]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
regmap: debugfs: Fix seeking from the cache
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56 /* A bitmap, two bits for every 256MB of physical memory.  These two
57  * bits determine what page size we use for kernel linear
58  * translations.  They form an index into kern_linear_pte_xor[].  The
59  * value in the indexed slot is XOR'd with the TLB miss virtual
60  * address to form the resulting TTE.  The mapping is:
61  *
62  *      0       ==>     4MB
63  *      1       ==>     256MB
64  *      2       ==>     2GB
65  *      3       ==>     16GB
66  *
67  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
68  * support 2GB pages, and hopefully future cpus will support the 16GB
69  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
70  * if these larger page sizes are not supported by the cpu.
71  *
72  * It would be nice to determine this from the machine description
73  * 'cpu' properties, but we need to have this table setup before the
74  * MDESC is initialized.
75  */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80  * Space is allocated for this right after the trap table in
81  * arch/sparc64/kernel/head.S
82  */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85
86 static unsigned long cpu_pgsz_mask;
87
88 #define MAX_BANKS       32
89
90 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
91 static int pavail_ents __devinitdata;
92
93 static int cmp_p64(const void *a, const void *b)
94 {
95         const struct linux_prom64_registers *x = a, *y = b;
96
97         if (x->phys_addr > y->phys_addr)
98                 return 1;
99         if (x->phys_addr < y->phys_addr)
100                 return -1;
101         return 0;
102 }
103
104 static void __init read_obp_memory(const char *property,
105                                    struct linux_prom64_registers *regs,
106                                    int *num_ents)
107 {
108         phandle node = prom_finddevice("/memory");
109         int prop_size = prom_getproplen(node, property);
110         int ents, ret, i;
111
112         ents = prop_size / sizeof(struct linux_prom64_registers);
113         if (ents > MAX_BANKS) {
114                 prom_printf("The machine has more %s property entries than "
115                             "this kernel can support (%d).\n",
116                             property, MAX_BANKS);
117                 prom_halt();
118         }
119
120         ret = prom_getproperty(node, property, (char *) regs, prop_size);
121         if (ret == -1) {
122                 prom_printf("Couldn't get %s property from /memory.\n",
123                                 property);
124                 prom_halt();
125         }
126
127         /* Sanitize what we got from the firmware, by page aligning
128          * everything.
129          */
130         for (i = 0; i < ents; i++) {
131                 unsigned long base, size;
132
133                 base = regs[i].phys_addr;
134                 size = regs[i].reg_size;
135
136                 size &= PAGE_MASK;
137                 if (base & ~PAGE_MASK) {
138                         unsigned long new_base = PAGE_ALIGN(base);
139
140                         size -= new_base - base;
141                         if ((long) size < 0L)
142                                 size = 0UL;
143                         base = new_base;
144                 }
145                 if (size == 0UL) {
146                         /* If it is empty, simply get rid of it.
147                          * This simplifies the logic of the other
148                          * functions that process these arrays.
149                          */
150                         memmove(&regs[i], &regs[i + 1],
151                                 (ents - i - 1) * sizeof(regs[0]));
152                         i--;
153                         ents--;
154                         continue;
155                 }
156                 regs[i].phys_addr = base;
157                 regs[i].reg_size = size;
158         }
159
160         *num_ents = ents;
161
162         sort(regs, ents, sizeof(struct linux_prom64_registers),
163              cmp_p64, NULL);
164 }
165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167                                         sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187
188 int num_kernel_image_mappings;
189
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199         BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201         atomic_inc(&dcpage_flushes);
202 #endif
203
204 #ifdef DCACHE_ALIASING_POSSIBLE
205         __flush_dcache_page(page_address(page),
206                             ((tlb_type == spitfire) &&
207                              page_mapping(page) != NULL));
208 #else
209         if (page_mapping(page) != NULL &&
210             tlb_type == spitfire)
211                 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214
215 #define PG_dcache_dirty         PG_arch_1
216 #define PG_dcache_cpu_shift     32UL
217 #define PG_dcache_cpu_mask      \
218         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220 #define dcache_dirty_cpu(page) \
221         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225         unsigned long mask = this_cpu;
226         unsigned long non_cpu_bits;
227
228         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231         __asm__ __volatile__("1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "and       %%g7, %1, %%g1\n\t"
234                              "or        %%g1, %0, %%g1\n\t"
235                              "casx      [%2], %%g7, %%g1\n\t"
236                              "cmp       %%g7, %%g1\n\t"
237                              "bne,pn    %%xcc, 1b\n\t"
238                              " nop"
239                              : /* no outputs */
240                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241                              : "g1", "g7");
242 }
243
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246         unsigned long mask = (1UL << PG_dcache_dirty);
247
248         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249                              "1:\n\t"
250                              "ldx       [%2], %%g7\n\t"
251                              "srlx      %%g7, %4, %%g1\n\t"
252                              "and       %%g1, %3, %%g1\n\t"
253                              "cmp       %%g1, %0\n\t"
254                              "bne,pn    %%icc, 2f\n\t"
255                              " andn     %%g7, %1, %%g1\n\t"
256                              "casx      [%2], %%g7, %%g1\n\t"
257                              "cmp       %%g7, %%g1\n\t"
258                              "bne,pn    %%xcc, 1b\n\t"
259                              " nop\n"
260                              "2:"
261                              : /* no outputs */
262                              : "r" (cpu), "r" (mask), "r" (&page->flags),
263                                "i" (PG_dcache_cpu_mask),
264                                "i" (PG_dcache_cpu_shift)
265                              : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270         unsigned long tsb_addr = (unsigned long) ent;
271
272         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273                 tsb_addr = __pa(tsb_addr);
274
275         __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280 static void flush_dcache(unsigned long pfn)
281 {
282         struct page *page;
283
284         page = pfn_to_page(pfn);
285         if (page) {
286                 unsigned long pg_flags;
287
288                 pg_flags = page->flags;
289                 if (pg_flags & (1UL << PG_dcache_dirty)) {
290                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291                                    PG_dcache_cpu_mask);
292                         int this_cpu = get_cpu();
293
294                         /* This is just to optimize away some function calls
295                          * in the SMP case.
296                          */
297                         if (cpu == this_cpu)
298                                 flush_dcache_page_impl(page);
299                         else
300                                 smp_flush_dcache_page_impl(page, cpu);
301
302                         clear_dcache_dirty_cpu(page, cpu);
303
304                         put_cpu();
305                 }
306         }
307 }
308
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311                                     unsigned long tsb_hash_shift, unsigned long address,
312                                     unsigned long tte)
313 {
314         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315         unsigned long tag;
316
317         tsb += ((address >> tsb_hash_shift) &
318                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319         tag = (address >> 22UL);
320         tsb_insert(tsb, tag, tte);
321 }
322
323 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
324 {
325         unsigned long tsb_index, tsb_hash_shift, flags;
326         struct mm_struct *mm;
327         pte_t pte = *ptep;
328
329         if (tlb_type != hypervisor) {
330                 unsigned long pfn = pte_pfn(pte);
331
332                 if (pfn_valid(pfn))
333                         flush_dcache(pfn);
334         }
335
336         mm = vma->vm_mm;
337
338         tsb_index = MM_TSB_BASE;
339         tsb_hash_shift = PAGE_SHIFT;
340
341         spin_lock_irqsave(&mm->context.lock, flags);
342
343 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
344         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
345                 if ((tlb_type == hypervisor &&
346                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
347                     (tlb_type != hypervisor &&
348                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
349                         tsb_index = MM_TSB_HUGE;
350                         tsb_hash_shift = HPAGE_SHIFT;
351                 }
352         }
353 #endif
354
355         __update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift,
356                                 address, pte_val(pte));
357
358         spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360
361 void flush_dcache_page(struct page *page)
362 {
363         struct address_space *mapping;
364         int this_cpu;
365
366         if (tlb_type == hypervisor)
367                 return;
368
369         /* Do not bother with the expensive D-cache flush if it
370          * is merely the zero page.  The 'bigcore' testcase in GDB
371          * causes this case to run millions of times.
372          */
373         if (page == ZERO_PAGE(0))
374                 return;
375
376         this_cpu = get_cpu();
377
378         mapping = page_mapping(page);
379         if (mapping && !mapping_mapped(mapping)) {
380                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
381                 if (dirty) {
382                         int dirty_cpu = dcache_dirty_cpu(page);
383
384                         if (dirty_cpu == this_cpu)
385                                 goto out;
386                         smp_flush_dcache_page_impl(page, dirty_cpu);
387                 }
388                 set_dcache_dirty(page, this_cpu);
389         } else {
390                 /* We could delay the flush for the !page_mapping
391                  * case too.  But that case is for exec env/arg
392                  * pages and those are %99 certainly going to get
393                  * faulted into the tlb (and thus flushed) anyways.
394                  */
395                 flush_dcache_page_impl(page);
396         }
397
398 out:
399         put_cpu();
400 }
401 EXPORT_SYMBOL(flush_dcache_page);
402
403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406         if (tlb_type == spitfire) {
407                 unsigned long kaddr;
408
409                 /* This code only runs on Spitfire cpus so this is
410                  * why we can assume _PAGE_PADDR_4U.
411                  */
412                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413                         unsigned long paddr, mask = _PAGE_PADDR_4U;
414
415                         if (kaddr >= PAGE_OFFSET)
416                                 paddr = kaddr & mask;
417                         else {
418                                 pgd_t *pgdp = pgd_offset_k(kaddr);
419                                 pud_t *pudp = pud_offset(pgdp, kaddr);
420                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
421                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422
423                                 paddr = pte_val(*ptep) & mask;
424                         }
425                         __flush_icache_page(paddr);
426                 }
427         }
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430
431 void mmu_info(struct seq_file *m)
432 {
433         static const char *pgsz_strings[] = {
434                 "8K", "64K", "512K", "4MB", "32MB",
435                 "256MB", "2GB", "16GB",
436         };
437         int i, printed;
438
439         if (tlb_type == cheetah)
440                 seq_printf(m, "MMU Type\t: Cheetah\n");
441         else if (tlb_type == cheetah_plus)
442                 seq_printf(m, "MMU Type\t: Cheetah+\n");
443         else if (tlb_type == spitfire)
444                 seq_printf(m, "MMU Type\t: Spitfire\n");
445         else if (tlb_type == hypervisor)
446                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447         else
448                 seq_printf(m, "MMU Type\t: ???\n");
449
450         seq_printf(m, "MMU PGSZs\t: ");
451         printed = 0;
452         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453                 if (cpu_pgsz_mask & (1UL << i)) {
454                         seq_printf(m, "%s%s",
455                                    printed ? "," : "", pgsz_strings[i]);
456                         printed++;
457                 }
458         }
459         seq_putc(m, '\n');
460
461 #ifdef CONFIG_DEBUG_DCFLUSH
462         seq_printf(m, "DCPageFlushes\t: %d\n",
463                    atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465         seq_printf(m, "DCPageFlushesXC\t: %d\n",
466                    atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473
474 unsigned long kern_locked_tte_data;
475
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482         return (vaddr >= LOW_OBP_ADDRESS &&
483                 vaddr < HI_OBP_ADDRESS);
484 }
485
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488         const struct linux_prom_translation *x = a, *y = b;
489
490         if (x->virt > y->virt)
491                 return 1;
492         if (x->virt < y->virt)
493                 return -1;
494         return 0;
495 }
496
497 /* Read OBP translations property into 'prom_trans[]'.  */
498 static void __init read_obp_translations(void)
499 {
500         int n, node, ents, first, last, i;
501
502         node = prom_finddevice("/virtual-memory");
503         n = prom_getproplen(node, "translations");
504         if (unlikely(n == 0 || n == -1)) {
505                 prom_printf("prom_mappings: Couldn't get size.\n");
506                 prom_halt();
507         }
508         if (unlikely(n > sizeof(prom_trans))) {
509                 prom_printf("prom_mappings: Size %d is too big.\n", n);
510                 prom_halt();
511         }
512
513         if ((n = prom_getproperty(node, "translations",
514                                   (char *)&prom_trans[0],
515                                   sizeof(prom_trans))) == -1) {
516                 prom_printf("prom_mappings: Couldn't get property.\n");
517                 prom_halt();
518         }
519
520         n = n / sizeof(struct linux_prom_translation);
521
522         ents = n;
523
524         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525              cmp_ptrans, NULL);
526
527         /* Now kick out all the non-OBP entries.  */
528         for (i = 0; i < ents; i++) {
529                 if (in_obp_range(prom_trans[i].virt))
530                         break;
531         }
532         first = i;
533         for (; i < ents; i++) {
534                 if (!in_obp_range(prom_trans[i].virt))
535                         break;
536         }
537         last = i;
538
539         for (i = 0; i < (last - first); i++) {
540                 struct linux_prom_translation *src = &prom_trans[i + first];
541                 struct linux_prom_translation *dest = &prom_trans[i];
542
543                 *dest = *src;
544         }
545         for (; i < ents; i++) {
546                 struct linux_prom_translation *dest = &prom_trans[i];
547                 dest->virt = dest->size = dest->data = 0x0UL;
548         }
549
550         prom_trans_ents = last - first;
551
552         if (tlb_type == spitfire) {
553                 /* Clear diag TTE bits. */
554                 for (i = 0; i < prom_trans_ents; i++)
555                         prom_trans[i].data &= ~0x0003fe0000000000UL;
556         }
557
558         /* Force execute bit on.  */
559         for (i = 0; i < prom_trans_ents; i++)
560                 prom_trans[i].data |= (tlb_type == hypervisor ?
561                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
562 }
563
564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565                                        unsigned long pte,
566                                        unsigned long mmu)
567 {
568         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569
570         if (ret != 0) {
571                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573                 prom_halt();
574         }
575 }
576
577 static unsigned long kern_large_tte(unsigned long paddr);
578
579 static void __init remap_kernel(void)
580 {
581         unsigned long phys_page, tte_vaddr, tte_data;
582         int i, tlb_ent = sparc64_highest_locked_tlbent();
583
584         tte_vaddr = (unsigned long) KERNBASE;
585         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
586         tte_data = kern_large_tte(phys_page);
587
588         kern_locked_tte_data = tte_data;
589
590         /* Now lock us into the TLBs via Hypervisor or OBP. */
591         if (tlb_type == hypervisor) {
592                 for (i = 0; i < num_kernel_image_mappings; i++) {
593                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595                         tte_vaddr += 0x400000;
596                         tte_data += 0x400000;
597                 }
598         } else {
599                 for (i = 0; i < num_kernel_image_mappings; i++) {
600                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602                         tte_vaddr += 0x400000;
603                         tte_data += 0x400000;
604                 }
605                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
606         }
607         if (tlb_type == cheetah_plus) {
608                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609                                             CTX_CHEETAH_PLUS_NUC);
610                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612         }
613 }
614
615
616 static void __init inherit_prom_mappings(void)
617 {
618         /* Now fixup OBP's idea about where we really are mapped. */
619         printk("Remapping the kernel... ");
620         remap_kernel();
621         printk("done.\n");
622 }
623
624 void prom_world(int enter)
625 {
626         if (!enter)
627                 set_fs(get_fs());
628
629         __asm__ __volatile__("flushw");
630 }
631
632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634         unsigned long va;
635
636         if (tlb_type == spitfire) {
637                 int n = 0;
638
639                 for (va = start; va < end; va += 32) {
640                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641                         if (++n >= 512)
642                                 break;
643                 }
644         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645                 start = __pa(start);
646                 end = __pa(end);
647                 for (va = start; va < end; va += 32)
648                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649                                              "membar #Sync"
650                                              : /* no outputs */
651                                              : "r" (va),
652                                                "i" (ASI_DCACHE_INVALIDATE));
653         }
654 }
655 EXPORT_SYMBOL(__flush_dcache_range);
656
657 /* get_new_mmu_context() uses "cache + 1".  */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
659 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
660 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663
664 /* Caller does TLB context flushing on local CPU if necessary.
665  * The caller also ensures that CTX_VALID(mm->context) is false.
666  *
667  * We must be careful about boundary cases so that we never
668  * let the user have CTX 0 (nucleus) or we ever use a CTX
669  * version of zero (and thus NO_CONTEXT would not be caught
670  * by version mis-match tests in mmu_context.h).
671  *
672  * Always invoked with interrupts disabled.
673  */
674 void get_new_mmu_context(struct mm_struct *mm)
675 {
676         unsigned long ctx, new_ctx;
677         unsigned long orig_pgsz_bits;
678         unsigned long flags;
679         int new_version;
680
681         spin_lock_irqsave(&ctx_alloc_lock, flags);
682         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
683         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
684         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
685         new_version = 0;
686         if (new_ctx >= (1 << CTX_NR_BITS)) {
687                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
688                 if (new_ctx >= ctx) {
689                         int i;
690                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
691                                 CTX_FIRST_VERSION;
692                         if (new_ctx == 1)
693                                 new_ctx = CTX_FIRST_VERSION;
694
695                         /* Don't call memset, for 16 entries that's just
696                          * plain silly...
697                          */
698                         mmu_context_bmap[0] = 3;
699                         mmu_context_bmap[1] = 0;
700                         mmu_context_bmap[2] = 0;
701                         mmu_context_bmap[3] = 0;
702                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
703                                 mmu_context_bmap[i + 0] = 0;
704                                 mmu_context_bmap[i + 1] = 0;
705                                 mmu_context_bmap[i + 2] = 0;
706                                 mmu_context_bmap[i + 3] = 0;
707                         }
708                         new_version = 1;
709                         goto out;
710                 }
711         }
712         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
713         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
714 out:
715         tlb_context_cache = new_ctx;
716         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
717         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
718
719         if (unlikely(new_version))
720                 smp_new_mmu_context_version();
721 }
722
723 static int numa_enabled = 1;
724 static int numa_debug;
725
726 static int __init early_numa(char *p)
727 {
728         if (!p)
729                 return 0;
730
731         if (strstr(p, "off"))
732                 numa_enabled = 0;
733
734         if (strstr(p, "debug"))
735                 numa_debug = 1;
736
737         return 0;
738 }
739 early_param("numa", early_numa);
740
741 #define numadbg(f, a...) \
742 do {    if (numa_debug) \
743                 printk(KERN_INFO f, ## a); \
744 } while (0)
745
746 static void __init find_ramdisk(unsigned long phys_base)
747 {
748 #ifdef CONFIG_BLK_DEV_INITRD
749         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
750                 unsigned long ramdisk_image;
751
752                 /* Older versions of the bootloader only supported a
753                  * 32-bit physical address for the ramdisk image
754                  * location, stored at sparc_ramdisk_image.  Newer
755                  * SILO versions set sparc_ramdisk_image to zero and
756                  * provide a full 64-bit physical address at
757                  * sparc_ramdisk_image64.
758                  */
759                 ramdisk_image = sparc_ramdisk_image;
760                 if (!ramdisk_image)
761                         ramdisk_image = sparc_ramdisk_image64;
762
763                 /* Another bootloader quirk.  The bootloader normalizes
764                  * the physical address to KERNBASE, so we have to
765                  * factor that back out and add in the lowest valid
766                  * physical page address to get the true physical address.
767                  */
768                 ramdisk_image -= KERNBASE;
769                 ramdisk_image += phys_base;
770
771                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
772                         ramdisk_image, sparc_ramdisk_size);
773
774                 initrd_start = ramdisk_image;
775                 initrd_end = ramdisk_image + sparc_ramdisk_size;
776
777                 memblock_reserve(initrd_start, sparc_ramdisk_size);
778
779                 initrd_start += PAGE_OFFSET;
780                 initrd_end += PAGE_OFFSET;
781         }
782 #endif
783 }
784
785 struct node_mem_mask {
786         unsigned long mask;
787         unsigned long val;
788 };
789 static struct node_mem_mask node_masks[MAX_NUMNODES];
790 static int num_node_masks;
791
792 int numa_cpu_lookup_table[NR_CPUS];
793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794
795 #ifdef CONFIG_NEED_MULTIPLE_NODES
796
797 struct mdesc_mblock {
798         u64     base;
799         u64     size;
800         u64     offset; /* RA-to-PA */
801 };
802 static struct mdesc_mblock *mblocks;
803 static int num_mblocks;
804
805 static unsigned long ra_to_pa(unsigned long addr)
806 {
807         int i;
808
809         for (i = 0; i < num_mblocks; i++) {
810                 struct mdesc_mblock *m = &mblocks[i];
811
812                 if (addr >= m->base &&
813                     addr < (m->base + m->size)) {
814                         addr += m->offset;
815                         break;
816                 }
817         }
818         return addr;
819 }
820
821 static int find_node(unsigned long addr)
822 {
823         int i;
824
825         addr = ra_to_pa(addr);
826         for (i = 0; i < num_node_masks; i++) {
827                 struct node_mem_mask *p = &node_masks[i];
828
829                 if ((addr & p->mask) == p->val)
830                         return i;
831         }
832         return -1;
833 }
834
835 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
836 {
837         *nid = find_node(start);
838         start += PAGE_SIZE;
839         while (start < end) {
840                 int n = find_node(start);
841
842                 if (n != *nid)
843                         break;
844                 start += PAGE_SIZE;
845         }
846
847         if (start > end)
848                 start = end;
849
850         return start;
851 }
852 #endif
853
854 /* This must be invoked after performing all of the necessary
855  * memblock_set_node() calls for 'nid'.  We need to be able to get
856  * correct data from get_pfn_range_for_nid().
857  */
858 static void __init allocate_node_data(int nid)
859 {
860         struct pglist_data *p;
861         unsigned long start_pfn, end_pfn;
862 #ifdef CONFIG_NEED_MULTIPLE_NODES
863         unsigned long paddr;
864
865         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
866         if (!paddr) {
867                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
868                 prom_halt();
869         }
870         NODE_DATA(nid) = __va(paddr);
871         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
872
873         NODE_DATA(nid)->node_id = nid;
874 #endif
875
876         p = NODE_DATA(nid);
877
878         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
879         p->node_start_pfn = start_pfn;
880         p->node_spanned_pages = end_pfn - start_pfn;
881 }
882
883 static void init_node_masks_nonnuma(void)
884 {
885         int i;
886
887         numadbg("Initializing tables for non-numa.\n");
888
889         node_masks[0].mask = node_masks[0].val = 0;
890         num_node_masks = 1;
891
892         for (i = 0; i < NR_CPUS; i++)
893                 numa_cpu_lookup_table[i] = 0;
894
895         cpumask_setall(&numa_cpumask_lookup_table[0]);
896 }
897
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 struct pglist_data *node_data[MAX_NUMNODES];
900
901 EXPORT_SYMBOL(numa_cpu_lookup_table);
902 EXPORT_SYMBOL(numa_cpumask_lookup_table);
903 EXPORT_SYMBOL(node_data);
904
905 struct mdesc_mlgroup {
906         u64     node;
907         u64     latency;
908         u64     match;
909         u64     mask;
910 };
911 static struct mdesc_mlgroup *mlgroups;
912 static int num_mlgroups;
913
914 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
915                                    u32 cfg_handle)
916 {
917         u64 arc;
918
919         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
920                 u64 target = mdesc_arc_target(md, arc);
921                 const u64 *val;
922
923                 val = mdesc_get_property(md, target,
924                                          "cfg-handle", NULL);
925                 if (val && *val == cfg_handle)
926                         return 0;
927         }
928         return -ENODEV;
929 }
930
931 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
932                                     u32 cfg_handle)
933 {
934         u64 arc, candidate, best_latency = ~(u64)0;
935
936         candidate = MDESC_NODE_NULL;
937         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
938                 u64 target = mdesc_arc_target(md, arc);
939                 const char *name = mdesc_node_name(md, target);
940                 const u64 *val;
941
942                 if (strcmp(name, "pio-latency-group"))
943                         continue;
944
945                 val = mdesc_get_property(md, target, "latency", NULL);
946                 if (!val)
947                         continue;
948
949                 if (*val < best_latency) {
950                         candidate = target;
951                         best_latency = *val;
952                 }
953         }
954
955         if (candidate == MDESC_NODE_NULL)
956                 return -ENODEV;
957
958         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
959 }
960
961 int of_node_to_nid(struct device_node *dp)
962 {
963         const struct linux_prom64_registers *regs;
964         struct mdesc_handle *md;
965         u32 cfg_handle;
966         int count, nid;
967         u64 grp;
968
969         /* This is the right thing to do on currently supported
970          * SUN4U NUMA platforms as well, as the PCI controller does
971          * not sit behind any particular memory controller.
972          */
973         if (!mlgroups)
974                 return -1;
975
976         regs = of_get_property(dp, "reg", NULL);
977         if (!regs)
978                 return -1;
979
980         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
981
982         md = mdesc_grab();
983
984         count = 0;
985         nid = -1;
986         mdesc_for_each_node_by_name(md, grp, "group") {
987                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
988                         nid = count;
989                         break;
990                 }
991                 count++;
992         }
993
994         mdesc_release(md);
995
996         return nid;
997 }
998
999 static void __init add_node_ranges(void)
1000 {
1001         struct memblock_region *reg;
1002
1003         for_each_memblock(memory, reg) {
1004                 unsigned long size = reg->size;
1005                 unsigned long start, end;
1006
1007                 start = reg->base;
1008                 end = start + size;
1009                 while (start < end) {
1010                         unsigned long this_end;
1011                         int nid;
1012
1013                         this_end = memblock_nid_range(start, end, &nid);
1014
1015                         numadbg("Setting memblock NUMA node nid[%d] "
1016                                 "start[%lx] end[%lx]\n",
1017                                 nid, start, this_end);
1018
1019                         memblock_set_node(start, this_end - start, nid);
1020                         start = this_end;
1021                 }
1022         }
1023 }
1024
1025 static int __init grab_mlgroups(struct mdesc_handle *md)
1026 {
1027         unsigned long paddr;
1028         int count = 0;
1029         u64 node;
1030
1031         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1032                 count++;
1033         if (!count)
1034                 return -ENOENT;
1035
1036         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1037                           SMP_CACHE_BYTES);
1038         if (!paddr)
1039                 return -ENOMEM;
1040
1041         mlgroups = __va(paddr);
1042         num_mlgroups = count;
1043
1044         count = 0;
1045         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1046                 struct mdesc_mlgroup *m = &mlgroups[count++];
1047                 const u64 *val;
1048
1049                 m->node = node;
1050
1051                 val = mdesc_get_property(md, node, "latency", NULL);
1052                 m->latency = *val;
1053                 val = mdesc_get_property(md, node, "address-match", NULL);
1054                 m->match = *val;
1055                 val = mdesc_get_property(md, node, "address-mask", NULL);
1056                 m->mask = *val;
1057
1058                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1059                         "match[%llx] mask[%llx]\n",
1060                         count - 1, m->node, m->latency, m->match, m->mask);
1061         }
1062
1063         return 0;
1064 }
1065
1066 static int __init grab_mblocks(struct mdesc_handle *md)
1067 {
1068         unsigned long paddr;
1069         int count = 0;
1070         u64 node;
1071
1072         mdesc_for_each_node_by_name(md, node, "mblock")
1073                 count++;
1074         if (!count)
1075                 return -ENOENT;
1076
1077         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1078                           SMP_CACHE_BYTES);
1079         if (!paddr)
1080                 return -ENOMEM;
1081
1082         mblocks = __va(paddr);
1083         num_mblocks = count;
1084
1085         count = 0;
1086         mdesc_for_each_node_by_name(md, node, "mblock") {
1087                 struct mdesc_mblock *m = &mblocks[count++];
1088                 const u64 *val;
1089
1090                 val = mdesc_get_property(md, node, "base", NULL);
1091                 m->base = *val;
1092                 val = mdesc_get_property(md, node, "size", NULL);
1093                 m->size = *val;
1094                 val = mdesc_get_property(md, node,
1095                                          "address-congruence-offset", NULL);
1096                 m->offset = *val;
1097
1098                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1099                         count - 1, m->base, m->size, m->offset);
1100         }
1101
1102         return 0;
1103 }
1104
1105 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1106                                                u64 grp, cpumask_t *mask)
1107 {
1108         u64 arc;
1109
1110         cpumask_clear(mask);
1111
1112         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1113                 u64 target = mdesc_arc_target(md, arc);
1114                 const char *name = mdesc_node_name(md, target);
1115                 const u64 *id;
1116
1117                 if (strcmp(name, "cpu"))
1118                         continue;
1119                 id = mdesc_get_property(md, target, "id", NULL);
1120                 if (*id < nr_cpu_ids)
1121                         cpumask_set_cpu(*id, mask);
1122         }
1123 }
1124
1125 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1126 {
1127         int i;
1128
1129         for (i = 0; i < num_mlgroups; i++) {
1130                 struct mdesc_mlgroup *m = &mlgroups[i];
1131                 if (m->node == node)
1132                         return m;
1133         }
1134         return NULL;
1135 }
1136
1137 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1138                                       int index)
1139 {
1140         struct mdesc_mlgroup *candidate = NULL;
1141         u64 arc, best_latency = ~(u64)0;
1142         struct node_mem_mask *n;
1143
1144         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1145                 u64 target = mdesc_arc_target(md, arc);
1146                 struct mdesc_mlgroup *m = find_mlgroup(target);
1147                 if (!m)
1148                         continue;
1149                 if (m->latency < best_latency) {
1150                         candidate = m;
1151                         best_latency = m->latency;
1152                 }
1153         }
1154         if (!candidate)
1155                 return -ENOENT;
1156
1157         if (num_node_masks != index) {
1158                 printk(KERN_ERR "Inconsistent NUMA state, "
1159                        "index[%d] != num_node_masks[%d]\n",
1160                        index, num_node_masks);
1161                 return -EINVAL;
1162         }
1163
1164         n = &node_masks[num_node_masks++];
1165
1166         n->mask = candidate->mask;
1167         n->val = candidate->match;
1168
1169         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1170                 index, n->mask, n->val, candidate->latency);
1171
1172         return 0;
1173 }
1174
1175 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1176                                          int index)
1177 {
1178         cpumask_t mask;
1179         int cpu;
1180
1181         numa_parse_mdesc_group_cpus(md, grp, &mask);
1182
1183         for_each_cpu(cpu, &mask)
1184                 numa_cpu_lookup_table[cpu] = index;
1185         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1186
1187         if (numa_debug) {
1188                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1189                 for_each_cpu(cpu, &mask)
1190                         printk("%d ", cpu);
1191                 printk("]\n");
1192         }
1193
1194         return numa_attach_mlgroup(md, grp, index);
1195 }
1196
1197 static int __init numa_parse_mdesc(void)
1198 {
1199         struct mdesc_handle *md = mdesc_grab();
1200         int i, err, count;
1201         u64 node;
1202
1203         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1204         if (node == MDESC_NODE_NULL) {
1205                 mdesc_release(md);
1206                 return -ENOENT;
1207         }
1208
1209         err = grab_mblocks(md);
1210         if (err < 0)
1211                 goto out;
1212
1213         err = grab_mlgroups(md);
1214         if (err < 0)
1215                 goto out;
1216
1217         count = 0;
1218         mdesc_for_each_node_by_name(md, node, "group") {
1219                 err = numa_parse_mdesc_group(md, node, count);
1220                 if (err < 0)
1221                         break;
1222                 count++;
1223         }
1224
1225         add_node_ranges();
1226
1227         for (i = 0; i < num_node_masks; i++) {
1228                 allocate_node_data(i);
1229                 node_set_online(i);
1230         }
1231
1232         err = 0;
1233 out:
1234         mdesc_release(md);
1235         return err;
1236 }
1237
1238 static int __init numa_parse_jbus(void)
1239 {
1240         unsigned long cpu, index;
1241
1242         /* NUMA node id is encoded in bits 36 and higher, and there is
1243          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1244          */
1245         index = 0;
1246         for_each_present_cpu(cpu) {
1247                 numa_cpu_lookup_table[cpu] = index;
1248                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1249                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1250                 node_masks[index].val = cpu << 36UL;
1251
1252                 index++;
1253         }
1254         num_node_masks = index;
1255
1256         add_node_ranges();
1257
1258         for (index = 0; index < num_node_masks; index++) {
1259                 allocate_node_data(index);
1260                 node_set_online(index);
1261         }
1262
1263         return 0;
1264 }
1265
1266 static int __init numa_parse_sun4u(void)
1267 {
1268         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1269                 unsigned long ver;
1270
1271                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1272                 if ((ver >> 32UL) == __JALAPENO_ID ||
1273                     (ver >> 32UL) == __SERRANO_ID)
1274                         return numa_parse_jbus();
1275         }
1276         return -1;
1277 }
1278
1279 static int __init bootmem_init_numa(void)
1280 {
1281         int err = -1;
1282
1283         numadbg("bootmem_init_numa()\n");
1284
1285         if (numa_enabled) {
1286                 if (tlb_type == hypervisor)
1287                         err = numa_parse_mdesc();
1288                 else
1289                         err = numa_parse_sun4u();
1290         }
1291         return err;
1292 }
1293
1294 #else
1295
1296 static int bootmem_init_numa(void)
1297 {
1298         return -1;
1299 }
1300
1301 #endif
1302
1303 static void __init bootmem_init_nonnuma(void)
1304 {
1305         unsigned long top_of_ram = memblock_end_of_DRAM();
1306         unsigned long total_ram = memblock_phys_mem_size();
1307
1308         numadbg("bootmem_init_nonnuma()\n");
1309
1310         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1311                top_of_ram, total_ram);
1312         printk(KERN_INFO "Memory hole size: %ldMB\n",
1313                (top_of_ram - total_ram) >> 20);
1314
1315         init_node_masks_nonnuma();
1316         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1317         allocate_node_data(0);
1318         node_set_online(0);
1319 }
1320
1321 static unsigned long __init bootmem_init(unsigned long phys_base)
1322 {
1323         unsigned long end_pfn;
1324
1325         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1326         max_pfn = max_low_pfn = end_pfn;
1327         min_low_pfn = (phys_base >> PAGE_SHIFT);
1328
1329         if (bootmem_init_numa() < 0)
1330                 bootmem_init_nonnuma();
1331
1332         /* Dump memblock with node info. */
1333         memblock_dump_all();
1334
1335         /* XXX cpu notifier XXX */
1336
1337         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1338         sparse_init();
1339
1340         return end_pfn;
1341 }
1342
1343 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1344 static int pall_ents __initdata;
1345
1346 #ifdef CONFIG_DEBUG_PAGEALLOC
1347 static unsigned long __ref kernel_map_range(unsigned long pstart,
1348                                             unsigned long pend, pgprot_t prot)
1349 {
1350         unsigned long vstart = PAGE_OFFSET + pstart;
1351         unsigned long vend = PAGE_OFFSET + pend;
1352         unsigned long alloc_bytes = 0UL;
1353
1354         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1355                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1356                             vstart, vend);
1357                 prom_halt();
1358         }
1359
1360         while (vstart < vend) {
1361                 unsigned long this_end, paddr = __pa(vstart);
1362                 pgd_t *pgd = pgd_offset_k(vstart);
1363                 pud_t *pud;
1364                 pmd_t *pmd;
1365                 pte_t *pte;
1366
1367                 pud = pud_offset(pgd, vstart);
1368                 if (pud_none(*pud)) {
1369                         pmd_t *new;
1370
1371                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1372                         alloc_bytes += PAGE_SIZE;
1373                         pud_populate(&init_mm, pud, new);
1374                 }
1375
1376                 pmd = pmd_offset(pud, vstart);
1377                 if (!pmd_present(*pmd)) {
1378                         pte_t *new;
1379
1380                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1381                         alloc_bytes += PAGE_SIZE;
1382                         pmd_populate_kernel(&init_mm, pmd, new);
1383                 }
1384
1385                 pte = pte_offset_kernel(pmd, vstart);
1386                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1387                 if (this_end > vend)
1388                         this_end = vend;
1389
1390                 while (vstart < this_end) {
1391                         pte_val(*pte) = (paddr | pgprot_val(prot));
1392
1393                         vstart += PAGE_SIZE;
1394                         paddr += PAGE_SIZE;
1395                         pte++;
1396                 }
1397         }
1398
1399         return alloc_bytes;
1400 }
1401
1402 extern unsigned int kvmap_linear_patch[1];
1403 #endif /* CONFIG_DEBUG_PAGEALLOC */
1404
1405 static void __init kpte_set_val(unsigned long index, unsigned long val)
1406 {
1407         unsigned long *ptr = kpte_linear_bitmap;
1408
1409         val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1410         ptr += (index / (BITS_PER_LONG / 2));
1411
1412         *ptr |= val;
1413 }
1414
1415 static const unsigned long kpte_shift_min = 28; /* 256MB */
1416 static const unsigned long kpte_shift_max = 34; /* 16GB */
1417 static const unsigned long kpte_shift_incr = 3;
1418
1419 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1420                                            unsigned long shift)
1421 {
1422         unsigned long size = (1UL << shift);
1423         unsigned long mask = (size - 1UL);
1424         unsigned long remains = end - start;
1425         unsigned long val;
1426
1427         if (remains < size || (start & mask))
1428                 return start;
1429
1430         /* VAL maps:
1431          *
1432          *      shift 28 --> kern_linear_pte_xor index 1
1433          *      shift 31 --> kern_linear_pte_xor index 2
1434          *      shift 34 --> kern_linear_pte_xor index 3
1435          */
1436         val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1437
1438         remains &= ~mask;
1439         if (shift != kpte_shift_max)
1440                 remains = size;
1441
1442         while (remains) {
1443                 unsigned long index = start >> kpte_shift_min;
1444
1445                 kpte_set_val(index, val);
1446
1447                 start += 1UL << kpte_shift_min;
1448                 remains -= 1UL << kpte_shift_min;
1449         }
1450
1451         return start;
1452 }
1453
1454 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1455 {
1456         unsigned long smallest_size, smallest_mask;
1457         unsigned long s;
1458
1459         smallest_size = (1UL << kpte_shift_min);
1460         smallest_mask = (smallest_size - 1UL);
1461
1462         while (start < end) {
1463                 unsigned long orig_start = start;
1464
1465                 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1466                         start = kpte_mark_using_shift(start, end, s);
1467
1468                         if (start != orig_start)
1469                                 break;
1470                 }
1471
1472                 if (start == orig_start)
1473                         start = (start + smallest_size) & ~smallest_mask;
1474         }
1475 }
1476
1477 static void __init init_kpte_bitmap(void)
1478 {
1479         unsigned long i;
1480
1481         for (i = 0; i < pall_ents; i++) {
1482                 unsigned long phys_start, phys_end;
1483
1484                 phys_start = pall[i].phys_addr;
1485                 phys_end = phys_start + pall[i].reg_size;
1486
1487                 mark_kpte_bitmap(phys_start, phys_end);
1488         }
1489 }
1490
1491 static void __init kernel_physical_mapping_init(void)
1492 {
1493 #ifdef CONFIG_DEBUG_PAGEALLOC
1494         unsigned long i, mem_alloced = 0UL;
1495
1496         for (i = 0; i < pall_ents; i++) {
1497                 unsigned long phys_start, phys_end;
1498
1499                 phys_start = pall[i].phys_addr;
1500                 phys_end = phys_start + pall[i].reg_size;
1501
1502                 mem_alloced += kernel_map_range(phys_start, phys_end,
1503                                                 PAGE_KERNEL);
1504         }
1505
1506         printk("Allocated %ld bytes for kernel page tables.\n",
1507                mem_alloced);
1508
1509         kvmap_linear_patch[0] = 0x01000000; /* nop */
1510         flushi(&kvmap_linear_patch[0]);
1511
1512         __flush_tlb_all();
1513 #endif
1514 }
1515
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 void kernel_map_pages(struct page *page, int numpages, int enable)
1518 {
1519         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1520         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1521
1522         kernel_map_range(phys_start, phys_end,
1523                          (enable ? PAGE_KERNEL : __pgprot(0)));
1524
1525         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1526                                PAGE_OFFSET + phys_end);
1527
1528         /* we should perform an IPI and flush all tlbs,
1529          * but that can deadlock->flush only current cpu.
1530          */
1531         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1532                                  PAGE_OFFSET + phys_end);
1533 }
1534 #endif
1535
1536 unsigned long __init find_ecache_flush_span(unsigned long size)
1537 {
1538         int i;
1539
1540         for (i = 0; i < pavail_ents; i++) {
1541                 if (pavail[i].reg_size >= size)
1542                         return pavail[i].phys_addr;
1543         }
1544
1545         return ~0UL;
1546 }
1547
1548 static void __init tsb_phys_patch(void)
1549 {
1550         struct tsb_ldquad_phys_patch_entry *pquad;
1551         struct tsb_phys_patch_entry *p;
1552
1553         pquad = &__tsb_ldquad_phys_patch;
1554         while (pquad < &__tsb_ldquad_phys_patch_end) {
1555                 unsigned long addr = pquad->addr;
1556
1557                 if (tlb_type == hypervisor)
1558                         *(unsigned int *) addr = pquad->sun4v_insn;
1559                 else
1560                         *(unsigned int *) addr = pquad->sun4u_insn;
1561                 wmb();
1562                 __asm__ __volatile__("flush     %0"
1563                                      : /* no outputs */
1564                                      : "r" (addr));
1565
1566                 pquad++;
1567         }
1568
1569         p = &__tsb_phys_patch;
1570         while (p < &__tsb_phys_patch_end) {
1571                 unsigned long addr = p->addr;
1572
1573                 *(unsigned int *) addr = p->insn;
1574                 wmb();
1575                 __asm__ __volatile__("flush     %0"
1576                                      : /* no outputs */
1577                                      : "r" (addr));
1578
1579                 p++;
1580         }
1581 }
1582
1583 /* Don't mark as init, we give this to the Hypervisor.  */
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585 #define NUM_KTSB_DESCR  2
1586 #else
1587 #define NUM_KTSB_DESCR  1
1588 #endif
1589 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1590 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1591
1592 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1593 {
1594         pa >>= KTSB_PHYS_SHIFT;
1595
1596         while (start < end) {
1597                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1598
1599                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1600                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1601
1602                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1603                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1604
1605                 start++;
1606         }
1607 }
1608
1609 static void ktsb_phys_patch(void)
1610 {
1611         extern unsigned int __swapper_tsb_phys_patch;
1612         extern unsigned int __swapper_tsb_phys_patch_end;
1613         unsigned long ktsb_pa;
1614
1615         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1617                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1618 #ifndef CONFIG_DEBUG_PAGEALLOC
1619         {
1620         extern unsigned int __swapper_4m_tsb_phys_patch;
1621         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1622         ktsb_pa = (kern_base +
1623                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1624         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1625                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1626         }
1627 #endif
1628 }
1629
1630 static void __init sun4v_ktsb_init(void)
1631 {
1632         unsigned long ktsb_pa;
1633
1634         /* First KTSB for PAGE_SIZE mappings.  */
1635         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1636
1637         switch (PAGE_SIZE) {
1638         case 8 * 1024:
1639         default:
1640                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1641                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1642                 break;
1643
1644         case 64 * 1024:
1645                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1646                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1647                 break;
1648
1649         case 512 * 1024:
1650                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1651                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1652                 break;
1653
1654         case 4 * 1024 * 1024:
1655                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1656                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1657                 break;
1658         }
1659
1660         ktsb_descr[0].assoc = 1;
1661         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1662         ktsb_descr[0].ctx_idx = 0;
1663         ktsb_descr[0].tsb_base = ktsb_pa;
1664         ktsb_descr[0].resv = 0;
1665
1666 #ifndef CONFIG_DEBUG_PAGEALLOC
1667         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1668         ktsb_pa = (kern_base +
1669                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1670
1671         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1672         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1673                                     HV_PGSZ_MASK_256MB |
1674                                     HV_PGSZ_MASK_2GB |
1675                                     HV_PGSZ_MASK_16GB) &
1676                                    cpu_pgsz_mask);
1677         ktsb_descr[1].assoc = 1;
1678         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1679         ktsb_descr[1].ctx_idx = 0;
1680         ktsb_descr[1].tsb_base = ktsb_pa;
1681         ktsb_descr[1].resv = 0;
1682 #endif
1683 }
1684
1685 void __cpuinit sun4v_ktsb_register(void)
1686 {
1687         unsigned long pa, ret;
1688
1689         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1690
1691         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1692         if (ret != 0) {
1693                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1694                             "errors with %lx\n", pa, ret);
1695                 prom_halt();
1696         }
1697 }
1698
1699 static void __init sun4u_linear_pte_xor_finalize(void)
1700 {
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702         /* This is where we would add Panther support for
1703          * 32MB and 256MB pages.
1704          */
1705 #endif
1706 }
1707
1708 static void __init sun4v_linear_pte_xor_finalize(void)
1709 {
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1712                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1713                         0xfffff80000000000UL;
1714                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1715                                            _PAGE_P_4V | _PAGE_W_4V);
1716         } else {
1717                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1718         }
1719
1720         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1721                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1722                         0xfffff80000000000UL;
1723                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1724                                            _PAGE_P_4V | _PAGE_W_4V);
1725         } else {
1726                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1727         }
1728
1729         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1730                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1731                         0xfffff80000000000UL;
1732                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1733                                            _PAGE_P_4V | _PAGE_W_4V);
1734         } else {
1735                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1736         }
1737 #endif
1738 }
1739
1740 /* paging_init() sets up the page tables */
1741
1742 static unsigned long last_valid_pfn;
1743 pgd_t swapper_pg_dir[2048];
1744
1745 static void sun4u_pgprot_init(void);
1746 static void sun4v_pgprot_init(void);
1747
1748 void __init paging_init(void)
1749 {
1750         unsigned long end_pfn, shift, phys_base;
1751         unsigned long real_end, i;
1752         int node;
1753
1754         /* These build time checkes make sure that the dcache_dirty_cpu()
1755          * page->flags usage will work.
1756          *
1757          * When a page gets marked as dcache-dirty, we store the
1758          * cpu number starting at bit 32 in the page->flags.  Also,
1759          * functions like clear_dcache_dirty_cpu use the cpu mask
1760          * in 13-bit signed-immediate instruction fields.
1761          */
1762
1763         /*
1764          * Page flags must not reach into upper 32 bits that are used
1765          * for the cpu number
1766          */
1767         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1768
1769         /*
1770          * The bit fields placed in the high range must not reach below
1771          * the 32 bit boundary. Otherwise we cannot place the cpu field
1772          * at the 32 bit boundary.
1773          */
1774         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1775                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1776
1777         BUILD_BUG_ON(NR_CPUS > 4096);
1778
1779         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1780         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1781
1782         /* Invalidate both kernel TSBs.  */
1783         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1784 #ifndef CONFIG_DEBUG_PAGEALLOC
1785         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1786 #endif
1787
1788         if (tlb_type == hypervisor)
1789                 sun4v_pgprot_init();
1790         else
1791                 sun4u_pgprot_init();
1792
1793         if (tlb_type == cheetah_plus ||
1794             tlb_type == hypervisor) {
1795                 tsb_phys_patch();
1796                 ktsb_phys_patch();
1797         }
1798
1799         if (tlb_type == hypervisor)
1800                 sun4v_patch_tlb_handlers();
1801
1802         /* Find available physical memory...
1803          *
1804          * Read it twice in order to work around a bug in openfirmware.
1805          * The call to grab this table itself can cause openfirmware to
1806          * allocate memory, which in turn can take away some space from
1807          * the list of available memory.  Reading it twice makes sure
1808          * we really do get the final value.
1809          */
1810         read_obp_translations();
1811         read_obp_memory("reg", &pall[0], &pall_ents);
1812         read_obp_memory("available", &pavail[0], &pavail_ents);
1813         read_obp_memory("available", &pavail[0], &pavail_ents);
1814
1815         phys_base = 0xffffffffffffffffUL;
1816         for (i = 0; i < pavail_ents; i++) {
1817                 phys_base = min(phys_base, pavail[i].phys_addr);
1818                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1819         }
1820
1821         memblock_reserve(kern_base, kern_size);
1822
1823         find_ramdisk(phys_base);
1824
1825         memblock_enforce_memory_limit(cmdline_memory_size);
1826
1827         memblock_allow_resize();
1828         memblock_dump_all();
1829
1830         set_bit(0, mmu_context_bmap);
1831
1832         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1833
1834         real_end = (unsigned long)_end;
1835         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1836         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1837                num_kernel_image_mappings);
1838
1839         /* Set kernel pgd to upper alias so physical page computations
1840          * work.
1841          */
1842         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1843         
1844         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1845
1846         /* Now can init the kernel/bad page tables. */
1847         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1848                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1849         
1850         inherit_prom_mappings();
1851         
1852         init_kpte_bitmap();
1853
1854         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1855         setup_tba();
1856
1857         __flush_tlb_all();
1858
1859         prom_build_devicetree();
1860         of_populate_present_mask();
1861 #ifndef CONFIG_SMP
1862         of_fill_in_cpu_data();
1863 #endif
1864
1865         if (tlb_type == hypervisor) {
1866                 sun4v_mdesc_init();
1867                 mdesc_populate_present_mask(cpu_all_mask);
1868 #ifndef CONFIG_SMP
1869                 mdesc_fill_in_cpu_data(cpu_all_mask);
1870 #endif
1871                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1872
1873                 sun4v_linear_pte_xor_finalize();
1874
1875                 sun4v_ktsb_init();
1876                 sun4v_ktsb_register();
1877         } else {
1878                 unsigned long impl, ver;
1879
1880                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1881                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1882
1883                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1884                 impl = ((ver >> 32) & 0xffff);
1885                 if (impl == PANTHER_IMPL)
1886                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1887                                           HV_PGSZ_MASK_256MB);
1888
1889                 sun4u_linear_pte_xor_finalize();
1890         }
1891
1892         /* Flush the TLBs and the 4M TSB so that the updated linear
1893          * pte XOR settings are realized for all mappings.
1894          */
1895         __flush_tlb_all();
1896 #ifndef CONFIG_DEBUG_PAGEALLOC
1897         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1898 #endif
1899         __flush_tlb_all();
1900
1901         /* Setup bootmem... */
1902         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1903
1904         /* Once the OF device tree and MDESC have been setup, we know
1905          * the list of possible cpus.  Therefore we can allocate the
1906          * IRQ stacks.
1907          */
1908         for_each_possible_cpu(i) {
1909                 node = cpu_to_node(i);
1910
1911                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1912                                                         THREAD_SIZE,
1913                                                         THREAD_SIZE, 0);
1914                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1915                                                         THREAD_SIZE,
1916                                                         THREAD_SIZE, 0);
1917         }
1918
1919         kernel_physical_mapping_init();
1920
1921         {
1922                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1923
1924                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1925
1926                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1927
1928                 free_area_init_nodes(max_zone_pfns);
1929         }
1930
1931         printk("Booting Linux...\n");
1932 }
1933
1934 int __devinit page_in_phys_avail(unsigned long paddr)
1935 {
1936         int i;
1937
1938         paddr &= PAGE_MASK;
1939
1940         for (i = 0; i < pavail_ents; i++) {
1941                 unsigned long start, end;
1942
1943                 start = pavail[i].phys_addr;
1944                 end = start + pavail[i].reg_size;
1945
1946                 if (paddr >= start && paddr < end)
1947                         return 1;
1948         }
1949         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1950                 return 1;
1951 #ifdef CONFIG_BLK_DEV_INITRD
1952         if (paddr >= __pa(initrd_start) &&
1953             paddr < __pa(PAGE_ALIGN(initrd_end)))
1954                 return 1;
1955 #endif
1956
1957         return 0;
1958 }
1959
1960 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1961 static int pavail_rescan_ents __initdata;
1962
1963 /* Certain OBP calls, such as fetching "available" properties, can
1964  * claim physical memory.  So, along with initializing the valid
1965  * address bitmap, what we do here is refetch the physical available
1966  * memory list again, and make sure it provides at least as much
1967  * memory as 'pavail' does.
1968  */
1969 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1970 {
1971         int i;
1972
1973         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1974
1975         for (i = 0; i < pavail_ents; i++) {
1976                 unsigned long old_start, old_end;
1977
1978                 old_start = pavail[i].phys_addr;
1979                 old_end = old_start + pavail[i].reg_size;
1980                 while (old_start < old_end) {
1981                         int n;
1982
1983                         for (n = 0; n < pavail_rescan_ents; n++) {
1984                                 unsigned long new_start, new_end;
1985
1986                                 new_start = pavail_rescan[n].phys_addr;
1987                                 new_end = new_start +
1988                                         pavail_rescan[n].reg_size;
1989
1990                                 if (new_start <= old_start &&
1991                                     new_end >= (old_start + PAGE_SIZE)) {
1992                                         set_bit(old_start >> 22, bitmap);
1993                                         goto do_next_page;
1994                                 }
1995                         }
1996
1997                         prom_printf("mem_init: Lost memory in pavail\n");
1998                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1999                                     pavail[i].phys_addr,
2000                                     pavail[i].reg_size);
2001                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2002                                     pavail_rescan[i].phys_addr,
2003                                     pavail_rescan[i].reg_size);
2004                         prom_printf("mem_init: Cannot continue, aborting.\n");
2005                         prom_halt();
2006
2007                 do_next_page:
2008                         old_start += PAGE_SIZE;
2009                 }
2010         }
2011 }
2012
2013 static void __init patch_tlb_miss_handler_bitmap(void)
2014 {
2015         extern unsigned int valid_addr_bitmap_insn[];
2016         extern unsigned int valid_addr_bitmap_patch[];
2017
2018         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2019         mb();
2020         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2021         flushi(&valid_addr_bitmap_insn[0]);
2022 }
2023
2024 void __init mem_init(void)
2025 {
2026         unsigned long codepages, datapages, initpages;
2027         unsigned long addr, last;
2028
2029         addr = PAGE_OFFSET + kern_base;
2030         last = PAGE_ALIGN(kern_size) + addr;
2031         while (addr < last) {
2032                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2033                 addr += PAGE_SIZE;
2034         }
2035
2036         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2037         patch_tlb_miss_handler_bitmap();
2038
2039         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2040
2041 #ifdef CONFIG_NEED_MULTIPLE_NODES
2042         {
2043                 int i;
2044                 for_each_online_node(i) {
2045                         if (NODE_DATA(i)->node_spanned_pages != 0) {
2046                                 totalram_pages +=
2047                                         free_all_bootmem_node(NODE_DATA(i));
2048                         }
2049                 }
2050                 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
2051         }
2052 #else
2053         totalram_pages = free_all_bootmem();
2054 #endif
2055
2056         /* We subtract one to account for the mem_map_zero page
2057          * allocated below.
2058          */
2059         totalram_pages -= 1;
2060         num_physpages = totalram_pages;
2061
2062         /*
2063          * Set up the zero page, mark it reserved, so that page count
2064          * is not manipulated when freeing the page from user ptes.
2065          */
2066         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2067         if (mem_map_zero == NULL) {
2068                 prom_printf("paging_init: Cannot alloc zero page.\n");
2069                 prom_halt();
2070         }
2071         SetPageReserved(mem_map_zero);
2072
2073         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2074         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2075         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2076         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2077         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2078         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2079
2080         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2081                nr_free_pages() << (PAGE_SHIFT-10),
2082                codepages << (PAGE_SHIFT-10),
2083                datapages << (PAGE_SHIFT-10), 
2084                initpages << (PAGE_SHIFT-10), 
2085                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2086
2087         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2088                 cheetah_ecache_flush_init();
2089 }
2090
2091 void free_initmem(void)
2092 {
2093         unsigned long addr, initend;
2094         int do_free = 1;
2095
2096         /* If the physical memory maps were trimmed by kernel command
2097          * line options, don't even try freeing this initmem stuff up.
2098          * The kernel image could have been in the trimmed out region
2099          * and if so the freeing below will free invalid page structs.
2100          */
2101         if (cmdline_memory_size)
2102                 do_free = 0;
2103
2104         /*
2105          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2106          */
2107         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2108         initend = (unsigned long)(__init_end) & PAGE_MASK;
2109         for (; addr < initend; addr += PAGE_SIZE) {
2110                 unsigned long page;
2111                 struct page *p;
2112
2113                 page = (addr +
2114                         ((unsigned long) __va(kern_base)) -
2115                         ((unsigned long) KERNBASE));
2116                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2117
2118                 if (do_free) {
2119                         p = virt_to_page(page);
2120
2121                         ClearPageReserved(p);
2122                         init_page_count(p);
2123                         __free_page(p);
2124                         num_physpages++;
2125                         totalram_pages++;
2126                 }
2127         }
2128 }
2129
2130 #ifdef CONFIG_BLK_DEV_INITRD
2131 void free_initrd_mem(unsigned long start, unsigned long end)
2132 {
2133         if (start < end)
2134                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2135         for (; start < end; start += PAGE_SIZE) {
2136                 struct page *p = virt_to_page(start);
2137
2138                 ClearPageReserved(p);
2139                 init_page_count(p);
2140                 __free_page(p);
2141                 num_physpages++;
2142                 totalram_pages++;
2143         }
2144 }
2145 #endif
2146
2147 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2148 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2149 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2150 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2151 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2152 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2153
2154 pgprot_t PAGE_KERNEL __read_mostly;
2155 EXPORT_SYMBOL(PAGE_KERNEL);
2156
2157 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2158 pgprot_t PAGE_COPY __read_mostly;
2159
2160 pgprot_t PAGE_SHARED __read_mostly;
2161 EXPORT_SYMBOL(PAGE_SHARED);
2162
2163 unsigned long pg_iobits __read_mostly;
2164
2165 unsigned long _PAGE_IE __read_mostly;
2166 EXPORT_SYMBOL(_PAGE_IE);
2167
2168 unsigned long _PAGE_E __read_mostly;
2169 EXPORT_SYMBOL(_PAGE_E);
2170
2171 unsigned long _PAGE_CACHE __read_mostly;
2172 EXPORT_SYMBOL(_PAGE_CACHE);
2173
2174 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2175 unsigned long vmemmap_table[VMEMMAP_SIZE];
2176
2177 static long __meminitdata addr_start, addr_end;
2178 static int __meminitdata node_start;
2179
2180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2181 {
2182         unsigned long vstart = (unsigned long) start;
2183         unsigned long vend = (unsigned long) (start + nr);
2184         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2185         unsigned long phys_end = (vend - VMEMMAP_BASE);
2186         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2187         unsigned long end = VMEMMAP_ALIGN(phys_end);
2188         unsigned long pte_base;
2189
2190         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2191                     _PAGE_CP_4U | _PAGE_CV_4U |
2192                     _PAGE_P_4U | _PAGE_W_4U);
2193         if (tlb_type == hypervisor)
2194                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2195                             _PAGE_CP_4V | _PAGE_CV_4V |
2196                             _PAGE_P_4V | _PAGE_W_4V);
2197
2198         for (; addr < end; addr += VMEMMAP_CHUNK) {
2199                 unsigned long *vmem_pp =
2200                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2201                 void *block;
2202
2203                 if (!(*vmem_pp & _PAGE_VALID)) {
2204                         block = vmemmap_alloc_block(1UL << 22, node);
2205                         if (!block)
2206                                 return -ENOMEM;
2207
2208                         *vmem_pp = pte_base | __pa(block);
2209
2210                         /* check to see if we have contiguous blocks */
2211                         if (addr_end != addr || node_start != node) {
2212                                 if (addr_start)
2213                                         printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2214                                                addr_start, addr_end-1, node_start);
2215                                 addr_start = addr;
2216                                 node_start = node;
2217                         }
2218                         addr_end = addr + VMEMMAP_CHUNK;
2219                 }
2220         }
2221         return 0;
2222 }
2223
2224 void __meminit vmemmap_populate_print_last(void)
2225 {
2226         if (addr_start) {
2227                 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2228                        addr_start, addr_end-1, node_start);
2229                 addr_start = 0;
2230                 addr_end = 0;
2231                 node_start = 0;
2232         }
2233 }
2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2235
2236 static void prot_init_common(unsigned long page_none,
2237                              unsigned long page_shared,
2238                              unsigned long page_copy,
2239                              unsigned long page_readonly,
2240                              unsigned long page_exec_bit)
2241 {
2242         PAGE_COPY = __pgprot(page_copy);
2243         PAGE_SHARED = __pgprot(page_shared);
2244
2245         protection_map[0x0] = __pgprot(page_none);
2246         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2247         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2248         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2249         protection_map[0x4] = __pgprot(page_readonly);
2250         protection_map[0x5] = __pgprot(page_readonly);
2251         protection_map[0x6] = __pgprot(page_copy);
2252         protection_map[0x7] = __pgprot(page_copy);
2253         protection_map[0x8] = __pgprot(page_none);
2254         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2255         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2256         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2257         protection_map[0xc] = __pgprot(page_readonly);
2258         protection_map[0xd] = __pgprot(page_readonly);
2259         protection_map[0xe] = __pgprot(page_shared);
2260         protection_map[0xf] = __pgprot(page_shared);
2261 }
2262
2263 static void __init sun4u_pgprot_init(void)
2264 {
2265         unsigned long page_none, page_shared, page_copy, page_readonly;
2266         unsigned long page_exec_bit;
2267         int i;
2268
2269         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2270                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2271                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2272                                 _PAGE_EXEC_4U);
2273         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2274                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2275                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2276                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2277
2278         _PAGE_IE = _PAGE_IE_4U;
2279         _PAGE_E = _PAGE_E_4U;
2280         _PAGE_CACHE = _PAGE_CACHE_4U;
2281
2282         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2283                      __ACCESS_BITS_4U | _PAGE_E_4U);
2284
2285 #ifdef CONFIG_DEBUG_PAGEALLOC
2286         kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2287 #else
2288         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2289                 0xfffff80000000000UL;
2290 #endif
2291         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2292                                    _PAGE_P_4U | _PAGE_W_4U);
2293
2294         for (i = 1; i < 4; i++)
2295                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2296
2297         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2298                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2299                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2300
2301
2302         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2303         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2304                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2305         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2306                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2307         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2308                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2309
2310         page_exec_bit = _PAGE_EXEC_4U;
2311
2312         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2313                          page_exec_bit);
2314 }
2315
2316 static void __init sun4v_pgprot_init(void)
2317 {
2318         unsigned long page_none, page_shared, page_copy, page_readonly;
2319         unsigned long page_exec_bit;
2320         int i;
2321
2322         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2323                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2324                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2325                                 _PAGE_EXEC_4V);
2326         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2327
2328         _PAGE_IE = _PAGE_IE_4V;
2329         _PAGE_E = _PAGE_E_4V;
2330         _PAGE_CACHE = _PAGE_CACHE_4V;
2331
2332 #ifdef CONFIG_DEBUG_PAGEALLOC
2333         kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2334 #else
2335         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2336                 0xfffff80000000000UL;
2337 #endif
2338         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2339                                    _PAGE_P_4V | _PAGE_W_4V);
2340
2341         for (i = 1; i < 4; i++)
2342                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2343
2344         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2345                      __ACCESS_BITS_4V | _PAGE_E_4V);
2346
2347         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2348                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2349                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2350                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2351
2352         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2353         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2354                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2355         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2356                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2357         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2358                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2359
2360         page_exec_bit = _PAGE_EXEC_4V;
2361
2362         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2363                          page_exec_bit);
2364 }
2365
2366 unsigned long pte_sz_bits(unsigned long sz)
2367 {
2368         if (tlb_type == hypervisor) {
2369                 switch (sz) {
2370                 case 8 * 1024:
2371                 default:
2372                         return _PAGE_SZ8K_4V;
2373                 case 64 * 1024:
2374                         return _PAGE_SZ64K_4V;
2375                 case 512 * 1024:
2376                         return _PAGE_SZ512K_4V;
2377                 case 4 * 1024 * 1024:
2378                         return _PAGE_SZ4MB_4V;
2379                 }
2380         } else {
2381                 switch (sz) {
2382                 case 8 * 1024:
2383                 default:
2384                         return _PAGE_SZ8K_4U;
2385                 case 64 * 1024:
2386                         return _PAGE_SZ64K_4U;
2387                 case 512 * 1024:
2388                         return _PAGE_SZ512K_4U;
2389                 case 4 * 1024 * 1024:
2390                         return _PAGE_SZ4MB_4U;
2391                 }
2392         }
2393 }
2394
2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2396 {
2397         pte_t pte;
2398
2399         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2400         pte_val(pte) |= (((unsigned long)space) << 32);
2401         pte_val(pte) |= pte_sz_bits(page_size);
2402
2403         return pte;
2404 }
2405
2406 static unsigned long kern_large_tte(unsigned long paddr)
2407 {
2408         unsigned long val;
2409
2410         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2411                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2412                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2413         if (tlb_type == hypervisor)
2414                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2415                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2416                        _PAGE_EXEC_4V | _PAGE_W_4V);
2417
2418         return val | paddr;
2419 }
2420
2421 /* If not locked, zap it. */
2422 void __flush_tlb_all(void)
2423 {
2424         unsigned long pstate;
2425         int i;
2426
2427         __asm__ __volatile__("flushw\n\t"
2428                              "rdpr      %%pstate, %0\n\t"
2429                              "wrpr      %0, %1, %%pstate"
2430                              : "=r" (pstate)
2431                              : "i" (PSTATE_IE));
2432         if (tlb_type == hypervisor) {
2433                 sun4v_mmu_demap_all();
2434         } else if (tlb_type == spitfire) {
2435                 for (i = 0; i < 64; i++) {
2436                         /* Spitfire Errata #32 workaround */
2437                         /* NOTE: Always runs on spitfire, so no
2438                          *       cheetah+ page size encodings.
2439                          */
2440                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2441                                              "flush     %%g6"
2442                                              : /* No outputs */
2443                                              : "r" (0),
2444                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2445
2446                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2447                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2448                                                      "membar #Sync"
2449                                                      : /* no outputs */
2450                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2451                                 spitfire_put_dtlb_data(i, 0x0UL);
2452                         }
2453
2454                         /* Spitfire Errata #32 workaround */
2455                         /* NOTE: Always runs on spitfire, so no
2456                          *       cheetah+ page size encodings.
2457                          */
2458                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2459                                              "flush     %%g6"
2460                                              : /* No outputs */
2461                                              : "r" (0),
2462                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2463
2464                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2465                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2466                                                      "membar #Sync"
2467                                                      : /* no outputs */
2468                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2469                                 spitfire_put_itlb_data(i, 0x0UL);
2470                         }
2471                 }
2472         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2473                 cheetah_flush_dtlb_all();
2474                 cheetah_flush_itlb_all();
2475         }
2476         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2477                              : : "r" (pstate));
2478 }
2479
2480 static pte_t *get_from_cache(struct mm_struct *mm)
2481 {
2482         struct page *page;
2483         pte_t *ret;
2484
2485         spin_lock(&mm->page_table_lock);
2486         page = mm->context.pgtable_page;
2487         ret = NULL;
2488         if (page) {
2489                 void *p = page_address(page);
2490
2491                 mm->context.pgtable_page = NULL;
2492
2493                 ret = (pte_t *) (p + (PAGE_SIZE / 2));
2494         }
2495         spin_unlock(&mm->page_table_lock);
2496
2497         return ret;
2498 }
2499
2500 static struct page *__alloc_for_cache(struct mm_struct *mm)
2501 {
2502         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2503                                        __GFP_REPEAT | __GFP_ZERO);
2504
2505         if (page) {
2506                 spin_lock(&mm->page_table_lock);
2507                 if (!mm->context.pgtable_page) {
2508                         atomic_set(&page->_count, 2);
2509                         mm->context.pgtable_page = page;
2510                 }
2511                 spin_unlock(&mm->page_table_lock);
2512         }
2513         return page;
2514 }
2515
2516 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2517                             unsigned long address)
2518 {
2519         struct page *page;
2520         pte_t *pte;
2521
2522         pte = get_from_cache(mm);
2523         if (pte)
2524                 return pte;
2525
2526         page = __alloc_for_cache(mm);
2527         if (page)
2528                 pte = (pte_t *) page_address(page);
2529
2530         return pte;
2531 }
2532
2533 pgtable_t pte_alloc_one(struct mm_struct *mm,
2534                         unsigned long address)
2535 {
2536         struct page *page;
2537         pte_t *pte;
2538
2539         pte = get_from_cache(mm);
2540         if (pte)
2541                 return pte;
2542
2543         page = __alloc_for_cache(mm);
2544         if (page) {
2545                 pgtable_page_ctor(page);
2546                 pte = (pte_t *) page_address(page);
2547         }
2548
2549         return pte;
2550 }
2551
2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2553 {
2554         struct page *page = virt_to_page(pte);
2555         if (put_page_testzero(page))
2556                 free_hot_cold_page(page, 0);
2557 }
2558
2559 static void __pte_free(pgtable_t pte)
2560 {
2561         struct page *page = virt_to_page(pte);
2562         if (put_page_testzero(page)) {
2563                 pgtable_page_dtor(page);
2564                 free_hot_cold_page(page, 0);
2565         }
2566 }
2567
2568 void pte_free(struct mm_struct *mm, pgtable_t pte)
2569 {
2570         __pte_free(pte);
2571 }
2572
2573 void pgtable_free(void *table, bool is_page)
2574 {
2575         if (is_page)
2576                 __pte_free(table);
2577         else
2578                 kmem_cache_free(pgtable_cache, table);
2579 }
2580
2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2583 {
2584         if (pgprot_val(pgprot) & _PAGE_VALID)
2585                 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2586         if (tlb_type == hypervisor) {
2587                 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2588                         pmd_val(pmd) |= PMD_HUGE_WRITE;
2589                 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2590                         pmd_val(pmd) |= PMD_HUGE_EXEC;
2591
2592                 if (!for_modify) {
2593                         if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2594                                 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2595                         if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2596                                 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2597                 }
2598         } else {
2599                 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2600                         pmd_val(pmd) |= PMD_HUGE_WRITE;
2601                 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2602                         pmd_val(pmd) |= PMD_HUGE_EXEC;
2603
2604                 if (!for_modify) {
2605                         if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2606                                 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2607                         if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2608                                 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2609                 }
2610         }
2611
2612         return pmd;
2613 }
2614
2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2616 {
2617         pmd_t pmd;
2618
2619         pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2620         pmd_val(pmd) |= PMD_ISHUGE;
2621         pmd = pmd_set_protbits(pmd, pgprot, false);
2622         return pmd;
2623 }
2624
2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2626 {
2627         pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2628                           PMD_HUGE_WRITE |
2629                           PMD_HUGE_EXEC);
2630         pmd = pmd_set_protbits(pmd, newprot, true);
2631         return pmd;
2632 }
2633
2634 pgprot_t pmd_pgprot(pmd_t entry)
2635 {
2636         unsigned long pte = 0;
2637
2638         if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639                 pte |= _PAGE_VALID;
2640
2641         if (tlb_type == hypervisor) {
2642                 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2643                         pte |= _PAGE_PRESENT_4V;
2644                 if (pmd_val(entry) & PMD_HUGE_EXEC)
2645                         pte |= _PAGE_EXEC_4V;
2646                 if (pmd_val(entry) & PMD_HUGE_WRITE)
2647                         pte |= _PAGE_W_4V;
2648                 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2649                         pte |= _PAGE_ACCESSED_4V;
2650                 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2651                         pte |= _PAGE_MODIFIED_4V;
2652                 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2653         } else {
2654                 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2655                         pte |= _PAGE_PRESENT_4U;
2656                 if (pmd_val(entry) & PMD_HUGE_EXEC)
2657                         pte |= _PAGE_EXEC_4U;
2658                 if (pmd_val(entry) & PMD_HUGE_WRITE)
2659                         pte |= _PAGE_W_4U;
2660                 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2661                         pte |= _PAGE_ACCESSED_4U;
2662                 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2663                         pte |= _PAGE_MODIFIED_4U;
2664                 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2665         }
2666
2667         return __pgprot(pte);
2668 }
2669
2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2671                           pmd_t *pmd)
2672 {
2673         unsigned long pte, flags;
2674         struct mm_struct *mm;
2675         pmd_t entry = *pmd;
2676         pgprot_t prot;
2677
2678         if (!pmd_large(entry) || !pmd_young(entry))
2679                 return;
2680
2681         pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2682         pte <<= PMD_PADDR_SHIFT;
2683         pte |= _PAGE_VALID;
2684
2685         prot = pmd_pgprot(entry);
2686
2687         if (tlb_type == hypervisor)
2688                 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2689         else
2690                 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2691
2692         pte |= pgprot_val(prot);
2693
2694         mm = vma->vm_mm;
2695
2696         spin_lock_irqsave(&mm->context.lock, flags);
2697
2698         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2699                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2700                                         addr, pte);
2701
2702         spin_unlock_irqrestore(&mm->context.lock, flags);
2703 }
2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2705
2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2707 static void context_reload(void *__data)
2708 {
2709         struct mm_struct *mm = __data;
2710
2711         if (mm == current->mm)
2712                 load_secondary_context(mm);
2713 }
2714
2715 void hugetlb_setup(struct mm_struct *mm)
2716 {
2717         struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
2718
2719         if (likely(tp->tsb != NULL))
2720                 return;
2721
2722         tsb_grow(mm, MM_TSB_HUGE, 0);
2723         tsb_context_switch(mm);
2724         smp_tsb_sync(mm);
2725
2726         /* On UltraSPARC-III+ and later, configure the second half of
2727          * the Data-TLB for huge pages.
2728          */
2729         if (tlb_type == cheetah_plus) {
2730                 unsigned long ctx;
2731
2732                 spin_lock(&ctx_alloc_lock);
2733                 ctx = mm->context.sparc64_ctx_val;
2734                 ctx &= ~CTX_PGSZ_MASK;
2735                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2736                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2737
2738                 if (ctx != mm->context.sparc64_ctx_val) {
2739                         /* When changing the page size fields, we
2740                          * must perform a context flush so that no
2741                          * stale entries match.  This flush must
2742                          * occur with the original context register
2743                          * settings.
2744                          */
2745                         do_flush_tlb_mm(mm);
2746
2747                         /* Reload the context register of all processors
2748                          * also executing in this address space.
2749                          */
2750                         mm->context.sparc64_ctx_val = ctx;
2751                         on_each_cpu(context_reload, mm, 0);
2752                 }
2753                 spin_unlock(&ctx_alloc_lock);
2754         }
2755 }
2756 #endif