]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/powerpc.c
KVM: add "new" argument to kvm_arch_commit_memory_region
[karo-tx-linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) ||
52                v->requests;
53 }
54
55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
56 {
57         return 1;
58 }
59
60 /*
61  * Common checks before entering the guest world.  Call with interrupts
62  * disabled.
63  *
64  * returns:
65  *
66  * == 1 if we're ready to go into guest state
67  * <= 0 if we need to go back to the host with return value
68  */
69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
70 {
71         int r;
72
73         WARN_ON(irqs_disabled());
74         hard_irq_disable();
75
76         while (true) {
77                 if (need_resched()) {
78                         local_irq_enable();
79                         cond_resched();
80                         hard_irq_disable();
81                         continue;
82                 }
83
84                 if (signal_pending(current)) {
85                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
86                         vcpu->run->exit_reason = KVM_EXIT_INTR;
87                         r = -EINTR;
88                         break;
89                 }
90
91                 vcpu->mode = IN_GUEST_MODE;
92
93                 /*
94                  * Reading vcpu->requests must happen after setting vcpu->mode,
95                  * so we don't miss a request because the requester sees
96                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
97                  * before next entering the guest (and thus doesn't IPI).
98                  */
99                 smp_mb();
100
101                 if (vcpu->requests) {
102                         /* Make sure we process requests preemptable */
103                         local_irq_enable();
104                         trace_kvm_check_requests(vcpu);
105                         r = kvmppc_core_check_requests(vcpu);
106                         hard_irq_disable();
107                         if (r > 0)
108                                 continue;
109                         break;
110                 }
111
112                 if (kvmppc_core_prepare_to_enter(vcpu)) {
113                         /* interrupts got enabled in between, so we
114                            are back at square 1 */
115                         continue;
116                 }
117
118                 __kvm_guest_enter();
119                 return 1;
120         }
121
122         /* return to host */
123         local_irq_enable();
124         return r;
125 }
126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
127
128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
130 {
131         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
132         int i;
133
134         shared->sprg0 = swab64(shared->sprg0);
135         shared->sprg1 = swab64(shared->sprg1);
136         shared->sprg2 = swab64(shared->sprg2);
137         shared->sprg3 = swab64(shared->sprg3);
138         shared->srr0 = swab64(shared->srr0);
139         shared->srr1 = swab64(shared->srr1);
140         shared->dar = swab64(shared->dar);
141         shared->msr = swab64(shared->msr);
142         shared->dsisr = swab32(shared->dsisr);
143         shared->int_pending = swab32(shared->int_pending);
144         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
145                 shared->sr[i] = swab32(shared->sr[i]);
146 }
147 #endif
148
149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
150 {
151         int nr = kvmppc_get_gpr(vcpu, 11);
152         int r;
153         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
154         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
155         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
156         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
157         unsigned long r2 = 0;
158
159         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
160                 /* 32 bit mode */
161                 param1 &= 0xffffffff;
162                 param2 &= 0xffffffff;
163                 param3 &= 0xffffffff;
164                 param4 &= 0xffffffff;
165         }
166
167         switch (nr) {
168         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
169         {
170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
171                 /* Book3S can be little endian, find it out here */
172                 int shared_big_endian = true;
173                 if (vcpu->arch.intr_msr & MSR_LE)
174                         shared_big_endian = false;
175                 if (shared_big_endian != vcpu->arch.shared_big_endian)
176                         kvmppc_swab_shared(vcpu);
177                 vcpu->arch.shared_big_endian = shared_big_endian;
178 #endif
179
180                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
181                         /*
182                          * Older versions of the Linux magic page code had
183                          * a bug where they would map their trampoline code
184                          * NX. If that's the case, remove !PR NX capability.
185                          */
186                         vcpu->arch.disable_kernel_nx = true;
187                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
188                 }
189
190                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
191                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
192
193 #ifdef CONFIG_PPC_64K_PAGES
194                 /*
195                  * Make sure our 4k magic page is in the same window of a 64k
196                  * page within the guest and within the host's page.
197                  */
198                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
199                     ((ulong)vcpu->arch.shared & 0xf000)) {
200                         void *old_shared = vcpu->arch.shared;
201                         ulong shared = (ulong)vcpu->arch.shared;
202                         void *new_shared;
203
204                         shared &= PAGE_MASK;
205                         shared |= vcpu->arch.magic_page_pa & 0xf000;
206                         new_shared = (void*)shared;
207                         memcpy(new_shared, old_shared, 0x1000);
208                         vcpu->arch.shared = new_shared;
209                 }
210 #endif
211
212                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
213
214                 r = EV_SUCCESS;
215                 break;
216         }
217         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
218                 r = EV_SUCCESS;
219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
220                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
221 #endif
222
223                 /* Second return value is in r4 */
224                 break;
225         case EV_HCALL_TOKEN(EV_IDLE):
226                 r = EV_SUCCESS;
227                 kvm_vcpu_block(vcpu);
228                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
229                 break;
230         default:
231                 r = EV_UNIMPLEMENTED;
232                 break;
233         }
234
235         kvmppc_set_gpr(vcpu, 4, r2);
236
237         return r;
238 }
239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
240
241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
242 {
243         int r = false;
244
245         /* We have to know what CPU to virtualize */
246         if (!vcpu->arch.pvr)
247                 goto out;
248
249         /* PAPR only works with book3s_64 */
250         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
251                 goto out;
252
253         /* HV KVM can only do PAPR mode for now */
254         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
255                 goto out;
256
257 #ifdef CONFIG_KVM_BOOKE_HV
258         if (!cpu_has_feature(CPU_FTR_EMB_HV))
259                 goto out;
260 #endif
261
262         r = true;
263
264 out:
265         vcpu->arch.sane = r;
266         return r ? 0 : -EINVAL;
267 }
268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
269
270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
271 {
272         enum emulation_result er;
273         int r;
274
275         er = kvmppc_emulate_loadstore(vcpu);
276         switch (er) {
277         case EMULATE_DONE:
278                 /* Future optimization: only reload non-volatiles if they were
279                  * actually modified. */
280                 r = RESUME_GUEST_NV;
281                 break;
282         case EMULATE_AGAIN:
283                 r = RESUME_GUEST;
284                 break;
285         case EMULATE_DO_MMIO:
286                 run->exit_reason = KVM_EXIT_MMIO;
287                 /* We must reload nonvolatiles because "update" load/store
288                  * instructions modify register state. */
289                 /* Future optimization: only reload non-volatiles if they were
290                  * actually modified. */
291                 r = RESUME_HOST_NV;
292                 break;
293         case EMULATE_FAIL:
294         {
295                 u32 last_inst;
296
297                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
298                 /* XXX Deliver Program interrupt to guest. */
299                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
300                 r = RESUME_HOST;
301                 break;
302         }
303         default:
304                 WARN_ON(1);
305                 r = RESUME_GUEST;
306         }
307
308         return r;
309 }
310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
311
312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
313               bool data)
314 {
315         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
316         struct kvmppc_pte pte;
317         int r;
318
319         vcpu->stat.st++;
320
321         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
322                          XLATE_WRITE, &pte);
323         if (r < 0)
324                 return r;
325
326         *eaddr = pte.raddr;
327
328         if (!pte.may_write)
329                 return -EPERM;
330
331         /* Magic page override */
332         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
333             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
334             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
335                 void *magic = vcpu->arch.shared;
336                 magic += pte.eaddr & 0xfff;
337                 memcpy(magic, ptr, size);
338                 return EMULATE_DONE;
339         }
340
341         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
342                 return EMULATE_DO_MMIO;
343
344         return EMULATE_DONE;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_st);
347
348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349                       bool data)
350 {
351         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352         struct kvmppc_pte pte;
353         int rc;
354
355         vcpu->stat.ld++;
356
357         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
358                           XLATE_READ, &pte);
359         if (rc)
360                 return rc;
361
362         *eaddr = pte.raddr;
363
364         if (!pte.may_read)
365                 return -EPERM;
366
367         if (!data && !pte.may_execute)
368                 return -ENOEXEC;
369
370         /* Magic page override */
371         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
372             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
373             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
374                 void *magic = vcpu->arch.shared;
375                 magic += pte.eaddr & 0xfff;
376                 memcpy(ptr, magic, size);
377                 return EMULATE_DONE;
378         }
379
380         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
381                 return EMULATE_DO_MMIO;
382
383         return EMULATE_DONE;
384 }
385 EXPORT_SYMBOL_GPL(kvmppc_ld);
386
387 int kvm_arch_hardware_enable(void)
388 {
389         return 0;
390 }
391
392 int kvm_arch_hardware_setup(void)
393 {
394         return 0;
395 }
396
397 void kvm_arch_check_processor_compat(void *rtn)
398 {
399         *(int *)rtn = kvmppc_core_check_processor_compat();
400 }
401
402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
403 {
404         struct kvmppc_ops *kvm_ops = NULL;
405         /*
406          * if we have both HV and PR enabled, default is HV
407          */
408         if (type == 0) {
409                 if (kvmppc_hv_ops)
410                         kvm_ops = kvmppc_hv_ops;
411                 else
412                         kvm_ops = kvmppc_pr_ops;
413                 if (!kvm_ops)
414                         goto err_out;
415         } else  if (type == KVM_VM_PPC_HV) {
416                 if (!kvmppc_hv_ops)
417                         goto err_out;
418                 kvm_ops = kvmppc_hv_ops;
419         } else if (type == KVM_VM_PPC_PR) {
420                 if (!kvmppc_pr_ops)
421                         goto err_out;
422                 kvm_ops = kvmppc_pr_ops;
423         } else
424                 goto err_out;
425
426         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
427                 return -ENOENT;
428
429         kvm->arch.kvm_ops = kvm_ops;
430         return kvmppc_core_init_vm(kvm);
431 err_out:
432         return -EINVAL;
433 }
434
435 void kvm_arch_destroy_vm(struct kvm *kvm)
436 {
437         unsigned int i;
438         struct kvm_vcpu *vcpu;
439
440         kvm_for_each_vcpu(i, vcpu, kvm)
441                 kvm_arch_vcpu_free(vcpu);
442
443         mutex_lock(&kvm->lock);
444         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
445                 kvm->vcpus[i] = NULL;
446
447         atomic_set(&kvm->online_vcpus, 0);
448
449         kvmppc_core_destroy_vm(kvm);
450
451         mutex_unlock(&kvm->lock);
452
453         /* drop the module reference */
454         module_put(kvm->arch.kvm_ops->owner);
455 }
456
457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
458 {
459         int r;
460         /* Assume we're using HV mode when the HV module is loaded */
461         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
462
463         if (kvm) {
464                 /*
465                  * Hooray - we know which VM type we're running on. Depend on
466                  * that rather than the guess above.
467                  */
468                 hv_enabled = is_kvmppc_hv_enabled(kvm);
469         }
470
471         switch (ext) {
472 #ifdef CONFIG_BOOKE
473         case KVM_CAP_PPC_BOOKE_SREGS:
474         case KVM_CAP_PPC_BOOKE_WATCHDOG:
475         case KVM_CAP_PPC_EPR:
476 #else
477         case KVM_CAP_PPC_SEGSTATE:
478         case KVM_CAP_PPC_HIOR:
479         case KVM_CAP_PPC_PAPR:
480 #endif
481         case KVM_CAP_PPC_UNSET_IRQ:
482         case KVM_CAP_PPC_IRQ_LEVEL:
483         case KVM_CAP_ENABLE_CAP:
484         case KVM_CAP_ENABLE_CAP_VM:
485         case KVM_CAP_ONE_REG:
486         case KVM_CAP_IOEVENTFD:
487         case KVM_CAP_DEVICE_CTRL:
488                 r = 1;
489                 break;
490         case KVM_CAP_PPC_PAIRED_SINGLES:
491         case KVM_CAP_PPC_OSI:
492         case KVM_CAP_PPC_GET_PVINFO:
493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
494         case KVM_CAP_SW_TLB:
495 #endif
496                 /* We support this only for PR */
497                 r = !hv_enabled;
498                 break;
499 #ifdef CONFIG_KVM_MMIO
500         case KVM_CAP_COALESCED_MMIO:
501                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
502                 break;
503 #endif
504 #ifdef CONFIG_KVM_MPIC
505         case KVM_CAP_IRQ_MPIC:
506                 r = 1;
507                 break;
508 #endif
509
510 #ifdef CONFIG_PPC_BOOK3S_64
511         case KVM_CAP_SPAPR_TCE:
512         case KVM_CAP_PPC_ALLOC_HTAB:
513         case KVM_CAP_PPC_RTAS:
514         case KVM_CAP_PPC_FIXUP_HCALL:
515         case KVM_CAP_PPC_ENABLE_HCALL:
516 #ifdef CONFIG_KVM_XICS
517         case KVM_CAP_IRQ_XICS:
518 #endif
519                 r = 1;
520                 break;
521 #endif /* CONFIG_PPC_BOOK3S_64 */
522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
523         case KVM_CAP_PPC_SMT:
524                 if (hv_enabled)
525                         r = threads_per_subcore;
526                 else
527                         r = 0;
528                 break;
529         case KVM_CAP_PPC_RMA:
530                 r = 0;
531                 break;
532         case KVM_CAP_PPC_HWRNG:
533                 r = kvmppc_hwrng_present();
534                 break;
535 #endif
536         case KVM_CAP_SYNC_MMU:
537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
538                 r = hv_enabled;
539 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
540                 r = 1;
541 #else
542                 r = 0;
543 #endif
544                 break;
545 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
546         case KVM_CAP_PPC_HTAB_FD:
547                 r = hv_enabled;
548                 break;
549 #endif
550         case KVM_CAP_NR_VCPUS:
551                 /*
552                  * Recommending a number of CPUs is somewhat arbitrary; we
553                  * return the number of present CPUs for -HV (since a host
554                  * will have secondary threads "offline"), and for other KVM
555                  * implementations just count online CPUs.
556                  */
557                 if (hv_enabled)
558                         r = num_present_cpus();
559                 else
560                         r = num_online_cpus();
561                 break;
562         case KVM_CAP_MAX_VCPUS:
563                 r = KVM_MAX_VCPUS;
564                 break;
565 #ifdef CONFIG_PPC_BOOK3S_64
566         case KVM_CAP_PPC_GET_SMMU_INFO:
567                 r = 1;
568                 break;
569 #endif
570         default:
571                 r = 0;
572                 break;
573         }
574         return r;
575
576 }
577
578 long kvm_arch_dev_ioctl(struct file *filp,
579                         unsigned int ioctl, unsigned long arg)
580 {
581         return -EINVAL;
582 }
583
584 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
585                            struct kvm_memory_slot *dont)
586 {
587         kvmppc_core_free_memslot(kvm, free, dont);
588 }
589
590 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
591                             unsigned long npages)
592 {
593         return kvmppc_core_create_memslot(kvm, slot, npages);
594 }
595
596 int kvm_arch_prepare_memory_region(struct kvm *kvm,
597                                    struct kvm_memory_slot *memslot,
598                                    const struct kvm_userspace_memory_region *mem,
599                                    enum kvm_mr_change change)
600 {
601         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
602 }
603
604 void kvm_arch_commit_memory_region(struct kvm *kvm,
605                                    const struct kvm_userspace_memory_region *mem,
606                                    const struct kvm_memory_slot *old,
607                                    const struct kvm_memory_slot *new,
608                                    enum kvm_mr_change change)
609 {
610         kvmppc_core_commit_memory_region(kvm, mem, old, new);
611 }
612
613 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
614                                    struct kvm_memory_slot *slot)
615 {
616         kvmppc_core_flush_memslot(kvm, slot);
617 }
618
619 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
620 {
621         struct kvm_vcpu *vcpu;
622         vcpu = kvmppc_core_vcpu_create(kvm, id);
623         if (!IS_ERR(vcpu)) {
624                 vcpu->arch.wqp = &vcpu->wq;
625                 kvmppc_create_vcpu_debugfs(vcpu, id);
626         }
627         return vcpu;
628 }
629
630 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
631 {
632 }
633
634 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
635 {
636         /* Make sure we're not using the vcpu anymore */
637         hrtimer_cancel(&vcpu->arch.dec_timer);
638
639         kvmppc_remove_vcpu_debugfs(vcpu);
640
641         switch (vcpu->arch.irq_type) {
642         case KVMPPC_IRQ_MPIC:
643                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
644                 break;
645         case KVMPPC_IRQ_XICS:
646                 kvmppc_xics_free_icp(vcpu);
647                 break;
648         }
649
650         kvmppc_core_vcpu_free(vcpu);
651 }
652
653 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
654 {
655         kvm_arch_vcpu_free(vcpu);
656 }
657
658 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
659 {
660         return kvmppc_core_pending_dec(vcpu);
661 }
662
663 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
664 {
665         struct kvm_vcpu *vcpu;
666
667         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
668         kvmppc_decrementer_func(vcpu);
669
670         return HRTIMER_NORESTART;
671 }
672
673 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
674 {
675         int ret;
676
677         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
678         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
679         vcpu->arch.dec_expires = ~(u64)0;
680
681 #ifdef CONFIG_KVM_EXIT_TIMING
682         mutex_init(&vcpu->arch.exit_timing_lock);
683 #endif
684         ret = kvmppc_subarch_vcpu_init(vcpu);
685         return ret;
686 }
687
688 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
689 {
690         kvmppc_mmu_destroy(vcpu);
691         kvmppc_subarch_vcpu_uninit(vcpu);
692 }
693
694 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
695 {
696 #ifdef CONFIG_BOOKE
697         /*
698          * vrsave (formerly usprg0) isn't used by Linux, but may
699          * be used by the guest.
700          *
701          * On non-booke this is associated with Altivec and
702          * is handled by code in book3s.c.
703          */
704         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
705 #endif
706         kvmppc_core_vcpu_load(vcpu, cpu);
707 }
708
709 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
710 {
711         kvmppc_core_vcpu_put(vcpu);
712 #ifdef CONFIG_BOOKE
713         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
714 #endif
715 }
716
717 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
718                                       struct kvm_run *run)
719 {
720         u64 uninitialized_var(gpr);
721
722         if (run->mmio.len > sizeof(gpr)) {
723                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
724                 return;
725         }
726
727         if (!vcpu->arch.mmio_host_swabbed) {
728                 switch (run->mmio.len) {
729                 case 8: gpr = *(u64 *)run->mmio.data; break;
730                 case 4: gpr = *(u32 *)run->mmio.data; break;
731                 case 2: gpr = *(u16 *)run->mmio.data; break;
732                 case 1: gpr = *(u8 *)run->mmio.data; break;
733                 }
734         } else {
735                 switch (run->mmio.len) {
736                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
737                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
738                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
739                 case 1: gpr = *(u8 *)run->mmio.data; break;
740                 }
741         }
742
743         if (vcpu->arch.mmio_sign_extend) {
744                 switch (run->mmio.len) {
745 #ifdef CONFIG_PPC64
746                 case 4:
747                         gpr = (s64)(s32)gpr;
748                         break;
749 #endif
750                 case 2:
751                         gpr = (s64)(s16)gpr;
752                         break;
753                 case 1:
754                         gpr = (s64)(s8)gpr;
755                         break;
756                 }
757         }
758
759         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
760
761         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
762         case KVM_MMIO_REG_GPR:
763                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
764                 break;
765         case KVM_MMIO_REG_FPR:
766                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
767                 break;
768 #ifdef CONFIG_PPC_BOOK3S
769         case KVM_MMIO_REG_QPR:
770                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
771                 break;
772         case KVM_MMIO_REG_FQPR:
773                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
774                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
775                 break;
776 #endif
777         default:
778                 BUG();
779         }
780 }
781
782 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
783                        unsigned int rt, unsigned int bytes,
784                        int is_default_endian)
785 {
786         int idx, ret;
787         bool host_swabbed;
788
789         /* Pity C doesn't have a logical XOR operator */
790         if (kvmppc_need_byteswap(vcpu)) {
791                 host_swabbed = is_default_endian;
792         } else {
793                 host_swabbed = !is_default_endian;
794         }
795
796         if (bytes > sizeof(run->mmio.data)) {
797                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
798                        run->mmio.len);
799         }
800
801         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
802         run->mmio.len = bytes;
803         run->mmio.is_write = 0;
804
805         vcpu->arch.io_gpr = rt;
806         vcpu->arch.mmio_host_swabbed = host_swabbed;
807         vcpu->mmio_needed = 1;
808         vcpu->mmio_is_write = 0;
809         vcpu->arch.mmio_sign_extend = 0;
810
811         idx = srcu_read_lock(&vcpu->kvm->srcu);
812
813         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
814                               bytes, &run->mmio.data);
815
816         srcu_read_unlock(&vcpu->kvm->srcu, idx);
817
818         if (!ret) {
819                 kvmppc_complete_mmio_load(vcpu, run);
820                 vcpu->mmio_needed = 0;
821                 return EMULATE_DONE;
822         }
823
824         return EMULATE_DO_MMIO;
825 }
826 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
827
828 /* Same as above, but sign extends */
829 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
830                         unsigned int rt, unsigned int bytes,
831                         int is_default_endian)
832 {
833         int r;
834
835         vcpu->arch.mmio_sign_extend = 1;
836         r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
837
838         return r;
839 }
840
841 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
842                         u64 val, unsigned int bytes, int is_default_endian)
843 {
844         void *data = run->mmio.data;
845         int idx, ret;
846         bool host_swabbed;
847
848         /* Pity C doesn't have a logical XOR operator */
849         if (kvmppc_need_byteswap(vcpu)) {
850                 host_swabbed = is_default_endian;
851         } else {
852                 host_swabbed = !is_default_endian;
853         }
854
855         if (bytes > sizeof(run->mmio.data)) {
856                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
857                        run->mmio.len);
858         }
859
860         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
861         run->mmio.len = bytes;
862         run->mmio.is_write = 1;
863         vcpu->mmio_needed = 1;
864         vcpu->mmio_is_write = 1;
865
866         /* Store the value at the lowest bytes in 'data'. */
867         if (!host_swabbed) {
868                 switch (bytes) {
869                 case 8: *(u64 *)data = val; break;
870                 case 4: *(u32 *)data = val; break;
871                 case 2: *(u16 *)data = val; break;
872                 case 1: *(u8  *)data = val; break;
873                 }
874         } else {
875                 switch (bytes) {
876                 case 8: *(u64 *)data = swab64(val); break;
877                 case 4: *(u32 *)data = swab32(val); break;
878                 case 2: *(u16 *)data = swab16(val); break;
879                 case 1: *(u8  *)data = val; break;
880                 }
881         }
882
883         idx = srcu_read_lock(&vcpu->kvm->srcu);
884
885         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
886                                bytes, &run->mmio.data);
887
888         srcu_read_unlock(&vcpu->kvm->srcu, idx);
889
890         if (!ret) {
891                 vcpu->mmio_needed = 0;
892                 return EMULATE_DONE;
893         }
894
895         return EMULATE_DO_MMIO;
896 }
897 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
898
899 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
900 {
901         int r = 0;
902         union kvmppc_one_reg val;
903         int size;
904
905         size = one_reg_size(reg->id);
906         if (size > sizeof(val))
907                 return -EINVAL;
908
909         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
910         if (r == -EINVAL) {
911                 r = 0;
912                 switch (reg->id) {
913 #ifdef CONFIG_ALTIVEC
914                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
915                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
916                                 r = -ENXIO;
917                                 break;
918                         }
919                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
920                         break;
921                 case KVM_REG_PPC_VSCR:
922                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
923                                 r = -ENXIO;
924                                 break;
925                         }
926                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
927                         break;
928                 case KVM_REG_PPC_VRSAVE:
929                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
930                                 r = -ENXIO;
931                                 break;
932                         }
933                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
934                         break;
935 #endif /* CONFIG_ALTIVEC */
936                 default:
937                         r = -EINVAL;
938                         break;
939                 }
940         }
941
942         if (r)
943                 return r;
944
945         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
946                 r = -EFAULT;
947
948         return r;
949 }
950
951 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
952 {
953         int r;
954         union kvmppc_one_reg val;
955         int size;
956
957         size = one_reg_size(reg->id);
958         if (size > sizeof(val))
959                 return -EINVAL;
960
961         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
962                 return -EFAULT;
963
964         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
965         if (r == -EINVAL) {
966                 r = 0;
967                 switch (reg->id) {
968 #ifdef CONFIG_ALTIVEC
969                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
970                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
971                                 r = -ENXIO;
972                                 break;
973                         }
974                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
975                         break;
976                 case KVM_REG_PPC_VSCR:
977                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
978                                 r = -ENXIO;
979                                 break;
980                         }
981                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
982                         break;
983                 case KVM_REG_PPC_VRSAVE:
984                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
985                         break;
986 #endif /* CONFIG_ALTIVEC */
987                 default:
988                         r = -EINVAL;
989                         break;
990                 }
991         }
992
993         return r;
994 }
995
996 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
997 {
998         int r;
999         sigset_t sigsaved;
1000
1001         if (vcpu->sigset_active)
1002                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1003
1004         if (vcpu->mmio_needed) {
1005                 if (!vcpu->mmio_is_write)
1006                         kvmppc_complete_mmio_load(vcpu, run);
1007                 vcpu->mmio_needed = 0;
1008         } else if (vcpu->arch.osi_needed) {
1009                 u64 *gprs = run->osi.gprs;
1010                 int i;
1011
1012                 for (i = 0; i < 32; i++)
1013                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1014                 vcpu->arch.osi_needed = 0;
1015         } else if (vcpu->arch.hcall_needed) {
1016                 int i;
1017
1018                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1019                 for (i = 0; i < 9; ++i)
1020                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1021                 vcpu->arch.hcall_needed = 0;
1022 #ifdef CONFIG_BOOKE
1023         } else if (vcpu->arch.epr_needed) {
1024                 kvmppc_set_epr(vcpu, run->epr.epr);
1025                 vcpu->arch.epr_needed = 0;
1026 #endif
1027         }
1028
1029         r = kvmppc_vcpu_run(run, vcpu);
1030
1031         if (vcpu->sigset_active)
1032                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1033
1034         return r;
1035 }
1036
1037 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1038 {
1039         if (irq->irq == KVM_INTERRUPT_UNSET) {
1040                 kvmppc_core_dequeue_external(vcpu);
1041                 return 0;
1042         }
1043
1044         kvmppc_core_queue_external(vcpu, irq);
1045
1046         kvm_vcpu_kick(vcpu);
1047
1048         return 0;
1049 }
1050
1051 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1052                                      struct kvm_enable_cap *cap)
1053 {
1054         int r;
1055
1056         if (cap->flags)
1057                 return -EINVAL;
1058
1059         switch (cap->cap) {
1060         case KVM_CAP_PPC_OSI:
1061                 r = 0;
1062                 vcpu->arch.osi_enabled = true;
1063                 break;
1064         case KVM_CAP_PPC_PAPR:
1065                 r = 0;
1066                 vcpu->arch.papr_enabled = true;
1067                 break;
1068         case KVM_CAP_PPC_EPR:
1069                 r = 0;
1070                 if (cap->args[0])
1071                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1072                 else
1073                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1074                 break;
1075 #ifdef CONFIG_BOOKE
1076         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1077                 r = 0;
1078                 vcpu->arch.watchdog_enabled = true;
1079                 break;
1080 #endif
1081 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1082         case KVM_CAP_SW_TLB: {
1083                 struct kvm_config_tlb cfg;
1084                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1085
1086                 r = -EFAULT;
1087                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1088                         break;
1089
1090                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1091                 break;
1092         }
1093 #endif
1094 #ifdef CONFIG_KVM_MPIC
1095         case KVM_CAP_IRQ_MPIC: {
1096                 struct fd f;
1097                 struct kvm_device *dev;
1098
1099                 r = -EBADF;
1100                 f = fdget(cap->args[0]);
1101                 if (!f.file)
1102                         break;
1103
1104                 r = -EPERM;
1105                 dev = kvm_device_from_filp(f.file);
1106                 if (dev)
1107                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1108
1109                 fdput(f);
1110                 break;
1111         }
1112 #endif
1113 #ifdef CONFIG_KVM_XICS
1114         case KVM_CAP_IRQ_XICS: {
1115                 struct fd f;
1116                 struct kvm_device *dev;
1117
1118                 r = -EBADF;
1119                 f = fdget(cap->args[0]);
1120                 if (!f.file)
1121                         break;
1122
1123                 r = -EPERM;
1124                 dev = kvm_device_from_filp(f.file);
1125                 if (dev)
1126                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1127
1128                 fdput(f);
1129                 break;
1130         }
1131 #endif /* CONFIG_KVM_XICS */
1132         default:
1133                 r = -EINVAL;
1134                 break;
1135         }
1136
1137         if (!r)
1138                 r = kvmppc_sanity_check(vcpu);
1139
1140         return r;
1141 }
1142
1143 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1144                                     struct kvm_mp_state *mp_state)
1145 {
1146         return -EINVAL;
1147 }
1148
1149 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1150                                     struct kvm_mp_state *mp_state)
1151 {
1152         return -EINVAL;
1153 }
1154
1155 long kvm_arch_vcpu_ioctl(struct file *filp,
1156                          unsigned int ioctl, unsigned long arg)
1157 {
1158         struct kvm_vcpu *vcpu = filp->private_data;
1159         void __user *argp = (void __user *)arg;
1160         long r;
1161
1162         switch (ioctl) {
1163         case KVM_INTERRUPT: {
1164                 struct kvm_interrupt irq;
1165                 r = -EFAULT;
1166                 if (copy_from_user(&irq, argp, sizeof(irq)))
1167                         goto out;
1168                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1169                 goto out;
1170         }
1171
1172         case KVM_ENABLE_CAP:
1173         {
1174                 struct kvm_enable_cap cap;
1175                 r = -EFAULT;
1176                 if (copy_from_user(&cap, argp, sizeof(cap)))
1177                         goto out;
1178                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1179                 break;
1180         }
1181
1182         case KVM_SET_ONE_REG:
1183         case KVM_GET_ONE_REG:
1184         {
1185                 struct kvm_one_reg reg;
1186                 r = -EFAULT;
1187                 if (copy_from_user(&reg, argp, sizeof(reg)))
1188                         goto out;
1189                 if (ioctl == KVM_SET_ONE_REG)
1190                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1191                 else
1192                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1193                 break;
1194         }
1195
1196 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1197         case KVM_DIRTY_TLB: {
1198                 struct kvm_dirty_tlb dirty;
1199                 r = -EFAULT;
1200                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1201                         goto out;
1202                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1203                 break;
1204         }
1205 #endif
1206         default:
1207                 r = -EINVAL;
1208         }
1209
1210 out:
1211         return r;
1212 }
1213
1214 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1215 {
1216         return VM_FAULT_SIGBUS;
1217 }
1218
1219 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1220 {
1221         u32 inst_nop = 0x60000000;
1222 #ifdef CONFIG_KVM_BOOKE_HV
1223         u32 inst_sc1 = 0x44000022;
1224         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1225         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1226         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1227         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1228 #else
1229         u32 inst_lis = 0x3c000000;
1230         u32 inst_ori = 0x60000000;
1231         u32 inst_sc = 0x44000002;
1232         u32 inst_imm_mask = 0xffff;
1233
1234         /*
1235          * The hypercall to get into KVM from within guest context is as
1236          * follows:
1237          *
1238          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1239          *    ori r0, KVM_SC_MAGIC_R0@l
1240          *    sc
1241          *    nop
1242          */
1243         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1244         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1245         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1246         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1247 #endif
1248
1249         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1250
1251         return 0;
1252 }
1253
1254 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1255                           bool line_status)
1256 {
1257         if (!irqchip_in_kernel(kvm))
1258                 return -ENXIO;
1259
1260         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1261                                         irq_event->irq, irq_event->level,
1262                                         line_status);
1263         return 0;
1264 }
1265
1266
1267 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1268                                    struct kvm_enable_cap *cap)
1269 {
1270         int r;
1271
1272         if (cap->flags)
1273                 return -EINVAL;
1274
1275         switch (cap->cap) {
1276 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1277         case KVM_CAP_PPC_ENABLE_HCALL: {
1278                 unsigned long hcall = cap->args[0];
1279
1280                 r = -EINVAL;
1281                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1282                     cap->args[1] > 1)
1283                         break;
1284                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1285                         break;
1286                 if (cap->args[1])
1287                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1288                 else
1289                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1290                 r = 0;
1291                 break;
1292         }
1293 #endif
1294         default:
1295                 r = -EINVAL;
1296                 break;
1297         }
1298
1299         return r;
1300 }
1301
1302 long kvm_arch_vm_ioctl(struct file *filp,
1303                        unsigned int ioctl, unsigned long arg)
1304 {
1305         struct kvm *kvm __maybe_unused = filp->private_data;
1306         void __user *argp = (void __user *)arg;
1307         long r;
1308
1309         switch (ioctl) {
1310         case KVM_PPC_GET_PVINFO: {
1311                 struct kvm_ppc_pvinfo pvinfo;
1312                 memset(&pvinfo, 0, sizeof(pvinfo));
1313                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1314                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1315                         r = -EFAULT;
1316                         goto out;
1317                 }
1318
1319                 break;
1320         }
1321         case KVM_ENABLE_CAP:
1322         {
1323                 struct kvm_enable_cap cap;
1324                 r = -EFAULT;
1325                 if (copy_from_user(&cap, argp, sizeof(cap)))
1326                         goto out;
1327                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1328                 break;
1329         }
1330 #ifdef CONFIG_PPC_BOOK3S_64
1331         case KVM_CREATE_SPAPR_TCE: {
1332                 struct kvm_create_spapr_tce create_tce;
1333
1334                 r = -EFAULT;
1335                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1336                         goto out;
1337                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
1338                 goto out;
1339         }
1340         case KVM_PPC_GET_SMMU_INFO: {
1341                 struct kvm_ppc_smmu_info info;
1342                 struct kvm *kvm = filp->private_data;
1343
1344                 memset(&info, 0, sizeof(info));
1345                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1346                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1347                         r = -EFAULT;
1348                 break;
1349         }
1350         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1351                 struct kvm *kvm = filp->private_data;
1352
1353                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1354                 break;
1355         }
1356         default: {
1357                 struct kvm *kvm = filp->private_data;
1358                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1359         }
1360 #else /* CONFIG_PPC_BOOK3S_64 */
1361         default:
1362                 r = -ENOTTY;
1363 #endif
1364         }
1365 out:
1366         return r;
1367 }
1368
1369 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1370 static unsigned long nr_lpids;
1371
1372 long kvmppc_alloc_lpid(void)
1373 {
1374         long lpid;
1375
1376         do {
1377                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1378                 if (lpid >= nr_lpids) {
1379                         pr_err("%s: No LPIDs free\n", __func__);
1380                         return -ENOMEM;
1381                 }
1382         } while (test_and_set_bit(lpid, lpid_inuse));
1383
1384         return lpid;
1385 }
1386 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1387
1388 void kvmppc_claim_lpid(long lpid)
1389 {
1390         set_bit(lpid, lpid_inuse);
1391 }
1392 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1393
1394 void kvmppc_free_lpid(long lpid)
1395 {
1396         clear_bit(lpid, lpid_inuse);
1397 }
1398 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1399
1400 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1401 {
1402         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1403         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1404 }
1405 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1406
1407 int kvm_arch_init(void *opaque)
1408 {
1409         return 0;
1410 }
1411
1412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);