]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge branch 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[karo-tx-linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) ||
52                v->requests;
53 }
54
55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
56 {
57         return 1;
58 }
59
60 /*
61  * Common checks before entering the guest world.  Call with interrupts
62  * disabled.
63  *
64  * returns:
65  *
66  * == 1 if we're ready to go into guest state
67  * <= 0 if we need to go back to the host with return value
68  */
69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
70 {
71         int r;
72
73         WARN_ON(irqs_disabled());
74         hard_irq_disable();
75
76         while (true) {
77                 if (need_resched()) {
78                         local_irq_enable();
79                         cond_resched();
80                         hard_irq_disable();
81                         continue;
82                 }
83
84                 if (signal_pending(current)) {
85                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
86                         vcpu->run->exit_reason = KVM_EXIT_INTR;
87                         r = -EINTR;
88                         break;
89                 }
90
91                 vcpu->mode = IN_GUEST_MODE;
92
93                 /*
94                  * Reading vcpu->requests must happen after setting vcpu->mode,
95                  * so we don't miss a request because the requester sees
96                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
97                  * before next entering the guest (and thus doesn't IPI).
98                  */
99                 smp_mb();
100
101                 if (vcpu->requests) {
102                         /* Make sure we process requests preemptable */
103                         local_irq_enable();
104                         trace_kvm_check_requests(vcpu);
105                         r = kvmppc_core_check_requests(vcpu);
106                         hard_irq_disable();
107                         if (r > 0)
108                                 continue;
109                         break;
110                 }
111
112                 if (kvmppc_core_prepare_to_enter(vcpu)) {
113                         /* interrupts got enabled in between, so we
114                            are back at square 1 */
115                         continue;
116                 }
117
118                 kvm_guest_enter();
119                 return 1;
120         }
121
122         /* return to host */
123         local_irq_enable();
124         return r;
125 }
126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
127
128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
130 {
131         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
132         int i;
133
134         shared->sprg0 = swab64(shared->sprg0);
135         shared->sprg1 = swab64(shared->sprg1);
136         shared->sprg2 = swab64(shared->sprg2);
137         shared->sprg3 = swab64(shared->sprg3);
138         shared->srr0 = swab64(shared->srr0);
139         shared->srr1 = swab64(shared->srr1);
140         shared->dar = swab64(shared->dar);
141         shared->msr = swab64(shared->msr);
142         shared->dsisr = swab32(shared->dsisr);
143         shared->int_pending = swab32(shared->int_pending);
144         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
145                 shared->sr[i] = swab32(shared->sr[i]);
146 }
147 #endif
148
149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
150 {
151         int nr = kvmppc_get_gpr(vcpu, 11);
152         int r;
153         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
154         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
155         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
156         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
157         unsigned long r2 = 0;
158
159         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
160                 /* 32 bit mode */
161                 param1 &= 0xffffffff;
162                 param2 &= 0xffffffff;
163                 param3 &= 0xffffffff;
164                 param4 &= 0xffffffff;
165         }
166
167         switch (nr) {
168         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
169         {
170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
171                 /* Book3S can be little endian, find it out here */
172                 int shared_big_endian = true;
173                 if (vcpu->arch.intr_msr & MSR_LE)
174                         shared_big_endian = false;
175                 if (shared_big_endian != vcpu->arch.shared_big_endian)
176                         kvmppc_swab_shared(vcpu);
177                 vcpu->arch.shared_big_endian = shared_big_endian;
178 #endif
179
180                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
181                         /*
182                          * Older versions of the Linux magic page code had
183                          * a bug where they would map their trampoline code
184                          * NX. If that's the case, remove !PR NX capability.
185                          */
186                         vcpu->arch.disable_kernel_nx = true;
187                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
188                 }
189
190                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
191                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
192
193 #ifdef CONFIG_PPC_64K_PAGES
194                 /*
195                  * Make sure our 4k magic page is in the same window of a 64k
196                  * page within the guest and within the host's page.
197                  */
198                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
199                     ((ulong)vcpu->arch.shared & 0xf000)) {
200                         void *old_shared = vcpu->arch.shared;
201                         ulong shared = (ulong)vcpu->arch.shared;
202                         void *new_shared;
203
204                         shared &= PAGE_MASK;
205                         shared |= vcpu->arch.magic_page_pa & 0xf000;
206                         new_shared = (void*)shared;
207                         memcpy(new_shared, old_shared, 0x1000);
208                         vcpu->arch.shared = new_shared;
209                 }
210 #endif
211
212                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
213
214                 r = EV_SUCCESS;
215                 break;
216         }
217         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
218                 r = EV_SUCCESS;
219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
220                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
221 #endif
222
223                 /* Second return value is in r4 */
224                 break;
225         case EV_HCALL_TOKEN(EV_IDLE):
226                 r = EV_SUCCESS;
227                 kvm_vcpu_block(vcpu);
228                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
229                 break;
230         default:
231                 r = EV_UNIMPLEMENTED;
232                 break;
233         }
234
235         kvmppc_set_gpr(vcpu, 4, r2);
236
237         return r;
238 }
239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
240
241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
242 {
243         int r = false;
244
245         /* We have to know what CPU to virtualize */
246         if (!vcpu->arch.pvr)
247                 goto out;
248
249         /* PAPR only works with book3s_64 */
250         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
251                 goto out;
252
253         /* HV KVM can only do PAPR mode for now */
254         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
255                 goto out;
256
257 #ifdef CONFIG_KVM_BOOKE_HV
258         if (!cpu_has_feature(CPU_FTR_EMB_HV))
259                 goto out;
260 #endif
261
262         r = true;
263
264 out:
265         vcpu->arch.sane = r;
266         return r ? 0 : -EINVAL;
267 }
268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
269
270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
271 {
272         enum emulation_result er;
273         int r;
274
275         er = kvmppc_emulate_loadstore(vcpu);
276         switch (er) {
277         case EMULATE_DONE:
278                 /* Future optimization: only reload non-volatiles if they were
279                  * actually modified. */
280                 r = RESUME_GUEST_NV;
281                 break;
282         case EMULATE_AGAIN:
283                 r = RESUME_GUEST;
284                 break;
285         case EMULATE_DO_MMIO:
286                 run->exit_reason = KVM_EXIT_MMIO;
287                 /* We must reload nonvolatiles because "update" load/store
288                  * instructions modify register state. */
289                 /* Future optimization: only reload non-volatiles if they were
290                  * actually modified. */
291                 r = RESUME_HOST_NV;
292                 break;
293         case EMULATE_FAIL:
294         {
295                 u32 last_inst;
296
297                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
298                 /* XXX Deliver Program interrupt to guest. */
299                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
300                 r = RESUME_HOST;
301                 break;
302         }
303         default:
304                 WARN_ON(1);
305                 r = RESUME_GUEST;
306         }
307
308         return r;
309 }
310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
311
312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
313               bool data)
314 {
315         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
316         struct kvmppc_pte pte;
317         int r;
318
319         vcpu->stat.st++;
320
321         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
322                          XLATE_WRITE, &pte);
323         if (r < 0)
324                 return r;
325
326         *eaddr = pte.raddr;
327
328         if (!pte.may_write)
329                 return -EPERM;
330
331         /* Magic page override */
332         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
333             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
334             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
335                 void *magic = vcpu->arch.shared;
336                 magic += pte.eaddr & 0xfff;
337                 memcpy(magic, ptr, size);
338                 return EMULATE_DONE;
339         }
340
341         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
342                 return EMULATE_DO_MMIO;
343
344         return EMULATE_DONE;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_st);
347
348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349                       bool data)
350 {
351         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352         struct kvmppc_pte pte;
353         int rc;
354
355         vcpu->stat.ld++;
356
357         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
358                           XLATE_READ, &pte);
359         if (rc)
360                 return rc;
361
362         *eaddr = pte.raddr;
363
364         if (!pte.may_read)
365                 return -EPERM;
366
367         if (!data && !pte.may_execute)
368                 return -ENOEXEC;
369
370         /* Magic page override */
371         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
372             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
373             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
374                 void *magic = vcpu->arch.shared;
375                 magic += pte.eaddr & 0xfff;
376                 memcpy(ptr, magic, size);
377                 return EMULATE_DONE;
378         }
379
380         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
381                 return EMULATE_DO_MMIO;
382
383         return EMULATE_DONE;
384 }
385 EXPORT_SYMBOL_GPL(kvmppc_ld);
386
387 int kvm_arch_hardware_enable(void)
388 {
389         return 0;
390 }
391
392 int kvm_arch_hardware_setup(void)
393 {
394         return 0;
395 }
396
397 void kvm_arch_check_processor_compat(void *rtn)
398 {
399         *(int *)rtn = kvmppc_core_check_processor_compat();
400 }
401
402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
403 {
404         struct kvmppc_ops *kvm_ops = NULL;
405         /*
406          * if we have both HV and PR enabled, default is HV
407          */
408         if (type == 0) {
409                 if (kvmppc_hv_ops)
410                         kvm_ops = kvmppc_hv_ops;
411                 else
412                         kvm_ops = kvmppc_pr_ops;
413                 if (!kvm_ops)
414                         goto err_out;
415         } else  if (type == KVM_VM_PPC_HV) {
416                 if (!kvmppc_hv_ops)
417                         goto err_out;
418                 kvm_ops = kvmppc_hv_ops;
419         } else if (type == KVM_VM_PPC_PR) {
420                 if (!kvmppc_pr_ops)
421                         goto err_out;
422                 kvm_ops = kvmppc_pr_ops;
423         } else
424                 goto err_out;
425
426         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
427                 return -ENOENT;
428
429         kvm->arch.kvm_ops = kvm_ops;
430         return kvmppc_core_init_vm(kvm);
431 err_out:
432         return -EINVAL;
433 }
434
435 void kvm_arch_destroy_vm(struct kvm *kvm)
436 {
437         unsigned int i;
438         struct kvm_vcpu *vcpu;
439
440         kvm_for_each_vcpu(i, vcpu, kvm)
441                 kvm_arch_vcpu_free(vcpu);
442
443         mutex_lock(&kvm->lock);
444         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
445                 kvm->vcpus[i] = NULL;
446
447         atomic_set(&kvm->online_vcpus, 0);
448
449         kvmppc_core_destroy_vm(kvm);
450
451         mutex_unlock(&kvm->lock);
452
453         /* drop the module reference */
454         module_put(kvm->arch.kvm_ops->owner);
455 }
456
457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
458 {
459         int r;
460         /* Assume we're using HV mode when the HV module is loaded */
461         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
462
463         if (kvm) {
464                 /*
465                  * Hooray - we know which VM type we're running on. Depend on
466                  * that rather than the guess above.
467                  */
468                 hv_enabled = is_kvmppc_hv_enabled(kvm);
469         }
470
471         switch (ext) {
472 #ifdef CONFIG_BOOKE
473         case KVM_CAP_PPC_BOOKE_SREGS:
474         case KVM_CAP_PPC_BOOKE_WATCHDOG:
475         case KVM_CAP_PPC_EPR:
476 #else
477         case KVM_CAP_PPC_SEGSTATE:
478         case KVM_CAP_PPC_HIOR:
479         case KVM_CAP_PPC_PAPR:
480 #endif
481         case KVM_CAP_PPC_UNSET_IRQ:
482         case KVM_CAP_PPC_IRQ_LEVEL:
483         case KVM_CAP_ENABLE_CAP:
484         case KVM_CAP_ENABLE_CAP_VM:
485         case KVM_CAP_ONE_REG:
486         case KVM_CAP_IOEVENTFD:
487         case KVM_CAP_DEVICE_CTRL:
488                 r = 1;
489                 break;
490         case KVM_CAP_PPC_PAIRED_SINGLES:
491         case KVM_CAP_PPC_OSI:
492         case KVM_CAP_PPC_GET_PVINFO:
493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
494         case KVM_CAP_SW_TLB:
495 #endif
496                 /* We support this only for PR */
497                 r = !hv_enabled;
498                 break;
499 #ifdef CONFIG_KVM_MMIO
500         case KVM_CAP_COALESCED_MMIO:
501                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
502                 break;
503 #endif
504 #ifdef CONFIG_KVM_MPIC
505         case KVM_CAP_IRQ_MPIC:
506                 r = 1;
507                 break;
508 #endif
509
510 #ifdef CONFIG_PPC_BOOK3S_64
511         case KVM_CAP_SPAPR_TCE:
512         case KVM_CAP_PPC_ALLOC_HTAB:
513         case KVM_CAP_PPC_RTAS:
514         case KVM_CAP_PPC_FIXUP_HCALL:
515         case KVM_CAP_PPC_ENABLE_HCALL:
516 #ifdef CONFIG_KVM_XICS
517         case KVM_CAP_IRQ_XICS:
518 #endif
519                 r = 1;
520                 break;
521 #endif /* CONFIG_PPC_BOOK3S_64 */
522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
523         case KVM_CAP_PPC_SMT:
524                 if (hv_enabled)
525                         r = threads_per_subcore;
526                 else
527                         r = 0;
528                 break;
529         case KVM_CAP_PPC_RMA:
530                 r = 0;
531                 break;
532 #endif
533         case KVM_CAP_SYNC_MMU:
534 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
535                 r = hv_enabled;
536 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
537                 r = 1;
538 #else
539                 r = 0;
540 #endif
541                 break;
542 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
543         case KVM_CAP_PPC_HTAB_FD:
544                 r = hv_enabled;
545                 break;
546 #endif
547         case KVM_CAP_NR_VCPUS:
548                 /*
549                  * Recommending a number of CPUs is somewhat arbitrary; we
550                  * return the number of present CPUs for -HV (since a host
551                  * will have secondary threads "offline"), and for other KVM
552                  * implementations just count online CPUs.
553                  */
554                 if (hv_enabled)
555                         r = num_present_cpus();
556                 else
557                         r = num_online_cpus();
558                 break;
559         case KVM_CAP_MAX_VCPUS:
560                 r = KVM_MAX_VCPUS;
561                 break;
562 #ifdef CONFIG_PPC_BOOK3S_64
563         case KVM_CAP_PPC_GET_SMMU_INFO:
564                 r = 1;
565                 break;
566 #endif
567         default:
568                 r = 0;
569                 break;
570         }
571         return r;
572
573 }
574
575 long kvm_arch_dev_ioctl(struct file *filp,
576                         unsigned int ioctl, unsigned long arg)
577 {
578         return -EINVAL;
579 }
580
581 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
582                            struct kvm_memory_slot *dont)
583 {
584         kvmppc_core_free_memslot(kvm, free, dont);
585 }
586
587 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
588                             unsigned long npages)
589 {
590         return kvmppc_core_create_memslot(kvm, slot, npages);
591 }
592
593 int kvm_arch_prepare_memory_region(struct kvm *kvm,
594                                    struct kvm_memory_slot *memslot,
595                                    struct kvm_userspace_memory_region *mem,
596                                    enum kvm_mr_change change)
597 {
598         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
599 }
600
601 void kvm_arch_commit_memory_region(struct kvm *kvm,
602                                    struct kvm_userspace_memory_region *mem,
603                                    const struct kvm_memory_slot *old,
604                                    enum kvm_mr_change change)
605 {
606         kvmppc_core_commit_memory_region(kvm, mem, old);
607 }
608
609 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
610                                    struct kvm_memory_slot *slot)
611 {
612         kvmppc_core_flush_memslot(kvm, slot);
613 }
614
615 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
616 {
617         struct kvm_vcpu *vcpu;
618         vcpu = kvmppc_core_vcpu_create(kvm, id);
619         if (!IS_ERR(vcpu)) {
620                 vcpu->arch.wqp = &vcpu->wq;
621                 kvmppc_create_vcpu_debugfs(vcpu, id);
622         }
623         return vcpu;
624 }
625
626 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
627 {
628 }
629
630 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
631 {
632         /* Make sure we're not using the vcpu anymore */
633         hrtimer_cancel(&vcpu->arch.dec_timer);
634
635         kvmppc_remove_vcpu_debugfs(vcpu);
636
637         switch (vcpu->arch.irq_type) {
638         case KVMPPC_IRQ_MPIC:
639                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
640                 break;
641         case KVMPPC_IRQ_XICS:
642                 kvmppc_xics_free_icp(vcpu);
643                 break;
644         }
645
646         kvmppc_core_vcpu_free(vcpu);
647 }
648
649 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
650 {
651         kvm_arch_vcpu_free(vcpu);
652 }
653
654 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
655 {
656         return kvmppc_core_pending_dec(vcpu);
657 }
658
659 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
660 {
661         struct kvm_vcpu *vcpu;
662
663         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
664         kvmppc_decrementer_func(vcpu);
665
666         return HRTIMER_NORESTART;
667 }
668
669 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
670 {
671         int ret;
672
673         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
674         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
675         vcpu->arch.dec_expires = ~(u64)0;
676
677 #ifdef CONFIG_KVM_EXIT_TIMING
678         mutex_init(&vcpu->arch.exit_timing_lock);
679 #endif
680         ret = kvmppc_subarch_vcpu_init(vcpu);
681         return ret;
682 }
683
684 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
685 {
686         kvmppc_mmu_destroy(vcpu);
687         kvmppc_subarch_vcpu_uninit(vcpu);
688 }
689
690 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
691 {
692 #ifdef CONFIG_BOOKE
693         /*
694          * vrsave (formerly usprg0) isn't used by Linux, but may
695          * be used by the guest.
696          *
697          * On non-booke this is associated with Altivec and
698          * is handled by code in book3s.c.
699          */
700         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
701 #endif
702         kvmppc_core_vcpu_load(vcpu, cpu);
703 }
704
705 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
706 {
707         kvmppc_core_vcpu_put(vcpu);
708 #ifdef CONFIG_BOOKE
709         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
710 #endif
711 }
712
713 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
714                                       struct kvm_run *run)
715 {
716         u64 uninitialized_var(gpr);
717
718         if (run->mmio.len > sizeof(gpr)) {
719                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
720                 return;
721         }
722
723         if (vcpu->arch.mmio_is_bigendian) {
724                 switch (run->mmio.len) {
725                 case 8: gpr = *(u64 *)run->mmio.data; break;
726                 case 4: gpr = *(u32 *)run->mmio.data; break;
727                 case 2: gpr = *(u16 *)run->mmio.data; break;
728                 case 1: gpr = *(u8 *)run->mmio.data; break;
729                 }
730         } else {
731                 /* Convert BE data from userland back to LE. */
732                 switch (run->mmio.len) {
733                 case 4: gpr = ld_le32((u32 *)run->mmio.data); break;
734                 case 2: gpr = ld_le16((u16 *)run->mmio.data); break;
735                 case 1: gpr = *(u8 *)run->mmio.data; break;
736                 }
737         }
738
739         if (vcpu->arch.mmio_sign_extend) {
740                 switch (run->mmio.len) {
741 #ifdef CONFIG_PPC64
742                 case 4:
743                         gpr = (s64)(s32)gpr;
744                         break;
745 #endif
746                 case 2:
747                         gpr = (s64)(s16)gpr;
748                         break;
749                 case 1:
750                         gpr = (s64)(s8)gpr;
751                         break;
752                 }
753         }
754
755         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
756
757         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
758         case KVM_MMIO_REG_GPR:
759                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
760                 break;
761         case KVM_MMIO_REG_FPR:
762                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
763                 break;
764 #ifdef CONFIG_PPC_BOOK3S
765         case KVM_MMIO_REG_QPR:
766                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
767                 break;
768         case KVM_MMIO_REG_FQPR:
769                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
770                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
771                 break;
772 #endif
773         default:
774                 BUG();
775         }
776 }
777
778 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
779                        unsigned int rt, unsigned int bytes,
780                        int is_default_endian)
781 {
782         int idx, ret;
783         int is_bigendian;
784
785         if (kvmppc_need_byteswap(vcpu)) {
786                 /* Default endianness is "little endian". */
787                 is_bigendian = !is_default_endian;
788         } else {
789                 /* Default endianness is "big endian". */
790                 is_bigendian = is_default_endian;
791         }
792
793         if (bytes > sizeof(run->mmio.data)) {
794                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
795                        run->mmio.len);
796         }
797
798         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
799         run->mmio.len = bytes;
800         run->mmio.is_write = 0;
801
802         vcpu->arch.io_gpr = rt;
803         vcpu->arch.mmio_is_bigendian = is_bigendian;
804         vcpu->mmio_needed = 1;
805         vcpu->mmio_is_write = 0;
806         vcpu->arch.mmio_sign_extend = 0;
807
808         idx = srcu_read_lock(&vcpu->kvm->srcu);
809
810         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
811                               bytes, &run->mmio.data);
812
813         srcu_read_unlock(&vcpu->kvm->srcu, idx);
814
815         if (!ret) {
816                 kvmppc_complete_mmio_load(vcpu, run);
817                 vcpu->mmio_needed = 0;
818                 return EMULATE_DONE;
819         }
820
821         return EMULATE_DO_MMIO;
822 }
823 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
824
825 /* Same as above, but sign extends */
826 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
827                         unsigned int rt, unsigned int bytes,
828                         int is_default_endian)
829 {
830         int r;
831
832         vcpu->arch.mmio_sign_extend = 1;
833         r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
834
835         return r;
836 }
837
838 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
839                         u64 val, unsigned int bytes, int is_default_endian)
840 {
841         void *data = run->mmio.data;
842         int idx, ret;
843         int is_bigendian;
844
845         if (kvmppc_need_byteswap(vcpu)) {
846                 /* Default endianness is "little endian". */
847                 is_bigendian = !is_default_endian;
848         } else {
849                 /* Default endianness is "big endian". */
850                 is_bigendian = is_default_endian;
851         }
852
853         if (bytes > sizeof(run->mmio.data)) {
854                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
855                        run->mmio.len);
856         }
857
858         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
859         run->mmio.len = bytes;
860         run->mmio.is_write = 1;
861         vcpu->mmio_needed = 1;
862         vcpu->mmio_is_write = 1;
863
864         /* Store the value at the lowest bytes in 'data'. */
865         if (is_bigendian) {
866                 switch (bytes) {
867                 case 8: *(u64 *)data = val; break;
868                 case 4: *(u32 *)data = val; break;
869                 case 2: *(u16 *)data = val; break;
870                 case 1: *(u8  *)data = val; break;
871                 }
872         } else {
873                 /* Store LE value into 'data'. */
874                 switch (bytes) {
875                 case 4: st_le32(data, val); break;
876                 case 2: st_le16(data, val); break;
877                 case 1: *(u8 *)data = val; break;
878                 }
879         }
880
881         idx = srcu_read_lock(&vcpu->kvm->srcu);
882
883         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
884                                bytes, &run->mmio.data);
885
886         srcu_read_unlock(&vcpu->kvm->srcu, idx);
887
888         if (!ret) {
889                 vcpu->mmio_needed = 0;
890                 return EMULATE_DONE;
891         }
892
893         return EMULATE_DO_MMIO;
894 }
895 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
896
897 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
898 {
899         int r = 0;
900         union kvmppc_one_reg val;
901         int size;
902
903         size = one_reg_size(reg->id);
904         if (size > sizeof(val))
905                 return -EINVAL;
906
907         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
908         if (r == -EINVAL) {
909                 r = 0;
910                 switch (reg->id) {
911 #ifdef CONFIG_ALTIVEC
912                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
913                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
914                                 r = -ENXIO;
915                                 break;
916                         }
917                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
918                         break;
919                 case KVM_REG_PPC_VSCR:
920                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
921                                 r = -ENXIO;
922                                 break;
923                         }
924                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
925                         break;
926                 case KVM_REG_PPC_VRSAVE:
927                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
928                                 r = -ENXIO;
929                                 break;
930                         }
931                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
932                         break;
933 #endif /* CONFIG_ALTIVEC */
934                 default:
935                         r = -EINVAL;
936                         break;
937                 }
938         }
939
940         if (r)
941                 return r;
942
943         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
944                 r = -EFAULT;
945
946         return r;
947 }
948
949 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
950 {
951         int r;
952         union kvmppc_one_reg val;
953         int size;
954
955         size = one_reg_size(reg->id);
956         if (size > sizeof(val))
957                 return -EINVAL;
958
959         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
960                 return -EFAULT;
961
962         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
963         if (r == -EINVAL) {
964                 r = 0;
965                 switch (reg->id) {
966 #ifdef CONFIG_ALTIVEC
967                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
968                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
969                                 r = -ENXIO;
970                                 break;
971                         }
972                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
973                         break;
974                 case KVM_REG_PPC_VSCR:
975                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
976                                 r = -ENXIO;
977                                 break;
978                         }
979                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
980                         break;
981                 case KVM_REG_PPC_VRSAVE:
982                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
983                         break;
984 #endif /* CONFIG_ALTIVEC */
985                 default:
986                         r = -EINVAL;
987                         break;
988                 }
989         }
990
991         return r;
992 }
993
994 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
995 {
996         int r;
997         sigset_t sigsaved;
998
999         if (vcpu->sigset_active)
1000                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1001
1002         if (vcpu->mmio_needed) {
1003                 if (!vcpu->mmio_is_write)
1004                         kvmppc_complete_mmio_load(vcpu, run);
1005                 vcpu->mmio_needed = 0;
1006         } else if (vcpu->arch.osi_needed) {
1007                 u64 *gprs = run->osi.gprs;
1008                 int i;
1009
1010                 for (i = 0; i < 32; i++)
1011                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1012                 vcpu->arch.osi_needed = 0;
1013         } else if (vcpu->arch.hcall_needed) {
1014                 int i;
1015
1016                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1017                 for (i = 0; i < 9; ++i)
1018                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1019                 vcpu->arch.hcall_needed = 0;
1020 #ifdef CONFIG_BOOKE
1021         } else if (vcpu->arch.epr_needed) {
1022                 kvmppc_set_epr(vcpu, run->epr.epr);
1023                 vcpu->arch.epr_needed = 0;
1024 #endif
1025         }
1026
1027         r = kvmppc_vcpu_run(run, vcpu);
1028
1029         if (vcpu->sigset_active)
1030                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1031
1032         return r;
1033 }
1034
1035 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1036 {
1037         if (irq->irq == KVM_INTERRUPT_UNSET) {
1038                 kvmppc_core_dequeue_external(vcpu);
1039                 return 0;
1040         }
1041
1042         kvmppc_core_queue_external(vcpu, irq);
1043
1044         kvm_vcpu_kick(vcpu);
1045
1046         return 0;
1047 }
1048
1049 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1050                                      struct kvm_enable_cap *cap)
1051 {
1052         int r;
1053
1054         if (cap->flags)
1055                 return -EINVAL;
1056
1057         switch (cap->cap) {
1058         case KVM_CAP_PPC_OSI:
1059                 r = 0;
1060                 vcpu->arch.osi_enabled = true;
1061                 break;
1062         case KVM_CAP_PPC_PAPR:
1063                 r = 0;
1064                 vcpu->arch.papr_enabled = true;
1065                 break;
1066         case KVM_CAP_PPC_EPR:
1067                 r = 0;
1068                 if (cap->args[0])
1069                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1070                 else
1071                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1072                 break;
1073 #ifdef CONFIG_BOOKE
1074         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1075                 r = 0;
1076                 vcpu->arch.watchdog_enabled = true;
1077                 break;
1078 #endif
1079 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1080         case KVM_CAP_SW_TLB: {
1081                 struct kvm_config_tlb cfg;
1082                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1083
1084                 r = -EFAULT;
1085                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1086                         break;
1087
1088                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1089                 break;
1090         }
1091 #endif
1092 #ifdef CONFIG_KVM_MPIC
1093         case KVM_CAP_IRQ_MPIC: {
1094                 struct fd f;
1095                 struct kvm_device *dev;
1096
1097                 r = -EBADF;
1098                 f = fdget(cap->args[0]);
1099                 if (!f.file)
1100                         break;
1101
1102                 r = -EPERM;
1103                 dev = kvm_device_from_filp(f.file);
1104                 if (dev)
1105                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1106
1107                 fdput(f);
1108                 break;
1109         }
1110 #endif
1111 #ifdef CONFIG_KVM_XICS
1112         case KVM_CAP_IRQ_XICS: {
1113                 struct fd f;
1114                 struct kvm_device *dev;
1115
1116                 r = -EBADF;
1117                 f = fdget(cap->args[0]);
1118                 if (!f.file)
1119                         break;
1120
1121                 r = -EPERM;
1122                 dev = kvm_device_from_filp(f.file);
1123                 if (dev)
1124                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1125
1126                 fdput(f);
1127                 break;
1128         }
1129 #endif /* CONFIG_KVM_XICS */
1130         default:
1131                 r = -EINVAL;
1132                 break;
1133         }
1134
1135         if (!r)
1136                 r = kvmppc_sanity_check(vcpu);
1137
1138         return r;
1139 }
1140
1141 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1142                                     struct kvm_mp_state *mp_state)
1143 {
1144         return -EINVAL;
1145 }
1146
1147 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1148                                     struct kvm_mp_state *mp_state)
1149 {
1150         return -EINVAL;
1151 }
1152
1153 long kvm_arch_vcpu_ioctl(struct file *filp,
1154                          unsigned int ioctl, unsigned long arg)
1155 {
1156         struct kvm_vcpu *vcpu = filp->private_data;
1157         void __user *argp = (void __user *)arg;
1158         long r;
1159
1160         switch (ioctl) {
1161         case KVM_INTERRUPT: {
1162                 struct kvm_interrupt irq;
1163                 r = -EFAULT;
1164                 if (copy_from_user(&irq, argp, sizeof(irq)))
1165                         goto out;
1166                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1167                 goto out;
1168         }
1169
1170         case KVM_ENABLE_CAP:
1171         {
1172                 struct kvm_enable_cap cap;
1173                 r = -EFAULT;
1174                 if (copy_from_user(&cap, argp, sizeof(cap)))
1175                         goto out;
1176                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1177                 break;
1178         }
1179
1180         case KVM_SET_ONE_REG:
1181         case KVM_GET_ONE_REG:
1182         {
1183                 struct kvm_one_reg reg;
1184                 r = -EFAULT;
1185                 if (copy_from_user(&reg, argp, sizeof(reg)))
1186                         goto out;
1187                 if (ioctl == KVM_SET_ONE_REG)
1188                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1189                 else
1190                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1191                 break;
1192         }
1193
1194 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1195         case KVM_DIRTY_TLB: {
1196                 struct kvm_dirty_tlb dirty;
1197                 r = -EFAULT;
1198                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1199                         goto out;
1200                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1201                 break;
1202         }
1203 #endif
1204         default:
1205                 r = -EINVAL;
1206         }
1207
1208 out:
1209         return r;
1210 }
1211
1212 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1213 {
1214         return VM_FAULT_SIGBUS;
1215 }
1216
1217 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1218 {
1219         u32 inst_nop = 0x60000000;
1220 #ifdef CONFIG_KVM_BOOKE_HV
1221         u32 inst_sc1 = 0x44000022;
1222         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1223         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1224         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1225         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1226 #else
1227         u32 inst_lis = 0x3c000000;
1228         u32 inst_ori = 0x60000000;
1229         u32 inst_sc = 0x44000002;
1230         u32 inst_imm_mask = 0xffff;
1231
1232         /*
1233          * The hypercall to get into KVM from within guest context is as
1234          * follows:
1235          *
1236          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1237          *    ori r0, KVM_SC_MAGIC_R0@l
1238          *    sc
1239          *    nop
1240          */
1241         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1242         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1243         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1244         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1245 #endif
1246
1247         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1248
1249         return 0;
1250 }
1251
1252 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1253                           bool line_status)
1254 {
1255         if (!irqchip_in_kernel(kvm))
1256                 return -ENXIO;
1257
1258         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1259                                         irq_event->irq, irq_event->level,
1260                                         line_status);
1261         return 0;
1262 }
1263
1264
1265 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1266                                    struct kvm_enable_cap *cap)
1267 {
1268         int r;
1269
1270         if (cap->flags)
1271                 return -EINVAL;
1272
1273         switch (cap->cap) {
1274 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1275         case KVM_CAP_PPC_ENABLE_HCALL: {
1276                 unsigned long hcall = cap->args[0];
1277
1278                 r = -EINVAL;
1279                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1280                     cap->args[1] > 1)
1281                         break;
1282                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1283                         break;
1284                 if (cap->args[1])
1285                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1286                 else
1287                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1288                 r = 0;
1289                 break;
1290         }
1291 #endif
1292         default:
1293                 r = -EINVAL;
1294                 break;
1295         }
1296
1297         return r;
1298 }
1299
1300 long kvm_arch_vm_ioctl(struct file *filp,
1301                        unsigned int ioctl, unsigned long arg)
1302 {
1303         struct kvm *kvm __maybe_unused = filp->private_data;
1304         void __user *argp = (void __user *)arg;
1305         long r;
1306
1307         switch (ioctl) {
1308         case KVM_PPC_GET_PVINFO: {
1309                 struct kvm_ppc_pvinfo pvinfo;
1310                 memset(&pvinfo, 0, sizeof(pvinfo));
1311                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1312                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1313                         r = -EFAULT;
1314                         goto out;
1315                 }
1316
1317                 break;
1318         }
1319         case KVM_ENABLE_CAP:
1320         {
1321                 struct kvm_enable_cap cap;
1322                 r = -EFAULT;
1323                 if (copy_from_user(&cap, argp, sizeof(cap)))
1324                         goto out;
1325                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1326                 break;
1327         }
1328 #ifdef CONFIG_PPC_BOOK3S_64
1329         case KVM_CREATE_SPAPR_TCE: {
1330                 struct kvm_create_spapr_tce create_tce;
1331
1332                 r = -EFAULT;
1333                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1334                         goto out;
1335                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
1336                 goto out;
1337         }
1338         case KVM_PPC_GET_SMMU_INFO: {
1339                 struct kvm_ppc_smmu_info info;
1340                 struct kvm *kvm = filp->private_data;
1341
1342                 memset(&info, 0, sizeof(info));
1343                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1344                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1345                         r = -EFAULT;
1346                 break;
1347         }
1348         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1349                 struct kvm *kvm = filp->private_data;
1350
1351                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1352                 break;
1353         }
1354         default: {
1355                 struct kvm *kvm = filp->private_data;
1356                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1357         }
1358 #else /* CONFIG_PPC_BOOK3S_64 */
1359         default:
1360                 r = -ENOTTY;
1361 #endif
1362         }
1363 out:
1364         return r;
1365 }
1366
1367 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1368 static unsigned long nr_lpids;
1369
1370 long kvmppc_alloc_lpid(void)
1371 {
1372         long lpid;
1373
1374         do {
1375                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1376                 if (lpid >= nr_lpids) {
1377                         pr_err("%s: No LPIDs free\n", __func__);
1378                         return -ENOMEM;
1379                 }
1380         } while (test_and_set_bit(lpid, lpid_inuse));
1381
1382         return lpid;
1383 }
1384 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1385
1386 void kvmppc_claim_lpid(long lpid)
1387 {
1388         set_bit(lpid, lpid_inuse);
1389 }
1390 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1391
1392 void kvmppc_free_lpid(long lpid)
1393 {
1394         clear_bit(lpid, lpid_inuse);
1395 }
1396 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1397
1398 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1399 {
1400         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1401         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1402 }
1403 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1404
1405 int kvm_arch_init(void *opaque)
1406 {
1407         return 0;
1408 }
1409
1410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);