]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
scsi_dh: don't try to load a device handler during async probing
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
207
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212                                       bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
214
215 enum {
216         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217                             pause filter count */
218         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
219         VMCB_ASID,       /* ASID */
220         VMCB_INTR,       /* int_ctl, int_vector */
221         VMCB_NPT,        /* npt_en, nCR3, gPAT */
222         VMCB_CR,         /* CR0, CR3, CR4, EFER */
223         VMCB_DR,         /* DR6, DR7 */
224         VMCB_DT,         /* GDT, IDT */
225         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
226         VMCB_CR2,        /* CR2 only */
227         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228         VMCB_DIRTY_MAX,
229 };
230
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233
234 static inline void mark_all_dirty(struct vmcb *vmcb)
235 {
236         vmcb->control.clean = 0;
237 }
238
239 static inline void mark_all_clean(struct vmcb *vmcb)
240 {
241         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242                                & ~VMCB_ALWAYS_DIRTY_MASK;
243 }
244
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 {
247         vmcb->control.clean &= ~(1 << bit);
248 }
249
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 {
252         return container_of(vcpu, struct vcpu_svm, vcpu);
253 }
254
255 static void recalc_intercepts(struct vcpu_svm *svm)
256 {
257         struct vmcb_control_area *c, *h;
258         struct nested_state *g;
259
260         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261
262         if (!is_guest_mode(&svm->vcpu))
263                 return;
264
265         c = &svm->vmcb->control;
266         h = &svm->nested.hsave->control;
267         g = &svm->nested;
268
269         c->intercept_cr = h->intercept_cr | g->intercept_cr;
270         c->intercept_dr = h->intercept_dr | g->intercept_dr;
271         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272         c->intercept = h->intercept | g->intercept;
273 }
274
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 {
277         if (is_guest_mode(&svm->vcpu))
278                 return svm->nested.hsave;
279         else
280                 return svm->vmcb;
281 }
282
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         vmcb->control.intercept_cr |= (1U << bit);
288
289         recalc_intercepts(svm);
290 }
291
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 {
294         struct vmcb *vmcb = get_host_vmcb(svm);
295
296         vmcb->control.intercept_cr &= ~(1U << bit);
297
298         recalc_intercepts(svm);
299 }
300
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 {
303         struct vmcb *vmcb = get_host_vmcb(svm);
304
305         return vmcb->control.intercept_cr & (1U << bit);
306 }
307
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313                 | (1 << INTERCEPT_DR1_READ)
314                 | (1 << INTERCEPT_DR2_READ)
315                 | (1 << INTERCEPT_DR3_READ)
316                 | (1 << INTERCEPT_DR4_READ)
317                 | (1 << INTERCEPT_DR5_READ)
318                 | (1 << INTERCEPT_DR6_READ)
319                 | (1 << INTERCEPT_DR7_READ)
320                 | (1 << INTERCEPT_DR0_WRITE)
321                 | (1 << INTERCEPT_DR1_WRITE)
322                 | (1 << INTERCEPT_DR2_WRITE)
323                 | (1 << INTERCEPT_DR3_WRITE)
324                 | (1 << INTERCEPT_DR4_WRITE)
325                 | (1 << INTERCEPT_DR5_WRITE)
326                 | (1 << INTERCEPT_DR6_WRITE)
327                 | (1 << INTERCEPT_DR7_WRITE);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_dr = 0;
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept_exceptions |= (1U << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept_exceptions &= ~(1U << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 {
361         struct vmcb *vmcb = get_host_vmcb(svm);
362
363         vmcb->control.intercept |= (1ULL << bit);
364
365         recalc_intercepts(svm);
366 }
367
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 {
370         struct vmcb *vmcb = get_host_vmcb(svm);
371
372         vmcb->control.intercept &= ~(1ULL << bit);
373
374         recalc_intercepts(svm);
375 }
376
377 static inline void enable_gif(struct vcpu_svm *svm)
378 {
379         svm->vcpu.arch.hflags |= HF_GIF_MASK;
380 }
381
382 static inline void disable_gif(struct vcpu_svm *svm)
383 {
384         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
385 }
386
387 static inline bool gif_set(struct vcpu_svm *svm)
388 {
389         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
390 }
391
392 static unsigned long iopm_base;
393
394 struct kvm_ldttss_desc {
395         u16 limit0;
396         u16 base0;
397         unsigned base1:8, type:5, dpl:2, p:1;
398         unsigned limit1:4, zero0:3, g:1, base2:8;
399         u32 base3;
400         u32 zero1;
401 } __attribute__((packed));
402
403 struct svm_cpu_data {
404         int cpu;
405
406         u64 asid_generation;
407         u32 max_asid;
408         u32 next_asid;
409         struct kvm_ldttss_desc *tss_desc;
410
411         struct page *save_area;
412 };
413
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415
416 struct svm_init_data {
417         int cpu;
418         int r;
419 };
420
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426
427 static u32 svm_msrpm_offset(u32 msr)
428 {
429         u32 offset;
430         int i;
431
432         for (i = 0; i < NUM_MSR_MAPS; i++) {
433                 if (msr < msrpm_ranges[i] ||
434                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435                         continue;
436
437                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
439
440                 /* Now we have the u8 offset - but need the u32 offset */
441                 return offset / 4;
442         }
443
444         /* MSR not in any range */
445         return MSR_INVALID;
446 }
447
448 #define MAX_INST_SIZE 15
449
450 static inline void clgi(void)
451 {
452         asm volatile (__ex(SVM_CLGI));
453 }
454
455 static inline void stgi(void)
456 {
457         asm volatile (__ex(SVM_STGI));
458 }
459
460 static inline void invlpga(unsigned long addr, u32 asid)
461 {
462         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
463 }
464
465 static int get_npt_level(void)
466 {
467 #ifdef CONFIG_X86_64
468         return PT64_ROOT_LEVEL;
469 #else
470         return PT32E_ROOT_LEVEL;
471 #endif
472 }
473
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 {
476         vcpu->arch.efer = efer;
477         if (!npt_enabled && !(efer & EFER_LMA))
478                 efer &= ~EFER_LME;
479
480         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
482 }
483
484 static int is_external_interrupt(u32 info)
485 {
486         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
488 }
489
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 {
492         struct vcpu_svm *svm = to_svm(vcpu);
493         u32 ret = 0;
494
495         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497         return ret;
498 }
499
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 {
502         struct vcpu_svm *svm = to_svm(vcpu);
503
504         if (mask == 0)
505                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506         else
507                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
508
509 }
510
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 {
513         struct vcpu_svm *svm = to_svm(vcpu);
514
515         if (svm->vmcb->control.next_rip != 0) {
516                 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517                 svm->next_rip = svm->vmcb->control.next_rip;
518         }
519
520         if (!svm->next_rip) {
521                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522                                 EMULATE_DONE)
523                         printk(KERN_DEBUG "%s: NOP\n", __func__);
524                 return;
525         }
526         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528                        __func__, kvm_rip_read(vcpu), svm->next_rip);
529
530         kvm_rip_write(vcpu, svm->next_rip);
531         svm_set_interrupt_shadow(vcpu, 0);
532 }
533
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535                                 bool has_error_code, u32 error_code,
536                                 bool reinject)
537 {
538         struct vcpu_svm *svm = to_svm(vcpu);
539
540         /*
541          * If we are within a nested VM we'd better #VMEXIT and let the guest
542          * handle the exception
543          */
544         if (!reinject &&
545             nested_svm_check_exception(svm, nr, has_error_code, error_code))
546                 return;
547
548         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
550
551                 /*
552                  * For guest debugging where we have to reinject #BP if some
553                  * INT3 is guest-owned:
554                  * Emulate nRIP by moving RIP forward. Will fail if injection
555                  * raises a fault that is not intercepted. Still better than
556                  * failing in all cases.
557                  */
558                 skip_emulated_instruction(&svm->vcpu);
559                 rip = kvm_rip_read(&svm->vcpu);
560                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561                 svm->int3_injected = rip - old_rip;
562         }
563
564         svm->vmcb->control.event_inj = nr
565                 | SVM_EVTINJ_VALID
566                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567                 | SVM_EVTINJ_TYPE_EXEPT;
568         svm->vmcb->control.event_inj_err = error_code;
569 }
570
571 static void svm_init_erratum_383(void)
572 {
573         u32 low, high;
574         int err;
575         u64 val;
576
577         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578                 return;
579
580         /* Use _safe variants to not break nested virtualization */
581         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582         if (err)
583                 return;
584
585         val |= (1ULL << 47);
586
587         low  = lower_32_bits(val);
588         high = upper_32_bits(val);
589
590         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591
592         erratum_383_found = true;
593 }
594
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
596 {
597         /*
598          * Guests should see errata 400 and 415 as fixed (assuming that
599          * HLT and IO instructions are intercepted).
600          */
601         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
603
604         /*
605          * By increasing VCPU's osvw.length to 3 we are telling the guest that
606          * all osvw.status bits inside that length, including bit 0 (which is
607          * reserved for erratum 298), are valid. However, if host processor's
608          * osvw_len is 0 then osvw_status[0] carries no information. We need to
609          * be conservative here and therefore we tell the guest that erratum 298
610          * is present (because we really don't know).
611          */
612         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613                 vcpu->arch.osvw.status |= 1;
614 }
615
616 static int has_svm(void)
617 {
618         const char *msg;
619
620         if (!cpu_has_svm(&msg)) {
621                 printk(KERN_INFO "has_svm: %s\n", msg);
622                 return 0;
623         }
624
625         return 1;
626 }
627
628 static void svm_hardware_disable(void)
629 {
630         /* Make sure we clean up behind us */
631         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633
634         cpu_svm_disable();
635
636         amd_pmu_disable_virt();
637 }
638
639 static int svm_hardware_enable(void)
640 {
641
642         struct svm_cpu_data *sd;
643         uint64_t efer;
644         struct desc_ptr gdt_descr;
645         struct desc_struct *gdt;
646         int me = raw_smp_processor_id();
647
648         rdmsrl(MSR_EFER, efer);
649         if (efer & EFER_SVME)
650                 return -EBUSY;
651
652         if (!has_svm()) {
653                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654                 return -EINVAL;
655         }
656         sd = per_cpu(svm_data, me);
657         if (!sd) {
658                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659                 return -EINVAL;
660         }
661
662         sd->asid_generation = 1;
663         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664         sd->next_asid = sd->max_asid + 1;
665
666         native_store_gdt(&gdt_descr);
667         gdt = (struct desc_struct *)gdt_descr.address;
668         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669
670         wrmsrl(MSR_EFER, efer | EFER_SVME);
671
672         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673
674         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
677         }
678
679
680         /*
681          * Get OSVW bits.
682          *
683          * Note that it is possible to have a system with mixed processor
684          * revisions and therefore different OSVW bits. If bits are not the same
685          * on different processors then choose the worst case (i.e. if erratum
686          * is present on one processor and not on another then assume that the
687          * erratum is present everywhere).
688          */
689         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690                 uint64_t len, status = 0;
691                 int err;
692
693                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694                 if (!err)
695                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696                                                       &err);
697
698                 if (err)
699                         osvw_status = osvw_len = 0;
700                 else {
701                         if (len < osvw_len)
702                                 osvw_len = len;
703                         osvw_status |= status;
704                         osvw_status &= (1ULL << osvw_len) - 1;
705                 }
706         } else
707                 osvw_status = osvw_len = 0;
708
709         svm_init_erratum_383();
710
711         amd_pmu_enable_virt();
712
713         return 0;
714 }
715
716 static void svm_cpu_uninit(int cpu)
717 {
718         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719
720         if (!sd)
721                 return;
722
723         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724         __free_page(sd->save_area);
725         kfree(sd);
726 }
727
728 static int svm_cpu_init(int cpu)
729 {
730         struct svm_cpu_data *sd;
731         int r;
732
733         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734         if (!sd)
735                 return -ENOMEM;
736         sd->cpu = cpu;
737         sd->save_area = alloc_page(GFP_KERNEL);
738         r = -ENOMEM;
739         if (!sd->save_area)
740                 goto err_1;
741
742         per_cpu(svm_data, cpu) = sd;
743
744         return 0;
745
746 err_1:
747         kfree(sd);
748         return r;
749
750 }
751
752 static bool valid_msr_intercept(u32 index)
753 {
754         int i;
755
756         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757                 if (direct_access_msrs[i].index == index)
758                         return true;
759
760         return false;
761 }
762
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764                                  int read, int write)
765 {
766         u8 bit_read, bit_write;
767         unsigned long tmp;
768         u32 offset;
769
770         /*
771          * If this warning triggers extend the direct_access_msrs list at the
772          * beginning of the file
773          */
774         WARN_ON(!valid_msr_intercept(msr));
775
776         offset    = svm_msrpm_offset(msr);
777         bit_read  = 2 * (msr & 0x0f);
778         bit_write = 2 * (msr & 0x0f) + 1;
779         tmp       = msrpm[offset];
780
781         BUG_ON(offset == MSR_INVALID);
782
783         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
784         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785
786         msrpm[offset] = tmp;
787 }
788
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 {
791         int i;
792
793         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794
795         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796                 if (!direct_access_msrs[i].always)
797                         continue;
798
799                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
800         }
801 }
802
803 static void add_msr_offset(u32 offset)
804 {
805         int i;
806
807         for (i = 0; i < MSRPM_OFFSETS; ++i) {
808
809                 /* Offset already in list? */
810                 if (msrpm_offsets[i] == offset)
811                         return;
812
813                 /* Slot used by another offset? */
814                 if (msrpm_offsets[i] != MSR_INVALID)
815                         continue;
816
817                 /* Add offset to list */
818                 msrpm_offsets[i] = offset;
819
820                 return;
821         }
822
823         /*
824          * If this BUG triggers the msrpm_offsets table has an overflow. Just
825          * increase MSRPM_OFFSETS in this case.
826          */
827         BUG();
828 }
829
830 static void init_msrpm_offsets(void)
831 {
832         int i;
833
834         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835
836         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837                 u32 offset;
838
839                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840                 BUG_ON(offset == MSR_INVALID);
841
842                 add_msr_offset(offset);
843         }
844 }
845
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 {
848         u32 *msrpm = svm->msrpm;
849
850         svm->vmcb->control.lbr_ctl = 1;
851         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
855 }
856
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 {
859         u32 *msrpm = svm->msrpm;
860
861         svm->vmcb->control.lbr_ctl = 0;
862         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
866 }
867
868 #define MTRR_TYPE_UC_MINUS      7
869 #define MTRR2PROTVAL_INVALID 0xff
870
871 static u8 mtrr2protval[8];
872
873 static u8 fallback_mtrr_type(int mtrr)
874 {
875         /*
876          * WT and WP aren't always available in the host PAT.  Treat
877          * them as UC and UC- respectively.  Everything else should be
878          * there.
879          */
880         switch (mtrr)
881         {
882         case MTRR_TYPE_WRTHROUGH:
883                 return MTRR_TYPE_UNCACHABLE;
884         case MTRR_TYPE_WRPROT:
885                 return MTRR_TYPE_UC_MINUS;
886         default:
887                 BUG();
888         }
889 }
890
891 static void build_mtrr2protval(void)
892 {
893         int i;
894         u64 pat;
895
896         for (i = 0; i < 8; i++)
897                 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
898
899         /* Ignore the invalid MTRR types.  */
900         mtrr2protval[2] = 0;
901         mtrr2protval[3] = 0;
902
903         /*
904          * Use host PAT value to figure out the mapping from guest MTRR
905          * values to nested page table PAT/PCD/PWT values.  We do not
906          * want to change the host PAT value every time we enter the
907          * guest.
908          */
909         rdmsrl(MSR_IA32_CR_PAT, pat);
910         for (i = 0; i < 8; i++) {
911                 u8 mtrr = pat >> (8 * i);
912
913                 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
914                         mtrr2protval[mtrr] = __cm_idx2pte(i);
915         }
916
917         for (i = 0; i < 8; i++) {
918                 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
919                         u8 fallback = fallback_mtrr_type(i);
920                         mtrr2protval[i] = mtrr2protval[fallback];
921                         BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
922                 }
923         }
924 }
925
926 static __init int svm_hardware_setup(void)
927 {
928         int cpu;
929         struct page *iopm_pages;
930         void *iopm_va;
931         int r;
932
933         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
934
935         if (!iopm_pages)
936                 return -ENOMEM;
937
938         iopm_va = page_address(iopm_pages);
939         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
940         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
941
942         init_msrpm_offsets();
943
944         if (boot_cpu_has(X86_FEATURE_NX))
945                 kvm_enable_efer_bits(EFER_NX);
946
947         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
948                 kvm_enable_efer_bits(EFER_FFXSR);
949
950         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
951                 u64 max;
952
953                 kvm_has_tsc_control = true;
954
955                 /*
956                  * Make sure the user can only configure tsc_khz values that
957                  * fit into a signed integer.
958                  * A min value is not calculated needed because it will always
959                  * be 1 on all machines and a value of 0 is used to disable
960                  * tsc-scaling for the vcpu.
961                  */
962                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
963
964                 kvm_max_guest_tsc_khz = max;
965         }
966
967         if (nested) {
968                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
970         }
971
972         for_each_possible_cpu(cpu) {
973                 r = svm_cpu_init(cpu);
974                 if (r)
975                         goto err;
976         }
977
978         if (!boot_cpu_has(X86_FEATURE_NPT))
979                 npt_enabled = false;
980
981         if (npt_enabled && !npt) {
982                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
983                 npt_enabled = false;
984         }
985
986         if (npt_enabled) {
987                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
988                 kvm_enable_tdp();
989         } else
990                 kvm_disable_tdp();
991
992         build_mtrr2protval();
993         return 0;
994
995 err:
996         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
997         iopm_base = 0;
998         return r;
999 }
1000
1001 static __exit void svm_hardware_unsetup(void)
1002 {
1003         int cpu;
1004
1005         for_each_possible_cpu(cpu)
1006                 svm_cpu_uninit(cpu);
1007
1008         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1009         iopm_base = 0;
1010 }
1011
1012 static void init_seg(struct vmcb_seg *seg)
1013 {
1014         seg->selector = 0;
1015         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1016                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1017         seg->limit = 0xffff;
1018         seg->base = 0;
1019 }
1020
1021 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1022 {
1023         seg->selector = 0;
1024         seg->attrib = SVM_SELECTOR_P_MASK | type;
1025         seg->limit = 0xffff;
1026         seg->base = 0;
1027 }
1028
1029 static u64 __scale_tsc(u64 ratio, u64 tsc)
1030 {
1031         u64 mult, frac, _tsc;
1032
1033         mult  = ratio >> 32;
1034         frac  = ratio & ((1ULL << 32) - 1);
1035
1036         _tsc  = tsc;
1037         _tsc *= mult;
1038         _tsc += (tsc >> 32) * frac;
1039         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1040
1041         return _tsc;
1042 }
1043
1044 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1045 {
1046         struct vcpu_svm *svm = to_svm(vcpu);
1047         u64 _tsc = tsc;
1048
1049         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1050                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1051
1052         return _tsc;
1053 }
1054
1055 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058         u64 ratio;
1059         u64 khz;
1060
1061         /* Guest TSC same frequency as host TSC? */
1062         if (!scale) {
1063                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1064                 return;
1065         }
1066
1067         /* TSC scaling supported? */
1068         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1069                 if (user_tsc_khz > tsc_khz) {
1070                         vcpu->arch.tsc_catchup = 1;
1071                         vcpu->arch.tsc_always_catchup = 1;
1072                 } else
1073                         WARN(1, "user requested TSC rate below hardware speed\n");
1074                 return;
1075         }
1076
1077         khz = user_tsc_khz;
1078
1079         /* TSC scaling required  - calculate ratio */
1080         ratio = khz << 32;
1081         do_div(ratio, tsc_khz);
1082
1083         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1084                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1085                                 user_tsc_khz);
1086                 return;
1087         }
1088         svm->tsc_ratio             = ratio;
1089 }
1090
1091 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1092 {
1093         struct vcpu_svm *svm = to_svm(vcpu);
1094
1095         return svm->vmcb->control.tsc_offset;
1096 }
1097
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100         struct vcpu_svm *svm = to_svm(vcpu);
1101         u64 g_tsc_offset = 0;
1102
1103         if (is_guest_mode(vcpu)) {
1104                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1105                                svm->nested.hsave->control.tsc_offset;
1106                 svm->nested.hsave->control.tsc_offset = offset;
1107         } else
1108                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1109                                            svm->vmcb->control.tsc_offset,
1110                                            offset);
1111
1112         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1113
1114         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1115 }
1116
1117 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1118 {
1119         struct vcpu_svm *svm = to_svm(vcpu);
1120
1121         if (host) {
1122                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1123                         WARN_ON(adjustment < 0);
1124                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1125         }
1126
1127         svm->vmcb->control.tsc_offset += adjustment;
1128         if (is_guest_mode(vcpu))
1129                 svm->nested.hsave->control.tsc_offset += adjustment;
1130         else
1131                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1132                                      svm->vmcb->control.tsc_offset - adjustment,
1133                                      svm->vmcb->control.tsc_offset);
1134
1135         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1136 }
1137
1138 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1139 {
1140         u64 tsc;
1141
1142         tsc = svm_scale_tsc(vcpu, rdtsc());
1143
1144         return target_tsc - tsc;
1145 }
1146
1147 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1148 {
1149         struct kvm_vcpu *vcpu = &svm->vcpu;
1150
1151         /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1152          *
1153          * AMD does not have IPAT.  To emulate it for the case of guests
1154          * with no assigned devices, just set everything to WB.  If guests
1155          * have assigned devices, however, we cannot force WB for RAM
1156          * pages only, so use the guest PAT directly.
1157          */
1158         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1159                 *g_pat = 0x0606060606060606;
1160         else
1161                 *g_pat = vcpu->arch.pat;
1162 }
1163
1164 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1165 {
1166         u8 mtrr;
1167
1168         /*
1169          * 1. MMIO: trust guest MTRR, so same as item 3.
1170          * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1171          * 3. Passthrough: can't guarantee the result, try to trust guest.
1172          */
1173         if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm))
1174                 return 0;
1175
1176         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED) &&
1177             kvm_read_cr0(vcpu) & X86_CR0_CD)
1178                 return _PAGE_NOCACHE;
1179
1180         mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1181         return mtrr2protval[mtrr];
1182 }
1183
1184 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1185 {
1186         struct vmcb_control_area *control = &svm->vmcb->control;
1187         struct vmcb_save_area *save = &svm->vmcb->save;
1188
1189         svm->vcpu.fpu_active = 1;
1190         svm->vcpu.arch.hflags = 0;
1191
1192         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1193         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1194         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1195         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1196         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1197         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1198         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1199
1200         set_dr_intercepts(svm);
1201
1202         set_exception_intercept(svm, PF_VECTOR);
1203         set_exception_intercept(svm, UD_VECTOR);
1204         set_exception_intercept(svm, MC_VECTOR);
1205
1206         set_intercept(svm, INTERCEPT_INTR);
1207         set_intercept(svm, INTERCEPT_NMI);
1208         set_intercept(svm, INTERCEPT_SMI);
1209         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210         set_intercept(svm, INTERCEPT_RDPMC);
1211         set_intercept(svm, INTERCEPT_CPUID);
1212         set_intercept(svm, INTERCEPT_INVD);
1213         set_intercept(svm, INTERCEPT_HLT);
1214         set_intercept(svm, INTERCEPT_INVLPG);
1215         set_intercept(svm, INTERCEPT_INVLPGA);
1216         set_intercept(svm, INTERCEPT_IOIO_PROT);
1217         set_intercept(svm, INTERCEPT_MSR_PROT);
1218         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219         set_intercept(svm, INTERCEPT_SHUTDOWN);
1220         set_intercept(svm, INTERCEPT_VMRUN);
1221         set_intercept(svm, INTERCEPT_VMMCALL);
1222         set_intercept(svm, INTERCEPT_VMLOAD);
1223         set_intercept(svm, INTERCEPT_VMSAVE);
1224         set_intercept(svm, INTERCEPT_STGI);
1225         set_intercept(svm, INTERCEPT_CLGI);
1226         set_intercept(svm, INTERCEPT_SKINIT);
1227         set_intercept(svm, INTERCEPT_WBINVD);
1228         set_intercept(svm, INTERCEPT_MONITOR);
1229         set_intercept(svm, INTERCEPT_MWAIT);
1230         set_intercept(svm, INTERCEPT_XSETBV);
1231
1232         control->iopm_base_pa = iopm_base;
1233         control->msrpm_base_pa = __pa(svm->msrpm);
1234         control->int_ctl = V_INTR_MASKING_MASK;
1235
1236         init_seg(&save->es);
1237         init_seg(&save->ss);
1238         init_seg(&save->ds);
1239         init_seg(&save->fs);
1240         init_seg(&save->gs);
1241
1242         save->cs.selector = 0xf000;
1243         save->cs.base = 0xffff0000;
1244         /* Executable/Readable Code Segment */
1245         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1246                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1247         save->cs.limit = 0xffff;
1248
1249         save->gdtr.limit = 0xffff;
1250         save->idtr.limit = 0xffff;
1251
1252         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1253         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1254
1255         if (!init_event)
1256                 svm_set_efer(&svm->vcpu, 0);
1257         save->dr6 = 0xffff0ff0;
1258         kvm_set_rflags(&svm->vcpu, 2);
1259         save->rip = 0x0000fff0;
1260         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1261
1262         /*
1263          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1264          * It also updates the guest-visible cr0 value.
1265          */
1266         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1267
1268         save->cr4 = X86_CR4_PAE;
1269         /* rdx = ?? */
1270
1271         if (npt_enabled) {
1272                 /* Setup VMCB for Nested Paging */
1273                 control->nested_ctl = 1;
1274                 clr_intercept(svm, INTERCEPT_INVLPG);
1275                 clr_exception_intercept(svm, PF_VECTOR);
1276                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1277                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1278                 save->g_pat = svm->vcpu.arch.pat;
1279                 svm_set_guest_pat(svm, &save->g_pat);
1280                 save->cr3 = 0;
1281                 save->cr4 = 0;
1282         }
1283         svm->asid_generation = 0;
1284
1285         svm->nested.vmcb = 0;
1286         svm->vcpu.arch.hflags = 0;
1287
1288         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1289                 control->pause_filter_count = 3000;
1290                 set_intercept(svm, INTERCEPT_PAUSE);
1291         }
1292
1293         mark_all_dirty(svm->vmcb);
1294
1295         enable_gif(svm);
1296 }
1297
1298 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1299 {
1300         struct vcpu_svm *svm = to_svm(vcpu);
1301         u32 dummy;
1302         u32 eax = 1;
1303
1304         if (!init_event) {
1305                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1306                                            MSR_IA32_APICBASE_ENABLE;
1307                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1308                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1309         }
1310         init_vmcb(svm, init_event);
1311
1312         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1313         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1314 }
1315
1316 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1317 {
1318         struct vcpu_svm *svm;
1319         struct page *page;
1320         struct page *msrpm_pages;
1321         struct page *hsave_page;
1322         struct page *nested_msrpm_pages;
1323         int err;
1324
1325         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1326         if (!svm) {
1327                 err = -ENOMEM;
1328                 goto out;
1329         }
1330
1331         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1332
1333         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1334         if (err)
1335                 goto free_svm;
1336
1337         err = -ENOMEM;
1338         page = alloc_page(GFP_KERNEL);
1339         if (!page)
1340                 goto uninit;
1341
1342         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1343         if (!msrpm_pages)
1344                 goto free_page1;
1345
1346         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1347         if (!nested_msrpm_pages)
1348                 goto free_page2;
1349
1350         hsave_page = alloc_page(GFP_KERNEL);
1351         if (!hsave_page)
1352                 goto free_page3;
1353
1354         svm->nested.hsave = page_address(hsave_page);
1355
1356         svm->msrpm = page_address(msrpm_pages);
1357         svm_vcpu_init_msrpm(svm->msrpm);
1358
1359         svm->nested.msrpm = page_address(nested_msrpm_pages);
1360         svm_vcpu_init_msrpm(svm->nested.msrpm);
1361
1362         svm->vmcb = page_address(page);
1363         clear_page(svm->vmcb);
1364         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1365         svm->asid_generation = 0;
1366         init_vmcb(svm, false);
1367
1368         svm_init_osvw(&svm->vcpu);
1369
1370         return &svm->vcpu;
1371
1372 free_page3:
1373         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1374 free_page2:
1375         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1376 free_page1:
1377         __free_page(page);
1378 uninit:
1379         kvm_vcpu_uninit(&svm->vcpu);
1380 free_svm:
1381         kmem_cache_free(kvm_vcpu_cache, svm);
1382 out:
1383         return ERR_PTR(err);
1384 }
1385
1386 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1387 {
1388         struct vcpu_svm *svm = to_svm(vcpu);
1389
1390         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1391         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1392         __free_page(virt_to_page(svm->nested.hsave));
1393         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1394         kvm_vcpu_uninit(vcpu);
1395         kmem_cache_free(kvm_vcpu_cache, svm);
1396 }
1397
1398 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1399 {
1400         struct vcpu_svm *svm = to_svm(vcpu);
1401         int i;
1402
1403         if (unlikely(cpu != vcpu->cpu)) {
1404                 svm->asid_generation = 0;
1405                 mark_all_dirty(svm->vmcb);
1406         }
1407
1408 #ifdef CONFIG_X86_64
1409         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1410 #endif
1411         savesegment(fs, svm->host.fs);
1412         savesegment(gs, svm->host.gs);
1413         svm->host.ldt = kvm_read_ldt();
1414
1415         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1416                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1417
1418         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1419             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1420                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1421                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1422         }
1423 }
1424
1425 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1426 {
1427         struct vcpu_svm *svm = to_svm(vcpu);
1428         int i;
1429
1430         ++vcpu->stat.host_state_reload;
1431         kvm_load_ldt(svm->host.ldt);
1432 #ifdef CONFIG_X86_64
1433         loadsegment(fs, svm->host.fs);
1434         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1435         load_gs_index(svm->host.gs);
1436 #else
1437 #ifdef CONFIG_X86_32_LAZY_GS
1438         loadsegment(gs, svm->host.gs);
1439 #endif
1440 #endif
1441         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1442                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1443 }
1444
1445 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1446 {
1447         return to_svm(vcpu)->vmcb->save.rflags;
1448 }
1449
1450 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1451 {
1452        /*
1453         * Any change of EFLAGS.VM is accompained by a reload of SS
1454         * (caused by either a task switch or an inter-privilege IRET),
1455         * so we do not need to update the CPL here.
1456         */
1457         to_svm(vcpu)->vmcb->save.rflags = rflags;
1458 }
1459
1460 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1461 {
1462         switch (reg) {
1463         case VCPU_EXREG_PDPTR:
1464                 BUG_ON(!npt_enabled);
1465                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1466                 break;
1467         default:
1468                 BUG();
1469         }
1470 }
1471
1472 static void svm_set_vintr(struct vcpu_svm *svm)
1473 {
1474         set_intercept(svm, INTERCEPT_VINTR);
1475 }
1476
1477 static void svm_clear_vintr(struct vcpu_svm *svm)
1478 {
1479         clr_intercept(svm, INTERCEPT_VINTR);
1480 }
1481
1482 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1483 {
1484         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1485
1486         switch (seg) {
1487         case VCPU_SREG_CS: return &save->cs;
1488         case VCPU_SREG_DS: return &save->ds;
1489         case VCPU_SREG_ES: return &save->es;
1490         case VCPU_SREG_FS: return &save->fs;
1491         case VCPU_SREG_GS: return &save->gs;
1492         case VCPU_SREG_SS: return &save->ss;
1493         case VCPU_SREG_TR: return &save->tr;
1494         case VCPU_SREG_LDTR: return &save->ldtr;
1495         }
1496         BUG();
1497         return NULL;
1498 }
1499
1500 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1501 {
1502         struct vmcb_seg *s = svm_seg(vcpu, seg);
1503
1504         return s->base;
1505 }
1506
1507 static void svm_get_segment(struct kvm_vcpu *vcpu,
1508                             struct kvm_segment *var, int seg)
1509 {
1510         struct vmcb_seg *s = svm_seg(vcpu, seg);
1511
1512         var->base = s->base;
1513         var->limit = s->limit;
1514         var->selector = s->selector;
1515         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1516         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1517         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1518         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1519         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1520         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1521         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1522
1523         /*
1524          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1525          * However, the SVM spec states that the G bit is not observed by the
1526          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1527          * So let's synthesize a legal G bit for all segments, this helps
1528          * running KVM nested. It also helps cross-vendor migration, because
1529          * Intel's vmentry has a check on the 'G' bit.
1530          */
1531         var->g = s->limit > 0xfffff;
1532
1533         /*
1534          * AMD's VMCB does not have an explicit unusable field, so emulate it
1535          * for cross vendor migration purposes by "not present"
1536          */
1537         var->unusable = !var->present || (var->type == 0);
1538
1539         switch (seg) {
1540         case VCPU_SREG_TR:
1541                 /*
1542                  * Work around a bug where the busy flag in the tr selector
1543                  * isn't exposed
1544                  */
1545                 var->type |= 0x2;
1546                 break;
1547         case VCPU_SREG_DS:
1548         case VCPU_SREG_ES:
1549         case VCPU_SREG_FS:
1550         case VCPU_SREG_GS:
1551                 /*
1552                  * The accessed bit must always be set in the segment
1553                  * descriptor cache, although it can be cleared in the
1554                  * descriptor, the cached bit always remains at 1. Since
1555                  * Intel has a check on this, set it here to support
1556                  * cross-vendor migration.
1557                  */
1558                 if (!var->unusable)
1559                         var->type |= 0x1;
1560                 break;
1561         case VCPU_SREG_SS:
1562                 /*
1563                  * On AMD CPUs sometimes the DB bit in the segment
1564                  * descriptor is left as 1, although the whole segment has
1565                  * been made unusable. Clear it here to pass an Intel VMX
1566                  * entry check when cross vendor migrating.
1567                  */
1568                 if (var->unusable)
1569                         var->db = 0;
1570                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1571                 break;
1572         }
1573 }
1574
1575 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1576 {
1577         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1578
1579         return save->cpl;
1580 }
1581
1582 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1583 {
1584         struct vcpu_svm *svm = to_svm(vcpu);
1585
1586         dt->size = svm->vmcb->save.idtr.limit;
1587         dt->address = svm->vmcb->save.idtr.base;
1588 }
1589
1590 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1591 {
1592         struct vcpu_svm *svm = to_svm(vcpu);
1593
1594         svm->vmcb->save.idtr.limit = dt->size;
1595         svm->vmcb->save.idtr.base = dt->address ;
1596         mark_dirty(svm->vmcb, VMCB_DT);
1597 }
1598
1599 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1600 {
1601         struct vcpu_svm *svm = to_svm(vcpu);
1602
1603         dt->size = svm->vmcb->save.gdtr.limit;
1604         dt->address = svm->vmcb->save.gdtr.base;
1605 }
1606
1607 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1608 {
1609         struct vcpu_svm *svm = to_svm(vcpu);
1610
1611         svm->vmcb->save.gdtr.limit = dt->size;
1612         svm->vmcb->save.gdtr.base = dt->address ;
1613         mark_dirty(svm->vmcb, VMCB_DT);
1614 }
1615
1616 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1617 {
1618 }
1619
1620 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1621 {
1622 }
1623
1624 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1625 {
1626 }
1627
1628 static void update_cr0_intercept(struct vcpu_svm *svm)
1629 {
1630         ulong gcr0 = svm->vcpu.arch.cr0;
1631         u64 *hcr0 = &svm->vmcb->save.cr0;
1632
1633         if (!svm->vcpu.fpu_active)
1634                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1635         else
1636                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1637                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1638
1639         mark_dirty(svm->vmcb, VMCB_CR);
1640
1641         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1642                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1643                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1644         } else {
1645                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1646                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1647         }
1648 }
1649
1650 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1651 {
1652         struct vcpu_svm *svm = to_svm(vcpu);
1653
1654 #ifdef CONFIG_X86_64
1655         if (vcpu->arch.efer & EFER_LME) {
1656                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1657                         vcpu->arch.efer |= EFER_LMA;
1658                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1659                 }
1660
1661                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1662                         vcpu->arch.efer &= ~EFER_LMA;
1663                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1664                 }
1665         }
1666 #endif
1667         vcpu->arch.cr0 = cr0;
1668
1669         if (!npt_enabled)
1670                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1671
1672         if (!vcpu->fpu_active)
1673                 cr0 |= X86_CR0_TS;
1674
1675         /* These are emulated via page tables.  */
1676         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1677
1678         svm->vmcb->save.cr0 = cr0;
1679         mark_dirty(svm->vmcb, VMCB_CR);
1680         update_cr0_intercept(svm);
1681 }
1682
1683 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1684 {
1685         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1686         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1687
1688         if (cr4 & X86_CR4_VMXE)
1689                 return 1;
1690
1691         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1692                 svm_flush_tlb(vcpu);
1693
1694         vcpu->arch.cr4 = cr4;
1695         if (!npt_enabled)
1696                 cr4 |= X86_CR4_PAE;
1697         cr4 |= host_cr4_mce;
1698         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1699         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1700         return 0;
1701 }
1702
1703 static void svm_set_segment(struct kvm_vcpu *vcpu,
1704                             struct kvm_segment *var, int seg)
1705 {
1706         struct vcpu_svm *svm = to_svm(vcpu);
1707         struct vmcb_seg *s = svm_seg(vcpu, seg);
1708
1709         s->base = var->base;
1710         s->limit = var->limit;
1711         s->selector = var->selector;
1712         if (var->unusable)
1713                 s->attrib = 0;
1714         else {
1715                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1716                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1717                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1718                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1719                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1720                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1721                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1722                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1723         }
1724
1725         /*
1726          * This is always accurate, except if SYSRET returned to a segment
1727          * with SS.DPL != 3.  Intel does not have this quirk, and always
1728          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1729          * would entail passing the CPL to userspace and back.
1730          */
1731         if (seg == VCPU_SREG_SS)
1732                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1733
1734         mark_dirty(svm->vmcb, VMCB_SEG);
1735 }
1736
1737 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1738 {
1739         struct vcpu_svm *svm = to_svm(vcpu);
1740
1741         clr_exception_intercept(svm, DB_VECTOR);
1742         clr_exception_intercept(svm, BP_VECTOR);
1743
1744         if (svm->nmi_singlestep)
1745                 set_exception_intercept(svm, DB_VECTOR);
1746
1747         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1748                 if (vcpu->guest_debug &
1749                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1750                         set_exception_intercept(svm, DB_VECTOR);
1751                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1752                         set_exception_intercept(svm, BP_VECTOR);
1753         } else
1754                 vcpu->guest_debug = 0;
1755 }
1756
1757 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1758 {
1759         if (sd->next_asid > sd->max_asid) {
1760                 ++sd->asid_generation;
1761                 sd->next_asid = 1;
1762                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1763         }
1764
1765         svm->asid_generation = sd->asid_generation;
1766         svm->vmcb->control.asid = sd->next_asid++;
1767
1768         mark_dirty(svm->vmcb, VMCB_ASID);
1769 }
1770
1771 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1772 {
1773         return to_svm(vcpu)->vmcb->save.dr6;
1774 }
1775
1776 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1777 {
1778         struct vcpu_svm *svm = to_svm(vcpu);
1779
1780         svm->vmcb->save.dr6 = value;
1781         mark_dirty(svm->vmcb, VMCB_DR);
1782 }
1783
1784 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1785 {
1786         struct vcpu_svm *svm = to_svm(vcpu);
1787
1788         get_debugreg(vcpu->arch.db[0], 0);
1789         get_debugreg(vcpu->arch.db[1], 1);
1790         get_debugreg(vcpu->arch.db[2], 2);
1791         get_debugreg(vcpu->arch.db[3], 3);
1792         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1793         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1794
1795         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1796         set_dr_intercepts(svm);
1797 }
1798
1799 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1800 {
1801         struct vcpu_svm *svm = to_svm(vcpu);
1802
1803         svm->vmcb->save.dr7 = value;
1804         mark_dirty(svm->vmcb, VMCB_DR);
1805 }
1806
1807 static int pf_interception(struct vcpu_svm *svm)
1808 {
1809         u64 fault_address = svm->vmcb->control.exit_info_2;
1810         u32 error_code;
1811         int r = 1;
1812
1813         switch (svm->apf_reason) {
1814         default:
1815                 error_code = svm->vmcb->control.exit_info_1;
1816
1817                 trace_kvm_page_fault(fault_address, error_code);
1818                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1819                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1820                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1821                         svm->vmcb->control.insn_bytes,
1822                         svm->vmcb->control.insn_len);
1823                 break;
1824         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1825                 svm->apf_reason = 0;
1826                 local_irq_disable();
1827                 kvm_async_pf_task_wait(fault_address);
1828                 local_irq_enable();
1829                 break;
1830         case KVM_PV_REASON_PAGE_READY:
1831                 svm->apf_reason = 0;
1832                 local_irq_disable();
1833                 kvm_async_pf_task_wake(fault_address);
1834                 local_irq_enable();
1835                 break;
1836         }
1837         return r;
1838 }
1839
1840 static int db_interception(struct vcpu_svm *svm)
1841 {
1842         struct kvm_run *kvm_run = svm->vcpu.run;
1843
1844         if (!(svm->vcpu.guest_debug &
1845               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1846                 !svm->nmi_singlestep) {
1847                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1848                 return 1;
1849         }
1850
1851         if (svm->nmi_singlestep) {
1852                 svm->nmi_singlestep = false;
1853                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1854                         svm->vmcb->save.rflags &=
1855                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1856                 update_db_bp_intercept(&svm->vcpu);
1857         }
1858
1859         if (svm->vcpu.guest_debug &
1860             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1861                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1862                 kvm_run->debug.arch.pc =
1863                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1864                 kvm_run->debug.arch.exception = DB_VECTOR;
1865                 return 0;
1866         }
1867
1868         return 1;
1869 }
1870
1871 static int bp_interception(struct vcpu_svm *svm)
1872 {
1873         struct kvm_run *kvm_run = svm->vcpu.run;
1874
1875         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1876         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1877         kvm_run->debug.arch.exception = BP_VECTOR;
1878         return 0;
1879 }
1880
1881 static int ud_interception(struct vcpu_svm *svm)
1882 {
1883         int er;
1884
1885         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1886         if (er != EMULATE_DONE)
1887                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1888         return 1;
1889 }
1890
1891 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1892 {
1893         struct vcpu_svm *svm = to_svm(vcpu);
1894
1895         clr_exception_intercept(svm, NM_VECTOR);
1896
1897         svm->vcpu.fpu_active = 1;
1898         update_cr0_intercept(svm);
1899 }
1900
1901 static int nm_interception(struct vcpu_svm *svm)
1902 {
1903         svm_fpu_activate(&svm->vcpu);
1904         return 1;
1905 }
1906
1907 static bool is_erratum_383(void)
1908 {
1909         int err, i;
1910         u64 value;
1911
1912         if (!erratum_383_found)
1913                 return false;
1914
1915         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1916         if (err)
1917                 return false;
1918
1919         /* Bit 62 may or may not be set for this mce */
1920         value &= ~(1ULL << 62);
1921
1922         if (value != 0xb600000000010015ULL)
1923                 return false;
1924
1925         /* Clear MCi_STATUS registers */
1926         for (i = 0; i < 6; ++i)
1927                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1928
1929         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1930         if (!err) {
1931                 u32 low, high;
1932
1933                 value &= ~(1ULL << 2);
1934                 low    = lower_32_bits(value);
1935                 high   = upper_32_bits(value);
1936
1937                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1938         }
1939
1940         /* Flush tlb to evict multi-match entries */
1941         __flush_tlb_all();
1942
1943         return true;
1944 }
1945
1946 static void svm_handle_mce(struct vcpu_svm *svm)
1947 {
1948         if (is_erratum_383()) {
1949                 /*
1950                  * Erratum 383 triggered. Guest state is corrupt so kill the
1951                  * guest.
1952                  */
1953                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1954
1955                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1956
1957                 return;
1958         }
1959
1960         /*
1961          * On an #MC intercept the MCE handler is not called automatically in
1962          * the host. So do it by hand here.
1963          */
1964         asm volatile (
1965                 "int $0x12\n");
1966         /* not sure if we ever come back to this point */
1967
1968         return;
1969 }
1970
1971 static int mc_interception(struct vcpu_svm *svm)
1972 {
1973         return 1;
1974 }
1975
1976 static int shutdown_interception(struct vcpu_svm *svm)
1977 {
1978         struct kvm_run *kvm_run = svm->vcpu.run;
1979
1980         /*
1981          * VMCB is undefined after a SHUTDOWN intercept
1982          * so reinitialize it.
1983          */
1984         clear_page(svm->vmcb);
1985         init_vmcb(svm, false);
1986
1987         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1988         return 0;
1989 }
1990
1991 static int io_interception(struct vcpu_svm *svm)
1992 {
1993         struct kvm_vcpu *vcpu = &svm->vcpu;
1994         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1995         int size, in, string;
1996         unsigned port;
1997
1998         ++svm->vcpu.stat.io_exits;
1999         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2000         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2001         if (string || in)
2002                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2003
2004         port = io_info >> 16;
2005         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2006         svm->next_rip = svm->vmcb->control.exit_info_2;
2007         skip_emulated_instruction(&svm->vcpu);
2008
2009         return kvm_fast_pio_out(vcpu, size, port);
2010 }
2011
2012 static int nmi_interception(struct vcpu_svm *svm)
2013 {
2014         return 1;
2015 }
2016
2017 static int intr_interception(struct vcpu_svm *svm)
2018 {
2019         ++svm->vcpu.stat.irq_exits;
2020         return 1;
2021 }
2022
2023 static int nop_on_interception(struct vcpu_svm *svm)
2024 {
2025         return 1;
2026 }
2027
2028 static int halt_interception(struct vcpu_svm *svm)
2029 {
2030         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2031         return kvm_emulate_halt(&svm->vcpu);
2032 }
2033
2034 static int vmmcall_interception(struct vcpu_svm *svm)
2035 {
2036         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2037         kvm_emulate_hypercall(&svm->vcpu);
2038         return 1;
2039 }
2040
2041 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2042 {
2043         struct vcpu_svm *svm = to_svm(vcpu);
2044
2045         return svm->nested.nested_cr3;
2046 }
2047
2048 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2049 {
2050         struct vcpu_svm *svm = to_svm(vcpu);
2051         u64 cr3 = svm->nested.nested_cr3;
2052         u64 pdpte;
2053         int ret;
2054
2055         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2056                                        offset_in_page(cr3) + index * 8, 8);
2057         if (ret)
2058                 return 0;
2059         return pdpte;
2060 }
2061
2062 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2063                                    unsigned long root)
2064 {
2065         struct vcpu_svm *svm = to_svm(vcpu);
2066
2067         svm->vmcb->control.nested_cr3 = root;
2068         mark_dirty(svm->vmcb, VMCB_NPT);
2069         svm_flush_tlb(vcpu);
2070 }
2071
2072 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2073                                        struct x86_exception *fault)
2074 {
2075         struct vcpu_svm *svm = to_svm(vcpu);
2076
2077         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2078                 /*
2079                  * TODO: track the cause of the nested page fault, and
2080                  * correctly fill in the high bits of exit_info_1.
2081                  */
2082                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2083                 svm->vmcb->control.exit_code_hi = 0;
2084                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2085                 svm->vmcb->control.exit_info_2 = fault->address;
2086         }
2087
2088         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2089         svm->vmcb->control.exit_info_1 |= fault->error_code;
2090
2091         /*
2092          * The present bit is always zero for page structure faults on real
2093          * hardware.
2094          */
2095         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2096                 svm->vmcb->control.exit_info_1 &= ~1;
2097
2098         nested_svm_vmexit(svm);
2099 }
2100
2101 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2102 {
2103         WARN_ON(mmu_is_nested(vcpu));
2104         kvm_init_shadow_mmu(vcpu);
2105         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2106         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2107         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2108         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2109         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2110         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2111         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2112 }
2113
2114 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2115 {
2116         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2117 }
2118
2119 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2120 {
2121         if (!(svm->vcpu.arch.efer & EFER_SVME)
2122             || !is_paging(&svm->vcpu)) {
2123                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2124                 return 1;
2125         }
2126
2127         if (svm->vmcb->save.cpl) {
2128                 kvm_inject_gp(&svm->vcpu, 0);
2129                 return 1;
2130         }
2131
2132        return 0;
2133 }
2134
2135 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2136                                       bool has_error_code, u32 error_code)
2137 {
2138         int vmexit;
2139
2140         if (!is_guest_mode(&svm->vcpu))
2141                 return 0;
2142
2143         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2144         svm->vmcb->control.exit_code_hi = 0;
2145         svm->vmcb->control.exit_info_1 = error_code;
2146         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2147
2148         vmexit = nested_svm_intercept(svm);
2149         if (vmexit == NESTED_EXIT_DONE)
2150                 svm->nested.exit_required = true;
2151
2152         return vmexit;
2153 }
2154
2155 /* This function returns true if it is save to enable the irq window */
2156 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2157 {
2158         if (!is_guest_mode(&svm->vcpu))
2159                 return true;
2160
2161         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2162                 return true;
2163
2164         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2165                 return false;
2166
2167         /*
2168          * if vmexit was already requested (by intercepted exception
2169          * for instance) do not overwrite it with "external interrupt"
2170          * vmexit.
2171          */
2172         if (svm->nested.exit_required)
2173                 return false;
2174
2175         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2176         svm->vmcb->control.exit_info_1 = 0;
2177         svm->vmcb->control.exit_info_2 = 0;
2178
2179         if (svm->nested.intercept & 1ULL) {
2180                 /*
2181                  * The #vmexit can't be emulated here directly because this
2182                  * code path runs with irqs and preemption disabled. A
2183                  * #vmexit emulation might sleep. Only signal request for
2184                  * the #vmexit here.
2185                  */
2186                 svm->nested.exit_required = true;
2187                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2188                 return false;
2189         }
2190
2191         return true;
2192 }
2193
2194 /* This function returns true if it is save to enable the nmi window */
2195 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2196 {
2197         if (!is_guest_mode(&svm->vcpu))
2198                 return true;
2199
2200         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2201                 return true;
2202
2203         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2204         svm->nested.exit_required = true;
2205
2206         return false;
2207 }
2208
2209 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2210 {
2211         struct page *page;
2212
2213         might_sleep();
2214
2215         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2216         if (is_error_page(page))
2217                 goto error;
2218
2219         *_page = page;
2220
2221         return kmap(page);
2222
2223 error:
2224         kvm_inject_gp(&svm->vcpu, 0);
2225
2226         return NULL;
2227 }
2228
2229 static void nested_svm_unmap(struct page *page)
2230 {
2231         kunmap(page);
2232         kvm_release_page_dirty(page);
2233 }
2234
2235 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2236 {
2237         unsigned port, size, iopm_len;
2238         u16 val, mask;
2239         u8 start_bit;
2240         u64 gpa;
2241
2242         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2243                 return NESTED_EXIT_HOST;
2244
2245         port = svm->vmcb->control.exit_info_1 >> 16;
2246         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2247                 SVM_IOIO_SIZE_SHIFT;
2248         gpa  = svm->nested.vmcb_iopm + (port / 8);
2249         start_bit = port % 8;
2250         iopm_len = (start_bit + size > 8) ? 2 : 1;
2251         mask = (0xf >> (4 - size)) << start_bit;
2252         val = 0;
2253
2254         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2255                 return NESTED_EXIT_DONE;
2256
2257         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2258 }
2259
2260 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2261 {
2262         u32 offset, msr, value;
2263         int write, mask;
2264
2265         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2266                 return NESTED_EXIT_HOST;
2267
2268         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2269         offset = svm_msrpm_offset(msr);
2270         write  = svm->vmcb->control.exit_info_1 & 1;
2271         mask   = 1 << ((2 * (msr & 0xf)) + write);
2272
2273         if (offset == MSR_INVALID)
2274                 return NESTED_EXIT_DONE;
2275
2276         /* Offset is in 32 bit units but need in 8 bit units */
2277         offset *= 4;
2278
2279         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2280                 return NESTED_EXIT_DONE;
2281
2282         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2283 }
2284
2285 static int nested_svm_exit_special(struct vcpu_svm *svm)
2286 {
2287         u32 exit_code = svm->vmcb->control.exit_code;
2288
2289         switch (exit_code) {
2290         case SVM_EXIT_INTR:
2291         case SVM_EXIT_NMI:
2292         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2293                 return NESTED_EXIT_HOST;
2294         case SVM_EXIT_NPF:
2295                 /* For now we are always handling NPFs when using them */
2296                 if (npt_enabled)
2297                         return NESTED_EXIT_HOST;
2298                 break;
2299         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2300                 /* When we're shadowing, trap PFs, but not async PF */
2301                 if (!npt_enabled && svm->apf_reason == 0)
2302                         return NESTED_EXIT_HOST;
2303                 break;
2304         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2305                 nm_interception(svm);
2306                 break;
2307         default:
2308                 break;
2309         }
2310
2311         return NESTED_EXIT_CONTINUE;
2312 }
2313
2314 /*
2315  * If this function returns true, this #vmexit was already handled
2316  */
2317 static int nested_svm_intercept(struct vcpu_svm *svm)
2318 {
2319         u32 exit_code = svm->vmcb->control.exit_code;
2320         int vmexit = NESTED_EXIT_HOST;
2321
2322         switch (exit_code) {
2323         case SVM_EXIT_MSR:
2324                 vmexit = nested_svm_exit_handled_msr(svm);
2325                 break;
2326         case SVM_EXIT_IOIO:
2327                 vmexit = nested_svm_intercept_ioio(svm);
2328                 break;
2329         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2330                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2331                 if (svm->nested.intercept_cr & bit)
2332                         vmexit = NESTED_EXIT_DONE;
2333                 break;
2334         }
2335         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2336                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2337                 if (svm->nested.intercept_dr & bit)
2338                         vmexit = NESTED_EXIT_DONE;
2339                 break;
2340         }
2341         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2342                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2343                 if (svm->nested.intercept_exceptions & excp_bits)
2344                         vmexit = NESTED_EXIT_DONE;
2345                 /* async page fault always cause vmexit */
2346                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2347                          svm->apf_reason != 0)
2348                         vmexit = NESTED_EXIT_DONE;
2349                 break;
2350         }
2351         case SVM_EXIT_ERR: {
2352                 vmexit = NESTED_EXIT_DONE;
2353                 break;
2354         }
2355         default: {
2356                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2357                 if (svm->nested.intercept & exit_bits)
2358                         vmexit = NESTED_EXIT_DONE;
2359         }
2360         }
2361
2362         return vmexit;
2363 }
2364
2365 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2366 {
2367         int vmexit;
2368
2369         vmexit = nested_svm_intercept(svm);
2370
2371         if (vmexit == NESTED_EXIT_DONE)
2372                 nested_svm_vmexit(svm);
2373
2374         return vmexit;
2375 }
2376
2377 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2378 {
2379         struct vmcb_control_area *dst  = &dst_vmcb->control;
2380         struct vmcb_control_area *from = &from_vmcb->control;
2381
2382         dst->intercept_cr         = from->intercept_cr;
2383         dst->intercept_dr         = from->intercept_dr;
2384         dst->intercept_exceptions = from->intercept_exceptions;
2385         dst->intercept            = from->intercept;
2386         dst->iopm_base_pa         = from->iopm_base_pa;
2387         dst->msrpm_base_pa        = from->msrpm_base_pa;
2388         dst->tsc_offset           = from->tsc_offset;
2389         dst->asid                 = from->asid;
2390         dst->tlb_ctl              = from->tlb_ctl;
2391         dst->int_ctl              = from->int_ctl;
2392         dst->int_vector           = from->int_vector;
2393         dst->int_state            = from->int_state;
2394         dst->exit_code            = from->exit_code;
2395         dst->exit_code_hi         = from->exit_code_hi;
2396         dst->exit_info_1          = from->exit_info_1;
2397         dst->exit_info_2          = from->exit_info_2;
2398         dst->exit_int_info        = from->exit_int_info;
2399         dst->exit_int_info_err    = from->exit_int_info_err;
2400         dst->nested_ctl           = from->nested_ctl;
2401         dst->event_inj            = from->event_inj;
2402         dst->event_inj_err        = from->event_inj_err;
2403         dst->nested_cr3           = from->nested_cr3;
2404         dst->lbr_ctl              = from->lbr_ctl;
2405 }
2406
2407 static int nested_svm_vmexit(struct vcpu_svm *svm)
2408 {
2409         struct vmcb *nested_vmcb;
2410         struct vmcb *hsave = svm->nested.hsave;
2411         struct vmcb *vmcb = svm->vmcb;
2412         struct page *page;
2413
2414         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2415                                        vmcb->control.exit_info_1,
2416                                        vmcb->control.exit_info_2,
2417                                        vmcb->control.exit_int_info,
2418                                        vmcb->control.exit_int_info_err,
2419                                        KVM_ISA_SVM);
2420
2421         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2422         if (!nested_vmcb)
2423                 return 1;
2424
2425         /* Exit Guest-Mode */
2426         leave_guest_mode(&svm->vcpu);
2427         svm->nested.vmcb = 0;
2428
2429         /* Give the current vmcb to the guest */
2430         disable_gif(svm);
2431
2432         nested_vmcb->save.es     = vmcb->save.es;
2433         nested_vmcb->save.cs     = vmcb->save.cs;
2434         nested_vmcb->save.ss     = vmcb->save.ss;
2435         nested_vmcb->save.ds     = vmcb->save.ds;
2436         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2437         nested_vmcb->save.idtr   = vmcb->save.idtr;
2438         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2439         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2440         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2441         nested_vmcb->save.cr2    = vmcb->save.cr2;
2442         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2443         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2444         nested_vmcb->save.rip    = vmcb->save.rip;
2445         nested_vmcb->save.rsp    = vmcb->save.rsp;
2446         nested_vmcb->save.rax    = vmcb->save.rax;
2447         nested_vmcb->save.dr7    = vmcb->save.dr7;
2448         nested_vmcb->save.dr6    = vmcb->save.dr6;
2449         nested_vmcb->save.cpl    = vmcb->save.cpl;
2450
2451         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2452         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2453         nested_vmcb->control.int_state         = vmcb->control.int_state;
2454         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2455         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2456         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2457         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2458         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2459         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2460         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2461
2462         /*
2463          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2464          * to make sure that we do not lose injected events. So check event_inj
2465          * here and copy it to exit_int_info if it is valid.
2466          * Exit_int_info and event_inj can't be both valid because the case
2467          * below only happens on a VMRUN instruction intercept which has
2468          * no valid exit_int_info set.
2469          */
2470         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2471                 struct vmcb_control_area *nc = &nested_vmcb->control;
2472
2473                 nc->exit_int_info     = vmcb->control.event_inj;
2474                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2475         }
2476
2477         nested_vmcb->control.tlb_ctl           = 0;
2478         nested_vmcb->control.event_inj         = 0;
2479         nested_vmcb->control.event_inj_err     = 0;
2480
2481         /* We always set V_INTR_MASKING and remember the old value in hflags */
2482         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2483                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2484
2485         /* Restore the original control entries */
2486         copy_vmcb_control_area(vmcb, hsave);
2487
2488         kvm_clear_exception_queue(&svm->vcpu);
2489         kvm_clear_interrupt_queue(&svm->vcpu);
2490
2491         svm->nested.nested_cr3 = 0;
2492
2493         /* Restore selected save entries */
2494         svm->vmcb->save.es = hsave->save.es;
2495         svm->vmcb->save.cs = hsave->save.cs;
2496         svm->vmcb->save.ss = hsave->save.ss;
2497         svm->vmcb->save.ds = hsave->save.ds;
2498         svm->vmcb->save.gdtr = hsave->save.gdtr;
2499         svm->vmcb->save.idtr = hsave->save.idtr;
2500         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2501         svm_set_efer(&svm->vcpu, hsave->save.efer);
2502         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2503         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2504         if (npt_enabled) {
2505                 svm->vmcb->save.cr3 = hsave->save.cr3;
2506                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2507         } else {
2508                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2509         }
2510         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2511         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2512         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2513         svm->vmcb->save.dr7 = 0;
2514         svm->vmcb->save.cpl = 0;
2515         svm->vmcb->control.exit_int_info = 0;
2516
2517         mark_all_dirty(svm->vmcb);
2518
2519         nested_svm_unmap(page);
2520
2521         nested_svm_uninit_mmu_context(&svm->vcpu);
2522         kvm_mmu_reset_context(&svm->vcpu);
2523         kvm_mmu_load(&svm->vcpu);
2524
2525         return 0;
2526 }
2527
2528 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2529 {
2530         /*
2531          * This function merges the msr permission bitmaps of kvm and the
2532          * nested vmcb. It is optimized in that it only merges the parts where
2533          * the kvm msr permission bitmap may contain zero bits
2534          */
2535         int i;
2536
2537         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2538                 return true;
2539
2540         for (i = 0; i < MSRPM_OFFSETS; i++) {
2541                 u32 value, p;
2542                 u64 offset;
2543
2544                 if (msrpm_offsets[i] == 0xffffffff)
2545                         break;
2546
2547                 p      = msrpm_offsets[i];
2548                 offset = svm->nested.vmcb_msrpm + (p * 4);
2549
2550                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2551                         return false;
2552
2553                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2554         }
2555
2556         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2557
2558         return true;
2559 }
2560
2561 static bool nested_vmcb_checks(struct vmcb *vmcb)
2562 {
2563         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2564                 return false;
2565
2566         if (vmcb->control.asid == 0)
2567                 return false;
2568
2569         if (vmcb->control.nested_ctl && !npt_enabled)
2570                 return false;
2571
2572         return true;
2573 }
2574
2575 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2576 {
2577         struct vmcb *nested_vmcb;
2578         struct vmcb *hsave = svm->nested.hsave;
2579         struct vmcb *vmcb = svm->vmcb;
2580         struct page *page;
2581         u64 vmcb_gpa;
2582
2583         vmcb_gpa = svm->vmcb->save.rax;
2584
2585         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2586         if (!nested_vmcb)
2587                 return false;
2588
2589         if (!nested_vmcb_checks(nested_vmcb)) {
2590                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2591                 nested_vmcb->control.exit_code_hi = 0;
2592                 nested_vmcb->control.exit_info_1  = 0;
2593                 nested_vmcb->control.exit_info_2  = 0;
2594
2595                 nested_svm_unmap(page);
2596
2597                 return false;
2598         }
2599
2600         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2601                                nested_vmcb->save.rip,
2602                                nested_vmcb->control.int_ctl,
2603                                nested_vmcb->control.event_inj,
2604                                nested_vmcb->control.nested_ctl);
2605
2606         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2607                                     nested_vmcb->control.intercept_cr >> 16,
2608                                     nested_vmcb->control.intercept_exceptions,
2609                                     nested_vmcb->control.intercept);
2610
2611         /* Clear internal status */
2612         kvm_clear_exception_queue(&svm->vcpu);
2613         kvm_clear_interrupt_queue(&svm->vcpu);
2614
2615         /*
2616          * Save the old vmcb, so we don't need to pick what we save, but can
2617          * restore everything when a VMEXIT occurs
2618          */
2619         hsave->save.es     = vmcb->save.es;
2620         hsave->save.cs     = vmcb->save.cs;
2621         hsave->save.ss     = vmcb->save.ss;
2622         hsave->save.ds     = vmcb->save.ds;
2623         hsave->save.gdtr   = vmcb->save.gdtr;
2624         hsave->save.idtr   = vmcb->save.idtr;
2625         hsave->save.efer   = svm->vcpu.arch.efer;
2626         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2627         hsave->save.cr4    = svm->vcpu.arch.cr4;
2628         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2629         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2630         hsave->save.rsp    = vmcb->save.rsp;
2631         hsave->save.rax    = vmcb->save.rax;
2632         if (npt_enabled)
2633                 hsave->save.cr3    = vmcb->save.cr3;
2634         else
2635                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2636
2637         copy_vmcb_control_area(hsave, vmcb);
2638
2639         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2640                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2641         else
2642                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2643
2644         if (nested_vmcb->control.nested_ctl) {
2645                 kvm_mmu_unload(&svm->vcpu);
2646                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2647                 nested_svm_init_mmu_context(&svm->vcpu);
2648         }
2649
2650         /* Load the nested guest state */
2651         svm->vmcb->save.es = nested_vmcb->save.es;
2652         svm->vmcb->save.cs = nested_vmcb->save.cs;
2653         svm->vmcb->save.ss = nested_vmcb->save.ss;
2654         svm->vmcb->save.ds = nested_vmcb->save.ds;
2655         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2656         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2657         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2658         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2659         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2660         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2661         if (npt_enabled) {
2662                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2663                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2664         } else
2665                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2666
2667         /* Guest paging mode is active - reset mmu */
2668         kvm_mmu_reset_context(&svm->vcpu);
2669
2670         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2671         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2672         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2673         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2674
2675         /* In case we don't even reach vcpu_run, the fields are not updated */
2676         svm->vmcb->save.rax = nested_vmcb->save.rax;
2677         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2678         svm->vmcb->save.rip = nested_vmcb->save.rip;
2679         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2680         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2681         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2682
2683         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2684         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2685
2686         /* cache intercepts */
2687         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2688         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2689         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2690         svm->nested.intercept            = nested_vmcb->control.intercept;
2691
2692         svm_flush_tlb(&svm->vcpu);
2693         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2694         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2695                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2696         else
2697                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2698
2699         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2700                 /* We only want the cr8 intercept bits of the guest */
2701                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2702                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2703         }
2704
2705         /* We don't want to see VMMCALLs from a nested guest */
2706         clr_intercept(svm, INTERCEPT_VMMCALL);
2707
2708         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2709         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2710         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2711         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2712         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2713         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2714
2715         nested_svm_unmap(page);
2716
2717         /* Enter Guest-Mode */
2718         enter_guest_mode(&svm->vcpu);
2719
2720         /*
2721          * Merge guest and host intercepts - must be called  with vcpu in
2722          * guest-mode to take affect here
2723          */
2724         recalc_intercepts(svm);
2725
2726         svm->nested.vmcb = vmcb_gpa;
2727
2728         enable_gif(svm);
2729
2730         mark_all_dirty(svm->vmcb);
2731
2732         return true;
2733 }
2734
2735 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2736 {
2737         to_vmcb->save.fs = from_vmcb->save.fs;
2738         to_vmcb->save.gs = from_vmcb->save.gs;
2739         to_vmcb->save.tr = from_vmcb->save.tr;
2740         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2741         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2742         to_vmcb->save.star = from_vmcb->save.star;
2743         to_vmcb->save.lstar = from_vmcb->save.lstar;
2744         to_vmcb->save.cstar = from_vmcb->save.cstar;
2745         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2746         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2747         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2748         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2749 }
2750
2751 static int vmload_interception(struct vcpu_svm *svm)
2752 {
2753         struct vmcb *nested_vmcb;
2754         struct page *page;
2755
2756         if (nested_svm_check_permissions(svm))
2757                 return 1;
2758
2759         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2760         if (!nested_vmcb)
2761                 return 1;
2762
2763         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2764         skip_emulated_instruction(&svm->vcpu);
2765
2766         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2767         nested_svm_unmap(page);
2768
2769         return 1;
2770 }
2771
2772 static int vmsave_interception(struct vcpu_svm *svm)
2773 {
2774         struct vmcb *nested_vmcb;
2775         struct page *page;
2776
2777         if (nested_svm_check_permissions(svm))
2778                 return 1;
2779
2780         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2781         if (!nested_vmcb)
2782                 return 1;
2783
2784         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2785         skip_emulated_instruction(&svm->vcpu);
2786
2787         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2788         nested_svm_unmap(page);
2789
2790         return 1;
2791 }
2792
2793 static int vmrun_interception(struct vcpu_svm *svm)
2794 {
2795         if (nested_svm_check_permissions(svm))
2796                 return 1;
2797
2798         /* Save rip after vmrun instruction */
2799         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2800
2801         if (!nested_svm_vmrun(svm))
2802                 return 1;
2803
2804         if (!nested_svm_vmrun_msrpm(svm))
2805                 goto failed;
2806
2807         return 1;
2808
2809 failed:
2810
2811         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2812         svm->vmcb->control.exit_code_hi = 0;
2813         svm->vmcb->control.exit_info_1  = 0;
2814         svm->vmcb->control.exit_info_2  = 0;
2815
2816         nested_svm_vmexit(svm);
2817
2818         return 1;
2819 }
2820
2821 static int stgi_interception(struct vcpu_svm *svm)
2822 {
2823         if (nested_svm_check_permissions(svm))
2824                 return 1;
2825
2826         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2827         skip_emulated_instruction(&svm->vcpu);
2828         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2829
2830         enable_gif(svm);
2831
2832         return 1;
2833 }
2834
2835 static int clgi_interception(struct vcpu_svm *svm)
2836 {
2837         if (nested_svm_check_permissions(svm))
2838                 return 1;
2839
2840         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2841         skip_emulated_instruction(&svm->vcpu);
2842
2843         disable_gif(svm);
2844
2845         /* After a CLGI no interrupts should come */
2846         svm_clear_vintr(svm);
2847         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2848
2849         mark_dirty(svm->vmcb, VMCB_INTR);
2850
2851         return 1;
2852 }
2853
2854 static int invlpga_interception(struct vcpu_svm *svm)
2855 {
2856         struct kvm_vcpu *vcpu = &svm->vcpu;
2857
2858         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2859                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2860
2861         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2862         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2863
2864         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2865         skip_emulated_instruction(&svm->vcpu);
2866         return 1;
2867 }
2868
2869 static int skinit_interception(struct vcpu_svm *svm)
2870 {
2871         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2872
2873         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2874         return 1;
2875 }
2876
2877 static int wbinvd_interception(struct vcpu_svm *svm)
2878 {
2879         kvm_emulate_wbinvd(&svm->vcpu);
2880         return 1;
2881 }
2882
2883 static int xsetbv_interception(struct vcpu_svm *svm)
2884 {
2885         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2886         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2887
2888         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2889                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2890                 skip_emulated_instruction(&svm->vcpu);
2891         }
2892
2893         return 1;
2894 }
2895
2896 static int task_switch_interception(struct vcpu_svm *svm)
2897 {
2898         u16 tss_selector;
2899         int reason;
2900         int int_type = svm->vmcb->control.exit_int_info &
2901                 SVM_EXITINTINFO_TYPE_MASK;
2902         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2903         uint32_t type =
2904                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2905         uint32_t idt_v =
2906                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2907         bool has_error_code = false;
2908         u32 error_code = 0;
2909
2910         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2911
2912         if (svm->vmcb->control.exit_info_2 &
2913             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2914                 reason = TASK_SWITCH_IRET;
2915         else if (svm->vmcb->control.exit_info_2 &
2916                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2917                 reason = TASK_SWITCH_JMP;
2918         else if (idt_v)
2919                 reason = TASK_SWITCH_GATE;
2920         else
2921                 reason = TASK_SWITCH_CALL;
2922
2923         if (reason == TASK_SWITCH_GATE) {
2924                 switch (type) {
2925                 case SVM_EXITINTINFO_TYPE_NMI:
2926                         svm->vcpu.arch.nmi_injected = false;
2927                         break;
2928                 case SVM_EXITINTINFO_TYPE_EXEPT:
2929                         if (svm->vmcb->control.exit_info_2 &
2930                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2931                                 has_error_code = true;
2932                                 error_code =
2933                                         (u32)svm->vmcb->control.exit_info_2;
2934                         }
2935                         kvm_clear_exception_queue(&svm->vcpu);
2936                         break;
2937                 case SVM_EXITINTINFO_TYPE_INTR:
2938                         kvm_clear_interrupt_queue(&svm->vcpu);
2939                         break;
2940                 default:
2941                         break;
2942                 }
2943         }
2944
2945         if (reason != TASK_SWITCH_GATE ||
2946             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2947             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2948              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2949                 skip_emulated_instruction(&svm->vcpu);
2950
2951         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2952                 int_vec = -1;
2953
2954         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2955                                 has_error_code, error_code) == EMULATE_FAIL) {
2956                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2957                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2958                 svm->vcpu.run->internal.ndata = 0;
2959                 return 0;
2960         }
2961         return 1;
2962 }
2963
2964 static int cpuid_interception(struct vcpu_svm *svm)
2965 {
2966         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2967         kvm_emulate_cpuid(&svm->vcpu);
2968         return 1;
2969 }
2970
2971 static int iret_interception(struct vcpu_svm *svm)
2972 {
2973         ++svm->vcpu.stat.nmi_window_exits;
2974         clr_intercept(svm, INTERCEPT_IRET);
2975         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2976         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2977         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2978         return 1;
2979 }
2980
2981 static int invlpg_interception(struct vcpu_svm *svm)
2982 {
2983         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2984                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2985
2986         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2987         skip_emulated_instruction(&svm->vcpu);
2988         return 1;
2989 }
2990
2991 static int emulate_on_interception(struct vcpu_svm *svm)
2992 {
2993         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2994 }
2995
2996 static int rdpmc_interception(struct vcpu_svm *svm)
2997 {
2998         int err;
2999
3000         if (!static_cpu_has(X86_FEATURE_NRIPS))
3001                 return emulate_on_interception(svm);
3002
3003         err = kvm_rdpmc(&svm->vcpu);
3004         kvm_complete_insn_gp(&svm->vcpu, err);
3005
3006         return 1;
3007 }
3008
3009 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3010                                             unsigned long val)
3011 {
3012         unsigned long cr0 = svm->vcpu.arch.cr0;
3013         bool ret = false;
3014         u64 intercept;
3015
3016         intercept = svm->nested.intercept;
3017
3018         if (!is_guest_mode(&svm->vcpu) ||
3019             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3020                 return false;
3021
3022         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3023         val &= ~SVM_CR0_SELECTIVE_MASK;
3024
3025         if (cr0 ^ val) {
3026                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3027                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3028         }
3029
3030         return ret;
3031 }
3032
3033 #define CR_VALID (1ULL << 63)
3034
3035 static int cr_interception(struct vcpu_svm *svm)
3036 {
3037         int reg, cr;
3038         unsigned long val;
3039         int err;
3040
3041         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3042                 return emulate_on_interception(svm);
3043
3044         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3045                 return emulate_on_interception(svm);
3046
3047         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3048         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3049                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3050         else
3051                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3052
3053         err = 0;
3054         if (cr >= 16) { /* mov to cr */
3055                 cr -= 16;
3056                 val = kvm_register_read(&svm->vcpu, reg);
3057                 switch (cr) {
3058                 case 0:
3059                         if (!check_selective_cr0_intercepted(svm, val))
3060                                 err = kvm_set_cr0(&svm->vcpu, val);
3061                         else
3062                                 return 1;
3063
3064                         break;
3065                 case 3:
3066                         err = kvm_set_cr3(&svm->vcpu, val);
3067                         break;
3068                 case 4:
3069                         err = kvm_set_cr4(&svm->vcpu, val);
3070                         break;
3071                 case 8:
3072                         err = kvm_set_cr8(&svm->vcpu, val);
3073                         break;
3074                 default:
3075                         WARN(1, "unhandled write to CR%d", cr);
3076                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3077                         return 1;
3078                 }
3079         } else { /* mov from cr */
3080                 switch (cr) {
3081                 case 0:
3082                         val = kvm_read_cr0(&svm->vcpu);
3083                         break;
3084                 case 2:
3085                         val = svm->vcpu.arch.cr2;
3086                         break;
3087                 case 3:
3088                         val = kvm_read_cr3(&svm->vcpu);
3089                         break;
3090                 case 4:
3091                         val = kvm_read_cr4(&svm->vcpu);
3092                         break;
3093                 case 8:
3094                         val = kvm_get_cr8(&svm->vcpu);
3095                         break;
3096                 default:
3097                         WARN(1, "unhandled read from CR%d", cr);
3098                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3099                         return 1;
3100                 }
3101                 kvm_register_write(&svm->vcpu, reg, val);
3102         }
3103         kvm_complete_insn_gp(&svm->vcpu, err);
3104
3105         return 1;
3106 }
3107
3108 static int dr_interception(struct vcpu_svm *svm)
3109 {
3110         int reg, dr;
3111         unsigned long val;
3112
3113         if (svm->vcpu.guest_debug == 0) {
3114                 /*
3115                  * No more DR vmexits; force a reload of the debug registers
3116                  * and reenter on this instruction.  The next vmexit will
3117                  * retrieve the full state of the debug registers.
3118                  */
3119                 clr_dr_intercepts(svm);
3120                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3121                 return 1;
3122         }
3123
3124         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3125                 return emulate_on_interception(svm);
3126
3127         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3128         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3129
3130         if (dr >= 16) { /* mov to DRn */
3131                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3132                         return 1;
3133                 val = kvm_register_read(&svm->vcpu, reg);
3134                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3135         } else {
3136                 if (!kvm_require_dr(&svm->vcpu, dr))
3137                         return 1;
3138                 kvm_get_dr(&svm->vcpu, dr, &val);
3139                 kvm_register_write(&svm->vcpu, reg, val);
3140         }
3141
3142         skip_emulated_instruction(&svm->vcpu);
3143
3144         return 1;
3145 }
3146
3147 static int cr8_write_interception(struct vcpu_svm *svm)
3148 {
3149         struct kvm_run *kvm_run = svm->vcpu.run;
3150         int r;
3151
3152         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3153         /* instruction emulation calls kvm_set_cr8() */
3154         r = cr_interception(svm);
3155         if (irqchip_in_kernel(svm->vcpu.kvm))
3156                 return r;
3157         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3158                 return r;
3159         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3160         return 0;
3161 }
3162
3163 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3164 {
3165         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3166         return vmcb->control.tsc_offset +
3167                 svm_scale_tsc(vcpu, host_tsc);
3168 }
3169
3170 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3171 {
3172         struct vcpu_svm *svm = to_svm(vcpu);
3173
3174         switch (msr_info->index) {
3175         case MSR_IA32_TSC: {
3176                 msr_info->data = svm->vmcb->control.tsc_offset +
3177                         svm_scale_tsc(vcpu, rdtsc());
3178
3179                 break;
3180         }
3181         case MSR_STAR:
3182                 msr_info->data = svm->vmcb->save.star;
3183                 break;
3184 #ifdef CONFIG_X86_64
3185         case MSR_LSTAR:
3186                 msr_info->data = svm->vmcb->save.lstar;
3187                 break;
3188         case MSR_CSTAR:
3189                 msr_info->data = svm->vmcb->save.cstar;
3190                 break;
3191         case MSR_KERNEL_GS_BASE:
3192                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3193                 break;
3194         case MSR_SYSCALL_MASK:
3195                 msr_info->data = svm->vmcb->save.sfmask;
3196                 break;
3197 #endif
3198         case MSR_IA32_SYSENTER_CS:
3199                 msr_info->data = svm->vmcb->save.sysenter_cs;
3200                 break;
3201         case MSR_IA32_SYSENTER_EIP:
3202                 msr_info->data = svm->sysenter_eip;
3203                 break;
3204         case MSR_IA32_SYSENTER_ESP:
3205                 msr_info->data = svm->sysenter_esp;
3206                 break;
3207         /*
3208          * Nobody will change the following 5 values in the VMCB so we can
3209          * safely return them on rdmsr. They will always be 0 until LBRV is
3210          * implemented.
3211          */
3212         case MSR_IA32_DEBUGCTLMSR:
3213                 msr_info->data = svm->vmcb->save.dbgctl;
3214                 break;
3215         case MSR_IA32_LASTBRANCHFROMIP:
3216                 msr_info->data = svm->vmcb->save.br_from;
3217                 break;
3218         case MSR_IA32_LASTBRANCHTOIP:
3219                 msr_info->data = svm->vmcb->save.br_to;
3220                 break;
3221         case MSR_IA32_LASTINTFROMIP:
3222                 msr_info->data = svm->vmcb->save.last_excp_from;
3223                 break;
3224         case MSR_IA32_LASTINTTOIP:
3225                 msr_info->data = svm->vmcb->save.last_excp_to;
3226                 break;
3227         case MSR_VM_HSAVE_PA:
3228                 msr_info->data = svm->nested.hsave_msr;
3229                 break;
3230         case MSR_VM_CR:
3231                 msr_info->data = svm->nested.vm_cr_msr;
3232                 break;
3233         case MSR_IA32_UCODE_REV:
3234                 msr_info->data = 0x01000065;
3235                 break;
3236         default:
3237                 return kvm_get_msr_common(vcpu, msr_info);
3238         }
3239         return 0;
3240 }
3241
3242 static int rdmsr_interception(struct vcpu_svm *svm)
3243 {
3244         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3245         struct msr_data msr_info;
3246
3247         msr_info.index = ecx;
3248         msr_info.host_initiated = false;
3249         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3250                 trace_kvm_msr_read_ex(ecx);
3251                 kvm_inject_gp(&svm->vcpu, 0);
3252         } else {
3253                 trace_kvm_msr_read(ecx, msr_info.data);
3254
3255                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3256                                    msr_info.data & 0xffffffff);
3257                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3258                                    msr_info.data >> 32);
3259                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3260                 skip_emulated_instruction(&svm->vcpu);
3261         }
3262         return 1;
3263 }
3264
3265 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3266 {
3267         struct vcpu_svm *svm = to_svm(vcpu);
3268         int svm_dis, chg_mask;
3269
3270         if (data & ~SVM_VM_CR_VALID_MASK)
3271                 return 1;
3272
3273         chg_mask = SVM_VM_CR_VALID_MASK;
3274
3275         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3276                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3277
3278         svm->nested.vm_cr_msr &= ~chg_mask;
3279         svm->nested.vm_cr_msr |= (data & chg_mask);
3280
3281         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3282
3283         /* check for svm_disable while efer.svme is set */
3284         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3285                 return 1;
3286
3287         return 0;
3288 }
3289
3290 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3291 {
3292         struct vcpu_svm *svm = to_svm(vcpu);
3293
3294         u32 ecx = msr->index;
3295         u64 data = msr->data;
3296         switch (ecx) {
3297         case MSR_IA32_TSC:
3298                 kvm_write_tsc(vcpu, msr);
3299                 break;
3300         case MSR_STAR:
3301                 svm->vmcb->save.star = data;
3302                 break;
3303 #ifdef CONFIG_X86_64
3304         case MSR_LSTAR:
3305                 svm->vmcb->save.lstar = data;
3306                 break;
3307         case MSR_CSTAR:
3308                 svm->vmcb->save.cstar = data;
3309                 break;
3310         case MSR_KERNEL_GS_BASE:
3311                 svm->vmcb->save.kernel_gs_base = data;
3312                 break;
3313         case MSR_SYSCALL_MASK:
3314                 svm->vmcb->save.sfmask = data;
3315                 break;
3316 #endif
3317         case MSR_IA32_SYSENTER_CS:
3318                 svm->vmcb->save.sysenter_cs = data;
3319                 break;
3320         case MSR_IA32_SYSENTER_EIP:
3321                 svm->sysenter_eip = data;
3322                 svm->vmcb->save.sysenter_eip = data;
3323                 break;
3324         case MSR_IA32_SYSENTER_ESP:
3325                 svm->sysenter_esp = data;
3326                 svm->vmcb->save.sysenter_esp = data;
3327                 break;
3328         case MSR_IA32_DEBUGCTLMSR:
3329                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3330                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3331                                     __func__, data);
3332                         break;
3333                 }
3334                 if (data & DEBUGCTL_RESERVED_BITS)
3335                         return 1;
3336
3337                 svm->vmcb->save.dbgctl = data;
3338                 mark_dirty(svm->vmcb, VMCB_LBR);
3339                 if (data & (1ULL<<0))
3340                         svm_enable_lbrv(svm);
3341                 else
3342                         svm_disable_lbrv(svm);
3343                 break;
3344         case MSR_VM_HSAVE_PA:
3345                 svm->nested.hsave_msr = data;
3346                 break;
3347         case MSR_VM_CR:
3348                 return svm_set_vm_cr(vcpu, data);
3349         case MSR_VM_IGNNE:
3350                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3351                 break;
3352         case MSR_IA32_CR_PAT:
3353                 if (npt_enabled) {
3354                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3355                                 return 1;
3356                         vcpu->arch.pat = data;
3357                         svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3358                         mark_dirty(svm->vmcb, VMCB_NPT);
3359                         break;
3360                 }
3361                 /* fall through */
3362         default:
3363                 return kvm_set_msr_common(vcpu, msr);
3364         }
3365         return 0;
3366 }
3367
3368 static int wrmsr_interception(struct vcpu_svm *svm)
3369 {
3370         struct msr_data msr;
3371         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3372         u64 data = kvm_read_edx_eax(&svm->vcpu);
3373
3374         msr.data = data;
3375         msr.index = ecx;
3376         msr.host_initiated = false;
3377
3378         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3379         if (kvm_set_msr(&svm->vcpu, &msr)) {
3380                 trace_kvm_msr_write_ex(ecx, data);
3381                 kvm_inject_gp(&svm->vcpu, 0);
3382         } else {
3383                 trace_kvm_msr_write(ecx, data);
3384                 skip_emulated_instruction(&svm->vcpu);
3385         }
3386         return 1;
3387 }
3388
3389 static int msr_interception(struct vcpu_svm *svm)
3390 {
3391         if (svm->vmcb->control.exit_info_1)
3392                 return wrmsr_interception(svm);
3393         else
3394                 return rdmsr_interception(svm);
3395 }
3396
3397 static int interrupt_window_interception(struct vcpu_svm *svm)
3398 {
3399         struct kvm_run *kvm_run = svm->vcpu.run;
3400
3401         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3402         svm_clear_vintr(svm);
3403         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3404         mark_dirty(svm->vmcb, VMCB_INTR);
3405         ++svm->vcpu.stat.irq_window_exits;
3406         /*
3407          * If the user space waits to inject interrupts, exit as soon as
3408          * possible
3409          */
3410         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3411             kvm_run->request_interrupt_window &&
3412             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3413                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3414                 return 0;
3415         }
3416
3417         return 1;
3418 }
3419
3420 static int pause_interception(struct vcpu_svm *svm)
3421 {
3422         kvm_vcpu_on_spin(&(svm->vcpu));
3423         return 1;
3424 }
3425
3426 static int nop_interception(struct vcpu_svm *svm)
3427 {
3428         skip_emulated_instruction(&(svm->vcpu));
3429         return 1;
3430 }
3431
3432 static int monitor_interception(struct vcpu_svm *svm)
3433 {
3434         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3435         return nop_interception(svm);
3436 }
3437
3438 static int mwait_interception(struct vcpu_svm *svm)
3439 {
3440         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3441         return nop_interception(svm);
3442 }
3443
3444 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3445         [SVM_EXIT_READ_CR0]                     = cr_interception,
3446         [SVM_EXIT_READ_CR3]                     = cr_interception,
3447         [SVM_EXIT_READ_CR4]                     = cr_interception,
3448         [SVM_EXIT_READ_CR8]                     = cr_interception,
3449         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3450         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3451         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3452         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3453         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3454         [SVM_EXIT_READ_DR0]                     = dr_interception,
3455         [SVM_EXIT_READ_DR1]                     = dr_interception,
3456         [SVM_EXIT_READ_DR2]                     = dr_interception,
3457         [SVM_EXIT_READ_DR3]                     = dr_interception,
3458         [SVM_EXIT_READ_DR4]                     = dr_interception,
3459         [SVM_EXIT_READ_DR5]                     = dr_interception,
3460         [SVM_EXIT_READ_DR6]                     = dr_interception,
3461         [SVM_EXIT_READ_DR7]                     = dr_interception,
3462         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3463         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3464         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3465         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3466         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3467         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3468         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3469         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3470         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3471         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3472         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3473         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3474         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3475         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3476         [SVM_EXIT_INTR]                         = intr_interception,
3477         [SVM_EXIT_NMI]                          = nmi_interception,
3478         [SVM_EXIT_SMI]                          = nop_on_interception,
3479         [SVM_EXIT_INIT]                         = nop_on_interception,
3480         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3481         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3482         [SVM_EXIT_CPUID]                        = cpuid_interception,
3483         [SVM_EXIT_IRET]                         = iret_interception,
3484         [SVM_EXIT_INVD]                         = emulate_on_interception,
3485         [SVM_EXIT_PAUSE]                        = pause_interception,
3486         [SVM_EXIT_HLT]                          = halt_interception,
3487         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3488         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3489         [SVM_EXIT_IOIO]                         = io_interception,
3490         [SVM_EXIT_MSR]                          = msr_interception,
3491         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3492         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3493         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3494         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3495         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3496         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3497         [SVM_EXIT_STGI]                         = stgi_interception,
3498         [SVM_EXIT_CLGI]                         = clgi_interception,
3499         [SVM_EXIT_SKINIT]                       = skinit_interception,
3500         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3501         [SVM_EXIT_MONITOR]                      = monitor_interception,
3502         [SVM_EXIT_MWAIT]                        = mwait_interception,
3503         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3504         [SVM_EXIT_NPF]                          = pf_interception,
3505         [SVM_EXIT_RSM]                          = emulate_on_interception,
3506 };
3507
3508 static void dump_vmcb(struct kvm_vcpu *vcpu)
3509 {
3510         struct vcpu_svm *svm = to_svm(vcpu);
3511         struct vmcb_control_area *control = &svm->vmcb->control;
3512         struct vmcb_save_area *save = &svm->vmcb->save;
3513
3514         pr_err("VMCB Control Area:\n");
3515         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3516         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3517         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3518         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3519         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3520         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3521         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3522         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3523         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3524         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3525         pr_err("%-20s%d\n", "asid:", control->asid);
3526         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3527         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3528         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3529         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3530         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3531         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3532         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3533         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3534         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3535         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3536         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3537         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3538         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3539         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3540         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3541         pr_err("VMCB State Save Area:\n");
3542         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3543                "es:",
3544                save->es.selector, save->es.attrib,
3545                save->es.limit, save->es.base);
3546         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3547                "cs:",
3548                save->cs.selector, save->cs.attrib,
3549                save->cs.limit, save->cs.base);
3550         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3551                "ss:",
3552                save->ss.selector, save->ss.attrib,
3553                save->ss.limit, save->ss.base);
3554         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3555                "ds:",
3556                save->ds.selector, save->ds.attrib,
3557                save->ds.limit, save->ds.base);
3558         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3559                "fs:",
3560                save->fs.selector, save->fs.attrib,
3561                save->fs.limit, save->fs.base);
3562         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3563                "gs:",
3564                save->gs.selector, save->gs.attrib,
3565                save->gs.limit, save->gs.base);
3566         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3567                "gdtr:",
3568                save->gdtr.selector, save->gdtr.attrib,
3569                save->gdtr.limit, save->gdtr.base);
3570         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3571                "ldtr:",
3572                save->ldtr.selector, save->ldtr.attrib,
3573                save->ldtr.limit, save->ldtr.base);
3574         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3575                "idtr:",
3576                save->idtr.selector, save->idtr.attrib,
3577                save->idtr.limit, save->idtr.base);
3578         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3579                "tr:",
3580                save->tr.selector, save->tr.attrib,
3581                save->tr.limit, save->tr.base);
3582         pr_err("cpl:            %d                efer:         %016llx\n",
3583                 save->cpl, save->efer);
3584         pr_err("%-15s %016llx %-13s %016llx\n",
3585                "cr0:", save->cr0, "cr2:", save->cr2);
3586         pr_err("%-15s %016llx %-13s %016llx\n",
3587                "cr3:", save->cr3, "cr4:", save->cr4);
3588         pr_err("%-15s %016llx %-13s %016llx\n",
3589                "dr6:", save->dr6, "dr7:", save->dr7);
3590         pr_err("%-15s %016llx %-13s %016llx\n",
3591                "rip:", save->rip, "rflags:", save->rflags);
3592         pr_err("%-15s %016llx %-13s %016llx\n",
3593                "rsp:", save->rsp, "rax:", save->rax);
3594         pr_err("%-15s %016llx %-13s %016llx\n",
3595                "star:", save->star, "lstar:", save->lstar);
3596         pr_err("%-15s %016llx %-13s %016llx\n",
3597                "cstar:", save->cstar, "sfmask:", save->sfmask);
3598         pr_err("%-15s %016llx %-13s %016llx\n",
3599                "kernel_gs_base:", save->kernel_gs_base,
3600                "sysenter_cs:", save->sysenter_cs);
3601         pr_err("%-15s %016llx %-13s %016llx\n",
3602                "sysenter_esp:", save->sysenter_esp,
3603                "sysenter_eip:", save->sysenter_eip);
3604         pr_err("%-15s %016llx %-13s %016llx\n",
3605                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3606         pr_err("%-15s %016llx %-13s %016llx\n",
3607                "br_from:", save->br_from, "br_to:", save->br_to);
3608         pr_err("%-15s %016llx %-13s %016llx\n",
3609                "excp_from:", save->last_excp_from,
3610                "excp_to:", save->last_excp_to);
3611 }
3612
3613 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3614 {
3615         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3616
3617         *info1 = control->exit_info_1;
3618         *info2 = control->exit_info_2;
3619 }
3620
3621 static int handle_exit(struct kvm_vcpu *vcpu)
3622 {
3623         struct vcpu_svm *svm = to_svm(vcpu);
3624         struct kvm_run *kvm_run = vcpu->run;
3625         u32 exit_code = svm->vmcb->control.exit_code;
3626
3627         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3628                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3629         if (npt_enabled)
3630                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3631
3632         if (unlikely(svm->nested.exit_required)) {
3633                 nested_svm_vmexit(svm);
3634                 svm->nested.exit_required = false;
3635
3636                 return 1;
3637         }
3638
3639         if (is_guest_mode(vcpu)) {
3640                 int vmexit;
3641
3642                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3643                                         svm->vmcb->control.exit_info_1,
3644                                         svm->vmcb->control.exit_info_2,
3645                                         svm->vmcb->control.exit_int_info,
3646                                         svm->vmcb->control.exit_int_info_err,
3647                                         KVM_ISA_SVM);
3648
3649                 vmexit = nested_svm_exit_special(svm);
3650
3651                 if (vmexit == NESTED_EXIT_CONTINUE)
3652                         vmexit = nested_svm_exit_handled(svm);
3653
3654                 if (vmexit == NESTED_EXIT_DONE)
3655                         return 1;
3656         }
3657
3658         svm_complete_interrupts(svm);
3659
3660         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3661                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3662                 kvm_run->fail_entry.hardware_entry_failure_reason
3663                         = svm->vmcb->control.exit_code;
3664                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3665                 dump_vmcb(vcpu);
3666                 return 0;
3667         }
3668
3669         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3670             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3671             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3672             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3673                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3674                        "exit_code 0x%x\n",
3675                        __func__, svm->vmcb->control.exit_int_info,
3676                        exit_code);
3677
3678         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3679             || !svm_exit_handlers[exit_code]) {
3680                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3681                 kvm_queue_exception(vcpu, UD_VECTOR);
3682                 return 1;
3683         }
3684
3685         return svm_exit_handlers[exit_code](svm);
3686 }
3687
3688 static void reload_tss(struct kvm_vcpu *vcpu)
3689 {
3690         int cpu = raw_smp_processor_id();
3691
3692         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3693         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3694         load_TR_desc();
3695 }
3696
3697 static void pre_svm_run(struct vcpu_svm *svm)
3698 {
3699         int cpu = raw_smp_processor_id();
3700
3701         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3702
3703         /* FIXME: handle wraparound of asid_generation */
3704         if (svm->asid_generation != sd->asid_generation)
3705                 new_asid(svm, sd);
3706 }
3707
3708 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711
3712         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3713         vcpu->arch.hflags |= HF_NMI_MASK;
3714         set_intercept(svm, INTERCEPT_IRET);
3715         ++vcpu->stat.nmi_injections;
3716 }
3717
3718 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3719 {
3720         struct vmcb_control_area *control;
3721
3722         control = &svm->vmcb->control;
3723         control->int_vector = irq;
3724         control->int_ctl &= ~V_INTR_PRIO_MASK;
3725         control->int_ctl |= V_IRQ_MASK |
3726                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3727         mark_dirty(svm->vmcb, VMCB_INTR);
3728 }
3729
3730 static void svm_set_irq(struct kvm_vcpu *vcpu)
3731 {
3732         struct vcpu_svm *svm = to_svm(vcpu);
3733
3734         BUG_ON(!(gif_set(svm)));
3735
3736         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3737         ++vcpu->stat.irq_injections;
3738
3739         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3740                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3741 }
3742
3743 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3744 {
3745         struct vcpu_svm *svm = to_svm(vcpu);
3746
3747         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3748                 return;
3749
3750         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3751
3752         if (irr == -1)
3753                 return;
3754
3755         if (tpr >= irr)
3756                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3757 }
3758
3759 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3760 {
3761         return;
3762 }
3763
3764 static int svm_vm_has_apicv(struct kvm *kvm)
3765 {
3766         return 0;
3767 }
3768
3769 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3770 {
3771         return;
3772 }
3773
3774 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3775 {
3776         return;
3777 }
3778
3779 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3780 {
3781         struct vcpu_svm *svm = to_svm(vcpu);
3782         struct vmcb *vmcb = svm->vmcb;
3783         int ret;
3784         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3785               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3786         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3787
3788         return ret;
3789 }
3790
3791 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3792 {
3793         struct vcpu_svm *svm = to_svm(vcpu);
3794
3795         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3796 }
3797
3798 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3799 {
3800         struct vcpu_svm *svm = to_svm(vcpu);
3801
3802         if (masked) {
3803                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3804                 set_intercept(svm, INTERCEPT_IRET);
3805         } else {
3806                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3807                 clr_intercept(svm, INTERCEPT_IRET);
3808         }
3809 }
3810
3811 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3812 {
3813         struct vcpu_svm *svm = to_svm(vcpu);
3814         struct vmcb *vmcb = svm->vmcb;
3815         int ret;
3816
3817         if (!gif_set(svm) ||
3818              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3819                 return 0;
3820
3821         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3822
3823         if (is_guest_mode(vcpu))
3824                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3825
3826         return ret;
3827 }
3828
3829 static void enable_irq_window(struct kvm_vcpu *vcpu)
3830 {
3831         struct vcpu_svm *svm = to_svm(vcpu);
3832
3833         /*
3834          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3835          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3836          * get that intercept, this function will be called again though and
3837          * we'll get the vintr intercept.
3838          */
3839         if (gif_set(svm) && nested_svm_intr(svm)) {
3840                 svm_set_vintr(svm);
3841                 svm_inject_irq(svm, 0x0);
3842         }
3843 }
3844
3845 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3846 {
3847         struct vcpu_svm *svm = to_svm(vcpu);
3848
3849         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3850             == HF_NMI_MASK)
3851                 return; /* IRET will cause a vm exit */
3852
3853         /*
3854          * Something prevents NMI from been injected. Single step over possible
3855          * problem (IRET or exception injection or interrupt shadow)
3856          */
3857         svm->nmi_singlestep = true;
3858         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3859         update_db_bp_intercept(vcpu);
3860 }
3861
3862 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3863 {
3864         return 0;
3865 }
3866
3867 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3868 {
3869         struct vcpu_svm *svm = to_svm(vcpu);
3870
3871         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3872                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3873         else
3874                 svm->asid_generation--;
3875 }
3876
3877 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3878 {
3879 }
3880
3881 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3882 {
3883         struct vcpu_svm *svm = to_svm(vcpu);
3884
3885         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3886                 return;
3887
3888         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3889                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3890                 kvm_set_cr8(vcpu, cr8);
3891         }
3892 }
3893
3894 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3895 {
3896         struct vcpu_svm *svm = to_svm(vcpu);
3897         u64 cr8;
3898
3899         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3900                 return;
3901
3902         cr8 = kvm_get_cr8(vcpu);
3903         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3904         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3905 }
3906
3907 static void svm_complete_interrupts(struct vcpu_svm *svm)
3908 {
3909         u8 vector;
3910         int type;
3911         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3912         unsigned int3_injected = svm->int3_injected;
3913
3914         svm->int3_injected = 0;
3915
3916         /*
3917          * If we've made progress since setting HF_IRET_MASK, we've
3918          * executed an IRET and can allow NMI injection.
3919          */
3920         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3921             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3922                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3923                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3924         }
3925
3926         svm->vcpu.arch.nmi_injected = false;
3927         kvm_clear_exception_queue(&svm->vcpu);
3928         kvm_clear_interrupt_queue(&svm->vcpu);
3929
3930         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3931                 return;
3932
3933         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3934
3935         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3936         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3937
3938         switch (type) {
3939         case SVM_EXITINTINFO_TYPE_NMI:
3940                 svm->vcpu.arch.nmi_injected = true;
3941                 break;
3942         case SVM_EXITINTINFO_TYPE_EXEPT:
3943                 /*
3944                  * In case of software exceptions, do not reinject the vector,
3945                  * but re-execute the instruction instead. Rewind RIP first
3946                  * if we emulated INT3 before.
3947                  */
3948                 if (kvm_exception_is_soft(vector)) {
3949                         if (vector == BP_VECTOR && int3_injected &&
3950                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3951                                 kvm_rip_write(&svm->vcpu,
3952                                               kvm_rip_read(&svm->vcpu) -
3953                                               int3_injected);
3954                         break;
3955                 }
3956                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3957                         u32 err = svm->vmcb->control.exit_int_info_err;
3958                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3959
3960                 } else
3961                         kvm_requeue_exception(&svm->vcpu, vector);
3962                 break;
3963         case SVM_EXITINTINFO_TYPE_INTR:
3964                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3965                 break;
3966         default:
3967                 break;
3968         }
3969 }
3970
3971 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3972 {
3973         struct vcpu_svm *svm = to_svm(vcpu);
3974         struct vmcb_control_area *control = &svm->vmcb->control;
3975
3976         control->exit_int_info = control->event_inj;
3977         control->exit_int_info_err = control->event_inj_err;
3978         control->event_inj = 0;
3979         svm_complete_interrupts(svm);
3980 }
3981
3982 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3983 {
3984         struct vcpu_svm *svm = to_svm(vcpu);
3985
3986         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3987         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3988         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3989
3990         /*
3991          * A vmexit emulation is required before the vcpu can be executed
3992          * again.
3993          */
3994         if (unlikely(svm->nested.exit_required))
3995                 return;
3996
3997         pre_svm_run(svm);
3998
3999         sync_lapic_to_cr8(vcpu);
4000
4001         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4002
4003         clgi();
4004
4005         local_irq_enable();
4006
4007         asm volatile (
4008                 "push %%" _ASM_BP "; \n\t"
4009                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4010                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4011                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4012                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4013                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4014                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4015 #ifdef CONFIG_X86_64
4016                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4017                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4018                 "mov %c[r10](%[svm]), %%r10 \n\t"
4019                 "mov %c[r11](%[svm]), %%r11 \n\t"
4020                 "mov %c[r12](%[svm]), %%r12 \n\t"
4021                 "mov %c[r13](%[svm]), %%r13 \n\t"
4022                 "mov %c[r14](%[svm]), %%r14 \n\t"
4023                 "mov %c[r15](%[svm]), %%r15 \n\t"
4024 #endif
4025
4026                 /* Enter guest mode */
4027                 "push %%" _ASM_AX " \n\t"
4028                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4029                 __ex(SVM_VMLOAD) "\n\t"
4030                 __ex(SVM_VMRUN) "\n\t"
4031                 __ex(SVM_VMSAVE) "\n\t"
4032                 "pop %%" _ASM_AX " \n\t"
4033
4034                 /* Save guest registers, load host registers */
4035                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4036                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4037                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4038                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4039                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4040                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4041 #ifdef CONFIG_X86_64
4042                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4043                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4044                 "mov %%r10, %c[r10](%[svm]) \n\t"
4045                 "mov %%r11, %c[r11](%[svm]) \n\t"
4046                 "mov %%r12, %c[r12](%[svm]) \n\t"
4047                 "mov %%r13, %c[r13](%[svm]) \n\t"
4048                 "mov %%r14, %c[r14](%[svm]) \n\t"
4049                 "mov %%r15, %c[r15](%[svm]) \n\t"
4050 #endif
4051                 "pop %%" _ASM_BP
4052                 :
4053                 : [svm]"a"(svm),
4054                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4055                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4056                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4057                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4058                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4059                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4060                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4061 #ifdef CONFIG_X86_64
4062                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4063                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4064                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4065                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4066                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4067                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4068                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4069                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4070 #endif
4071                 : "cc", "memory"
4072 #ifdef CONFIG_X86_64
4073                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4074                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4075 #else
4076                 , "ebx", "ecx", "edx", "esi", "edi"
4077 #endif
4078                 );
4079
4080 #ifdef CONFIG_X86_64
4081         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4082 #else
4083         loadsegment(fs, svm->host.fs);
4084 #ifndef CONFIG_X86_32_LAZY_GS
4085         loadsegment(gs, svm->host.gs);
4086 #endif
4087 #endif
4088
4089         reload_tss(vcpu);
4090
4091         local_irq_disable();
4092
4093         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4094         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4095         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4096         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4097
4098         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4099
4100         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4101                 kvm_before_handle_nmi(&svm->vcpu);
4102
4103         stgi();
4104
4105         /* Any pending NMI will happen here */
4106
4107         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4108                 kvm_after_handle_nmi(&svm->vcpu);
4109
4110         sync_cr8_to_lapic(vcpu);
4111
4112         svm->next_rip = 0;
4113
4114         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4115
4116         /* if exit due to PF check for async PF */
4117         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4118                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4119
4120         if (npt_enabled) {
4121                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4122                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4123         }
4124
4125         /*
4126          * We need to handle MC intercepts here before the vcpu has a chance to
4127          * change the physical cpu
4128          */
4129         if (unlikely(svm->vmcb->control.exit_code ==
4130                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4131                 svm_handle_mce(svm);
4132
4133         mark_all_clean(svm->vmcb);
4134 }
4135
4136 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4137 {
4138         struct vcpu_svm *svm = to_svm(vcpu);
4139
4140         svm->vmcb->save.cr3 = root;
4141         mark_dirty(svm->vmcb, VMCB_CR);
4142         svm_flush_tlb(vcpu);
4143 }
4144
4145 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4146 {
4147         struct vcpu_svm *svm = to_svm(vcpu);
4148
4149         svm->vmcb->control.nested_cr3 = root;
4150         mark_dirty(svm->vmcb, VMCB_NPT);
4151
4152         /* Also sync guest cr3 here in case we live migrate */
4153         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4154         mark_dirty(svm->vmcb, VMCB_CR);
4155
4156         svm_flush_tlb(vcpu);
4157 }
4158
4159 static int is_disabled(void)
4160 {
4161         u64 vm_cr;
4162
4163         rdmsrl(MSR_VM_CR, vm_cr);
4164         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4165                 return 1;
4166
4167         return 0;
4168 }
4169
4170 static void
4171 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4172 {
4173         /*
4174          * Patch in the VMMCALL instruction:
4175          */
4176         hypercall[0] = 0x0f;
4177         hypercall[1] = 0x01;
4178         hypercall[2] = 0xd9;
4179 }
4180
4181 static void svm_check_processor_compat(void *rtn)
4182 {
4183         *(int *)rtn = 0;
4184 }
4185
4186 static bool svm_cpu_has_accelerated_tpr(void)
4187 {
4188         return false;
4189 }
4190
4191 static bool svm_has_high_real_mode_segbase(void)
4192 {
4193         return true;
4194 }
4195
4196 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4197 {
4198 }
4199
4200 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4201 {
4202         switch (func) {
4203         case 0x80000001:
4204                 if (nested)
4205                         entry->ecx |= (1 << 2); /* Set SVM bit */
4206                 break;
4207         case 0x8000000A:
4208                 entry->eax = 1; /* SVM revision 1 */
4209                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4210                                    ASID emulation to nested SVM */
4211                 entry->ecx = 0; /* Reserved */
4212                 entry->edx = 0; /* Per default do not support any
4213                                    additional features */
4214
4215                 /* Support next_rip if host supports it */
4216                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4217                         entry->edx |= SVM_FEATURE_NRIP;
4218
4219                 /* Support NPT for the guest if enabled */
4220                 if (npt_enabled)
4221                         entry->edx |= SVM_FEATURE_NPT;
4222
4223                 break;
4224         }
4225 }
4226
4227 static int svm_get_lpage_level(void)
4228 {
4229         return PT_PDPE_LEVEL;
4230 }
4231
4232 static bool svm_rdtscp_supported(void)
4233 {
4234         return false;
4235 }
4236
4237 static bool svm_invpcid_supported(void)
4238 {
4239         return false;
4240 }
4241
4242 static bool svm_mpx_supported(void)
4243 {
4244         return false;
4245 }
4246
4247 static bool svm_xsaves_supported(void)
4248 {
4249         return false;
4250 }
4251
4252 static bool svm_has_wbinvd_exit(void)
4253 {
4254         return true;
4255 }
4256
4257 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4258 {
4259         struct vcpu_svm *svm = to_svm(vcpu);
4260
4261         set_exception_intercept(svm, NM_VECTOR);
4262         update_cr0_intercept(svm);
4263 }
4264
4265 #define PRE_EX(exit)  { .exit_code = (exit), \
4266                         .stage = X86_ICPT_PRE_EXCEPT, }
4267 #define POST_EX(exit) { .exit_code = (exit), \
4268                         .stage = X86_ICPT_POST_EXCEPT, }
4269 #define POST_MEM(exit) { .exit_code = (exit), \
4270                         .stage = X86_ICPT_POST_MEMACCESS, }
4271
4272 static const struct __x86_intercept {
4273         u32 exit_code;
4274         enum x86_intercept_stage stage;
4275 } x86_intercept_map[] = {
4276         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4277         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4278         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4279         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4280         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4281         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4282         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4283         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4284         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4285         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4286         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4287         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4288         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4289         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4290         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4291         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4292         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4293         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4294         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4295         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4296         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4297         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4298         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4299         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4300         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4301         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4302         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4303         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4304         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4305         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4306         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4307         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4308         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4309         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4310         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4311         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4312         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4313         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4314         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4315         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4316         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4317         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4318         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4319         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4320         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4321         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4322 };
4323
4324 #undef PRE_EX
4325 #undef POST_EX
4326 #undef POST_MEM
4327
4328 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4329                                struct x86_instruction_info *info,
4330                                enum x86_intercept_stage stage)
4331 {
4332         struct vcpu_svm *svm = to_svm(vcpu);
4333         int vmexit, ret = X86EMUL_CONTINUE;
4334         struct __x86_intercept icpt_info;
4335         struct vmcb *vmcb = svm->vmcb;
4336
4337         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4338                 goto out;
4339
4340         icpt_info = x86_intercept_map[info->intercept];
4341
4342         if (stage != icpt_info.stage)
4343                 goto out;
4344
4345         switch (icpt_info.exit_code) {
4346         case SVM_EXIT_READ_CR0:
4347                 if (info->intercept == x86_intercept_cr_read)
4348                         icpt_info.exit_code += info->modrm_reg;
4349                 break;
4350         case SVM_EXIT_WRITE_CR0: {
4351                 unsigned long cr0, val;
4352                 u64 intercept;
4353
4354                 if (info->intercept == x86_intercept_cr_write)
4355                         icpt_info.exit_code += info->modrm_reg;
4356
4357                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4358                     info->intercept == x86_intercept_clts)
4359                         break;
4360
4361                 intercept = svm->nested.intercept;
4362
4363                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4364                         break;
4365
4366                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4367                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4368
4369                 if (info->intercept == x86_intercept_lmsw) {
4370                         cr0 &= 0xfUL;
4371                         val &= 0xfUL;
4372                         /* lmsw can't clear PE - catch this here */
4373                         if (cr0 & X86_CR0_PE)
4374                                 val |= X86_CR0_PE;
4375                 }
4376
4377                 if (cr0 ^ val)
4378                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4379
4380                 break;
4381         }
4382         case SVM_EXIT_READ_DR0:
4383         case SVM_EXIT_WRITE_DR0:
4384                 icpt_info.exit_code += info->modrm_reg;
4385                 break;
4386         case SVM_EXIT_MSR:
4387                 if (info->intercept == x86_intercept_wrmsr)
4388                         vmcb->control.exit_info_1 = 1;
4389                 else
4390                         vmcb->control.exit_info_1 = 0;
4391                 break;
4392         case SVM_EXIT_PAUSE:
4393                 /*
4394                  * We get this for NOP only, but pause
4395                  * is rep not, check this here
4396                  */
4397                 if (info->rep_prefix != REPE_PREFIX)
4398                         goto out;
4399         case SVM_EXIT_IOIO: {
4400                 u64 exit_info;
4401                 u32 bytes;
4402
4403                 if (info->intercept == x86_intercept_in ||
4404                     info->intercept == x86_intercept_ins) {
4405                         exit_info = ((info->src_val & 0xffff) << 16) |
4406                                 SVM_IOIO_TYPE_MASK;
4407                         bytes = info->dst_bytes;
4408                 } else {
4409                         exit_info = (info->dst_val & 0xffff) << 16;
4410                         bytes = info->src_bytes;
4411                 }
4412
4413                 if (info->intercept == x86_intercept_outs ||
4414                     info->intercept == x86_intercept_ins)
4415                         exit_info |= SVM_IOIO_STR_MASK;
4416
4417                 if (info->rep_prefix)
4418                         exit_info |= SVM_IOIO_REP_MASK;
4419
4420                 bytes = min(bytes, 4u);
4421
4422                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4423
4424                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4425
4426                 vmcb->control.exit_info_1 = exit_info;
4427                 vmcb->control.exit_info_2 = info->next_rip;
4428
4429                 break;
4430         }
4431         default:
4432                 break;
4433         }
4434
4435         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4436         if (static_cpu_has(X86_FEATURE_NRIPS))
4437                 vmcb->control.next_rip  = info->next_rip;
4438         vmcb->control.exit_code = icpt_info.exit_code;
4439         vmexit = nested_svm_exit_handled(svm);
4440
4441         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4442                                            : X86EMUL_CONTINUE;
4443
4444 out:
4445         return ret;
4446 }
4447
4448 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4449 {
4450         local_irq_enable();
4451 }
4452
4453 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4454 {
4455 }
4456
4457 static struct kvm_x86_ops svm_x86_ops = {
4458         .cpu_has_kvm_support = has_svm,
4459         .disabled_by_bios = is_disabled,
4460         .hardware_setup = svm_hardware_setup,
4461         .hardware_unsetup = svm_hardware_unsetup,
4462         .check_processor_compatibility = svm_check_processor_compat,
4463         .hardware_enable = svm_hardware_enable,
4464         .hardware_disable = svm_hardware_disable,
4465         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4466         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4467
4468         .vcpu_create = svm_create_vcpu,
4469         .vcpu_free = svm_free_vcpu,
4470         .vcpu_reset = svm_vcpu_reset,
4471
4472         .prepare_guest_switch = svm_prepare_guest_switch,
4473         .vcpu_load = svm_vcpu_load,
4474         .vcpu_put = svm_vcpu_put,
4475
4476         .update_db_bp_intercept = update_db_bp_intercept,
4477         .get_msr = svm_get_msr,
4478         .set_msr = svm_set_msr,
4479         .get_segment_base = svm_get_segment_base,
4480         .get_segment = svm_get_segment,
4481         .set_segment = svm_set_segment,
4482         .get_cpl = svm_get_cpl,
4483         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4484         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4485         .decache_cr3 = svm_decache_cr3,
4486         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4487         .set_cr0 = svm_set_cr0,
4488         .set_cr3 = svm_set_cr3,
4489         .set_cr4 = svm_set_cr4,
4490         .set_efer = svm_set_efer,
4491         .get_idt = svm_get_idt,
4492         .set_idt = svm_set_idt,
4493         .get_gdt = svm_get_gdt,
4494         .set_gdt = svm_set_gdt,
4495         .get_dr6 = svm_get_dr6,
4496         .set_dr6 = svm_set_dr6,
4497         .set_dr7 = svm_set_dr7,
4498         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4499         .cache_reg = svm_cache_reg,
4500         .get_rflags = svm_get_rflags,
4501         .set_rflags = svm_set_rflags,
4502         .fpu_activate = svm_fpu_activate,
4503         .fpu_deactivate = svm_fpu_deactivate,
4504
4505         .tlb_flush = svm_flush_tlb,
4506
4507         .run = svm_vcpu_run,
4508         .handle_exit = handle_exit,
4509         .skip_emulated_instruction = skip_emulated_instruction,
4510         .set_interrupt_shadow = svm_set_interrupt_shadow,
4511         .get_interrupt_shadow = svm_get_interrupt_shadow,
4512         .patch_hypercall = svm_patch_hypercall,
4513         .set_irq = svm_set_irq,
4514         .set_nmi = svm_inject_nmi,
4515         .queue_exception = svm_queue_exception,
4516         .cancel_injection = svm_cancel_injection,
4517         .interrupt_allowed = svm_interrupt_allowed,
4518         .nmi_allowed = svm_nmi_allowed,
4519         .get_nmi_mask = svm_get_nmi_mask,
4520         .set_nmi_mask = svm_set_nmi_mask,
4521         .enable_nmi_window = enable_nmi_window,
4522         .enable_irq_window = enable_irq_window,
4523         .update_cr8_intercept = update_cr8_intercept,
4524         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4525         .vm_has_apicv = svm_vm_has_apicv,
4526         .load_eoi_exitmap = svm_load_eoi_exitmap,
4527         .sync_pir_to_irr = svm_sync_pir_to_irr,
4528
4529         .set_tss_addr = svm_set_tss_addr,
4530         .get_tdp_level = get_npt_level,
4531         .get_mt_mask = svm_get_mt_mask,
4532
4533         .get_exit_info = svm_get_exit_info,
4534
4535         .get_lpage_level = svm_get_lpage_level,
4536
4537         .cpuid_update = svm_cpuid_update,
4538
4539         .rdtscp_supported = svm_rdtscp_supported,
4540         .invpcid_supported = svm_invpcid_supported,
4541         .mpx_supported = svm_mpx_supported,
4542         .xsaves_supported = svm_xsaves_supported,
4543
4544         .set_supported_cpuid = svm_set_supported_cpuid,
4545
4546         .has_wbinvd_exit = svm_has_wbinvd_exit,
4547
4548         .set_tsc_khz = svm_set_tsc_khz,
4549         .read_tsc_offset = svm_read_tsc_offset,
4550         .write_tsc_offset = svm_write_tsc_offset,
4551         .adjust_tsc_offset = svm_adjust_tsc_offset,
4552         .compute_tsc_offset = svm_compute_tsc_offset,
4553         .read_l1_tsc = svm_read_l1_tsc,
4554
4555         .set_tdp_cr3 = set_tdp_cr3,
4556
4557         .check_intercept = svm_check_intercept,
4558         .handle_external_intr = svm_handle_external_intr,
4559
4560         .sched_in = svm_sched_in,
4561
4562         .pmu_ops = &amd_pmu_ops,
4563 };
4564
4565 static int __init svm_init(void)
4566 {
4567         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4568                         __alignof__(struct vcpu_svm), THIS_MODULE);
4569 }
4570
4571 static void __exit svm_exit(void)
4572 {
4573         kvm_exit();
4574 }
4575
4576 module_init(svm_init)
4577 module_exit(svm_exit)