->wq)) {
690                                 wake_up_interruptible(&vcpu->wq);
691                                 vcpu->stat.halt_wakeup++;
692                         }
693                 }
694                 break;
695         case H_CONFER:
696                 target = kvmppc_get_gpr(vcpu, 4);
697                 if (target == -1)
698                         break;
699                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
700                 if (!tvcpu) {
701                         ret = H_PARAMETER;
702                         break;
703                 }
704                 yield_count = kvmppc_get_gpr(vcpu, 5);
705                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
706                         break;
707                 kvm_arch_vcpu_yield_to(tvcpu);
708                 break;
709         case H_REGISTER_VPA:
710                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
711                                         kvmppc_get_gpr(vcpu, 5),
712                                         kvmppc_get_gpr(vcpu, 6));
713                 break;
714         case H_RTAS:
715                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
716                         return RESUME_HOST;
717
718                 idx = srcu_read_lock(&vcpu->kvm->srcu);
719                 rc = kvmppc_rtas_hcall(vcpu);
720                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
721
722                 if (rc == -ENOENT)
723                         return RESUME_HOST;
724                 else if (rc == 0)
725                         break;
726
727                 /* Send the error out to userspace via KVM_RUN */
728                 return rc;
729         case H_LOGICAL_CI_LOAD:
730                 ret = kvmppc_h_logical_ci_load(vcpu);
731                 if (ret == H_TOO_HARD)
732                         return RESUME_HOST;
733                 break;
734         case H_LOGICAL_CI_STORE:
735                 ret = kvmppc_h_logical_ci_store(vcpu);
736                 if (ret == H_TOO_HARD)
737                         return RESUME_HOST;
738                 break;
739         case H_SET_MODE:
740                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
741                                         kvmppc_get_gpr(vcpu, 5),
742                                         kvmppc_get_gpr(vcpu, 6),
743                                         kvmppc_get_gpr(vcpu, 7));
744                 if (ret == H_TOO_HARD)
745                         return RESUME_HOST;
746                 break;
747         case H_XIRR:
748         case H_CPPR:
749         case H_EOI:
750         case H_IPI:
751         case H_IPOLL:
752         case H_XIRR_X:
753                 if (kvmppc_xics_enabled(vcpu)) {
754                         ret = kvmppc_xics_hcall(vcpu, req);
755                         break;
756                 } /* fallthrough */
757         default:
758                 return RESUME_HOST;
759         }
760         kvmppc_set_gpr(vcpu, 3, ret);
761         vcpu->arch.hcall_needed = 0;
762         return RESUME_GUEST;
763 }
764
765 static int kvmppc_hcall_impl_hv(unsigned long cmd)
766 {
767         switch (cmd) {
768         case H_CEDE:
769         case H_PROD:
770         case H_CONFER:
771         case H_REGISTER_VPA:
772         case H_SET_MODE:
773         case H_LOGICAL_CI_LOAD:
774         case H_LOGICAL_CI_STORE:
775 #ifdef CONFIG_KVM_XICS
776         case H_XIRR:
777         case H_CPPR:
778         case H_EOI:
779         case H_IPI:
780         case H_IPOLL:
781         case H_XIRR_X:
782 #endif
783                 return 1;
784         }
785
786         /* See if it's in the real-mode table */
787         return kvmppc_hcall_impl_hv_realmode(cmd);
788 }
789
790 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
791                                         struct kvm_vcpu *vcpu)
792 {
793         u32 last_inst;
794
795         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
796                                         EMULATE_DONE) {
797                 /*
798                  * Fetch failed, so return to guest and
799                  * try executing it again.
800                  */
801                 return RESUME_GUEST;
802         }
803
804         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
805                 run->exit_reason = KVM_EXIT_DEBUG;
806                 run->debug.arch.address = kvmppc_get_pc(vcpu);
807                 return RESUME_HOST;
808         } else {
809                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
810                 return RESUME_GUEST;
811         }
812 }
813
814 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
815                                  struct task_struct *tsk)
816 {
817         int r = RESUME_HOST;
818
819         vcpu->stat.sum_exits++;
820
821         run->exit_reason = KVM_EXIT_UNKNOWN;
822         run->ready_for_interrupt_injection = 1;
823         switch (vcpu->arch.trap) {
824         /* We're good on these - the host merely wanted to get our attention */
825         case BOOK3S_INTERRUPT_HV_DECREMENTER:
826                 vcpu->stat.dec_exits++;
827                 r = RESUME_GUEST;
828                 break;
829         case BOOK3S_INTERRUPT_EXTERNAL:
830         case BOOK3S_INTERRUPT_H_DOORBELL:
831                 vcpu->stat.ext_intr_exits++;
832                 r = RESUME_GUEST;
833                 break;
834         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
835         case BOOK3S_INTERRUPT_HMI:
836         case BOOK3S_INTERRUPT_PERFMON:
837                 r = RESUME_GUEST;
838                 break;
839         case BOOK3S_INTERRUPT_MACHINE_CHECK:
840                 /*
841                  * Deliver a machine check interrupt to the guest.
842                  * We have to do this, even if the host has handled the
843                  * machine check, because machine checks use SRR0/1 and
844                  * the interrupt might have trashed guest state in them.
845                  */
846                 kvmppc_book3s_queue_irqprio(vcpu,
847                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
848                 r = RESUME_GUEST;
849                 break;
850         case BOOK3S_INTERRUPT_PROGRAM:
851         {
852                 ulong flags;
853                 /*
854                  * Normally program interrupts are delivered directly
855                  * to the guest by the hardware, but we can get here
856                  * as a result of a hypervisor emulation interrupt
857                  * (e40) getting turned into a 700 by BML RTAS.
858                  */
859                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
860                 kvmppc_core_queue_program(vcpu, flags);
861                 r = RESUME_GUEST;
862                 break;
863         }
864         case BOOK3S_INTERRUPT_SYSCALL:
865         {
866                 /* hcall - punt to userspace */
867                 int i;
868
869                 /* hypercall with MSR_PR has already been handled in rmode,
870                  * and never reaches here.
871                  */
872
873                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
874                 for (i = 0; i < 9; ++i)
875                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
876                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
877                 vcpu->arch.hcall_needed = 1;
878                 r = RESUME_HOST;
879                 break;
880         }
881         /*
882          * We get these next two if the guest accesses a page which it thinks
883          * it has mapped but which is not actually present, either because
884          * it is for an emulated I/O device or because the corresonding
885          * host page has been paged out.  Any other HDSI/HISI interrupts
886          * have been handled already.
887          */
888         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
889                 r = RESUME_PAGE_FAULT;
890                 break;
891         case BOOK3S_INTERRUPT_H_INST_STORAGE:
892                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
893                 vcpu->arch.fault_dsisr = 0;
894                 r = RESUME_PAGE_FAULT;
895                 break;
896         /*
897          * This occurs if the guest executes an illegal instruction.
898          * If the guest debug is disabled, generate a program interrupt
899          * to the guest. If guest debug is enabled, we need to check
900          * whether the instruction is a software breakpoint instruction.
901          * Accordingly return to Guest or Host.
902          */
903         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
904                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
905                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
906                                 swab32(vcpu->arch.emul_inst) :
907                                 vcpu->arch.emul_inst;
908                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
909                         r = kvmppc_emulate_debug_inst(run, vcpu);
910                 } else {
911                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
912                         r = RESUME_GUEST;
913                 }
914                 break;
915         /*
916          * This occurs if the guest (kernel or userspace), does something that
917          * is prohibited by HFSCR.  We just generate a program interrupt to
918          * the guest.
919          */
920         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
921                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
922                 r = RESUME_GUEST;
923                 break;
924         default:
925                 kvmppc_dump_regs(vcpu);
926                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
927                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
928                         vcpu->arch.shregs.msr);
929                 run->hw.hardware_exit_reason = vcpu->arch.trap;
930                 r = RESUME_HOST;
931                 break;
932         }
933
934         return r;
935 }
936
937 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
938                                             struct kvm_sregs *sregs)
939 {
940         int i;
941
942         memset(sregs, 0, sizeof(struct kvm_sregs));
943         sregs->pvr = vcpu->arch.pvr;
944         for (i = 0; i < vcpu->arch.slb_max; i++) {
945                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
946                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
947         }
948
949         return 0;
950 }
951
952 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
953                                             struct kvm_sregs *sregs)
954 {
955         int i, j;
956
957         /* Only accept the same PVR as the host's, since we can't spoof it */
958         if (sregs->pvr != vcpu->arch.pvr)
959                 return -EINVAL;
960
961         j = 0;
962         for (i = 0; i < vcpu->arch.slb_nr; i++) {
963                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
964                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
965                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
966                         ++j;
967                 }
968         }
969         vcpu->arch.slb_max = j;
970
971         return 0;
972 }
973
974 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
975                 bool preserve_top32)
976 {
977         struct kvm *kvm = vcpu->kvm;
978         struct kvmppc_vcore *vc = vcpu->arch.vcore;
979         u64 mask;
980
981         mutex_lock(&kvm->lock);
982         spin_lock(&vc->lock);
983         /*
984          * If ILE (interrupt little-endian) has changed, update the
985          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
986          */
987         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
988                 struct kvm_vcpu *vcpu;
989                 int i;
990
991                 kvm_for_each_vcpu(i, vcpu, kvm) {
992                         if (vcpu->arch.vcore != vc)
993                                 continue;
994                         if (new_lpcr & LPCR_ILE)
995                                 vcpu->arch.intr_msr |= MSR_LE;
996                         else
997                                 vcpu->arch.intr_msr &= ~MSR_LE;
998                 }
999         }
1000
1001         /*
1002          * Userspace can only modify DPFD (default prefetch depth),
1003          * ILE (interrupt little-endian) and TC (translation control).
1004          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1005          */
1006         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1007         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1008                 mask |= LPCR_AIL;
1009
1010         /* Broken 32-bit version of LPCR must not clear top bits */
1011         if (preserve_top32)
1012                 mask &= 0xFFFFFFFF;
1013         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1014         spin_unlock(&vc->lock);
1015         mutex_unlock(&kvm->lock);
1016 }
1017
1018 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1019                                  union kvmppc_one_reg *val)
1020 {
1021         int r = 0;
1022         long int i;
1023
1024         switch (id) {
1025         case KVM_REG_PPC_DEBUG_INST:
1026                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1027                 break;
1028         case KVM_REG_PPC_HIOR:
1029                 *val = get_reg_val(id, 0);
1030                 break;
1031         case KVM_REG_PPC_DABR:
1032                 *val = get_reg_val(id, vcpu->arch.dabr);
1033                 break;
1034         case KVM_REG_PPC_DABRX:
1035                 *val = get_reg_val(id, vcpu->arch.dabrx);
1036                 break;
1037         case KVM_REG_PPC_DSCR:
1038                 *val = get_reg_val(id, vcpu->arch.dscr);
1039                 break;
1040         case KVM_REG_PPC_PURR:
1041                 *val = get_reg_val(id, vcpu->arch.purr);
1042                 break;
1043         case KVM_REG_PPC_SPURR:
1044                 *val = get_reg_val(id, vcpu->arch.spurr);
1045                 break;
1046         case KVM_REG_PPC_AMR:
1047                 *val = get_reg_val(id, vcpu->arch.amr);
1048                 break;
1049         case KVM_REG_PPC_UAMOR:
1050                 *val = get_reg_val(id, vcpu->arch.uamor);
1051                 break;
1052         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1053                 i = id - KVM_REG_PPC_MMCR0;
1054                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1055                 break;
1056         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1057                 i = id - KVM_REG_PPC_PMC1;
1058                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1059                 break;
1060         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1061                 i = id - KVM_REG_PPC_SPMC1;
1062                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1063                 break;
1064         case KVM_REG_PPC_SIAR:
1065                 *val = get_reg_val(id, vcpu->arch.siar);
1066                 break;
1067         case KVM_REG_PPC_SDAR:
1068                 *val = get_reg_val(id, vcpu->arch.sdar);
1069                 break;
1070         case KVM_REG_PPC_SIER:
1071                 *val = get_reg_val(id, vcpu->arch.sier);
1072                 break;
1073         case KVM_REG_PPC_IAMR:
1074                 *val = get_reg_val(id, vcpu->arch.iamr);
1075                 break;
1076         case KVM_REG_PPC_PSPB:
1077                 *val = get_reg_val(id, vcpu->arch.pspb);
1078                 break;
1079         case KVM_REG_PPC_DPDES:
1080                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1081                 break;
1082         case KVM_REG_PPC_DAWR:
1083                 *val = get_reg_val(id, vcpu->arch.dawr);
1084                 break;
1085         case KVM_REG_PPC_DAWRX:
1086                 *val = get_reg_val(id, vcpu->arch.dawrx);
1087                 break;
1088         case KVM_REG_PPC_CIABR:
1089                 *val = get_reg_val(id, vcpu->arch.ciabr);
1090                 break;
1091         case KVM_REG_PPC_CSIGR:
1092                 *val = get_reg_val(id, vcpu->arch.csigr);
1093                 break;
1094         case KVM_REG_PPC_TACR:
1095                 *val = get_reg_val(id, vcpu->arch.tacr);
1096                 break;
1097         case KVM_REG_PPC_TCSCR:
1098                 *val = get_reg_val(id, vcpu->arch.tcscr);
1099                 break;
1100         case KVM_REG_PPC_PID:
1101                 *val = get_reg_val(id, vcpu->arch.pid);
1102                 break;
1103         case KVM_REG_PPC_ACOP:
1104                 *val = get_reg_val(id, vcpu->arch.acop);
1105                 break;
1106         case KVM_REG_PPC_WORT:
1107                 *val = get_reg_val(id, vcpu->arch.wort);
1108                 break;
1109         case KVM_REG_PPC_VPA_ADDR:
1110                 spin_lock(&vcpu->arch.vpa_update_lock);
1111                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1112                 spin_unlock(&vcpu->arch.vpa_update_lock);
1113                 break;
1114         case KVM_REG_PPC_VPA_SLB:
1115                 spin_lock(&vcpu->arch.vpa_update_lock);
1116                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1117                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1118                 spin_unlock(&vcpu->arch.vpa_update_lock);
1119                 break;
1120         case KVM_REG_PPC_VPA_DTL:
1121                 spin_lock(&vcpu->arch.vpa_update_lock);
1122                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1123                 val->vpaval.length = vcpu->arch.dtl.len;
1124                 spin_unlock(&vcpu->arch.vpa_update_lock);
1125                 break;
1126         case KVM_REG_PPC_TB_OFFSET:
1127                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1128                 break;
1129         case KVM_REG_PPC_LPCR:
1130         case KVM_REG_PPC_LPCR_64:
1131                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1132                 break;
1133         case KVM_REG_PPC_PPR:
1134                 *val = get_reg_val(id, vcpu->arch.ppr);
1135                 break;
1136 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1137         case KVM_REG_PPC_TFHAR:
1138                 *val = get_reg_val(id, vcpu->arch.tfhar);
1139                 break;
1140         case KVM_REG_PPC_TFIAR:
1141                 *val = get_reg_val(id, vcpu->arch.tfiar);
1142                 break;
1143         case KVM_REG_PPC_TEXASR:
1144                 *val = get_reg_val(id, vcpu->arch.texasr);
1145                 break;
1146         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1147                 i = id - KVM_REG_PPC_TM_GPR0;
1148                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1149                 break;
1150         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1151         {
1152                 int j;
1153                 i = id - KVM_REG_PPC_TM_VSR0;
1154                 if (i < 32)
1155                         for (j = 0; j < TS_FPRWIDTH; j++)
1156                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1157                 else {
1158                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1159                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1160                         else
1161                                 r = -ENXIO;
1162                 }
1163                 break;
1164         }
1165         case KVM_REG_PPC_TM_CR:
1166                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1167                 break;
1168         case KVM_REG_PPC_TM_LR:
1169                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1170                 break;
1171         case KVM_REG_PPC_TM_CTR:
1172                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1173                 break;
1174         case KVM_REG_PPC_TM_FPSCR:
1175                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1176                 break;
1177         case KVM_REG_PPC_TM_AMR:
1178                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1179                 break;
1180         case KVM_REG_PPC_TM_PPR:
1181                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1182                 break;
1183         case KVM_REG_PPC_TM_VRSAVE:
1184                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1185                 break;
1186         case KVM_REG_PPC_TM_VSCR:
1187                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1188                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1189                 else
1190                         r = -ENXIO;
1191                 break;
1192         case KVM_REG_PPC_TM_DSCR:
1193                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1194                 break;
1195         case KVM_REG_PPC_TM_TAR:
1196                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1197                 break;
1198 #endif
1199         case KVM_REG_PPC_ARCH_COMPAT:
1200                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1201                 break;
1202         default:
1203                 r = -EINVAL;
1204                 break;
1205         }
1206
1207         return r;
1208 }
1209
1210 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1211                                  union kvmppc_one_reg *val)
1212 {
1213         int r = 0;
1214         long int i;
1215         unsigned long addr, len;
1216
1217         switch (id) {
1218         case KVM_REG_PPC_HIOR:
1219                 /* Only allow this to be set to zero */
1220                 if (set_reg_val(id, *val))
1221                         r = -EINVAL;
1222                 break;
1223         case KVM_REG_PPC_DABR:
1224                 vcpu->arch.dabr = set_reg_val(id, *val);
1225                 break;
1226         case KVM_REG_PPC_DABRX:
1227                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1228                 break;
1229         case KVM_REG_PPC_DSCR:
1230                 vcpu->arch.dscr = set_reg_val(id, *val);
1231                 break;
1232         case KVM_REG_PPC_PURR:
1233                 vcpu->arch.purr = set_reg_val(id, *val);
1234                 break;
1235         case KVM_REG_PPC_SPURR:
1236                 vcpu->arch.spurr = set_reg_val(id, *val);
1237                 break;
1238         case KVM_REG_PPC_AMR:
1239                 vcpu->arch.amr = set_reg_val(id, *val);
1240                 break;
1241         case KVM_REG_PPC_UAMOR:
1242                 vcpu->arch.uamor = set_reg_val(id, *val);
1243                 break;
1244         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1245                 i = id - KVM_REG_PPC_MMCR0;
1246                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1247                 break;
1248         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1249                 i = id - KVM_REG_PPC_PMC1;
1250                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1251                 break;
1252         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1253                 i = id - KVM_REG_PPC_SPMC1;
1254                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1255                 break;
1256         case KVM_REG_PPC_SIAR:
1257                 vcpu->arch.siar = set_reg_val(id, *val);
1258                 break;
1259         case KVM_REG_PPC_SDAR:
1260                 vcpu->arch.sdar = set_reg_val(id, *val);
1261                 break;
1262         case KVM_REG_PPC_SIER:
1263                 vcpu->arch.sier = set_reg_val(id, *val);
1264                 break;
1265         case KVM_REG_PPC_IAMR:
1266                 vcpu->arch.iamr = set_reg_val(id, *val);
1267                 break;
1268         case KVM_REG_PPC_PSPB:
1269                 vcpu->arch.pspb = set_reg_val(id, *val);
1270                 break;
1271         case KVM_REG_PPC_DPDES:
1272                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1273                 break;
1274         case KVM_REG_PPC_DAWR:
1275                 vcpu->arch.dawr = set_reg_val(id, *val);
1276                 break;
1277         case KVM_REG_PPC_DAWRX:
1278                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1279                 break;
1280         case KVM_REG_PPC_CIABR:
1281                 vcpu->arch.ciabr = set_reg_val(id, *val);
1282                 /* Don't allow setting breakpoints in hypervisor code */
1283                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1284                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1285                 break;
1286         case KVM_REG_PPC_CSIGR:
1287                 vcpu->arch.csigr = set_reg_val(id, *val);
1288                 break;
1289         case KVM_REG_PPC_TACR:
1290                 vcpu->arch.tacr = set_reg_val(id, *val);
1291                 break;
1292         case KVM_REG_PPC_TCSCR:
1293                 vcpu->arch.tcscr = set_reg_val(id, *val);
1294                 break;
1295         case KVM_REG_PPC_PID:
1296                 vcpu->arch.pid = set_reg_val(id, *val);
1297                 break;
1298         case KVM_REG_PPC_ACOP:
1299                 vcpu->arch.acop = set_reg_val(id, *val);
1300                 break;
1301         case KVM_REG_PPC_WORT:
1302                 vcpu->arch.wort = set_reg_val(id, *val);
1303                 break;
1304         case KVM_REG_PPC_VPA_ADDR:
1305                 addr = set_reg_val(id, *val);
1306                 r = -EINVAL;
1307                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1308                               vcpu->arch.dtl.next_gpa))
1309                         break;
1310                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1311                 break;
1312         case KVM_REG_PPC_VPA_SLB:
1313                 addr = val->vpaval.addr;
1314                 len = val->vpaval.length;
1315                 r = -EINVAL;
1316                 if (addr && !vcpu->arch.vpa.next_gpa)
1317                         break;
1318                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1319                 break;
1320         case KVM_REG_PPC_VPA_DTL:
1321                 addr = val->vpaval.addr;
1322                 len = val->vpaval.length;
1323                 r = -EINVAL;
1324                 if (addr && (len < sizeof(struct dtl_entry) ||
1325                              !vcpu->arch.vpa.next_gpa))
1326                         break;
1327                 len -= len % sizeof(struct dtl_entry);
1328                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1329                 break;
1330         case KVM_REG_PPC_TB_OFFSET:
1331                 /* round up to multiple of 2^24 */
1332                 vcpu->arch.vcore->tb_offset =
1333                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1334                 break;
1335         case KVM_REG_PPC_LPCR:
1336                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1337                 break;
1338         case KVM_REG_PPC_LPCR_64:
1339                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1340                 break;
1341         case KVM_REG_PPC_PPR:
1342                 vcpu->arch.ppr = set_reg_val(id, *val);
1343                 break;
1344 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1345         case KVM_REG_PPC_TFHAR:
1346                 vcpu->arch.tfhar = set_reg_val(id, *val);
1347                 break;
1348         case KVM_REG_PPC_TFIAR:
1349                 vcpu->arch.tfiar = set_reg_val(id, *val);
1350                 break;
1351         case KVM_REG_PPC_TEXASR:
1352                 vcpu->arch.texasr = set_reg_val(id, *val);
1353                 break;
1354         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1355                 i = id - KVM_REG_PPC_TM_GPR0;
1356                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1357                 break;
1358         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1359         {
1360                 int j;
1361                 i = id - KVM_REG_PPC_TM_VSR0;
1362                 if (i < 32)
1363                         for (j = 0; j < TS_FPRWIDTH; j++)
1364                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1365                 else
1366                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1367                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1368                         else
1369                                 r = -ENXIO;
1370                 break;
1371         }
1372         case KVM_REG_PPC_TM_CR:
1373                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1374                 break;
1375         case KVM_REG_PPC_TM_LR:
1376                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1377                 break;
1378         case KVM_REG_PPC_TM_CTR:
1379                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1380                 break;
1381         case KVM_REG_PPC_TM_FPSCR:
1382                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1383                 break;
1384         case KVM_REG_PPC_TM_AMR:
1385                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1386                 break;
1387         case KVM_REG_PPC_TM_PPR:
1388                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1389                 break;
1390         case KVM_REG_PPC_TM_VRSAVE:
1391                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1392                 break;
1393         case KVM_REG_PPC_TM_VSCR:
1394                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1395                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1396                 else
1397                         r = - ENXIO;
1398                 break;
1399         case KVM_REG_PPC_TM_DSCR:
1400                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1401                 break;
1402         case KVM_REG_PPC_TM_TAR:
1403                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1404                 break;
1405 #endif
1406         case KVM_REG_PPC_ARCH_COMPAT:
1407                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1408                 break;
1409         default:
1410                 r = -EINVAL;
1411                 break;
1412         }
1413
1414         return r;
1415 }
1416
1417 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1418 {
1419         struct kvmppc_vcore *vcore;
1420
1421         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1422
1423         if (vcore == NULL)
1424                 return NULL;
1425
1426         INIT_LIST_HEAD(&vcore->runnable_threads);
1427         spin_lock_init(&vcore->lock);
1428         spin_lock_init(&vcore->stoltb_lock);
1429         init_waitqueue_head(&vcore->wq);
1430         vcore->preempt_tb = TB_NIL;
1431         vcore->lpcr = kvm->arch.lpcr;
1432         vcore->first_vcpuid = core * threads_per_subcore;
1433         vcore->kvm = kvm;
1434
1435         vcore->mpp_buffer_is_valid = false;
1436
1437         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1438                 vcore->mpp_buffer = (void *)__get_free_pages(
1439                         GFP_KERNEL|__GFP_ZERO,
1440                         MPP_BUFFER_ORDER);
1441
1442         return vcore;
1443 }
1444
1445 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1446 static struct debugfs_timings_element {
1447         const char *name;
1448         size_t offset;
1449 } timings[] = {
1450         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1451         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1452         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1453         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1454         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1455 };
1456
1457 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1458
1459 struct debugfs_timings_state {
1460         struct kvm_vcpu *vcpu;
1461         unsigned int    buflen;
1462         char            buf[N_TIMINGS * 100];
1463 };
1464
1465 static int debugfs_timings_open(struct inode *inode, struct file *file)
1466 {
1467         struct kvm_vcpu *vcpu = inode->i_private;
1468         struct debugfs_timings_state *p;
1469
1470         p = kzalloc(sizeof(*p), GFP_KERNEL);
1471         if (!p)
1472                 return -ENOMEM;
1473
1474         kvm_get_kvm(vcpu->kvm);
1475         p->vcpu = vcpu;
1476         file->private_data = p;
1477
1478         return nonseekable_open(inode, file);
1479 }
1480
1481 static int debugfs_timings_release(struct inode *inode, struct file *file)
1482 {
1483         struct debugfs_timings_state *p = file->private_data;
1484
1485         kvm_put_kvm(p->vcpu->kvm);
1486         kfree(p);
1487         return 0;
1488 }
1489
1490 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1491                                     size_t len, loff_t *ppos)
1492 {
1493         struct debugfs_timings_state *p = file->private_data;
1494         struct kvm_vcpu *vcpu = p->vcpu;
1495         char *s, *buf_end;
1496         struct kvmhv_tb_accumulator tb;
1497         u64 count;
1498         loff_t pos;
1499         ssize_t n;
1500         int i, loops;
1501         bool ok;
1502
1503         if (!p->buflen) {
1504                 s = p->buf;
1505                 buf_end = s + sizeof(p->buf);
1506                 for (i = 0; i < N_TIMINGS; ++i) {
1507                         struct kvmhv_tb_accumulator *acc;
1508
1509                         acc = (struct kvmhv_tb_accumulator *)
1510                                 ((unsigned long)vcpu + timings[i].offset);
1511                         ok = false;
1512                         for (loops = 0; loops < 1000; ++loops) {
1513                                 count = acc->seqcount;
1514                                 if (!(count & 1)) {
1515                                         smp_rmb();
1516                                         tb = *acc;
1517                                         smp_rmb();
1518                                         if (count == acc->seqcount) {
1519                                                 ok = true;
1520                                                 break;
1521                                         }
1522                                 }
1523                                 udelay(1);
1524                         }
1525                         if (!ok)
1526                                 snprintf(s, buf_end - s, "%s: stuck\n",
1527                                         timings[i].name);
1528                         else
1529                                 snprintf(s, buf_end - s,
1530                                         "%s: %llu %llu %llu %llu\n",
1531                                         timings[i].name, count / 2,
1532                                         tb_to_ns(tb.tb_total),
1533                                         tb_to_ns(tb.tb_min),
1534                                         tb_to_ns(tb.tb_max));
1535                         s += strlen(s);
1536                 }
1537                 p->buflen = s - p->buf;
1538         }
1539
1540         pos = *ppos;
1541         if (pos >= p->buflen)
1542                 return 0;
1543         if (len > p->buflen - pos)
1544                 len = p->buflen - pos;
1545         n = copy_to_user(buf, p->buf + pos, len);
1546         if (n) {
1547                 if (n == len)
1548                         return -EFAULT;
1549                 len -= n;
1550         }
1551         *ppos = pos + len;
1552         return len;
1553 }
1554
1555 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1556                                      size_t len, loff_t *ppos)
1557 {
1558         return -EACCES;
1559 }
1560
1561 static const struct file_operations debugfs_timings_ops = {
1562         .owner   = THIS_MODULE,
1563         .open    = debugfs_timings_open,
1564         .release = debugfs_timings_release,
1565         .read    = debugfs_timings_read,
1566         .write   = debugfs_timings_write,
1567         .llseek  = generic_file_llseek,
1568 };
1569
1570 /* Create a debugfs directory for the vcpu */
1571 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1572 {
1573         char buf[16];
1574         struct kvm *kvm = vcpu->kvm;
1575
1576         snprintf(buf, sizeof(buf), "vcpu%u", id);
1577         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1578                 return;
1579         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1580         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1581                 return;
1582         vcpu->arch.debugfs_timings =
1583                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1584                                     vcpu, &debugfs_timings_ops);
1585 }
1586
1587 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1588 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1589 {
1590 }
1591 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1592
1593 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1594                                                    unsigned int id)
1595 {
1596         struct kvm_vcpu *vcpu;
1597         int err = -EINVAL;
1598         int core;
1599         struct kvmppc_vcore *vcore;
1600
1601         core = id / threads_per_subcore;
1602         if (core >= KVM_MAX_VCORES)
1603                 goto out;
1604
1605         err = -ENOMEM;
1606         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1607         if (!vcpu)
1608                 goto out;
1609
1610         err = kvm_vcpu_init(vcpu, kvm, id);
1611         if (err)
1612                 goto free_vcpu;
1613
1614         vcpu->arch.shared = &vcpu->arch.shregs;
1615 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1616         /*
1617          * The shared struct is never shared on HV,
1618          * so we can always use host endianness
1619          */
1620 #ifdef __BIG_ENDIAN__
1621         vcpu->arch.shared_big_endian = true;
1622 #else
1623         vcpu->arch.shared_big_endian = false;
1624 #endif
1625 #endif
1626         vcpu->arch.mmcr[0] = MMCR0_FC;
1627         vcpu->arch.ctrl = CTRL_RUNLATCH;
1628         /* default to host PVR, since we can't spoof it */
1629         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1630         spin_lock_init(&vcpu->arch.vpa_update_lock);
1631         spin_lock_init(&vcpu->arch.tbacct_lock);
1632         vcpu->arch.busy_preempt = TB_NIL;
1633         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1634
1635         kvmppc_mmu_book3s_hv_init(vcpu);
1636
1637         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1638
1639         init_waitqueue_head(&vcpu->arch.cpu_run);
1640
1641         mutex_lock(&kvm->lock);
1642         vcore = kvm->arch.vcores[core];
1643         if (!vcore) {
1644                 vcore = kvmppc_vcore_create(kvm, core);
1645                 kvm->arch.vcores[core] = vcore;
1646                 kvm->arch.online_vcores++;
1647         }
1648         mutex_unlock(&kvm->lock);
1649
1650         if (!vcore)
1651                 goto free_vcpu;
1652
1653         spin_lock(&vcore->lock);
1654         ++vcore->num_threads;
1655         spin_unlock(&vcore->lock);
1656         vcpu->arch.vcore = vcore;
1657         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1658
1659         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1660         kvmppc_sanity_check(vcpu);
1661
1662         debugfs_vcpu_init(vcpu, id);
1663
1664         return vcpu;
1665
1666 free_vcpu:
1667         kmem_cache_free(kvm_vcpu_cache, vcpu);
1668 out:
1669         return ERR_PTR(err);
1670 }
1671
1672 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1673 {
1674         if (vpa->pinned_addr)
1675                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1676                                         vpa->dirty);
1677 }
1678
1679 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1680 {
1681         spin_lock(&vcpu->arch.vpa_update_lock);
1682         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1683         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1684         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1685         spin_unlock(&vcpu->arch.vpa_update_lock);
1686         kvm_vcpu_uninit(vcpu);
1687         kmem_cache_free(kvm_vcpu_cache, vcpu);
1688 }
1689
1690 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1691 {
1692         /* Indicate we want to get back into the guest */
1693         return 1;
1694 }
1695
1696 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1697 {
1698         unsigned long dec_nsec, now;
1699
1700         now = get_tb();
1701         if (now > vcpu->arch.dec_expires) {
1702                 /* decrementer has already gone negative */
1703                 kvmppc_core_queue_dec(vcpu);
1704                 kvmppc_core_prepare_to_enter(vcpu);
1705                 return;
1706         }
1707         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1708                    / tb_ticks_per_sec;
1709         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1710                       HRTIMER_MODE_REL);
1711         vcpu->arch.timer_running = 1;
1712 }
1713
1714 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1715 {
1716         vcpu->arch.ceded = 0;
1717         if (vcpu->arch.timer_running) {
1718                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1719                 vcpu->arch.timer_running = 0;
1720         }
1721 }
1722
1723 extern void __kvmppc_vcore_entry(void);
1724
1725 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1726                                    struct kvm_vcpu *vcpu)
1727 {
1728         u64 now;
1729
1730         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1731                 return;
1732         spin_lock_irq(&vcpu->arch.tbacct_lock);
1733         now = mftb();
1734         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1735                 vcpu->arch.stolen_logged;
1736         vcpu->arch.busy_preempt = now;
1737         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1738         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1739         --vc->n_runnable;
1740         list_del(&vcpu->arch.run_list);
1741 }
1742
1743 static int kvmppc_grab_hwthread(int cpu)
1744 {
1745         struct paca_struct *tpaca;
1746         long timeout = 10000;
1747
1748         tpaca = &paca[cpu];
1749
1750         /* Ensure the thread won't go into the kernel if it wakes */
1751         tpaca->kvm_hstate.kvm_vcpu = NULL;
1752         tpaca->kvm_hstate.napping = 0;
1753         smp_wmb();
1754         tpaca->kvm_hstate.hwthread_req = 1;
1755
1756         /*
1757          * If the thread is already executing in the kernel (e.g. handling
1758          * a stray interrupt), wait for it to get back to nap mode.
1759          * The smp_mb() is to ensure that our setting of hwthread_req
1760          * is visible before we look at hwthread_state, so if this
1761          * races with the code at system_reset_pSeries and the thread
1762          * misses our setting of hwthread_req, we are sure to see its
1763          * setting of hwthread_state, and vice versa.
1764          */
1765         smp_mb();
1766         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1767                 if (--timeout <= 0) {
1768                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1769                         return -EBUSY;
1770                 }
1771                 udelay(1);
1772         }
1773         return 0;
1774 }
1775
1776 static void kvmppc_release_hwthread(int cpu)
1777 {
1778         struct paca_struct *tpaca;
1779
1780         tpaca = &paca[cpu];
1781         tpaca->kvm_hstate.hwthread_req = 0;
1782         tpaca->kvm_hstate.kvm_vcpu = NULL;
1783 }
1784
1785 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1786 {
1787         int cpu;
1788         struct paca_struct *tpaca;
1789         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1790
1791         if (vcpu->arch.timer_running) {
1792                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1793                 vcpu->arch.timer_running = 0;
1794         }
1795         cpu = vc->pcpu + vcpu->arch.ptid;
1796         tpaca = &paca[cpu];
1797         tpaca->kvm_hstate.kvm_vcore = vc;
1798         tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1799         vcpu->cpu = vc->pcpu;
1800         /* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */
1801         smp_wmb();
1802         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1803         if (cpu != smp_processor_id())
1804                 kvmppc_ipi_thread(cpu);
1805 }
1806
1807 static void kvmppc_wait_for_nap(void)
1808 {
1809         int cpu = smp_processor_id();
1810         int i, loops;
1811
1812         for (loops = 0; loops < 1000000; ++loops) {
1813                 /*
1814                  * Check if all threads are finished.
1815                  * We set the vcpu pointer when starting a thread
1816                  * and the thread clears it when finished, so we look
1817                  * for any threads that still have a non-NULL vcpu ptr.
1818                  */
1819                 for (i = 1; i < threads_per_subcore; ++i)
1820                         if (paca[cpu + i].kvm_hstate.kvm_vcpu)
1821                                 break;
1822                 if (i == threads_per_subcore) {
1823                         HMT_medium();
1824                         return;
1825                 }
1826                 HMT_low();
1827         }
1828         HMT_medium();
1829         for (i = 1; i < threads_per_subcore; ++i)
1830                 if (paca[cpu + i].kvm_hstate.kvm_vcpu)
1831                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1832 }
1833
1834 /*
1835  * Check that we are on thread 0 and that any other threads in
1836  * this core are off-line.  Then grab the threads so they can't
1837  * enter the kernel.
1838  */
1839 static int on_primary_thread(void)
1840 {
1841         int cpu = smp_processor_id();
1842         int thr;
1843
1844         /* Are we on a primary subcore? */
1845         if (cpu_thread_in_subcore(cpu))
1846                 return 0;
1847
1848         thr = 0;
1849         while (++thr < threads_per_subcore)
1850                 if (cpu_online(cpu + thr))
1851                         return 0;
1852
1853         /* Grab all hw threads so they can't go into the kernel */
1854         for (thr = 1; thr < threads_per_subcore; ++thr) {
1855                 if (kvmppc_grab_hwthread(cpu + thr)) {
1856                         /* Couldn't grab one; let the others go */
1857                         do {
1858                                 kvmppc_release_hwthread(cpu + thr);
1859                         } while (--thr > 0);
1860                         return 0;
1861                 }
1862         }
1863         return 1;
1864 }
1865
1866 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1867 {
1868         phys_addr_t phy_addr, mpp_addr;
1869
1870         phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1871         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1872
1873         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1874         logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1875
1876         vc->mpp_buffer_is_valid = true;
1877 }
1878
1879 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1880 {
1881         phys_addr_t phy_addr, mpp_addr;
1882
1883         phy_addr = virt_to_phys(vc->mpp_buffer);
1884         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1885
1886         /* We must abort any in-progress save operations to ensure
1887          * the table is valid so that prefetch engine knows when to
1888          * stop prefetching. */
1889         logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1890         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1891 }
1892
1893 static void prepare_threads(struct kvmppc_vcore *vc)
1894 {
1895         struct kvm_vcpu *vcpu, *vnext;
1896
1897         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1898                                  arch.run_list) {
1899                 if (signal_pending(vcpu->arch.run_task))
1900                         vcpu->arch.ret = -EINTR;
1901                 else if (vcpu->arch.vpa.update_pending ||
1902                          vcpu->arch.slb_shadow.update_pending ||
1903                          vcpu->arch.dtl.update_pending)
1904                         vcpu->arch.ret = RESUME_GUEST;
1905                 else
1906                         continue;
1907                 kvmppc_remove_runnable(vc, vcpu);
1908                 wake_up(&vcpu->arch.cpu_run);
1909         }
1910 }
1911
1912 static void post_guest_process(struct kvmppc_vcore *vc)
1913 {
1914         u64 now;
1915         long ret;
1916         struct kvm_vcpu *vcpu, *vnext;
1917
1918         now = get_tb();
1919         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1920                                  arch.run_list) {
1921                 /* cancel pending dec exception if dec is positive */
1922                 if (now < vcpu->arch.dec_expires &&
1923                     kvmppc_core_pending_dec(vcpu))
1924                         kvmppc_core_dequeue_dec(vcpu);
1925
1926                 trace_kvm_guest_exit(vcpu);
1927
1928                 ret = RESUME_GUEST;
1929                 if (vcpu->arch.trap)
1930                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1931                                                     vcpu->arch.run_task);
1932
1933                 vcpu->arch.ret = ret;
1934                 vcpu->arch.trap = 0;
1935
1936                 if (vcpu->arch.ceded) {
1937                         if (!is_kvmppc_resume_guest(ret))
1938                                 kvmppc_end_cede(vcpu);
1939                         else
1940                                 kvmppc_set_timer(vcpu);
1941                 }
1942                 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1943                         kvmppc_remove_runnable(vc, vcpu);
1944                         wake_up(&vcpu->arch.cpu_run);
1945                 }
1946         }
1947 }
1948
1949 /*
1950  * Run a set of guest threads on a physical core.
1951  * Called with vc->lock held.
1952  */
1953 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
1954 {
1955         struct kvm_vcpu *vcpu, *vnext;
1956         int i;
1957         int srcu_idx;
1958
1959         /*
1960          * Remove from the list any threads that have a signal pending
1961          * or need a VPA update done
1962          */
1963         prepare_threads(vc);
1964
1965         /* if the runner is no longer runnable, let the caller pick a new one */
1966         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
1967                 return;
1968
1969         /*
1970          * Initialize *vc.
1971          */
1972         vc->entry_exit_map = 0;
1973         vc->preempt_tb = TB_NIL;
1974         vc->in_guest = 0;
1975         vc->napping_threads = 0;
1976         vc->conferring_threads = 0;
1977
1978         /*
1979          * Make sure we are running on primary threads, and that secondary
1980          * threads are offline.  Also check if the number of threads in this
1981          * guest are greater than the current system threads per guest.
1982          */
1983         if ((threads_per_core > 1) &&
1984             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1985                 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1986                                          arch.run_list) {
1987                         vcpu->arch.ret = -EBUSY;
1988                         kvmppc_remove_runnable(vc, vcpu);
1989                         wake_up(&vcpu->arch.cpu_run);
1990                 }
1991                 goto out;
1992         }
1993
1994
1995         vc->pcpu = smp_processor_id();
1996         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1997                 kvmppc_start_thread(vcpu);
1998                 kvmppc_create_dtl_entry(vcpu, vc);
1999                 trace_kvm_guest_enter(vcpu);
2000         }
2001
2002         /* Set this explicitly in case thread 0 doesn't have a vcpu */
2003         get_paca()->kvm_hstate.kvm_vcore = vc;
2004         get_paca()->kvm_hstate.ptid = 0;
2005
2006         vc->vcore_state = VCORE_RUNNING;
2007         preempt_disable();
2008
2009         trace_kvmppc_run_core(vc, 0);
2010
2011         spin_unlock(&vc->lock);
2012
2013         kvm_guest_enter();
2014
2015         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2016
2017         if (vc->mpp_buffer_is_valid)
2018                 kvmppc_start_restoring_l2_cache(vc);
2019
2020         __kvmppc_vcore_entry();
2021
2022         spin_lock(&vc->lock);
2023
2024         if (vc->mpp_buffer)
2025                 kvmppc_start_saving_l2_cache(vc);
2026
2027         /* disable sending of IPIs on virtual external irqs */
2028         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
2029                 vcpu->cpu = -1;
2030         /* wait for secondary threads to finish writing their state to memory */
2031         kvmppc_wait_for_nap();
2032         for (i = 0; i < threads_per_subcore; ++i)
2033                 kvmppc_release_hwthread(vc->pcpu + i);
2034         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2035         vc->vcore_state = VCORE_EXITING;
2036         spin_unlock(&vc->lock);
2037
2038         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2039
2040         /* make sure updates to secondary vcpu structs are visible now */
2041         smp_mb();
2042         kvm_guest_exit();
2043
2044         preempt_enable();
2045
2046         spin_lock(&vc->lock);
2047         post_guest_process(vc);
2048
2049  out:
2050         vc->vcore_state = VCORE_INACTIVE;
2051         trace_kvmppc_run_core(vc, 1);
2052 }
2053
2054 /*
2055  * Wait for some other vcpu thread to execute us, and
2056  * wake us up when we need to handle something in the host.
2057  */
2058 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
2059 {
2060         DEFINE_WAIT(wait);
2061
2062         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2063         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
2064                 schedule();
2065         finish_wait(&vcpu->arch.cpu_run, &wait);
2066 }
2067
2068 /*
2069  * All the vcpus in this vcore are idle, so wait for a decrementer
2070  * or external interrupt to one of the vcpus.  vc->lock is held.
2071  */
2072 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2073 {
2074         struct kvm_vcpu *vcpu;
2075         int do_sleep = 1;
2076
2077         DEFINE_WAIT(wait);
2078
2079         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2080
2081         /*
2082          * Check one last time for pending exceptions and ceded state after
2083          * we put ourselves on the wait queue
2084          */
2085         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2086                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2087                         do_sleep = 0;
2088                         break;
2089                 }
2090         }
2091
2092         if (!do_sleep) {
2093                 finish_wait(&vc->wq, &wait);
2094                 return;
2095         }
2096
2097         vc->vcore_state = VCORE_SLEEPING;
2098         trace_kvmppc_vcore_blocked(vc, 0);
2099         spin_unlock(&vc->lock);
2100         schedule();
2101         finish_wait(&vc->wq, &wait);
2102         spin_lock(&vc->lock);
2103         vc->vcore_state = VCORE_INACTIVE;
2104         trace_kvmppc_vcore_blocked(vc, 1);
2105 }
2106
2107 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2108 {
2109         int n_ceded;
2110         struct kvmppc_vcore *vc;
2111         struct kvm_vcpu *v, *vn;
2112
2113         trace_kvmppc_run_vcpu_enter(vcpu);
2114
2115         kvm_run->exit_reason = 0;
2116         vcpu->arch.ret = RESUME_GUEST;
2117         vcpu->arch.trap = 0;
2118         kvmppc_update_vpas(vcpu);
2119
2120         /*
2121          * Synchronize with other threads in this virtual core
2122          */
2123         vc = vcpu->arch.vcore;
2124         spin_lock(&vc->lock);
2125         vcpu->arch.ceded = 0;
2126         vcpu->arch.run_task = current;
2127         vcpu->arch.kvm_run = kvm_run;
2128         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2129         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2130         vcpu->arch.busy_preempt = TB_NIL;
2131         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2132         ++vc->n_runnable;
2133
2134         /*
2135          * This happens the first time this is called for a vcpu.
2136          * If the vcore is already running, we may be able to start
2137          * this thread straight away and have it join in.
2138          */
2139         if (!signal_pending(current)) {
2140                 if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) {
2141                         kvmppc_create_dtl_entry(vcpu, vc);
2142                         kvmppc_start_thread(vcpu);
2143                         trace_kvm_guest_enter(vcpu);
2144                 } else if (vc->vcore_state == VCORE_SLEEPING) {
2145                         wake_up(&vc->wq);
2146                 }
2147
2148         }
2149
2150         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2151                !signal_pending(current)) {
2152                 if (vc->vcore_state != VCORE_INACTIVE) {
2153                         spin_unlock(&vc->lock);
2154                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
2155                         spin_lock(&vc->lock);
2156                         continue;
2157                 }
2158                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2159                                          arch.run_list) {
2160                         kvmppc_core_prepare_to_enter(v);
2161                         if (signal_pending(v->arch.run_task)) {
2162                                 kvmppc_remove_runnable(vc, v);
2163                                 v->stat.signal_exits++;
2164                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2165                                 v->arch.ret = -EINTR;
2166                                 wake_up(&v->arch.cpu_run);
2167                         }
2168                 }
2169                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2170                         break;
2171                 n_ceded = 0;
2172                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2173                         if (!v->arch.pending_exceptions)
2174                                 n_ceded += v->arch.ceded;
2175                         else
2176                                 v->arch.ceded = 0;
2177                 }
2178                 vc->runner = vcpu;
2179                 if (n_ceded == vc->n_runnable) {
2180                         kvmppc_vcore_blocked(vc);
2181                 } else if (should_resched()) {
2182                         vc->vcore_state = VCORE_PREEMPT;
2183                         /* Let something else run */
2184                         cond_resched_lock(&vc->lock);
2185                         vc->vcore_state = VCORE_INACTIVE;
2186                 } else {
2187                         kvmppc_run_core(vc);
2188                 }
2189                 vc->runner = NULL;
2190         }
2191
2192         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2193                (vc->vcore_state == VCORE_RUNNING ||
2194                 vc->vcore_state == VCORE_EXITING)) {
2195                 spin_unlock(&vc->lock);
2196                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
2197                 spin_lock(&vc->lock);
2198         }
2199
2200         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2201                 kvmppc_remove_runnable(vc, vcpu);
2202                 vcpu->stat.signal_exits++;
2203                 kvm_run->exit_reason = KVM_EXIT_INTR;
2204                 vcpu->arch.ret = -EINTR;
2205         }
2206
2207         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2208                 /* Wake up some vcpu to run the core */
2209                 v = list_first_entry(&vc->runnable_threads,
2210                                      struct kvm_vcpu, arch.run_list);
2211                 wake_up(&v->arch.cpu_run);
2212         }
2213
2214         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2215         spin_unlock(&vc->lock);
2216         return vcpu->arch.ret;
2217 }
2218
2219 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2220 {
2221         int r;
2222         int srcu_idx;
2223
2224         if (!vcpu->arch.sane) {
2225                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2226                 return -EINVAL;
2227         }
2228
2229         kvmppc_core_prepare_to_enter(vcpu);
2230
2231         /* No need to go into the guest when all we'll do is come back out */
2232         if (signal_pending(current)) {
2233                 run->exit_reason = KVM_EXIT_INTR;
2234                 return -EINTR;
2235         }
2236
2237         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2238         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2239         smp_mb();
2240
2241         /* On the first time here, set up HTAB and VRMA */
2242         if (!vcpu->kvm->arch.hpte_setup_done) {
2243                 r = kvmppc_hv_setup_htab_rma(vcpu);
2244                 if (r)
2245                         goto out;
2246         }
2247
2248         flush_fp_to_thread(current);
2249         flush_altivec_to_thread(current);
2250         flush_vsx_to_thread(current);
2251         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2252         vcpu->arch.pgdir = current->mm->pgd;
2253         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2254
2255         do {
2256                 r = kvmppc_run_vcpu(run, vcpu);
2257
2258                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2259                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2260                         trace_kvm_hcall_enter(vcpu);
2261                         r = kvmppc_pseries_do_hcall(vcpu);
2262                         trace_kvm_hcall_exit(vcpu, r);
2263                         kvmppc_core_prepare_to_enter(vcpu);
2264                 } else if (r == RESUME_PAGE_FAULT) {
2265                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2266                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2267                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2268                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2269                 }
2270         } while (is_kvmppc_resume_guest(r));
2271
2272  out:
2273         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2274         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2275         return r;
2276 }
2277
2278 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2279                                      int linux_psize)
2280 {
2281         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2282
2283         if (!def->shift)
2284                 return;
2285         (*sps)->page_shift = def->shift;
2286         (*sps)->slb_enc = def->sllp;
2287         (*sps)->enc[0].page_shift = def->shift;
2288         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2289         /*
2290          * Add 16MB MPSS support if host supports it
2291          */
2292         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2293                 (*sps)->enc[1].page_shift = 24;
2294                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2295         }
2296         (*sps)++;
2297 }
2298
2299 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2300                                          struct kvm_ppc_smmu_info *info)
2301 {
2302         struct kvm_ppc_one_seg_page_size *sps;
2303
2304         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2305         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2306                 info->flags |= KVM_PPC_1T_SEGMENTS;
2307         info->slb_size = mmu_slb_size;
2308
2309         /* We only support these sizes for now, and no muti-size segments */
2310         sps = &info->sps[0];
2311         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2312         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2313         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2314
2315         return 0;
2316 }
2317
2318 /*
2319  * Get (and clear) the dirty memory log for a memory slot.
2320  */
2321 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2322                                          struct kvm_dirty_log *log)
2323 {
2324         struct kvm_memslots *slots;
2325         struct kvm_memory_slot *memslot;
2326         int r;
2327         unsigned long n;
2328
2329         mutex_lock(&kvm->slots_lock);
2330
2331         r = -EINVAL;
2332         if (log->slot >= KVM_USER_MEM_SLOTS)
2333                 goto out;
2334
2335         slots = kvm_memslots(kvm);
2336         memslot = id_to_memslot(slots, log->slot);
2337         r = -ENOENT;
2338         if (!memslot->dirty_bitmap)
2339                 goto out;
2340
2341         n = kvm_dirty_bitmap_bytes(memslot);
2342         memset(memslot->dirty_bitmap, 0, n);
2343
2344         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2345         if (r)
2346                 goto out;
2347
2348         r = -EFAULT;
2349         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2350                 goto out;
2351
2352         r = 0;
2353 out:
2354         mutex_unlock(&kvm->slots_lock);
2355         return r;
2356 }
2357
2358 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2359                                         struct kvm_memory_slot *dont)
2360 {
2361         if (!dont || free->arch.rmap != dont->arch.rmap) {
2362                 vfree(free->arch.rmap);
2363                 free->arch.rmap = NULL;
2364         }
2365 }
2366
2367 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2368                                          unsigned long npages)
2369 {
2370         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2371         if (!slot->arch.rmap)
2372                 return -ENOMEM;
2373
2374         return 0;
2375 }
2376
2377 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2378                                         struct kvm_memory_slot *memslot,
2379                                         const struct kvm_userspace_memory_region *mem)
2380 {
2381         return 0;
2382 }
2383
2384 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2385                                 const struct kvm_userspace_memory_region *mem,
2386                                 const struct kvm_memory_slot *old,
2387                                 const struct kvm_memory_slot *new)
2388 {
2389         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2390         struct kvm_memslots *slots;
2391         struct kvm_memory_slot *memslot;
2392
2393         if (npages && old->npages) {
2394                 /*
2395                  * If modifying a memslot, reset all the rmap dirty bits.
2396                  * If this is a new memslot, we don't need to do anything
2397                  * since the rmap array starts out as all zeroes,
2398                  * i.e. no pages are dirty.
2399                  */
2400                 slots = kvm_memslots(kvm);
2401                 memslot = id_to_memslot(slots, mem->slot);
2402                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2403         }
2404 }
2405
2406 /*
2407  * Update LPCR values in kvm->arch and in vcores.
2408  * Caller must hold kvm->lock.
2409  */
2410 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2411 {
2412         long int i;
2413         u32 cores_done = 0;
2414
2415         if ((kvm->arch.lpcr & mask) == lpcr)
2416                 return;
2417
2418         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2419
2420         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2421                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2422                 if (!vc)
2423                         continue;
2424                 spin_lock(&vc->lock);
2425                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2426                 spin_unlock(&vc->lock);
2427                 if (++cores_done >= kvm->arch.online_vcores)
2428                         break;
2429         }
2430 }
2431
2432 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2433 {
2434         return;
2435 }
2436
2437 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2438 {
2439         int err = 0;
2440         struct kvm *kvm = vcpu->kvm;
2441         unsigned long hva;
2442         struct kvm_memory_slot *memslot;
2443         struct vm_area_struct *vma;
2444         unsigned long lpcr = 0, senc;
2445         unsigned long psize, porder;
2446         int srcu_idx;
2447
2448         mutex_lock(&kvm->lock);
2449         if (kvm->arch.hpte_setup_done)
2450                 goto out;       /* another vcpu beat us to it */
2451
2452         /* Allocate hashed page table (if not done already) and reset it */
2453         if (!kvm->arch.hpt_virt) {
2454                 err = kvmppc_alloc_hpt(kvm, NULL);
2455                 if (err) {
2456                         pr_err("KVM: Couldn't alloc HPT\n");
2457                         goto out;
2458                 }
2459         }
2460
2461         /* Look up the memslot for guest physical address 0 */
2462         srcu_idx = srcu_read_lock(&kvm->srcu);
2463         memslot = gfn_to_memslot(kvm, 0);
2464
2465         /* We must have some memory at 0 by now */
2466         err = -EINVAL;
2467         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2468                 goto out_srcu;
2469
2470         /* Look up the VMA for the start of this memory slot */
2471         hva = memslot->userspace_addr;
2472         down_read(&current->mm->mmap_sem);
2473         vma = find_vma(current->mm, hva);
2474         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2475                 goto up_out;
2476
2477         psize = vma_kernel_pagesize(vma);
2478         porder = __ilog2(psize);
2479
2480         up_read(&current->mm->mmap_sem);
2481
2482         /* We can handle 4k, 64k or 16M pages in the VRMA */
2483         err = -EINVAL;
2484         if (!(psize == 0x1000 || psize == 0x10000 ||
2485               psize == 0x1000000))
2486                 goto out_srcu;
2487
2488         /* Update VRMASD field in the LPCR */
2489         senc = slb_pgsize_encoding(psize);
2490         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2491                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2492         /* the -4 is to account for senc values starting at 0x10 */
2493         lpcr = senc << (LPCR_VRMASD_SH - 4);
2494
2495         /* Create HPTEs in the hash page table for the VRMA */
2496         kvmppc_map_vrma(vcpu, memslot, porder);
2497
2498         kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2499
2500         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2501         smp_wmb();
2502         kvm->arch.hpte_setup_done = 1;
2503         err = 0;
2504  out_srcu:
2505         srcu_read_unlock(&kvm->srcu, srcu_idx);
2506  out:
2507         mutex_unlock(&kvm->lock);
2508         return err;
2509
2510  up_out:
2511         up_read(&current->mm->mmap_sem);
2512         goto out_srcu;
2513 }
2514
2515 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2516 {
2517         unsigned long lpcr, lpid;
2518         char buf[32];
2519
2520         /* Allocate the guest's logical partition ID */
2521
2522         lpid = kvmppc_alloc_lpid();
2523         if ((long)lpid < 0)
2524                 return -ENOMEM;
2525         kvm->arch.lpid = lpid;
2526
2527         /*
2528          * Since we don't flush the TLB when tearing down a VM,
2529          * and this lpid might have previously been used,
2530          * make sure we flush on each core before running the new VM.
2531          */
2532         cpumask_setall(&kvm->arch.need_tlb_flush);
2533
2534         /* Start out with the default set of hcalls enabled */
2535         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2536                sizeof(kvm->arch.enabled_hcalls));
2537
2538         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2539
2540         /* Init LPCR for virtual RMA mode */
2541         kvm->arch.host_lpid = mfspr(SPRN_LPID);
2542         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2543         lpcr &= LPCR_PECE | LPCR_LPES;
2544         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2545                 LPCR_VPM0 | LPCR_VPM1;
2546         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2547                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2548         /* On POWER8 turn on online bit to enable PURR/SPURR */
2549         if (cpu_has_feature(CPU_FTR_ARCH_207S))
2550                 lpcr |= LPCR_ONL;
2551         kvm->arch.lpcr = lpcr;
2552
2553         /*
2554          * Track that we now have a HV mode VM active. This blocks secondary
2555          * CPU threads from coming online.
2556          */
2557         kvm_hv_vm_activated();
2558
2559         /*
2560          * Create a debugfs directory for the VM
2561          */
2562         snprintf(buf, sizeof(buf), "vm%d", current->pid);
2563         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
2564         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2565                 kvmppc_mmu_debugfs_init(kvm);
2566
2567         return 0;
2568 }
2569
2570 static void kvmppc_free_vcores(struct kvm *kvm)
2571 {
2572         long int i;
2573
2574         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2575                 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2576                         struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2577                         free_pages((unsigned long)vc->mpp_buffer,
2578                                    MPP_BUFFER_ORDER);
2579                 }
2580                 kfree(kvm->arch.vcores[i]);
2581         }
2582         kvm->arch.online_vcores = 0;
2583 }
2584
2585 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2586 {
2587         debugfs_remove_recursive(kvm->arch.debugfs_dir);
2588
2589         kvm_hv_vm_deactivated();
2590
2591         kvmppc_free_vcores(kvm);
2592
2593         kvmppc_free_hpt(kvm);
2594 }
2595
2596 /* We don't need to emulate any privileged instructions or dcbz */
2597 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2598                                      unsigned int inst, int *advance)
2599 {
2600         return EMULATE_FAIL;
2601 }
2602
2603 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2604                                         ulong spr_val)
2605 {
2606         return EMULATE_FAIL;
2607 }
2608
2609 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2610                                         ulong *spr_val)
2611 {
2612         return EMULATE_FAIL;
2613 }
2614
2615 static int kvmppc_core_check_processor_compat_hv(void)
2616 {
2617         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2618             !cpu_has_feature(CPU_FTR_ARCH_206))
2619                 return -EIO;
2620         return 0;
2621 }
2622
2623 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2624                                  unsigned int ioctl, unsigned long arg)
2625 {
2626         struct kvm *kvm __maybe_unused = filp->private_data;
2627         void __user *argp = (void __user *)arg;
2628         long r;
2629
2630         switch (ioctl) {
2631
2632         case KVM_PPC_ALLOCATE_HTAB: {
2633                 u32 htab_order;
2634
2635                 r = -EFAULT;
2636                 if (get_user(htab_order, (u32 __user *)argp))
2637                         break;
2638                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2639                 if (r)
2640                         break;
2641                 r = -EFAULT;
2642                 if (put_user(htab_order, (u32 __user *)argp))
2643                         break;
2644                 r = 0;
2645                 break;
2646         }
2647
2648         case KVM_PPC_GET_HTAB_FD: {
2649                 struct kvm_get_htab_fd ghf;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2653                         break;
2654                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2655                 break;
2656         }
2657
2658         default:
2659                 r = -ENOTTY;
2660         }
2661
2662         return r;
2663 }
2664
2665 /*
2666  * List of hcall numbers to enable by default.
2667  * For compatibility with old userspace, we enable by default
2668  * all hcalls that were implemented before the hcall-enabling
2669  * facility was added.  Note this list should not include H_RTAS.
2670  */
2671 static unsigned int default_hcall_list[] = {
2672         H_REMOVE,
2673         H_ENTER,
2674         H_READ,
2675         H_PROTECT,
2676         H_BULK_REMOVE,
2677         H_GET_TCE,
2678         H_PUT_TCE,
2679         H_SET_DABR,
2680         H_SET_XDABR,
2681         H_CEDE,
2682         H_PROD,
2683         H_CONFER,
2684         H_REGISTER_VPA,
2685 #ifdef CONFIG_KVM_XICS
2686         H_EOI,
2687         H_CPPR,
2688         H_IPI,
2689         H_IPOLL,
2690         H_XIRR,
2691         H_XIRR_X,
2692 #endif
2693         0
2694 };
2695
2696 static void init_default_hcalls(void)
2697 {
2698         int i;
2699         unsigned int hcall;
2700
2701         for (i = 0; default_hcall_list[i]; ++i) {
2702                 hcall = default_hcall_list[i];
2703                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2704                 __set_bit(hcall / 4, default_enabled_hcalls);
2705         }
2706 }
2707
2708 static struct kvmppc_ops kvm_ops_hv = {
2709         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2710         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2711         .get_one_reg = kvmppc_get_one_reg_hv,
2712         .set_one_reg = kvmppc_set_one_reg_hv,
2713         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2714         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2715         .set_msr     = kvmppc_set_msr_hv,
2716         .vcpu_run    = kvmppc_vcpu_run_hv,
2717         .vcpu_create = kvmppc_core_vcpu_create_hv,
2718         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2719         .check_requests = kvmppc_core_check_requests_hv,
2720         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2721         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2722         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2723         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2724         .unmap_hva = kvm_unmap_hva_hv,
2725         .unmap_hva_range = kvm_unmap_hva_range_hv,
2726         .age_hva  = kvm_age_hva_hv,
2727         .test_age_hva = kvm_test_age_hva_hv,
2728         .set_spte_hva = kvm_set_spte_hva_hv,
2729         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2730         .free_memslot = kvmppc_core_free_memslot_hv,
2731         .create_memslot = kvmppc_core_create_memslot_hv,
2732         .init_vm =  kvmppc_core_init_vm_hv,
2733         .destroy_vm = kvmppc_core_destroy_vm_hv,
2734         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2735         .emulate_op = kvmppc_core_emulate_op_hv,
2736         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2737         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2738         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2739         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2740         .hcall_implemented = kvmppc_hcall_impl_hv,
2741 };
2742
2743 static int kvmppc_book3s_init_hv(void)
2744 {
2745         int r;
2746         /*
2747          * FIXME!! Do we need to check on all cpus ?
2748          */
2749         r = kvmppc_core_check_processor_compat_hv();
2750         if (r < 0)
2751                 return -ENODEV;
2752
2753         kvm_ops_hv.owner = THIS_MODULE;
2754         kvmppc_hv_ops = &kvm_ops_hv;
2755
2756         init_default_hcalls();
2757
2758         r = kvmppc_mmu_hv_init();
2759         return r;
2760 }
2761
2762 static void kvmppc_book3s_exit_hv(void)
2763 {
2764         kvmppc_hv_ops = NULL;
2765 }
2766
2767 module_init(kvmppc_book3s_init_hv);
2768 module_exit(kvmppc_book3s_exit_hv);
2769 MODULE_LICENSE("GPL");
2770 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2771 MODULE_ALIAS("devname:kvm");