]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/unaligned_64.c
sun4M: add include of slab.h for kzalloc
[karo-tx-linux.git] / arch / sparc / kernel / unaligned_64.c
1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8
9
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/uaccess.h>
20 #include <linux/smp.h>
21 #include <linux/bitops.h>
22 #include <linux/perf_event.h>
23 #include <linux/ratelimit.h>
24 #include <linux/context_tracking.h>
25 #include <asm/fpumacro.h>
26 #include <asm/cacheflush.h>
27
28 #include "entry.h"
29
30 enum direction {
31         load,    /* ld, ldd, ldh, ldsh */
32         store,   /* st, std, sth, stsh */
33         both,    /* Swap, ldstub, cas, ... */
34         fpld,
35         fpst,
36         invalid,
37 };
38
39 static inline enum direction decode_direction(unsigned int insn)
40 {
41         unsigned long tmp = (insn >> 21) & 1;
42
43         if (!tmp)
44                 return load;
45         else {
46                 switch ((insn>>19)&0xf) {
47                 case 15: /* swap* */
48                         return both;
49                 default:
50                         return store;
51                 }
52         }
53 }
54
55 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
56 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
57 {
58         unsigned int tmp;
59
60         tmp = ((insn >> 19) & 0xf);
61         if (tmp == 11 || tmp == 14) /* ldx/stx */
62                 return 8;
63         tmp &= 3;
64         if (!tmp)
65                 return 4;
66         else if (tmp == 3)
67                 return 16;      /* ldd/std - Although it is actually 8 */
68         else if (tmp == 2)
69                 return 2;
70         else {
71                 printk("Impossible unaligned trap. insn=%08x\n", insn);
72                 die_if_kernel("Byte sized unaligned access?!?!", regs);
73
74                 /* GCC should never warn that control reaches the end
75                  * of this function without returning a value because
76                  * die_if_kernel() is marked with attribute 'noreturn'.
77                  * Alas, some versions do...
78                  */
79
80                 return 0;
81         }
82 }
83
84 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
85 {
86         if (insn & 0x800000) {
87                 if (insn & 0x2000)
88                         return (unsigned char)(regs->tstate >> 24);     /* %asi */
89                 else
90                         return (unsigned char)(insn >> 5);              /* imm_asi */
91         } else
92                 return ASI_P;
93 }
94
95 /* 0x400000 = signed, 0 = unsigned */
96 static inline int decode_signedness(unsigned int insn)
97 {
98         return (insn & 0x400000);
99 }
100
101 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
102                                        unsigned int rd, int from_kernel)
103 {
104         if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
105                 if (from_kernel != 0)
106                         __asm__ __volatile__("flushw");
107                 else
108                         flushw_user();
109         }
110 }
111
112 static inline long sign_extend_imm13(long imm)
113 {
114         return imm << 51 >> 51;
115 }
116
117 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
118 {
119         unsigned long value, fp;
120         
121         if (reg < 16)
122                 return (!reg ? 0 : regs->u_regs[reg]);
123
124         fp = regs->u_regs[UREG_FP];
125
126         if (regs->tstate & TSTATE_PRIV) {
127                 struct reg_window *win;
128                 win = (struct reg_window *)(fp + STACK_BIAS);
129                 value = win->locals[reg - 16];
130         } else if (!test_thread_64bit_stack(fp)) {
131                 struct reg_window32 __user *win32;
132                 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
133                 get_user(value, &win32->locals[reg - 16]);
134         } else {
135                 struct reg_window __user *win;
136                 win = (struct reg_window __user *)(fp + STACK_BIAS);
137                 get_user(value, &win->locals[reg - 16]);
138         }
139         return value;
140 }
141
142 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
143 {
144         unsigned long fp;
145
146         if (reg < 16)
147                 return &regs->u_regs[reg];
148
149         fp = regs->u_regs[UREG_FP];
150
151         if (regs->tstate & TSTATE_PRIV) {
152                 struct reg_window *win;
153                 win = (struct reg_window *)(fp + STACK_BIAS);
154                 return &win->locals[reg - 16];
155         } else if (!test_thread_64bit_stack(fp)) {
156                 struct reg_window32 *win32;
157                 win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
158                 return (unsigned long *)&win32->locals[reg - 16];
159         } else {
160                 struct reg_window *win;
161                 win = (struct reg_window *)(fp + STACK_BIAS);
162                 return &win->locals[reg - 16];
163         }
164 }
165
166 unsigned long compute_effective_address(struct pt_regs *regs,
167                                         unsigned int insn, unsigned int rd)
168 {
169         unsigned int rs1 = (insn >> 14) & 0x1f;
170         unsigned int rs2 = insn & 0x1f;
171         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172
173         if (insn & 0x2000) {
174                 maybe_flush_windows(rs1, 0, rd, from_kernel);
175                 return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
176         } else {
177                 maybe_flush_windows(rs1, rs2, rd, from_kernel);
178                 return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
179         }
180 }
181
182 /* This is just to make gcc think die_if_kernel does return... */
183 static void __used unaligned_panic(char *str, struct pt_regs *regs)
184 {
185         die_if_kernel(str, regs);
186 }
187
188 extern int do_int_load(unsigned long *dest_reg, int size,
189                        unsigned long *saddr, int is_signed, int asi);
190         
191 extern int __do_int_store(unsigned long *dst_addr, int size,
192                           unsigned long src_val, int asi);
193
194 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
195                                struct pt_regs *regs, int asi, int orig_asi)
196 {
197         unsigned long zero = 0;
198         unsigned long *src_val_p = &zero;
199         unsigned long src_val;
200
201         if (size == 16) {
202                 size = 8;
203                 zero = (((long)(reg_num ?
204                         (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
205                         (unsigned)fetch_reg(reg_num + 1, regs);
206         } else if (reg_num) {
207                 src_val_p = fetch_reg_addr(reg_num, regs);
208         }
209         src_val = *src_val_p;
210         if (unlikely(asi != orig_asi)) {
211                 switch (size) {
212                 case 2:
213                         src_val = swab16(src_val);
214                         break;
215                 case 4:
216                         src_val = swab32(src_val);
217                         break;
218                 case 8:
219                         src_val = swab64(src_val);
220                         break;
221                 case 16:
222                 default:
223                         BUG();
224                         break;
225                 }
226         }
227         return __do_int_store(dst_addr, size, src_val, asi);
228 }
229
230 static inline void advance(struct pt_regs *regs)
231 {
232         regs->tpc   = regs->tnpc;
233         regs->tnpc += 4;
234         if (test_thread_flag(TIF_32BIT)) {
235                 regs->tpc &= 0xffffffff;
236                 regs->tnpc &= 0xffffffff;
237         }
238 }
239
240 static inline int floating_point_load_or_store_p(unsigned int insn)
241 {
242         return (insn >> 24) & 1;
243 }
244
245 static inline int ok_for_kernel(unsigned int insn)
246 {
247         return !floating_point_load_or_store_p(insn);
248 }
249
250 static void kernel_mna_trap_fault(int fixup_tstate_asi)
251 {
252         struct pt_regs *regs = current_thread_info()->kern_una_regs;
253         unsigned int insn = current_thread_info()->kern_una_insn;
254         const struct exception_table_entry *entry;
255
256         entry = search_exception_tables(regs->tpc);
257         if (!entry) {
258                 unsigned long address;
259
260                 address = compute_effective_address(regs, insn,
261                                                     ((insn >> 25) & 0x1f));
262                 if (address < PAGE_SIZE) {
263                         printk(KERN_ALERT "Unable to handle kernel NULL "
264                                "pointer dereference in mna handler");
265                 } else
266                         printk(KERN_ALERT "Unable to handle kernel paging "
267                                "request in mna handler");
268                 printk(KERN_ALERT " at virtual address %016lx\n",address);
269                 printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
270                         (current->mm ? CTX_HWBITS(current->mm->context) :
271                         CTX_HWBITS(current->active_mm->context)));
272                 printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
273                         (current->mm ? (unsigned long) current->mm->pgd :
274                         (unsigned long) current->active_mm->pgd));
275                 die_if_kernel("Oops", regs);
276                 /* Not reached */
277         }
278         regs->tpc = entry->fixup;
279         regs->tnpc = regs->tpc + 4;
280
281         if (fixup_tstate_asi) {
282                 regs->tstate &= ~TSTATE_ASI;
283                 regs->tstate |= (ASI_AIUS << 24UL);
284         }
285 }
286
287 static void log_unaligned(struct pt_regs *regs)
288 {
289         static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
290
291         if (__ratelimit(&ratelimit)) {
292                 printk("Kernel unaligned access at TPC[%lx] %pS\n",
293                        regs->tpc, (void *) regs->tpc);
294         }
295 }
296
297 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
298 {
299         enum direction dir = decode_direction(insn);
300         int size = decode_access_size(regs, insn);
301         int orig_asi, asi;
302
303         current_thread_info()->kern_una_regs = regs;
304         current_thread_info()->kern_una_insn = insn;
305
306         orig_asi = asi = decode_asi(insn, regs);
307
308         /* If this is a {get,put}_user() on an unaligned userspace pointer,
309          * just signal a fault and do not log the event.
310          */
311         if (asi == ASI_AIUS) {
312                 kernel_mna_trap_fault(0);
313                 return;
314         }
315
316         log_unaligned(regs);
317
318         if (!ok_for_kernel(insn) || dir == both) {
319                 printk("Unsupported unaligned load/store trap for kernel "
320                        "at <%016lx>.\n", regs->tpc);
321                 unaligned_panic("Kernel does fpu/atomic "
322                                 "unaligned load/store.", regs);
323
324                 kernel_mna_trap_fault(0);
325         } else {
326                 unsigned long addr, *reg_addr;
327                 int err;
328
329                 addr = compute_effective_address(regs, insn,
330                                                  ((insn >> 25) & 0x1f));
331                 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
332                 switch (asi) {
333                 case ASI_NL:
334                 case ASI_AIUPL:
335                 case ASI_AIUSL:
336                 case ASI_PL:
337                 case ASI_SL:
338                 case ASI_PNFL:
339                 case ASI_SNFL:
340                         asi &= ~0x08;
341                         break;
342                 }
343                 switch (dir) {
344                 case load:
345                         reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
346                         err = do_int_load(reg_addr, size,
347                                           (unsigned long *) addr,
348                                           decode_signedness(insn), asi);
349                         if (likely(!err) && unlikely(asi != orig_asi)) {
350                                 unsigned long val_in = *reg_addr;
351                                 switch (size) {
352                                 case 2:
353                                         val_in = swab16(val_in);
354                                         break;
355                                 case 4:
356                                         val_in = swab32(val_in);
357                                         break;
358                                 case 8:
359                                         val_in = swab64(val_in);
360                                         break;
361                                 case 16:
362                                 default:
363                                         BUG();
364                                         break;
365                                 }
366                                 *reg_addr = val_in;
367                         }
368                         break;
369
370                 case store:
371                         err = do_int_store(((insn>>25)&0x1f), size,
372                                            (unsigned long *) addr, regs,
373                                            asi, orig_asi);
374                         break;
375
376                 default:
377                         panic("Impossible kernel unaligned trap.");
378                         /* Not reached... */
379                 }
380                 if (unlikely(err))
381                         kernel_mna_trap_fault(1);
382                 else
383                         advance(regs);
384         }
385 }
386
387 int handle_popc(u32 insn, struct pt_regs *regs)
388 {
389         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
390         int ret, rd = ((insn >> 25) & 0x1f);
391         u64 value;
392                                 
393         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
394         if (insn & 0x2000) {
395                 maybe_flush_windows(0, 0, rd, from_kernel);
396                 value = sign_extend_imm13(insn);
397         } else {
398                 maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
399                 value = fetch_reg(insn & 0x1f, regs);
400         }
401         ret = hweight64(value);
402         if (rd < 16) {
403                 if (rd)
404                         regs->u_regs[rd] = ret;
405         } else {
406                 unsigned long fp = regs->u_regs[UREG_FP];
407
408                 if (!test_thread_64bit_stack(fp)) {
409                         struct reg_window32 __user *win32;
410                         win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
411                         put_user(ret, &win32->locals[rd - 16]);
412                 } else {
413                         struct reg_window __user *win;
414                         win = (struct reg_window __user *)(fp + STACK_BIAS);
415                         put_user(ret, &win->locals[rd - 16]);
416                 }
417         }
418         advance(regs);
419         return 1;
420 }
421
422 extern void do_fpother(struct pt_regs *regs);
423 extern void do_privact(struct pt_regs *regs);
424 extern void sun4v_data_access_exception(struct pt_regs *regs,
425                                         unsigned long addr,
426                                         unsigned long type_ctx);
427
428 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
429 {
430         unsigned long addr = compute_effective_address(regs, insn, 0);
431         int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
432         struct fpustate *f = FPUSTATE;
433         int asi = decode_asi(insn, regs);
434         int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
435
436         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
437
438         save_and_clear_fpu();
439         current_thread_info()->xfsr[0] &= ~0x1c000;
440         if (freg & 3) {
441                 current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
442                 do_fpother(regs);
443                 return 0;
444         }
445         if (insn & 0x200000) {
446                 /* STQ */
447                 u64 first = 0, second = 0;
448                 
449                 if (current_thread_info()->fpsaved[0] & flag) {
450                         first = *(u64 *)&f->regs[freg];
451                         second = *(u64 *)&f->regs[freg+2];
452                 }
453                 if (asi < 0x80) {
454                         do_privact(regs);
455                         return 1;
456                 }
457                 switch (asi) {
458                 case ASI_P:
459                 case ASI_S: break;
460                 case ASI_PL:
461                 case ASI_SL: 
462                         {
463                                 /* Need to convert endians */
464                                 u64 tmp = __swab64p(&first);
465                                 
466                                 first = __swab64p(&second);
467                                 second = tmp;
468                                 break;
469                         }
470                 default:
471                         if (tlb_type == hypervisor)
472                                 sun4v_data_access_exception(regs, addr, 0);
473                         else
474                                 spitfire_data_access_exception(regs, 0, addr);
475                         return 1;
476                 }
477                 if (put_user (first >> 32, (u32 __user *)addr) ||
478                     __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
479                     __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
480                     __put_user ((u32)second, (u32 __user *)(addr + 12))) {
481                         if (tlb_type == hypervisor)
482                                 sun4v_data_access_exception(regs, addr, 0);
483                         else
484                                 spitfire_data_access_exception(regs, 0, addr);
485                         return 1;
486                 }
487         } else {
488                 /* LDF, LDDF, LDQF */
489                 u32 data[4] __attribute__ ((aligned(8)));
490                 int size, i;
491                 int err;
492
493                 if (asi < 0x80) {
494                         do_privact(regs);
495                         return 1;
496                 } else if (asi > ASI_SNFL) {
497                         if (tlb_type == hypervisor)
498                                 sun4v_data_access_exception(regs, addr, 0);
499                         else
500                                 spitfire_data_access_exception(regs, 0, addr);
501                         return 1;
502                 }
503                 switch (insn & 0x180000) {
504                 case 0x000000: size = 1; break;
505                 case 0x100000: size = 4; break;
506                 default: size = 2; break;
507                 }
508                 for (i = 0; i < size; i++)
509                         data[i] = 0;
510                 
511                 err = get_user (data[0], (u32 __user *) addr);
512                 if (!err) {
513                         for (i = 1; i < size; i++)
514                                 err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
515                 }
516                 if (err && !(asi & 0x2 /* NF */)) {
517                         if (tlb_type == hypervisor)
518                                 sun4v_data_access_exception(regs, addr, 0);
519                         else
520                                 spitfire_data_access_exception(regs, 0, addr);
521                         return 1;
522                 }
523                 if (asi & 0x8) /* Little */ {
524                         u64 tmp;
525
526                         switch (size) {
527                         case 1: data[0] = le32_to_cpup(data + 0); break;
528                         default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
529                                 break;
530                         case 4: tmp = le64_to_cpup((u64 *)(data + 0));
531                                 *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
532                                 *(u64 *)(data + 2) = tmp;
533                                 break;
534                         }
535                 }
536                 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
537                         current_thread_info()->fpsaved[0] = FPRS_FEF;
538                         current_thread_info()->gsr[0] = 0;
539                 }
540                 if (!(current_thread_info()->fpsaved[0] & flag)) {
541                         if (freg < 32)
542                                 memset(f->regs, 0, 32*sizeof(u32));
543                         else
544                                 memset(f->regs+32, 0, 32*sizeof(u32));
545                 }
546                 memcpy(f->regs + freg, data, size * 4);
547                 current_thread_info()->fpsaved[0] |= flag;
548         }
549         advance(regs);
550         return 1;
551 }
552
553 void handle_ld_nf(u32 insn, struct pt_regs *regs)
554 {
555         int rd = ((insn >> 25) & 0x1f);
556         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
557         unsigned long *reg;
558                                 
559         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
560
561         maybe_flush_windows(0, 0, rd, from_kernel);
562         reg = fetch_reg_addr(rd, regs);
563         if (from_kernel || rd < 16) {
564                 reg[0] = 0;
565                 if ((insn & 0x780000) == 0x180000)
566                         reg[1] = 0;
567         } else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
568                 put_user(0, (int __user *) reg);
569                 if ((insn & 0x780000) == 0x180000)
570                         put_user(0, ((int __user *) reg) + 1);
571         } else {
572                 put_user(0, (unsigned long __user *) reg);
573                 if ((insn & 0x780000) == 0x180000)
574                         put_user(0, (unsigned long __user *) reg + 1);
575         }
576         advance(regs);
577 }
578
579 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
580 {
581         enum ctx_state prev_state = exception_enter();
582         unsigned long pc = regs->tpc;
583         unsigned long tstate = regs->tstate;
584         u32 insn;
585         u64 value;
586         u8 freg;
587         int flag;
588         struct fpustate *f = FPUSTATE;
589
590         if (tstate & TSTATE_PRIV)
591                 die_if_kernel("lddfmna from kernel", regs);
592         perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
593         if (test_thread_flag(TIF_32BIT))
594                 pc = (u32)pc;
595         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
596                 int asi = decode_asi(insn, regs);
597                 u32 first, second;
598                 int err;
599
600                 if ((asi > ASI_SNFL) ||
601                     (asi < ASI_P))
602                         goto daex;
603                 first = second = 0;
604                 err = get_user(first, (u32 __user *)sfar);
605                 if (!err)
606                         err = get_user(second, (u32 __user *)(sfar + 4));
607                 if (err) {
608                         if (!(asi & 0x2))
609                                 goto daex;
610                         first = second = 0;
611                 }
612                 save_and_clear_fpu();
613                 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
614                 value = (((u64)first) << 32) | second;
615                 if (asi & 0x8) /* Little */
616                         value = __swab64p(&value);
617                 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
618                 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
619                         current_thread_info()->fpsaved[0] = FPRS_FEF;
620                         current_thread_info()->gsr[0] = 0;
621                 }
622                 if (!(current_thread_info()->fpsaved[0] & flag)) {
623                         if (freg < 32)
624                                 memset(f->regs, 0, 32*sizeof(u32));
625                         else
626                                 memset(f->regs+32, 0, 32*sizeof(u32));
627                 }
628                 *(u64 *)(f->regs + freg) = value;
629                 current_thread_info()->fpsaved[0] |= flag;
630         } else {
631 daex:
632                 if (tlb_type == hypervisor)
633                         sun4v_data_access_exception(regs, sfar, sfsr);
634                 else
635                         spitfire_data_access_exception(regs, sfsr, sfar);
636                 goto out;
637         }
638         advance(regs);
639 out:
640         exception_exit(prev_state);
641 }
642
643 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
644 {
645         enum ctx_state prev_state = exception_enter();
646         unsigned long pc = regs->tpc;
647         unsigned long tstate = regs->tstate;
648         u32 insn;
649         u64 value;
650         u8 freg;
651         int flag;
652         struct fpustate *f = FPUSTATE;
653
654         if (tstate & TSTATE_PRIV)
655                 die_if_kernel("stdfmna from kernel", regs);
656         perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
657         if (test_thread_flag(TIF_32BIT))
658                 pc = (u32)pc;
659         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
660                 int asi = decode_asi(insn, regs);
661                 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
662                 value = 0;
663                 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
664                 if ((asi > ASI_SNFL) ||
665                     (asi < ASI_P))
666                         goto daex;
667                 save_and_clear_fpu();
668                 if (current_thread_info()->fpsaved[0] & flag)
669                         value = *(u64 *)&f->regs[freg];
670                 switch (asi) {
671                 case ASI_P:
672                 case ASI_S: break;
673                 case ASI_PL:
674                 case ASI_SL: 
675                         value = __swab64p(&value); break;
676                 default: goto daex;
677                 }
678                 if (put_user (value >> 32, (u32 __user *) sfar) ||
679                     __put_user ((u32)value, (u32 __user *)(sfar + 4)))
680                         goto daex;
681         } else {
682 daex:
683                 if (tlb_type == hypervisor)
684                         sun4v_data_access_exception(regs, sfar, sfsr);
685                 else
686                         spitfire_data_access_exception(regs, sfsr, sfar);
687                 goto out;
688         }
689         advance(regs);
690 out:
691         exception_exit(prev_state);
692 }