]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/unaligned_64.c
Merge remote-tracking branches 'regulator/topic/s2mps11', 'regulator/topic/s2mpu02...
[karo-tx-linux.git] / arch / sparc / kernel / unaligned_64.c
1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8
9
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/uaccess.h>
20 #include <linux/smp.h>
21 #include <linux/bitops.h>
22 #include <linux/perf_event.h>
23 #include <linux/ratelimit.h>
24 #include <linux/context_tracking.h>
25 #include <asm/fpumacro.h>
26 #include <asm/cacheflush.h>
27 #include <asm/setup.h>
28
29 #include "entry.h"
30 #include "kernel.h"
31
32 enum direction {
33         load,    /* ld, ldd, ldh, ldsh */
34         store,   /* st, std, sth, stsh */
35         both,    /* Swap, ldstub, cas, ... */
36         fpld,
37         fpst,
38         invalid,
39 };
40
41 static inline enum direction decode_direction(unsigned int insn)
42 {
43         unsigned long tmp = (insn >> 21) & 1;
44
45         if (!tmp)
46                 return load;
47         else {
48                 switch ((insn>>19)&0xf) {
49                 case 15: /* swap* */
50                         return both;
51                 default:
52                         return store;
53                 }
54         }
55 }
56
57 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
58 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
59 {
60         unsigned int tmp;
61
62         tmp = ((insn >> 19) & 0xf);
63         if (tmp == 11 || tmp == 14) /* ldx/stx */
64                 return 8;
65         tmp &= 3;
66         if (!tmp)
67                 return 4;
68         else if (tmp == 3)
69                 return 16;      /* ldd/std - Although it is actually 8 */
70         else if (tmp == 2)
71                 return 2;
72         else {
73                 printk("Impossible unaligned trap. insn=%08x\n", insn);
74                 die_if_kernel("Byte sized unaligned access?!?!", regs);
75
76                 /* GCC should never warn that control reaches the end
77                  * of this function without returning a value because
78                  * die_if_kernel() is marked with attribute 'noreturn'.
79                  * Alas, some versions do...
80                  */
81
82                 return 0;
83         }
84 }
85
86 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
87 {
88         if (insn & 0x800000) {
89                 if (insn & 0x2000)
90                         return (unsigned char)(regs->tstate >> 24);     /* %asi */
91                 else
92                         return (unsigned char)(insn >> 5);              /* imm_asi */
93         } else
94                 return ASI_P;
95 }
96
97 /* 0x400000 = signed, 0 = unsigned */
98 static inline int decode_signedness(unsigned int insn)
99 {
100         return (insn & 0x400000);
101 }
102
103 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
104                                        unsigned int rd, int from_kernel)
105 {
106         if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
107                 if (from_kernel != 0)
108                         __asm__ __volatile__("flushw");
109                 else
110                         flushw_user();
111         }
112 }
113
114 static inline long sign_extend_imm13(long imm)
115 {
116         return imm << 51 >> 51;
117 }
118
119 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
120 {
121         unsigned long value, fp;
122         
123         if (reg < 16)
124                 return (!reg ? 0 : regs->u_regs[reg]);
125
126         fp = regs->u_regs[UREG_FP];
127
128         if (regs->tstate & TSTATE_PRIV) {
129                 struct reg_window *win;
130                 win = (struct reg_window *)(fp + STACK_BIAS);
131                 value = win->locals[reg - 16];
132         } else if (!test_thread_64bit_stack(fp)) {
133                 struct reg_window32 __user *win32;
134                 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
135                 get_user(value, &win32->locals[reg - 16]);
136         } else {
137                 struct reg_window __user *win;
138                 win = (struct reg_window __user *)(fp + STACK_BIAS);
139                 get_user(value, &win->locals[reg - 16]);
140         }
141         return value;
142 }
143
144 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
145 {
146         unsigned long fp;
147
148         if (reg < 16)
149                 return &regs->u_regs[reg];
150
151         fp = regs->u_regs[UREG_FP];
152
153         if (regs->tstate & TSTATE_PRIV) {
154                 struct reg_window *win;
155                 win = (struct reg_window *)(fp + STACK_BIAS);
156                 return &win->locals[reg - 16];
157         } else if (!test_thread_64bit_stack(fp)) {
158                 struct reg_window32 *win32;
159                 win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
160                 return (unsigned long *)&win32->locals[reg - 16];
161         } else {
162                 struct reg_window *win;
163                 win = (struct reg_window *)(fp + STACK_BIAS);
164                 return &win->locals[reg - 16];
165         }
166 }
167
168 unsigned long compute_effective_address(struct pt_regs *regs,
169                                         unsigned int insn, unsigned int rd)
170 {
171         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172         unsigned int rs1 = (insn >> 14) & 0x1f;
173         unsigned int rs2 = insn & 0x1f;
174         unsigned long addr;
175
176         if (insn & 0x2000) {
177                 maybe_flush_windows(rs1, 0, rd, from_kernel);
178                 addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
179         } else {
180                 maybe_flush_windows(rs1, rs2, rd, from_kernel);
181                 addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
182         }
183
184         if (!from_kernel && test_thread_flag(TIF_32BIT))
185                 addr &= 0xffffffff;
186
187         return addr;
188 }
189
190 /* This is just to make gcc think die_if_kernel does return... */
191 static void __used unaligned_panic(char *str, struct pt_regs *regs)
192 {
193         die_if_kernel(str, regs);
194 }
195
196 extern int do_int_load(unsigned long *dest_reg, int size,
197                        unsigned long *saddr, int is_signed, int asi);
198         
199 extern int __do_int_store(unsigned long *dst_addr, int size,
200                           unsigned long src_val, int asi);
201
202 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
203                                struct pt_regs *regs, int asi, int orig_asi)
204 {
205         unsigned long zero = 0;
206         unsigned long *src_val_p = &zero;
207         unsigned long src_val;
208
209         if (size == 16) {
210                 size = 8;
211                 zero = (((long)(reg_num ?
212                         (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
213                         (unsigned)fetch_reg(reg_num + 1, regs);
214         } else if (reg_num) {
215                 src_val_p = fetch_reg_addr(reg_num, regs);
216         }
217         src_val = *src_val_p;
218         if (unlikely(asi != orig_asi)) {
219                 switch (size) {
220                 case 2:
221                         src_val = swab16(src_val);
222                         break;
223                 case 4:
224                         src_val = swab32(src_val);
225                         break;
226                 case 8:
227                         src_val = swab64(src_val);
228                         break;
229                 case 16:
230                 default:
231                         BUG();
232                         break;
233                 }
234         }
235         return __do_int_store(dst_addr, size, src_val, asi);
236 }
237
238 static inline void advance(struct pt_regs *regs)
239 {
240         regs->tpc   = regs->tnpc;
241         regs->tnpc += 4;
242         if (test_thread_flag(TIF_32BIT)) {
243                 regs->tpc &= 0xffffffff;
244                 regs->tnpc &= 0xffffffff;
245         }
246 }
247
248 static inline int floating_point_load_or_store_p(unsigned int insn)
249 {
250         return (insn >> 24) & 1;
251 }
252
253 static inline int ok_for_kernel(unsigned int insn)
254 {
255         return !floating_point_load_or_store_p(insn);
256 }
257
258 static void kernel_mna_trap_fault(int fixup_tstate_asi)
259 {
260         struct pt_regs *regs = current_thread_info()->kern_una_regs;
261         unsigned int insn = current_thread_info()->kern_una_insn;
262         const struct exception_table_entry *entry;
263
264         entry = search_exception_tables(regs->tpc);
265         if (!entry) {
266                 unsigned long address;
267
268                 address = compute_effective_address(regs, insn,
269                                                     ((insn >> 25) & 0x1f));
270                 if (address < PAGE_SIZE) {
271                         printk(KERN_ALERT "Unable to handle kernel NULL "
272                                "pointer dereference in mna handler");
273                 } else
274                         printk(KERN_ALERT "Unable to handle kernel paging "
275                                "request in mna handler");
276                 printk(KERN_ALERT " at virtual address %016lx\n",address);
277                 printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
278                         (current->mm ? CTX_HWBITS(current->mm->context) :
279                         CTX_HWBITS(current->active_mm->context)));
280                 printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
281                         (current->mm ? (unsigned long) current->mm->pgd :
282                         (unsigned long) current->active_mm->pgd));
283                 die_if_kernel("Oops", regs);
284                 /* Not reached */
285         }
286         regs->tpc = entry->fixup;
287         regs->tnpc = regs->tpc + 4;
288
289         if (fixup_tstate_asi) {
290                 regs->tstate &= ~TSTATE_ASI;
291                 regs->tstate |= (ASI_AIUS << 24UL);
292         }
293 }
294
295 static void log_unaligned(struct pt_regs *regs)
296 {
297         static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
298
299         if (__ratelimit(&ratelimit)) {
300                 printk("Kernel unaligned access at TPC[%lx] %pS\n",
301                        regs->tpc, (void *) regs->tpc);
302         }
303 }
304
305 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
306 {
307         enum direction dir = decode_direction(insn);
308         int size = decode_access_size(regs, insn);
309         int orig_asi, asi;
310
311         current_thread_info()->kern_una_regs = regs;
312         current_thread_info()->kern_una_insn = insn;
313
314         orig_asi = asi = decode_asi(insn, regs);
315
316         /* If this is a {get,put}_user() on an unaligned userspace pointer,
317          * just signal a fault and do not log the event.
318          */
319         if (asi == ASI_AIUS) {
320                 kernel_mna_trap_fault(0);
321                 return;
322         }
323
324         log_unaligned(regs);
325
326         if (!ok_for_kernel(insn) || dir == both) {
327                 printk("Unsupported unaligned load/store trap for kernel "
328                        "at <%016lx>.\n", regs->tpc);
329                 unaligned_panic("Kernel does fpu/atomic "
330                                 "unaligned load/store.", regs);
331
332                 kernel_mna_trap_fault(0);
333         } else {
334                 unsigned long addr, *reg_addr;
335                 int err;
336
337                 addr = compute_effective_address(regs, insn,
338                                                  ((insn >> 25) & 0x1f));
339                 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
340                 switch (asi) {
341                 case ASI_NL:
342                 case ASI_AIUPL:
343                 case ASI_AIUSL:
344                 case ASI_PL:
345                 case ASI_SL:
346                 case ASI_PNFL:
347                 case ASI_SNFL:
348                         asi &= ~0x08;
349                         break;
350                 }
351                 switch (dir) {
352                 case load:
353                         reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
354                         err = do_int_load(reg_addr, size,
355                                           (unsigned long *) addr,
356                                           decode_signedness(insn), asi);
357                         if (likely(!err) && unlikely(asi != orig_asi)) {
358                                 unsigned long val_in = *reg_addr;
359                                 switch (size) {
360                                 case 2:
361                                         val_in = swab16(val_in);
362                                         break;
363                                 case 4:
364                                         val_in = swab32(val_in);
365                                         break;
366                                 case 8:
367                                         val_in = swab64(val_in);
368                                         break;
369                                 case 16:
370                                 default:
371                                         BUG();
372                                         break;
373                                 }
374                                 *reg_addr = val_in;
375                         }
376                         break;
377
378                 case store:
379                         err = do_int_store(((insn>>25)&0x1f), size,
380                                            (unsigned long *) addr, regs,
381                                            asi, orig_asi);
382                         break;
383
384                 default:
385                         panic("Impossible kernel unaligned trap.");
386                         /* Not reached... */
387                 }
388                 if (unlikely(err))
389                         kernel_mna_trap_fault(1);
390                 else
391                         advance(regs);
392         }
393 }
394
395 int handle_popc(u32 insn, struct pt_regs *regs)
396 {
397         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
398         int ret, rd = ((insn >> 25) & 0x1f);
399         u64 value;
400                                 
401         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
402         if (insn & 0x2000) {
403                 maybe_flush_windows(0, 0, rd, from_kernel);
404                 value = sign_extend_imm13(insn);
405         } else {
406                 maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
407                 value = fetch_reg(insn & 0x1f, regs);
408         }
409         ret = hweight64(value);
410         if (rd < 16) {
411                 if (rd)
412                         regs->u_regs[rd] = ret;
413         } else {
414                 unsigned long fp = regs->u_regs[UREG_FP];
415
416                 if (!test_thread_64bit_stack(fp)) {
417                         struct reg_window32 __user *win32;
418                         win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
419                         put_user(ret, &win32->locals[rd - 16]);
420                 } else {
421                         struct reg_window __user *win;
422                         win = (struct reg_window __user *)(fp + STACK_BIAS);
423                         put_user(ret, &win->locals[rd - 16]);
424                 }
425         }
426         advance(regs);
427         return 1;
428 }
429
430 extern void do_fpother(struct pt_regs *regs);
431 extern void do_privact(struct pt_regs *regs);
432 extern void sun4v_data_access_exception(struct pt_regs *regs,
433                                         unsigned long addr,
434                                         unsigned long type_ctx);
435
436 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
437 {
438         unsigned long addr = compute_effective_address(regs, insn, 0);
439         int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
440         struct fpustate *f = FPUSTATE;
441         int asi = decode_asi(insn, regs);
442         int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
443
444         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
445
446         save_and_clear_fpu();
447         current_thread_info()->xfsr[0] &= ~0x1c000;
448         if (freg & 3) {
449                 current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
450                 do_fpother(regs);
451                 return 0;
452         }
453         if (insn & 0x200000) {
454                 /* STQ */
455                 u64 first = 0, second = 0;
456                 
457                 if (current_thread_info()->fpsaved[0] & flag) {
458                         first = *(u64 *)&f->regs[freg];
459                         second = *(u64 *)&f->regs[freg+2];
460                 }
461                 if (asi < 0x80) {
462                         do_privact(regs);
463                         return 1;
464                 }
465                 switch (asi) {
466                 case ASI_P:
467                 case ASI_S: break;
468                 case ASI_PL:
469                 case ASI_SL: 
470                         {
471                                 /* Need to convert endians */
472                                 u64 tmp = __swab64p(&first);
473                                 
474                                 first = __swab64p(&second);
475                                 second = tmp;
476                                 break;
477                         }
478                 default:
479                         if (tlb_type == hypervisor)
480                                 sun4v_data_access_exception(regs, addr, 0);
481                         else
482                                 spitfire_data_access_exception(regs, 0, addr);
483                         return 1;
484                 }
485                 if (put_user (first >> 32, (u32 __user *)addr) ||
486                     __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
487                     __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
488                     __put_user ((u32)second, (u32 __user *)(addr + 12))) {
489                         if (tlb_type == hypervisor)
490                                 sun4v_data_access_exception(regs, addr, 0);
491                         else
492                                 spitfire_data_access_exception(regs, 0, addr);
493                         return 1;
494                 }
495         } else {
496                 /* LDF, LDDF, LDQF */
497                 u32 data[4] __attribute__ ((aligned(8)));
498                 int size, i;
499                 int err;
500
501                 if (asi < 0x80) {
502                         do_privact(regs);
503                         return 1;
504                 } else if (asi > ASI_SNFL) {
505                         if (tlb_type == hypervisor)
506                                 sun4v_data_access_exception(regs, addr, 0);
507                         else
508                                 spitfire_data_access_exception(regs, 0, addr);
509                         return 1;
510                 }
511                 switch (insn & 0x180000) {
512                 case 0x000000: size = 1; break;
513                 case 0x100000: size = 4; break;
514                 default: size = 2; break;
515                 }
516                 for (i = 0; i < size; i++)
517                         data[i] = 0;
518                 
519                 err = get_user (data[0], (u32 __user *) addr);
520                 if (!err) {
521                         for (i = 1; i < size; i++)
522                                 err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
523                 }
524                 if (err && !(asi & 0x2 /* NF */)) {
525                         if (tlb_type == hypervisor)
526                                 sun4v_data_access_exception(regs, addr, 0);
527                         else
528                                 spitfire_data_access_exception(regs, 0, addr);
529                         return 1;
530                 }
531                 if (asi & 0x8) /* Little */ {
532                         u64 tmp;
533
534                         switch (size) {
535                         case 1: data[0] = le32_to_cpup(data + 0); break;
536                         default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
537                                 break;
538                         case 4: tmp = le64_to_cpup((u64 *)(data + 0));
539                                 *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
540                                 *(u64 *)(data + 2) = tmp;
541                                 break;
542                         }
543                 }
544                 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
545                         current_thread_info()->fpsaved[0] = FPRS_FEF;
546                         current_thread_info()->gsr[0] = 0;
547                 }
548                 if (!(current_thread_info()->fpsaved[0] & flag)) {
549                         if (freg < 32)
550                                 memset(f->regs, 0, 32*sizeof(u32));
551                         else
552                                 memset(f->regs+32, 0, 32*sizeof(u32));
553                 }
554                 memcpy(f->regs + freg, data, size * 4);
555                 current_thread_info()->fpsaved[0] |= flag;
556         }
557         advance(regs);
558         return 1;
559 }
560
561 void handle_ld_nf(u32 insn, struct pt_regs *regs)
562 {
563         int rd = ((insn >> 25) & 0x1f);
564         int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
565         unsigned long *reg;
566                                 
567         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
568
569         maybe_flush_windows(0, 0, rd, from_kernel);
570         reg = fetch_reg_addr(rd, regs);
571         if (from_kernel || rd < 16) {
572                 reg[0] = 0;
573                 if ((insn & 0x780000) == 0x180000)
574                         reg[1] = 0;
575         } else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
576                 put_user(0, (int __user *) reg);
577                 if ((insn & 0x780000) == 0x180000)
578                         put_user(0, ((int __user *) reg) + 1);
579         } else {
580                 put_user(0, (unsigned long __user *) reg);
581                 if ((insn & 0x780000) == 0x180000)
582                         put_user(0, (unsigned long __user *) reg + 1);
583         }
584         advance(regs);
585 }
586
587 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
588 {
589         enum ctx_state prev_state = exception_enter();
590         unsigned long pc = regs->tpc;
591         unsigned long tstate = regs->tstate;
592         u32 insn;
593         u64 value;
594         u8 freg;
595         int flag;
596         struct fpustate *f = FPUSTATE;
597
598         if (tstate & TSTATE_PRIV)
599                 die_if_kernel("lddfmna from kernel", regs);
600         perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
601         if (test_thread_flag(TIF_32BIT))
602                 pc = (u32)pc;
603         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
604                 int asi = decode_asi(insn, regs);
605                 u32 first, second;
606                 int err;
607
608                 if ((asi > ASI_SNFL) ||
609                     (asi < ASI_P))
610                         goto daex;
611                 first = second = 0;
612                 err = get_user(first, (u32 __user *)sfar);
613                 if (!err)
614                         err = get_user(second, (u32 __user *)(sfar + 4));
615                 if (err) {
616                         if (!(asi & 0x2))
617                                 goto daex;
618                         first = second = 0;
619                 }
620                 save_and_clear_fpu();
621                 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
622                 value = (((u64)first) << 32) | second;
623                 if (asi & 0x8) /* Little */
624                         value = __swab64p(&value);
625                 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
626                 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
627                         current_thread_info()->fpsaved[0] = FPRS_FEF;
628                         current_thread_info()->gsr[0] = 0;
629                 }
630                 if (!(current_thread_info()->fpsaved[0] & flag)) {
631                         if (freg < 32)
632                                 memset(f->regs, 0, 32*sizeof(u32));
633                         else
634                                 memset(f->regs+32, 0, 32*sizeof(u32));
635                 }
636                 *(u64 *)(f->regs + freg) = value;
637                 current_thread_info()->fpsaved[0] |= flag;
638         } else {
639 daex:
640                 if (tlb_type == hypervisor)
641                         sun4v_data_access_exception(regs, sfar, sfsr);
642                 else
643                         spitfire_data_access_exception(regs, sfsr, sfar);
644                 goto out;
645         }
646         advance(regs);
647 out:
648         exception_exit(prev_state);
649 }
650
651 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
652 {
653         enum ctx_state prev_state = exception_enter();
654         unsigned long pc = regs->tpc;
655         unsigned long tstate = regs->tstate;
656         u32 insn;
657         u64 value;
658         u8 freg;
659         int flag;
660         struct fpustate *f = FPUSTATE;
661
662         if (tstate & TSTATE_PRIV)
663                 die_if_kernel("stdfmna from kernel", regs);
664         perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
665         if (test_thread_flag(TIF_32BIT))
666                 pc = (u32)pc;
667         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
668                 int asi = decode_asi(insn, regs);
669                 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
670                 value = 0;
671                 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
672                 if ((asi > ASI_SNFL) ||
673                     (asi < ASI_P))
674                         goto daex;
675                 save_and_clear_fpu();
676                 if (current_thread_info()->fpsaved[0] & flag)
677                         value = *(u64 *)&f->regs[freg];
678                 switch (asi) {
679                 case ASI_P:
680                 case ASI_S: break;
681                 case ASI_PL:
682                 case ASI_SL: 
683                         value = __swab64p(&value); break;
684                 default: goto daex;
685                 }
686                 if (put_user (value >> 32, (u32 __user *) sfar) ||
687                     __put_user ((u32)value, (u32 __user *)(sfar + 4)))
688                         goto daex;
689         } else {
690 daex:
691                 if (tlb_type == hypervisor)
692                         sun4v_data_access_exception(regs, sfar, sfsr);
693                 else
694                         spitfire_data_access_exception(regs, sfsr, sfar);
695                 goto out;
696         }
697         advance(regs);
698 out:
699         exception_exit(prev_state);
700 }