]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        PAGE_SIZE
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
57         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
58         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
59         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
61         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
63         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
66         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
67         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
70         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75         union intel_x86_pebs_dse dse;
76         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78         dse.val = status;
79
80         /*
81          * bit 4: TLB access
82          * 1 = stored missed 2nd level TLB
83          *
84          * so it either hit the walker or the OS
85          * otherwise hit 2nd level TLB
86          */
87         if (dse.st_stlb_miss)
88                 val |= P(TLB, MISS);
89         else
90                 val |= P(TLB, HIT);
91
92         /*
93          * bit 0: hit L1 data cache
94          * if not set, then all we know is that
95          * it missed L1D
96          */
97         if (dse.st_l1d_hit)
98                 val |= P(LVL, HIT);
99         else
100                 val |= P(LVL, MISS);
101
102         /*
103          * bit 5: Locked prefix
104          */
105         if (dse.st_locked)
106                 val |= P(LOCK, LOCKED);
107
108         return val;
109 }
110
111 static u64 precise_store_data_hsw(u64 status)
112 {
113         union perf_mem_data_src dse;
114
115         dse.val = 0;
116         dse.mem_op = PERF_MEM_OP_STORE;
117         dse.mem_lvl = PERF_MEM_LVL_NA;
118         if (status & 1)
119                 dse.mem_lvl = PERF_MEM_LVL_L1;
120         /* Nothing else supported. Sorry. */
121         return dse.val;
122 }
123
124 static u64 load_latency_data(u64 status)
125 {
126         union intel_x86_pebs_dse dse;
127         u64 val;
128         int model = boot_cpu_data.x86_model;
129         int fam = boot_cpu_data.x86;
130
131         dse.val = status;
132
133         /*
134          * use the mapping table for bit 0-3
135          */
136         val = pebs_data_source[dse.ld_dse];
137
138         /*
139          * Nehalem models do not support TLB, Lock infos
140          */
141         if (fam == 0x6 && (model == 26 || model == 30
142             || model == 31 || model == 46)) {
143                 val |= P(TLB, NA) | P(LOCK, NA);
144                 return val;
145         }
146         /*
147          * bit 4: TLB access
148          * 0 = did not miss 2nd level TLB
149          * 1 = missed 2nd level TLB
150          */
151         if (dse.ld_stlb_miss)
152                 val |= P(TLB, MISS) | P(TLB, L2);
153         else
154                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
155
156         /*
157          * bit 5: locked prefix
158          */
159         if (dse.ld_locked)
160                 val |= P(LOCK, LOCKED);
161
162         return val;
163 }
164
165 struct pebs_record_core {
166         u64 flags, ip;
167         u64 ax, bx, cx, dx;
168         u64 si, di, bp, sp;
169         u64 r8,  r9,  r10, r11;
170         u64 r12, r13, r14, r15;
171 };
172
173 struct pebs_record_nhm {
174         u64 flags, ip;
175         u64 ax, bx, cx, dx;
176         u64 si, di, bp, sp;
177         u64 r8,  r9,  r10, r11;
178         u64 r12, r13, r14, r15;
179         u64 status, dla, dse, lat;
180 };
181
182 /*
183  * Same as pebs_record_nhm, with two additional fields.
184  */
185 struct pebs_record_hsw {
186         u64 flags, ip;
187         u64 ax, bx, cx, dx;
188         u64 si, di, bp, sp;
189         u64 r8,  r9,  r10, r11;
190         u64 r12, r13, r14, r15;
191         u64 status, dla, dse, lat;
192         u64 real_ip, tsx_tuning;
193 };
194
195 union hsw_tsx_tuning {
196         struct {
197                 u32 cycles_last_block     : 32,
198                     hle_abort             : 1,
199                     rtm_abort             : 1,
200                     instruction_abort     : 1,
201                     non_instruction_abort : 1,
202                     retry                 : 1,
203                     data_conflict         : 1,
204                     capacity_writes       : 1,
205                     capacity_reads        : 1;
206         };
207         u64         value;
208 };
209
210 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
211
212 void init_debug_store_on_cpu(int cpu)
213 {
214         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
215
216         if (!ds)
217                 return;
218
219         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
220                      (u32)((u64)(unsigned long)ds),
221                      (u32)((u64)(unsigned long)ds >> 32));
222 }
223
224 void fini_debug_store_on_cpu(int cpu)
225 {
226         if (!per_cpu(cpu_hw_events, cpu).ds)
227                 return;
228
229         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
230 }
231
232 static DEFINE_PER_CPU(void *, insn_buffer);
233
234 static int alloc_pebs_buffer(int cpu)
235 {
236         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
237         int node = cpu_to_node(cpu);
238         int max, thresh = 1; /* always use a single PEBS record */
239         void *buffer, *ibuffer;
240
241         if (!x86_pmu.pebs)
242                 return 0;
243
244         buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
245         if (unlikely(!buffer))
246                 return -ENOMEM;
247
248         /*
249          * HSW+ already provides us the eventing ip; no need to allocate this
250          * buffer then.
251          */
252         if (x86_pmu.intel_cap.pebs_format < 2) {
253                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
254                 if (!ibuffer) {
255                         kfree(buffer);
256                         return -ENOMEM;
257                 }
258                 per_cpu(insn_buffer, cpu) = ibuffer;
259         }
260
261         max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
262
263         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
264         ds->pebs_index = ds->pebs_buffer_base;
265         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
266                 max * x86_pmu.pebs_record_size;
267
268         ds->pebs_interrupt_threshold = ds->pebs_buffer_base +
269                 thresh * x86_pmu.pebs_record_size;
270
271         return 0;
272 }
273
274 static void release_pebs_buffer(int cpu)
275 {
276         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
277
278         if (!ds || !x86_pmu.pebs)
279                 return;
280
281         kfree(per_cpu(insn_buffer, cpu));
282         per_cpu(insn_buffer, cpu) = NULL;
283
284         kfree((void *)(unsigned long)ds->pebs_buffer_base);
285         ds->pebs_buffer_base = 0;
286 }
287
288 static int alloc_bts_buffer(int cpu)
289 {
290         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
291         int node = cpu_to_node(cpu);
292         int max, thresh;
293         void *buffer;
294
295         if (!x86_pmu.bts)
296                 return 0;
297
298         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL, node);
299         if (unlikely(!buffer))
300                 return -ENOMEM;
301
302         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
303         thresh = max / 16;
304
305         ds->bts_buffer_base = (u64)(unsigned long)buffer;
306         ds->bts_index = ds->bts_buffer_base;
307         ds->bts_absolute_maximum = ds->bts_buffer_base +
308                 max * BTS_RECORD_SIZE;
309         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
310                 thresh * BTS_RECORD_SIZE;
311
312         return 0;
313 }
314
315 static void release_bts_buffer(int cpu)
316 {
317         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
318
319         if (!ds || !x86_pmu.bts)
320                 return;
321
322         kfree((void *)(unsigned long)ds->bts_buffer_base);
323         ds->bts_buffer_base = 0;
324 }
325
326 static int alloc_ds_buffer(int cpu)
327 {
328         int node = cpu_to_node(cpu);
329         struct debug_store *ds;
330
331         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
332         if (unlikely(!ds))
333                 return -ENOMEM;
334
335         per_cpu(cpu_hw_events, cpu).ds = ds;
336
337         return 0;
338 }
339
340 static void release_ds_buffer(int cpu)
341 {
342         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
343
344         if (!ds)
345                 return;
346
347         per_cpu(cpu_hw_events, cpu).ds = NULL;
348         kfree(ds);
349 }
350
351 void release_ds_buffers(void)
352 {
353         int cpu;
354
355         if (!x86_pmu.bts && !x86_pmu.pebs)
356                 return;
357
358         get_online_cpus();
359         for_each_online_cpu(cpu)
360                 fini_debug_store_on_cpu(cpu);
361
362         for_each_possible_cpu(cpu) {
363                 release_pebs_buffer(cpu);
364                 release_bts_buffer(cpu);
365                 release_ds_buffer(cpu);
366         }
367         put_online_cpus();
368 }
369
370 void reserve_ds_buffers(void)
371 {
372         int bts_err = 0, pebs_err = 0;
373         int cpu;
374
375         x86_pmu.bts_active = 0;
376         x86_pmu.pebs_active = 0;
377
378         if (!x86_pmu.bts && !x86_pmu.pebs)
379                 return;
380
381         if (!x86_pmu.bts)
382                 bts_err = 1;
383
384         if (!x86_pmu.pebs)
385                 pebs_err = 1;
386
387         get_online_cpus();
388
389         for_each_possible_cpu(cpu) {
390                 if (alloc_ds_buffer(cpu)) {
391                         bts_err = 1;
392                         pebs_err = 1;
393                 }
394
395                 if (!bts_err && alloc_bts_buffer(cpu))
396                         bts_err = 1;
397
398                 if (!pebs_err && alloc_pebs_buffer(cpu))
399                         pebs_err = 1;
400
401                 if (bts_err && pebs_err)
402                         break;
403         }
404
405         if (bts_err) {
406                 for_each_possible_cpu(cpu)
407                         release_bts_buffer(cpu);
408         }
409
410         if (pebs_err) {
411                 for_each_possible_cpu(cpu)
412                         release_pebs_buffer(cpu);
413         }
414
415         if (bts_err && pebs_err) {
416                 for_each_possible_cpu(cpu)
417                         release_ds_buffer(cpu);
418         } else {
419                 if (x86_pmu.bts && !bts_err)
420                         x86_pmu.bts_active = 1;
421
422                 if (x86_pmu.pebs && !pebs_err)
423                         x86_pmu.pebs_active = 1;
424
425                 for_each_online_cpu(cpu)
426                         init_debug_store_on_cpu(cpu);
427         }
428
429         put_online_cpus();
430 }
431
432 /*
433  * BTS
434  */
435
436 struct event_constraint bts_constraint =
437         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
438
439 void intel_pmu_enable_bts(u64 config)
440 {
441         unsigned long debugctlmsr;
442
443         debugctlmsr = get_debugctlmsr();
444
445         debugctlmsr |= DEBUGCTLMSR_TR;
446         debugctlmsr |= DEBUGCTLMSR_BTS;
447         debugctlmsr |= DEBUGCTLMSR_BTINT;
448
449         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
450                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
451
452         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
453                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
454
455         update_debugctlmsr(debugctlmsr);
456 }
457
458 void intel_pmu_disable_bts(void)
459 {
460         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
461         unsigned long debugctlmsr;
462
463         if (!cpuc->ds)
464                 return;
465
466         debugctlmsr = get_debugctlmsr();
467
468         debugctlmsr &=
469                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
470                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
471
472         update_debugctlmsr(debugctlmsr);
473 }
474
475 int intel_pmu_drain_bts_buffer(void)
476 {
477         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
478         struct debug_store *ds = cpuc->ds;
479         struct bts_record {
480                 u64     from;
481                 u64     to;
482                 u64     flags;
483         };
484         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
485         struct bts_record *at, *top;
486         struct perf_output_handle handle;
487         struct perf_event_header header;
488         struct perf_sample_data data;
489         struct pt_regs regs;
490
491         if (!event)
492                 return 0;
493
494         if (!x86_pmu.bts_active)
495                 return 0;
496
497         at  = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
498         top = (struct bts_record *)(unsigned long)ds->bts_index;
499
500         if (top <= at)
501                 return 0;
502
503         memset(&regs, 0, sizeof(regs));
504
505         ds->bts_index = ds->bts_buffer_base;
506
507         perf_sample_data_init(&data, 0, event->hw.last_period);
508
509         /*
510          * Prepare a generic sample, i.e. fill in the invariant fields.
511          * We will overwrite the from and to address before we output
512          * the sample.
513          */
514         perf_prepare_sample(&header, &data, event, &regs);
515
516         if (perf_output_begin(&handle, event, header.size * (top - at)))
517                 return 1;
518
519         for (; at < top; at++) {
520                 data.ip         = at->from;
521                 data.addr       = at->to;
522
523                 perf_output_sample(&handle, &header, &data, event);
524         }
525
526         perf_output_end(&handle);
527
528         /* There's new data available. */
529         event->hw.interrupts++;
530         event->pending_kill = POLL_IN;
531         return 1;
532 }
533
534 /*
535  * PEBS
536  */
537 struct event_constraint intel_core2_pebs_event_constraints[] = {
538         INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
539         INTEL_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
540         INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
541         INTEL_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
542         INTEL_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
543         EVENT_CONSTRAINT_END
544 };
545
546 struct event_constraint intel_atom_pebs_event_constraints[] = {
547         INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
548         INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
549         INTEL_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
550         EVENT_CONSTRAINT_END
551 };
552
553 struct event_constraint intel_slm_pebs_event_constraints[] = {
554         INTEL_UEVENT_CONSTRAINT(0x0103, 0x1), /* REHABQ.LD_BLOCK_ST_FORWARD_PS */
555         INTEL_UEVENT_CONSTRAINT(0x0803, 0x1), /* REHABQ.LD_SPLITS_PS */
556         INTEL_UEVENT_CONSTRAINT(0x0204, 0x1), /* MEM_UOPS_RETIRED.L2_HIT_LOADS_PS */
557         INTEL_UEVENT_CONSTRAINT(0x0404, 0x1), /* MEM_UOPS_RETIRED.L2_MISS_LOADS_PS */
558         INTEL_UEVENT_CONSTRAINT(0x0804, 0x1), /* MEM_UOPS_RETIRED.DTLB_MISS_LOADS_PS */
559         INTEL_UEVENT_CONSTRAINT(0x2004, 0x1), /* MEM_UOPS_RETIRED.HITM_PS */
560         INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY_PS */
561         INTEL_UEVENT_CONSTRAINT(0x00c4, 0x1), /* BR_INST_RETIRED.ALL_BRANCHES_PS */
562         INTEL_UEVENT_CONSTRAINT(0x7ec4, 0x1), /* BR_INST_RETIRED.JCC_PS */
563         INTEL_UEVENT_CONSTRAINT(0xbfc4, 0x1), /* BR_INST_RETIRED.FAR_BRANCH_PS */
564         INTEL_UEVENT_CONSTRAINT(0xebc4, 0x1), /* BR_INST_RETIRED.NON_RETURN_IND_PS */
565         INTEL_UEVENT_CONSTRAINT(0xf7c4, 0x1), /* BR_INST_RETIRED.RETURN_PS */
566         INTEL_UEVENT_CONSTRAINT(0xf9c4, 0x1), /* BR_INST_RETIRED.CALL_PS */
567         INTEL_UEVENT_CONSTRAINT(0xfbc4, 0x1), /* BR_INST_RETIRED.IND_CALL_PS */
568         INTEL_UEVENT_CONSTRAINT(0xfdc4, 0x1), /* BR_INST_RETIRED.REL_CALL_PS */
569         INTEL_UEVENT_CONSTRAINT(0xfec4, 0x1), /* BR_INST_RETIRED.TAKEN_JCC_PS */
570         INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_MISP_RETIRED.ALL_BRANCHES_PS */
571         INTEL_UEVENT_CONSTRAINT(0x7ec5, 0x1), /* BR_INST_MISP_RETIRED.JCC_PS */
572         INTEL_UEVENT_CONSTRAINT(0xebc5, 0x1), /* BR_INST_MISP_RETIRED.NON_RETURN_IND_PS */
573         INTEL_UEVENT_CONSTRAINT(0xf7c5, 0x1), /* BR_INST_MISP_RETIRED.RETURN_PS */
574         INTEL_UEVENT_CONSTRAINT(0xfbc5, 0x1), /* BR_INST_MISP_RETIRED.IND_CALL_PS */
575         INTEL_UEVENT_CONSTRAINT(0xfec5, 0x1), /* BR_INST_MISP_RETIRED.TAKEN_JCC_PS */
576         EVENT_CONSTRAINT_END
577 };
578
579 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
580         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
581         INTEL_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
582         INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
583         INTEL_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
584         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
585         INTEL_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
586         INTEL_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
587         INTEL_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
588         INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
589         INTEL_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
590         INTEL_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
591         EVENT_CONSTRAINT_END
592 };
593
594 struct event_constraint intel_westmere_pebs_event_constraints[] = {
595         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
596         INTEL_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
597         INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
598         INTEL_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
599         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
600         INTEL_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
601         INTEL_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
602         INTEL_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
603         INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
604         INTEL_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
605         INTEL_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
606         EVENT_CONSTRAINT_END
607 };
608
609 struct event_constraint intel_snb_pebs_event_constraints[] = {
610         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
611         INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
612         INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
613         INTEL_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
614         INTEL_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
615         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
616         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
617         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
618         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
619         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
620         INTEL_EVENT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
621         INTEL_UEVENT_CONSTRAINT(0x02d4, 0xf), /* MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS */
622         EVENT_CONSTRAINT_END
623 };
624
625 struct event_constraint intel_ivb_pebs_event_constraints[] = {
626         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
627         INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
628         INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
629         INTEL_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
630         INTEL_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
631         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
632         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
633         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
634         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
635         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
636         INTEL_EVENT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
637         EVENT_CONSTRAINT_END
638 };
639
640 struct event_constraint intel_hsw_pebs_event_constraints[] = {
641         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
642         INTEL_PST_HSW_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
643         INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
644         INTEL_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
645         INTEL_UEVENT_CONSTRAINT(0x01c5, 0xf), /* BR_MISP_RETIRED.CONDITIONAL */
646         INTEL_UEVENT_CONSTRAINT(0x04c5, 0xf), /* BR_MISP_RETIRED.ALL_BRANCHES */
647         INTEL_UEVENT_CONSTRAINT(0x20c5, 0xf), /* BR_MISP_RETIRED.NEAR_TAKEN */
648         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.* */
649         /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
650         INTEL_UEVENT_CONSTRAINT(0x11d0, 0xf),
651         /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
652         INTEL_UEVENT_CONSTRAINT(0x12d0, 0xf),
653         INTEL_UEVENT_CONSTRAINT(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
654         INTEL_UEVENT_CONSTRAINT(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
655         /* MEM_UOPS_RETIRED.SPLIT_STORES */
656         INTEL_UEVENT_CONSTRAINT(0x42d0, 0xf),
657         INTEL_UEVENT_CONSTRAINT(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
658         INTEL_PST_HSW_CONSTRAINT(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
659         INTEL_UEVENT_CONSTRAINT(0x01d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L1_HIT */
660         INTEL_UEVENT_CONSTRAINT(0x02d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L2_HIT */
661         INTEL_UEVENT_CONSTRAINT(0x04d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L3_HIT */
662         /* MEM_LOAD_UOPS_RETIRED.HIT_LFB */
663         INTEL_UEVENT_CONSTRAINT(0x40d1, 0xf),
664         /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS */
665         INTEL_UEVENT_CONSTRAINT(0x01d2, 0xf),
666         /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT */
667         INTEL_UEVENT_CONSTRAINT(0x02d2, 0xf),
668         /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM */
669         INTEL_UEVENT_CONSTRAINT(0x01d3, 0xf),
670         INTEL_UEVENT_CONSTRAINT(0x04c8, 0xf), /* HLE_RETIRED.Abort */
671         INTEL_UEVENT_CONSTRAINT(0x04c9, 0xf), /* RTM_RETIRED.Abort */
672
673         EVENT_CONSTRAINT_END
674 };
675
676 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
677 {
678         struct event_constraint *c;
679
680         if (!event->attr.precise_ip)
681                 return NULL;
682
683         if (x86_pmu.pebs_constraints) {
684                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
685                         if ((event->hw.config & c->cmask) == c->code) {
686                                 event->hw.flags |= c->flags;
687                                 return c;
688                         }
689                 }
690         }
691
692         return &emptyconstraint;
693 }
694
695 void intel_pmu_pebs_enable(struct perf_event *event)
696 {
697         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
698         struct hw_perf_event *hwc = &event->hw;
699
700         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
701
702         cpuc->pebs_enabled |= 1ULL << hwc->idx;
703
704         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
705                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
706         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
707                 cpuc->pebs_enabled |= 1ULL << 63;
708 }
709
710 void intel_pmu_pebs_disable(struct perf_event *event)
711 {
712         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
713         struct hw_perf_event *hwc = &event->hw;
714
715         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
716
717         if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_LDLAT)
718                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
719         else if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_ST)
720                 cpuc->pebs_enabled &= ~(1ULL << 63);
721
722         if (cpuc->enabled)
723                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
724
725         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
726 }
727
728 void intel_pmu_pebs_enable_all(void)
729 {
730         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
731
732         if (cpuc->pebs_enabled)
733                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
734 }
735
736 void intel_pmu_pebs_disable_all(void)
737 {
738         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
739
740         if (cpuc->pebs_enabled)
741                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
742 }
743
744 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
745 {
746         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
747         unsigned long from = cpuc->lbr_entries[0].from;
748         unsigned long old_to, to = cpuc->lbr_entries[0].to;
749         unsigned long ip = regs->ip;
750         int is_64bit = 0;
751         void *kaddr;
752
753         /*
754          * We don't need to fixup if the PEBS assist is fault like
755          */
756         if (!x86_pmu.intel_cap.pebs_trap)
757                 return 1;
758
759         /*
760          * No LBR entry, no basic block, no rewinding
761          */
762         if (!cpuc->lbr_stack.nr || !from || !to)
763                 return 0;
764
765         /*
766          * Basic blocks should never cross user/kernel boundaries
767          */
768         if (kernel_ip(ip) != kernel_ip(to))
769                 return 0;
770
771         /*
772          * unsigned math, either ip is before the start (impossible) or
773          * the basic block is larger than 1 page (sanity)
774          */
775         if ((ip - to) > PEBS_FIXUP_SIZE)
776                 return 0;
777
778         /*
779          * We sampled a branch insn, rewind using the LBR stack
780          */
781         if (ip == to) {
782                 set_linear_ip(regs, from);
783                 return 1;
784         }
785
786         if (!kernel_ip(ip)) {
787                 int size, bytes;
788                 u8 *buf = this_cpu_read(insn_buffer);
789
790                 size = ip - to; /* Must fit our buffer, see above */
791                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
792                 if (bytes != size)
793                         return 0;
794
795                 kaddr = buf;
796         } else {
797                 kaddr = (void *)to;
798         }
799
800         do {
801                 struct insn insn;
802
803                 old_to = to;
804
805 #ifdef CONFIG_X86_64
806                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
807 #endif
808                 insn_init(&insn, kaddr, is_64bit);
809                 insn_get_length(&insn);
810
811                 to += insn.length;
812                 kaddr += insn.length;
813         } while (to < ip);
814
815         if (to == ip) {
816                 set_linear_ip(regs, old_to);
817                 return 1;
818         }
819
820         /*
821          * Even though we decoded the basic block, the instruction stream
822          * never matched the given IP, either the TO or the IP got corrupted.
823          */
824         return 0;
825 }
826
827 static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
828 {
829         if (pebs->tsx_tuning) {
830                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
831                 return tsx.cycles_last_block;
832         }
833         return 0;
834 }
835
836 static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
837 {
838         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
839
840         /* For RTM XABORTs also log the abort code from AX */
841         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
842                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
843         return txn;
844 }
845
846 static void __intel_pmu_pebs_event(struct perf_event *event,
847                                    struct pt_regs *iregs, void *__pebs)
848 {
849         /*
850          * We cast to the biggest pebs_record but are careful not to
851          * unconditionally access the 'extra' entries.
852          */
853         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
854         struct pebs_record_hsw *pebs = __pebs;
855         struct perf_sample_data data;
856         struct pt_regs regs;
857         u64 sample_type;
858         int fll, fst;
859
860         if (!intel_pmu_save_and_restart(event))
861                 return;
862
863         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
864         fst = event->hw.flags & (PERF_X86_EVENT_PEBS_ST |
865                                  PERF_X86_EVENT_PEBS_ST_HSW);
866
867         perf_sample_data_init(&data, 0, event->hw.last_period);
868
869         data.period = event->hw.last_period;
870         sample_type = event->attr.sample_type;
871
872         /*
873          * if PEBS-LL or PreciseStore
874          */
875         if (fll || fst) {
876                 /*
877                  * Use latency for weight (only avail with PEBS-LL)
878                  */
879                 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
880                         data.weight = pebs->lat;
881
882                 /*
883                  * data.data_src encodes the data source
884                  */
885                 if (sample_type & PERF_SAMPLE_DATA_SRC) {
886                         if (fll)
887                                 data.data_src.val = load_latency_data(pebs->dse);
888                         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
889                                 data.data_src.val =
890                                         precise_store_data_hsw(pebs->dse);
891                         else
892                                 data.data_src.val = precise_store_data(pebs->dse);
893                 }
894         }
895
896         /*
897          * We use the interrupt regs as a base because the PEBS record
898          * does not contain a full regs set, specifically it seems to
899          * lack segment descriptors, which get used by things like
900          * user_mode().
901          *
902          * In the simple case fix up only the IP and BP,SP regs, for
903          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
904          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
905          */
906         regs = *iregs;
907         regs.flags = pebs->flags;
908         set_linear_ip(&regs, pebs->ip);
909         regs.bp = pebs->bp;
910         regs.sp = pebs->sp;
911
912         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
913                 regs.ip = pebs->real_ip;
914                 regs.flags |= PERF_EFLAGS_EXACT;
915         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(&regs))
916                 regs.flags |= PERF_EFLAGS_EXACT;
917         else
918                 regs.flags &= ~PERF_EFLAGS_EXACT;
919
920         if ((event->attr.sample_type & PERF_SAMPLE_ADDR) &&
921             x86_pmu.intel_cap.pebs_format >= 1)
922                 data.addr = pebs->dla;
923
924         if (x86_pmu.intel_cap.pebs_format >= 2) {
925                 /* Only set the TSX weight when no memory weight. */
926                 if ((event->attr.sample_type & PERF_SAMPLE_WEIGHT) && !fll)
927                         data.weight = intel_hsw_weight(pebs);
928
929                 if (event->attr.sample_type & PERF_SAMPLE_TRANSACTION)
930                         data.txn = intel_hsw_transaction(pebs);
931         }
932
933         if (has_branch_stack(event))
934                 data.br_stack = &cpuc->lbr_stack;
935
936         if (perf_event_overflow(event, &data, &regs))
937                 x86_pmu_stop(event, 0);
938 }
939
940 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
941 {
942         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
943         struct debug_store *ds = cpuc->ds;
944         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
945         struct pebs_record_core *at, *top;
946         int n;
947
948         if (!x86_pmu.pebs_active)
949                 return;
950
951         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
952         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
953
954         /*
955          * Whatever else happens, drain the thing
956          */
957         ds->pebs_index = ds->pebs_buffer_base;
958
959         if (!test_bit(0, cpuc->active_mask))
960                 return;
961
962         WARN_ON_ONCE(!event);
963
964         if (!event->attr.precise_ip)
965                 return;
966
967         n = top - at;
968         if (n <= 0)
969                 return;
970
971         /*
972          * Should not happen, we program the threshold at 1 and do not
973          * set a reset value.
974          */
975         WARN_ONCE(n > 1, "bad leftover pebs %d\n", n);
976         at += n - 1;
977
978         __intel_pmu_pebs_event(event, iregs, at);
979 }
980
981 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
982 {
983         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
984         struct debug_store *ds = cpuc->ds;
985         struct perf_event *event = NULL;
986         void *at, *top;
987         u64 status = 0;
988         int bit;
989
990         if (!x86_pmu.pebs_active)
991                 return;
992
993         at  = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
994         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
995
996         ds->pebs_index = ds->pebs_buffer_base;
997
998         if (unlikely(at > top))
999                 return;
1000
1001         /*
1002          * Should not happen, we program the threshold at 1 and do not
1003          * set a reset value.
1004          */
1005         WARN_ONCE(top - at > x86_pmu.max_pebs_events * x86_pmu.pebs_record_size,
1006                   "Unexpected number of pebs records %ld\n",
1007                   (long)(top - at) / x86_pmu.pebs_record_size);
1008
1009         for (; at < top; at += x86_pmu.pebs_record_size) {
1010                 struct pebs_record_nhm *p = at;
1011
1012                 for_each_set_bit(bit, (unsigned long *)&p->status,
1013                                  x86_pmu.max_pebs_events) {
1014                         event = cpuc->events[bit];
1015                         if (!test_bit(bit, cpuc->active_mask))
1016                                 continue;
1017
1018                         WARN_ON_ONCE(!event);
1019
1020                         if (!event->attr.precise_ip)
1021                                 continue;
1022
1023                         if (__test_and_set_bit(bit, (unsigned long *)&status))
1024                                 continue;
1025
1026                         break;
1027                 }
1028
1029                 if (!event || bit >= x86_pmu.max_pebs_events)
1030                         continue;
1031
1032                 __intel_pmu_pebs_event(event, iregs, at);
1033         }
1034 }
1035
1036 /*
1037  * BTS, PEBS probe and setup
1038  */
1039
1040 void intel_ds_init(void)
1041 {
1042         /*
1043          * No support for 32bit formats
1044          */
1045         if (!boot_cpu_has(X86_FEATURE_DTES64))
1046                 return;
1047
1048         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1049         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1050         if (x86_pmu.pebs) {
1051                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1052                 int format = x86_pmu.intel_cap.pebs_format;
1053
1054                 switch (format) {
1055                 case 0:
1056                         printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1057                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1058                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1059                         break;
1060
1061                 case 1:
1062                         printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1063                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1064                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1065                         break;
1066
1067                 case 2:
1068                         pr_cont("PEBS fmt2%c, ", pebs_type);
1069                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1070                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1071                         break;
1072
1073                 default:
1074                         printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1075                         x86_pmu.pebs = 0;
1076                 }
1077         }
1078 }
1079
1080 void perf_restore_debug_store(void)
1081 {
1082         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1083
1084         if (!x86_pmu.bts && !x86_pmu.pebs)
1085                 return;
1086
1087         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1088 }