]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
KVM: VMX: fix vmwrite to invalid VMCS
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
54
55 #define CREATE_TRACE_POINTS
56 #include "trace.h"
57
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32  kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116
117 static bool backwards_tsc_observed = false;
118
119 #define KVM_NR_SHARED_MSRS 16
120
121 struct kvm_shared_msrs_global {
122         int nr;
123         u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125
126 struct kvm_shared_msrs {
127         struct user_return_notifier urn;
128         bool registered;
129         struct kvm_shared_msr_values {
130                 u64 host;
131                 u64 curr;
132         } values[KVM_NR_SHARED_MSRS];
133 };
134
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139         { "pf_fixed", VCPU_STAT(pf_fixed) },
140         { "pf_guest", VCPU_STAT(pf_guest) },
141         { "tlb_flush", VCPU_STAT(tlb_flush) },
142         { "invlpg", VCPU_STAT(invlpg) },
143         { "exits", VCPU_STAT(exits) },
144         { "io_exits", VCPU_STAT(io_exits) },
145         { "mmio_exits", VCPU_STAT(mmio_exits) },
146         { "signal_exits", VCPU_STAT(signal_exits) },
147         { "irq_window", VCPU_STAT(irq_window_exits) },
148         { "nmi_window", VCPU_STAT(nmi_window_exits) },
149         { "halt_exits", VCPU_STAT(halt_exits) },
150         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
152         { "hypercalls", VCPU_STAT(hypercalls) },
153         { "request_irq", VCPU_STAT(request_irq_exits) },
154         { "irq_exits", VCPU_STAT(irq_exits) },
155         { "host_state_reload", VCPU_STAT(host_state_reload) },
156         { "efer_reload", VCPU_STAT(efer_reload) },
157         { "fpu_reload", VCPU_STAT(fpu_reload) },
158         { "insn_emulation", VCPU_STAT(insn_emulation) },
159         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160         { "irq_injections", VCPU_STAT(irq_injections) },
161         { "nmi_injections", VCPU_STAT(nmi_injections) },
162         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
164         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166         { "mmu_flooded", VM_STAT(mmu_flooded) },
167         { "mmu_recycled", VM_STAT(mmu_recycled) },
168         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169         { "mmu_unsync", VM_STAT(mmu_unsync) },
170         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171         { "largepages", VM_STAT(lpages) },
172         { NULL }
173 };
174
175 u64 __read_mostly host_xcr0;
176
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181         int i;
182         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183                 vcpu->arch.apf.gfns[i] = ~0;
184 }
185
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188         unsigned slot;
189         struct kvm_shared_msrs *locals
190                 = container_of(urn, struct kvm_shared_msrs, urn);
191         struct kvm_shared_msr_values *values;
192
193         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194                 values = &locals->values[slot];
195                 if (values->host != values->curr) {
196                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
197                         values->curr = values->host;
198                 }
199         }
200         locals->registered = false;
201         user_return_notifier_unregister(urn);
202 }
203
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206         u64 value;
207         unsigned int cpu = smp_processor_id();
208         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209
210         /* only read, and nobody should modify it at this time,
211          * so don't need lock */
212         if (slot >= shared_msrs_global.nr) {
213                 printk(KERN_ERR "kvm: invalid MSR slot!");
214                 return;
215         }
216         rdmsrl_safe(msr, &value);
217         smsr->values[slot].host = value;
218         smsr->values[slot].curr = value;
219 }
220
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224         if (slot >= shared_msrs_global.nr)
225                 shared_msrs_global.nr = slot + 1;
226         shared_msrs_global.msrs[slot] = msr;
227         /* we need ensured the shared_msr_global have been updated */
228         smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234         unsigned i;
235
236         for (i = 0; i < shared_msrs_global.nr; ++i)
237                 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242         unsigned int cpu = smp_processor_id();
243         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244         int err;
245
246         if (((value ^ smsr->values[slot].curr) & mask) == 0)
247                 return 0;
248         smsr->values[slot].curr = value;
249         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250         if (err)
251                 return 1;
252
253         if (!smsr->registered) {
254                 smsr->urn.on_user_return = kvm_on_user_return;
255                 user_return_notifier_register(&smsr->urn);
256                 smsr->registered = true;
257         }
258         return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264         unsigned int cpu = smp_processor_id();
265         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267         if (smsr->registered)
268                 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279         u64 old_state = vcpu->arch.apic_base &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 new_state = msr_info->data &
282                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286         if (!msr_info->host_initiated &&
287             ((msr_info->data & reserved_bits) != 0 ||
288              new_state == X2APIC_ENABLE ||
289              (new_state == MSR_IA32_APICBASE_ENABLE &&
290               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292               old_state == 0)))
293                 return 1;
294
295         kvm_lapic_set_base(vcpu, msr_info->data);
296         return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302         /* Fault while not rebooting.  We want the trace. */
303         BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN            0
308 #define EXCPT_CONTRIBUTORY      1
309 #define EXCPT_PF                2
310
311 static int exception_class(int vector)
312 {
313         switch (vector) {
314         case PF_VECTOR:
315                 return EXCPT_PF;
316         case DE_VECTOR:
317         case TS_VECTOR:
318         case NP_VECTOR:
319         case SS_VECTOR:
320         case GP_VECTOR:
321                 return EXCPT_CONTRIBUTORY;
322         default:
323                 break;
324         }
325         return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT             0
329 #define EXCPT_TRAP              1
330 #define EXCPT_ABORT             2
331 #define EXCPT_INTERRUPT         3
332
333 static int exception_type(int vector)
334 {
335         unsigned int mask;
336
337         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338                 return EXCPT_INTERRUPT;
339
340         mask = 1 << vector;
341
342         /* #DB is trap, as instruction watchpoints are handled elsewhere */
343         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344                 return EXCPT_TRAP;
345
346         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347                 return EXCPT_ABORT;
348
349         /* Reserved exceptions will result in fault */
350         return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354                 unsigned nr, bool has_error, u32 error_code,
355                 bool reinject)
356 {
357         u32 prev_nr;
358         int class1, class2;
359
360         kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362         if (!vcpu->arch.exception.pending) {
363         queue:
364                 if (has_error && !is_protmode(vcpu))
365                         has_error = false;
366                 vcpu->arch.exception.pending = true;
367                 vcpu->arch.exception.has_error_code = has_error;
368                 vcpu->arch.exception.nr = nr;
369                 vcpu->arch.exception.error_code = error_code;
370                 vcpu->arch.exception.reinject = reinject;
371                 return;
372         }
373
374         /* to check exception */
375         prev_nr = vcpu->arch.exception.nr;
376         if (prev_nr == DF_VECTOR) {
377                 /* triple fault -> shutdown */
378                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379                 return;
380         }
381         class1 = exception_class(prev_nr);
382         class2 = exception_class(nr);
383         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385                 /* generate double fault per SDM Table 5-5 */
386                 vcpu->arch.exception.pending = true;
387                 vcpu->arch.exception.has_error_code = true;
388                 vcpu->arch.exception.nr = DF_VECTOR;
389                 vcpu->arch.exception.error_code = 0;
390         } else
391                 /* replace previous exception with a new one in a hope
392                    that instruction re-execution will regenerate lost
393                    exception */
394                 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399         kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405         kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411         if (err)
412                 kvm_inject_gp(vcpu, 0);
413         else
414                 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420         ++vcpu->stat.pf_guest;
421         vcpu->arch.cr2 = fault->address;
422         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430         else
431                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433         return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438         atomic_inc(&vcpu->arch.nmi_queued);
439         kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445         kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451         kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462                 return true;
463         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464         return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471                 return true;
472
473         kvm_queue_exception(vcpu, UD_VECTOR);
474         return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484                             gfn_t ngfn, void *data, int offset, int len,
485                             u32 access)
486 {
487         struct x86_exception exception;
488         gfn_t real_gfn;
489         gpa_t ngpa;
490
491         ngpa     = gfn_to_gpa(ngfn);
492         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493         if (real_gfn == UNMAPPED_GVA)
494                 return -EFAULT;
495
496         real_gfn = gpa_to_gfn(real_gfn);
497
498         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503                                void *data, int offset, int len, u32 access)
504 {
505         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506                                        data, offset, len, access);
507 }
508
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516         int i;
517         int ret;
518         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521                                       offset * sizeof(u64), sizeof(pdpte),
522                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
523         if (ret < 0) {
524                 ret = 0;
525                 goto out;
526         }
527         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528                 if (is_present_gpte(pdpte[i]) &&
529                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530                         ret = 0;
531                         goto out;
532                 }
533         }
534         ret = 1;
535
536         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_avail);
539         __set_bit(VCPU_EXREG_PDPTR,
540                   (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543         return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550         bool changed = true;
551         int offset;
552         gfn_t gfn;
553         int r;
554
555         if (is_long_mode(vcpu) || !is_pae(vcpu))
556                 return false;
557
558         if (!test_bit(VCPU_EXREG_PDPTR,
559                       (unsigned long *)&vcpu->arch.regs_avail))
560                 return true;
561
562         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
566         if (r < 0)
567                 goto out;
568         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571         return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576         unsigned long old_cr0 = kvm_read_cr0(vcpu);
577         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579         cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582         if (cr0 & 0xffffffff00000000UL)
583                 return 1;
584 #endif
585
586         cr0 &= ~CR0_RESERVED_BITS;
587
588         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589                 return 1;
590
591         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592                 return 1;
593
594         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596                 if ((vcpu->arch.efer & EFER_LME)) {
597                         int cs_db, cs_l;
598
599                         if (!is_pae(vcpu))
600                                 return 1;
601                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602                         if (cs_l)
603                                 return 1;
604                 } else
605 #endif
606                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                                  kvm_read_cr3(vcpu)))
608                         return 1;
609         }
610
611         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612                 return 1;
613
614         kvm_x86_ops->set_cr0(vcpu, cr0);
615
616         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617                 kvm_clear_async_pf_completion_queue(vcpu);
618                 kvm_async_pf_hash_reset(vcpu);
619         }
620
621         if ((cr0 ^ old_cr0) & update_bits)
622                 kvm_mmu_reset_context(vcpu);
623
624         if ((cr0 ^ old_cr0) & X86_CR0_CD)
625                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640                         !vcpu->guest_xcr0_loaded) {
641                 /* kvm_set_xcr() also depends on this */
642                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643                 vcpu->guest_xcr0_loaded = 1;
644         }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649         if (vcpu->guest_xcr0_loaded) {
650                 if (vcpu->arch.xcr0 != host_xcr0)
651                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652                 vcpu->guest_xcr0_loaded = 0;
653         }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658         u64 xcr0 = xcr;
659         u64 old_xcr0 = vcpu->arch.xcr0;
660         u64 valid_bits;
661
662         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
663         if (index != XCR_XFEATURE_ENABLED_MASK)
664                 return 1;
665         if (!(xcr0 & XSTATE_FP))
666                 return 1;
667         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668                 return 1;
669
670         /*
671          * Do not allow the guest to set bits that we do not support
672          * saving.  However, xcr0 bit 0 is always set, even if the
673          * emulated CPU does not support XSAVE (see fx_init).
674          */
675         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676         if (xcr0 & ~valid_bits)
677                 return 1;
678
679         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680                 return 1;
681
682         if (xcr0 & XSTATE_AVX512) {
683                 if (!(xcr0 & XSTATE_YMM))
684                         return 1;
685                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686                         return 1;
687         }
688         kvm_put_guest_xcr0(vcpu);
689         vcpu->arch.xcr0 = xcr0;
690
691         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692                 kvm_update_cpuid(vcpu);
693         return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699             __kvm_set_xcr(vcpu, index, xcr)) {
700                 kvm_inject_gp(vcpu, 0);
701                 return 1;
702         }
703         return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709         unsigned long old_cr4 = kvm_read_cr4(vcpu);
710         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711                                    X86_CR4_SMEP | X86_CR4_SMAP;
712
713         if (cr4 & CR4_RESERVED_BITS)
714                 return 1;
715
716         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717                 return 1;
718
719         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720                 return 1;
721
722         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723                 return 1;
724
725         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726                 return 1;
727
728         if (is_long_mode(vcpu)) {
729                 if (!(cr4 & X86_CR4_PAE))
730                         return 1;
731         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732                    && ((cr4 ^ old_cr4) & pdptr_bits)
733                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734                                    kvm_read_cr3(vcpu)))
735                 return 1;
736
737         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738                 if (!guest_cpuid_has_pcid(vcpu))
739                         return 1;
740
741                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743                         return 1;
744         }
745
746         if (kvm_x86_ops->set_cr4(vcpu, cr4))
747                 return 1;
748
749         if (((cr4 ^ old_cr4) & pdptr_bits) ||
750             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751                 kvm_mmu_reset_context(vcpu);
752
753         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754                 kvm_update_cpuid(vcpu);
755
756         return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763         cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767                 kvm_mmu_sync_roots(vcpu);
768                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769                 return 0;
770         }
771
772         if (is_long_mode(vcpu)) {
773                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774                         return 1;
775         } else if (is_pae(vcpu) && is_paging(vcpu) &&
776                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777                 return 1;
778
779         vcpu->arch.cr3 = cr3;
780         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781         kvm_mmu_new_cr3(vcpu);
782         return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788         if (cr8 & CR8_RESERVED_BITS)
789                 return 1;
790         if (irqchip_in_kernel(vcpu->kvm))
791                 kvm_lapic_set_tpr(vcpu, cr8);
792         else
793                 vcpu->arch.cr8 = cr8;
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800         if (irqchip_in_kernel(vcpu->kvm))
801                 return kvm_lapic_get_cr8(vcpu);
802         else
803                 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809         int i;
810
811         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812                 for (i = 0; i < KVM_NR_DB_REGS; i++)
813                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815         }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826         unsigned long dr7;
827
828         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829                 dr7 = vcpu->arch.guest_debug_dr7;
830         else
831                 dr7 = vcpu->arch.dr7;
832         kvm_x86_ops->set_dr7(vcpu, dr7);
833         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834         if (dr7 & DR7_BP_EN_MASK)
835                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840         u64 fixed = DR6_FIXED_1;
841
842         if (!guest_cpuid_has_rtm(vcpu))
843                 fixed |= DR6_RTM;
844         return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849         switch (dr) {
850         case 0 ... 3:
851                 vcpu->arch.db[dr] = val;
852                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853                         vcpu->arch.eff_db[dr] = val;
854                 break;
855         case 4:
856                 /* fall through */
857         case 6:
858                 if (val & 0xffffffff00000000ULL)
859                         return -1; /* #GP */
860                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861                 kvm_update_dr6(vcpu);
862                 break;
863         case 5:
864                 /* fall through */
865         default: /* 7 */
866                 if (val & 0xffffffff00000000ULL)
867                         return -1; /* #GP */
868                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869                 kvm_update_dr7(vcpu);
870                 break;
871         }
872
873         return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878         if (__kvm_set_dr(vcpu, dr, val)) {
879                 kvm_inject_gp(vcpu, 0);
880                 return 1;
881         }
882         return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888         switch (dr) {
889         case 0 ... 3:
890                 *val = vcpu->arch.db[dr];
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896                         *val = vcpu->arch.dr6;
897                 else
898                         *val = kvm_x86_ops->get_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 *val = vcpu->arch.dr7;
904                 break;
905         }
906         return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913         u64 data;
914         int err;
915
916         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917         if (err)
918                 return err;
919         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921         return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928  *
929  * This list is modified at module load time to reflect the
930  * capabilities of the host cpu. This capabilities test skips MSRs that are
931  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932  * may depend on host virtualization features rather than host cpu features.
933  */
934
935 static u32 msrs_to_save[] = {
936         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937         MSR_STAR,
938 #ifdef CONFIG_X86_64
939         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953         MSR_KVM_PV_EOI_EN,
954
955         MSR_IA32_TSC_ADJUST,
956         MSR_IA32_TSCDEADLINE,
957         MSR_IA32_MISC_ENABLE,
958         MSR_IA32_MCG_STATUS,
959         MSR_IA32_MCG_CTL,
960         MSR_IA32_SMBASE,
961 };
962
963 static unsigned num_emulated_msrs;
964
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967         if (efer & efer_reserved_bits)
968                 return false;
969
970         if (efer & EFER_FFXSR) {
971                 struct kvm_cpuid_entry2 *feat;
972
973                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975                         return false;
976         }
977
978         if (efer & EFER_SVME) {
979                 struct kvm_cpuid_entry2 *feat;
980
981                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983                         return false;
984         }
985
986         return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         u64 old_efer = vcpu->arch.efer;
993
994         if (!kvm_valid_efer(vcpu, efer))
995                 return 1;
996
997         if (is_paging(vcpu)
998             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999                 return 1;
1000
1001         efer &= ~EFER_LMA;
1002         efer |= vcpu->arch.efer & EFER_LMA;
1003
1004         kvm_x86_ops->set_efer(vcpu, efer);
1005
1006         /* Update reserved bits */
1007         if ((efer ^ old_efer) & EFER_NX)
1008                 kvm_mmu_reset_context(vcpu);
1009
1010         return 0;
1011 }
1012
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015        efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018
1019 /*
1020  * Writes msr value into into the appropriate "register".
1021  * Returns 0 on success, non-0 otherwise.
1022  * Assumes vcpu_load() was already called.
1023  */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026         switch (msr->index) {
1027         case MSR_FS_BASE:
1028         case MSR_GS_BASE:
1029         case MSR_KERNEL_GS_BASE:
1030         case MSR_CSTAR:
1031         case MSR_LSTAR:
1032                 if (is_noncanonical_address(msr->data))
1033                         return 1;
1034                 break;
1035         case MSR_IA32_SYSENTER_EIP:
1036         case MSR_IA32_SYSENTER_ESP:
1037                 /*
1038                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039                  * non-canonical address is written on Intel but not on
1040                  * AMD (which ignores the top 32-bits, because it does
1041                  * not implement 64-bit SYSENTER).
1042                  *
1043                  * 64-bit code should hence be able to write a non-canonical
1044                  * value on AMD.  Making the address canonical ensures that
1045                  * vmentry does not fail on Intel after writing a non-canonical
1046                  * value, and that something deterministic happens if the guest
1047                  * invokes 64-bit SYSENTER.
1048                  */
1049                 msr->data = get_canonical(msr->data);
1050         }
1051         return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054
1055 /*
1056  * Adapt set_msr() to msr_io()'s calling convention
1057  */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060         struct msr_data msr;
1061         int r;
1062
1063         msr.index = index;
1064         msr.host_initiated = true;
1065         r = kvm_get_msr(vcpu, &msr);
1066         if (r)
1067                 return r;
1068
1069         *data = msr.data;
1070         return 0;
1071 }
1072
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075         struct msr_data msr;
1076
1077         msr.data = *data;
1078         msr.index = index;
1079         msr.host_initiated = true;
1080         return kvm_set_msr(vcpu, &msr);
1081 }
1082
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085         seqcount_t      seq;
1086
1087         struct { /* extract of a clocksource struct */
1088                 int vclock_mode;
1089                 cycle_t cycle_last;
1090                 cycle_t mask;
1091                 u32     mult;
1092                 u32     shift;
1093         } clock;
1094
1095         u64             boot_ns;
1096         u64             nsec_base;
1097 };
1098
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104         u64 boot_ns;
1105
1106         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107
1108         write_seqcount_begin(&vdata->seq);
1109
1110         /* copy pvclock gtod data */
1111         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1112         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1113         vdata->clock.mask               = tk->tkr_mono.mask;
1114         vdata->clock.mult               = tk->tkr_mono.mult;
1115         vdata->clock.shift              = tk->tkr_mono.shift;
1116
1117         vdata->boot_ns                  = boot_ns;
1118         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1119
1120         write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126         /*
1127          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128          * vcpu_enter_guest.  This function is only called from
1129          * the physical CPU that is running vcpu.
1130          */
1131         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136         int version;
1137         int r;
1138         struct pvclock_wall_clock wc;
1139         struct timespec boot;
1140
1141         if (!wall_clock)
1142                 return;
1143
1144         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145         if (r)
1146                 return;
1147
1148         if (version & 1)
1149                 ++version;  /* first time write, random junk */
1150
1151         ++version;
1152
1153         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154
1155         /*
1156          * The guest calculates current wall clock time by adding
1157          * system time (updated by kvm_guest_time_update below) to the
1158          * wall clock specified here.  guest system time equals host
1159          * system time for us, thus we must fill in host boot time here.
1160          */
1161         getboottime(&boot);
1162
1163         if (kvm->arch.kvmclock_offset) {
1164                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165                 boot = timespec_sub(boot, ts);
1166         }
1167         wc.sec = boot.tv_sec;
1168         wc.nsec = boot.tv_nsec;
1169         wc.version = version;
1170
1171         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172
1173         version++;
1174         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179         uint32_t quotient, remainder;
1180
1181         /* Don't try to replace with do_div(), this one calculates
1182          * "(dividend << 32) / divisor" */
1183         __asm__ ( "divl %4"
1184                   : "=a" (quotient), "=d" (remainder)
1185                   : "0" (0), "1" (dividend), "r" (divisor) );
1186         return quotient;
1187 }
1188
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190                                s8 *pshift, u32 *pmultiplier)
1191 {
1192         uint64_t scaled64;
1193         int32_t  shift = 0;
1194         uint64_t tps64;
1195         uint32_t tps32;
1196
1197         tps64 = base_khz * 1000LL;
1198         scaled64 = scaled_khz * 1000LL;
1199         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200                 tps64 >>= 1;
1201                 shift--;
1202         }
1203
1204         tps32 = (uint32_t)tps64;
1205         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207                         scaled64 >>= 1;
1208                 else
1209                         tps32 <<= 1;
1210                 shift++;
1211         }
1212
1213         *pshift = shift;
1214         *pmultiplier = div_frac(scaled64, tps32);
1215
1216         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219
1220 static inline u64 get_kernel_ns(void)
1221 {
1222         return ktime_get_boot_ns();
1223 }
1224
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235                                    vcpu->arch.virtual_tsc_shift);
1236 }
1237
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240         u64 v = (u64)khz * (1000000 + ppm);
1241         do_div(v, 1000000);
1242         return v;
1243 }
1244
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247         u32 thresh_lo, thresh_hi;
1248         int use_scaling = 0;
1249
1250         /* tsc_khz can be zero if TSC calibration fails */
1251         if (this_tsc_khz == 0)
1252                 return;
1253
1254         /* Compute a scale to convert nanoseconds in TSC cycles */
1255         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256                            &vcpu->arch.virtual_tsc_shift,
1257                            &vcpu->arch.virtual_tsc_mult);
1258         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259
1260         /*
1261          * Compute the variation in TSC rate which is acceptable
1262          * within the range of tolerance and decide if the
1263          * rate being applied is within that bounds of the hardware
1264          * rate.  If so, no scaling or compensation need be done.
1265          */
1266         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270                 use_scaling = 1;
1271         }
1272         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278                                       vcpu->arch.virtual_tsc_mult,
1279                                       vcpu->arch.virtual_tsc_shift);
1280         tsc += vcpu->arch.this_tsc_write;
1281         return tsc;
1282 }
1283
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287         bool vcpus_matched;
1288         struct kvm_arch *ka = &vcpu->kvm->arch;
1289         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290
1291         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292                          atomic_read(&vcpu->kvm->online_vcpus));
1293
1294         /*
1295          * Once the masterclock is enabled, always perform request in
1296          * order to update it.
1297          *
1298          * In order to enable masterclock, the host clocksource must be TSC
1299          * and the vcpus need to have matched TSCs.  When that happens,
1300          * perform request to enable masterclock.
1301          */
1302         if (ka->use_master_clock ||
1303             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305
1306         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307                             atomic_read(&vcpu->kvm->online_vcpus),
1308                             ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320         struct kvm *kvm = vcpu->kvm;
1321         u64 offset, ns, elapsed;
1322         unsigned long flags;
1323         s64 usdiff;
1324         bool matched;
1325         bool already_matched;
1326         u64 data = msr->data;
1327
1328         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330         ns = get_kernel_ns();
1331         elapsed = ns - kvm->arch.last_tsc_nsec;
1332
1333         if (vcpu->arch.virtual_tsc_khz) {
1334                 int faulted = 0;
1335
1336                 /* n.b - signed multiplication and division required */
1337                 usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341                 /* do_div() only does unsigned */
1342                 asm("1: idivl %[divisor]\n"
1343                     "2: xor %%edx, %%edx\n"
1344                     "   movl $0, %[faulted]\n"
1345                     "3:\n"
1346                     ".section .fixup,\"ax\"\n"
1347                     "4: movl $1, %[faulted]\n"
1348                     "   jmp  3b\n"
1349                     ".previous\n"
1350
1351                 _ASM_EXTABLE(1b, 4b)
1352
1353                 : "=A"(usdiff), [faulted] "=r" (faulted)
1354                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355
1356 #endif
1357                 do_div(elapsed, 1000);
1358                 usdiff -= elapsed;
1359                 if (usdiff < 0)
1360                         usdiff = -usdiff;
1361
1362                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1363                 if (faulted)
1364                         usdiff = USEC_PER_SEC;
1365         } else
1366                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367
1368         /*
1369          * Special case: TSC write with a small delta (1 second) of virtual
1370          * cycle time against real time is interpreted as an attempt to
1371          * synchronize the CPU.
1372          *
1373          * For a reliable TSC, we can match TSC offsets, and for an unstable
1374          * TSC, we add elapsed time in this computation.  We could let the
1375          * compensation code attempt to catch up if we fall behind, but
1376          * it's better to try to match offsets from the beginning.
1377          */
1378         if (usdiff < USEC_PER_SEC &&
1379             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380                 if (!check_tsc_unstable()) {
1381                         offset = kvm->arch.cur_tsc_offset;
1382                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1383                 } else {
1384                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1385                         data += delta;
1386                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388                 }
1389                 matched = true;
1390                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391         } else {
1392                 /*
1393                  * We split periods of matched TSC writes into generations.
1394                  * For each generation, we track the original measured
1395                  * nanosecond time, offset, and write, so if TSCs are in
1396                  * sync, we can match exact offset, and if not, we can match
1397                  * exact software computation in compute_guest_tsc()
1398                  *
1399                  * These values are tracked in kvm->arch.cur_xxx variables.
1400                  */
1401                 kvm->arch.cur_tsc_generation++;
1402                 kvm->arch.cur_tsc_nsec = ns;
1403                 kvm->arch.cur_tsc_write = data;
1404                 kvm->arch.cur_tsc_offset = offset;
1405                 matched = false;
1406                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407                          kvm->arch.cur_tsc_generation, data);
1408         }
1409
1410         /*
1411          * We also track th most recent recorded KHZ, write and time to
1412          * allow the matching interval to be extended at each write.
1413          */
1414         kvm->arch.last_tsc_nsec = ns;
1415         kvm->arch.last_tsc_write = data;
1416         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417
1418         vcpu->arch.last_guest_tsc = data;
1419
1420         /* Keep track of which generation this VCPU has synchronized to */
1421         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424
1425         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426                 update_ia32_tsc_adjust_msr(vcpu, offset);
1427         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429
1430         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431         if (!matched) {
1432                 kvm->arch.nr_vcpus_matched_tsc = 0;
1433         } else if (!already_matched) {
1434                 kvm->arch.nr_vcpus_matched_tsc++;
1435         }
1436
1437         kvm_track_tsc_matching(vcpu);
1438         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442
1443 #ifdef CONFIG_X86_64
1444
1445 static cycle_t read_tsc(void)
1446 {
1447         cycle_t ret;
1448         u64 last;
1449
1450         /*
1451          * Empirically, a fence (of type that depends on the CPU)
1452          * before rdtsc is enough to ensure that rdtsc is ordered
1453          * with respect to loads.  The various CPU manuals are unclear
1454          * as to whether rdtsc can be reordered with later loads,
1455          * but no one has ever seen it happen.
1456          */
1457         rdtsc_barrier();
1458         ret = (cycle_t)vget_cycles();
1459
1460         last = pvclock_gtod_data.clock.cycle_last;
1461
1462         if (likely(ret >= last))
1463                 return ret;
1464
1465         /*
1466          * GCC likes to generate cmov here, but this branch is extremely
1467          * predictable (it's just a funciton of time and the likely is
1468          * very likely) and there's a data dependence, so force GCC
1469          * to generate a branch instead.  I don't barrier() because
1470          * we don't actually need a barrier, and if this function
1471          * ever gets inlined it will generate worse code.
1472          */
1473         asm volatile ("");
1474         return last;
1475 }
1476
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479         long v;
1480         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481
1482         *cycle_now = read_tsc();
1483
1484         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485         return v * gtod->clock.mult;
1486 }
1487
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491         unsigned long seq;
1492         int mode;
1493         u64 ns;
1494
1495         do {
1496                 seq = read_seqcount_begin(&gtod->seq);
1497                 mode = gtod->clock.vclock_mode;
1498                 ns = gtod->nsec_base;
1499                 ns += vgettsc(cycle_now);
1500                 ns >>= gtod->clock.shift;
1501                 ns += gtod->boot_ns;
1502         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503         *t = ns;
1504
1505         return mode;
1506 }
1507
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511         /* checked again under seqlock below */
1512         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513                 return false;
1514
1515         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518
1519 /*
1520  *
1521  * Assuming a stable TSC across physical CPUS, and a stable TSC
1522  * across virtual CPUs, the following condition is possible.
1523  * Each numbered line represents an event visible to both
1524  * CPUs at the next numbered event.
1525  *
1526  * "timespecX" represents host monotonic time. "tscX" represents
1527  * RDTSC value.
1528  *
1529  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1530  *
1531  * 1.  read timespec0,tsc0
1532  * 2.                                   | timespec1 = timespec0 + N
1533  *                                      | tsc1 = tsc0 + M
1534  * 3. transition to guest               | transition to guest
1535  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1537  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538  *
1539  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540  *
1541  *      - ret0 < ret1
1542  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543  *              ...
1544  *      - 0 < N - M => M < N
1545  *
1546  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547  * always the case (the difference between two distinct xtime instances
1548  * might be smaller then the difference between corresponding TSC reads,
1549  * when updating guest vcpus pvclock areas).
1550  *
1551  * To avoid that problem, do not allow visibility of distinct
1552  * system_timestamp/tsc_timestamp values simultaneously: use a master
1553  * copy of host monotonic time values. Update that master copy
1554  * in lockstep.
1555  *
1556  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557  *
1558  */
1559
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563         struct kvm_arch *ka = &kvm->arch;
1564         int vclock_mode;
1565         bool host_tsc_clocksource, vcpus_matched;
1566
1567         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568                         atomic_read(&kvm->online_vcpus));
1569
1570         /*
1571          * If the host uses TSC clock, then passthrough TSC as stable
1572          * to the guest.
1573          */
1574         host_tsc_clocksource = kvm_get_time_and_clockread(
1575                                         &ka->master_kernel_ns,
1576                                         &ka->master_cycle_now);
1577
1578         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579                                 && !backwards_tsc_observed
1580                                 && !ka->boot_vcpu_runs_old_kvmclock;
1581
1582         if (ka->use_master_clock)
1583                 atomic_set(&kvm_guest_has_master_clock, 1);
1584
1585         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587                                         vcpus_matched);
1588 #endif
1589 }
1590
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594         int i;
1595         struct kvm_vcpu *vcpu;
1596         struct kvm_arch *ka = &kvm->arch;
1597
1598         spin_lock(&ka->pvclock_gtod_sync_lock);
1599         kvm_make_mclock_inprogress_request(kvm);
1600         /* no guest entries from this point */
1601         pvclock_update_vm_gtod_copy(kvm);
1602
1603         kvm_for_each_vcpu(i, vcpu, kvm)
1604                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605
1606         /* guest entries allowed */
1607         kvm_for_each_vcpu(i, vcpu, kvm)
1608                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609
1610         spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616         unsigned long flags, this_tsc_khz;
1617         struct kvm_vcpu_arch *vcpu = &v->arch;
1618         struct kvm_arch *ka = &v->kvm->arch;
1619         s64 kernel_ns;
1620         u64 tsc_timestamp, host_tsc;
1621         struct pvclock_vcpu_time_info guest_hv_clock;
1622         u8 pvclock_flags;
1623         bool use_master_clock;
1624
1625         kernel_ns = 0;
1626         host_tsc = 0;
1627
1628         /*
1629          * If the host uses TSC clock, then passthrough TSC as stable
1630          * to the guest.
1631          */
1632         spin_lock(&ka->pvclock_gtod_sync_lock);
1633         use_master_clock = ka->use_master_clock;
1634         if (use_master_clock) {
1635                 host_tsc = ka->master_cycle_now;
1636                 kernel_ns = ka->master_kernel_ns;
1637         }
1638         spin_unlock(&ka->pvclock_gtod_sync_lock);
1639
1640         /* Keep irq disabled to prevent changes to the clock */
1641         local_irq_save(flags);
1642         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643         if (unlikely(this_tsc_khz == 0)) {
1644                 local_irq_restore(flags);
1645                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646                 return 1;
1647         }
1648         if (!use_master_clock) {
1649                 host_tsc = native_read_tsc();
1650                 kernel_ns = get_kernel_ns();
1651         }
1652
1653         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654
1655         /*
1656          * We may have to catch up the TSC to match elapsed wall clock
1657          * time for two reasons, even if kvmclock is used.
1658          *   1) CPU could have been running below the maximum TSC rate
1659          *   2) Broken TSC compensation resets the base at each VCPU
1660          *      entry to avoid unknown leaps of TSC even when running
1661          *      again on the same CPU.  This may cause apparent elapsed
1662          *      time to disappear, and the guest to stand still or run
1663          *      very slowly.
1664          */
1665         if (vcpu->tsc_catchup) {
1666                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1667                 if (tsc > tsc_timestamp) {
1668                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669                         tsc_timestamp = tsc;
1670                 }
1671         }
1672
1673         local_irq_restore(flags);
1674
1675         if (!vcpu->pv_time_enabled)
1676                 return 0;
1677
1678         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680                                    &vcpu->hv_clock.tsc_shift,
1681                                    &vcpu->hv_clock.tsc_to_system_mul);
1682                 vcpu->hw_tsc_khz = this_tsc_khz;
1683         }
1684
1685         /* With all the info we got, fill in the values */
1686         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688         vcpu->last_guest_tsc = tsc_timestamp;
1689
1690         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691                 &guest_hv_clock, sizeof(guest_hv_clock))))
1692                 return 0;
1693
1694         /* This VCPU is paused, but it's legal for a guest to read another
1695          * VCPU's kvmclock, so we really have to follow the specification where
1696          * it says that version is odd if data is being modified, and even after
1697          * it is consistent.
1698          *
1699          * Version field updates must be kept separate.  This is because
1700          * kvm_write_guest_cached might use a "rep movs" instruction, and
1701          * writes within a string instruction are weakly ordered.  So there
1702          * are three writes overall.
1703          *
1704          * As a small optimization, only write the version field in the first
1705          * and third write.  The vcpu->pv_time cache is still valid, because the
1706          * version field is the first in the struct.
1707          */
1708         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709
1710         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712                                 &vcpu->hv_clock,
1713                                 sizeof(vcpu->hv_clock.version));
1714
1715         smp_wmb();
1716
1717         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719
1720         if (vcpu->pvclock_set_guest_stopped_request) {
1721                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722                 vcpu->pvclock_set_guest_stopped_request = false;
1723         }
1724
1725         pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726
1727         /* If the host uses TSC clocksource, then it is stable */
1728         if (use_master_clock)
1729                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731         vcpu->hv_clock.flags = pvclock_flags;
1732
1733         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736                                 &vcpu->hv_clock,
1737                                 sizeof(vcpu->hv_clock));
1738
1739         smp_wmb();
1740
1741         vcpu->hv_clock.version++;
1742         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743                                 &vcpu->hv_clock,
1744                                 sizeof(vcpu->hv_clock.version));
1745         return 0;
1746 }
1747
1748 /*
1749  * kvmclock updates which are isolated to a given vcpu, such as
1750  * vcpu->cpu migration, should not allow system_timestamp from
1751  * the rest of the vcpus to remain static. Otherwise ntp frequency
1752  * correction applies to one vcpu's system_timestamp but not
1753  * the others.
1754  *
1755  * So in those cases, request a kvmclock update for all vcpus.
1756  * We need to rate-limit these requests though, as they can
1757  * considerably slow guests that have a large number of vcpus.
1758  * The time for a remote vcpu to update its kvmclock is bound
1759  * by the delay we use to rate-limit the updates.
1760  */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766         int i;
1767         struct delayed_work *dwork = to_delayed_work(work);
1768         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769                                            kvmclock_update_work);
1770         struct kvm *kvm = container_of(ka, struct kvm, arch);
1771         struct kvm_vcpu *vcpu;
1772
1773         kvm_for_each_vcpu(i, vcpu, kvm) {
1774                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775                 kvm_vcpu_kick(vcpu);
1776         }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781         struct kvm *kvm = v->kvm;
1782
1783         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785                                         KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792         struct delayed_work *dwork = to_delayed_work(work);
1793         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794                                            kvmclock_sync_work);
1795         struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797         if (!kvmclock_periodic_sync)
1798                 return;
1799
1800         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802                                         KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807         u64 mcg_cap = vcpu->arch.mcg_cap;
1808         unsigned bank_num = mcg_cap & 0xff;
1809
1810         switch (msr) {
1811         case MSR_IA32_MCG_STATUS:
1812                 vcpu->arch.mcg_status = data;
1813                 break;
1814         case MSR_IA32_MCG_CTL:
1815                 if (!(mcg_cap & MCG_CTL_P))
1816                         return 1;
1817                 if (data != 0 && data != ~(u64)0)
1818                         return -1;
1819                 vcpu->arch.mcg_ctl = data;
1820                 break;
1821         default:
1822                 if (msr >= MSR_IA32_MC0_CTL &&
1823                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1824                         u32 offset = msr - MSR_IA32_MC0_CTL;
1825                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1826                          * some Linux kernels though clear bit 10 in bank 4 to
1827                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828                          * this to avoid an uncatched #GP in the guest
1829                          */
1830                         if ((offset & 0x3) == 0 &&
1831                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1832                                 return -1;
1833                         vcpu->arch.mce_banks[offset] = data;
1834                         break;
1835                 }
1836                 return 1;
1837         }
1838         return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843         struct kvm *kvm = vcpu->kvm;
1844         int lm = is_long_mode(vcpu);
1845         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848                 : kvm->arch.xen_hvm_config.blob_size_32;
1849         u32 page_num = data & ~PAGE_MASK;
1850         u64 page_addr = data & PAGE_MASK;
1851         u8 *page;
1852         int r;
1853
1854         r = -E2BIG;
1855         if (page_num >= blob_size)
1856                 goto out;
1857         r = -ENOMEM;
1858         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859         if (IS_ERR(page)) {
1860                 r = PTR_ERR(page);
1861                 goto out;
1862         }
1863         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864                 goto out_free;
1865         r = 0;
1866 out_free:
1867         kfree(page);
1868 out:
1869         return r;
1870 }
1871
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879         bool r = false;
1880         switch (msr) {
1881         case HV_X64_MSR_GUEST_OS_ID:
1882         case HV_X64_MSR_HYPERCALL:
1883         case HV_X64_MSR_REFERENCE_TSC:
1884         case HV_X64_MSR_TIME_REF_COUNT:
1885                 r = true;
1886                 break;
1887         }
1888
1889         return r;
1890 }
1891
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894         struct kvm *kvm = vcpu->kvm;
1895
1896         switch (msr) {
1897         case HV_X64_MSR_GUEST_OS_ID:
1898                 kvm->arch.hv_guest_os_id = data;
1899                 /* setting guest os id to zero disables hypercall page */
1900                 if (!kvm->arch.hv_guest_os_id)
1901                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902                 break;
1903         case HV_X64_MSR_HYPERCALL: {
1904                 u64 gfn;
1905                 unsigned long addr;
1906                 u8 instructions[4];
1907
1908                 /* if guest os id is not set hypercall should remain disabled */
1909                 if (!kvm->arch.hv_guest_os_id)
1910                         break;
1911                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912                         kvm->arch.hv_hypercall = data;
1913                         break;
1914                 }
1915                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916                 addr = gfn_to_hva(kvm, gfn);
1917                 if (kvm_is_error_hva(addr))
1918                         return 1;
1919                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921                 if (__copy_to_user((void __user *)addr, instructions, 4))
1922                         return 1;
1923                 kvm->arch.hv_hypercall = data;
1924                 mark_page_dirty(kvm, gfn);
1925                 break;
1926         }
1927         case HV_X64_MSR_REFERENCE_TSC: {
1928                 u64 gfn;
1929                 HV_REFERENCE_TSC_PAGE tsc_ref;
1930                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1931                 kvm->arch.hv_tsc_page = data;
1932                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933                         break;
1934                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936                         &tsc_ref, sizeof(tsc_ref)))
1937                         return 1;
1938                 mark_page_dirty(kvm, gfn);
1939                 break;
1940         }
1941         default:
1942                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943                             "data 0x%llx\n", msr, data);
1944                 return 1;
1945         }
1946         return 0;
1947 }
1948
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951         switch (msr) {
1952         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953                 u64 gfn;
1954                 unsigned long addr;
1955
1956                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957                         vcpu->arch.hv_vapic = data;
1958                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959                                 return 1;
1960                         break;
1961                 }
1962                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964                 if (kvm_is_error_hva(addr))
1965                         return 1;
1966                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1967                         return 1;
1968                 vcpu->arch.hv_vapic = data;
1969                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971                         return 1;
1972                 break;
1973         }
1974         case HV_X64_MSR_EOI:
1975                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976         case HV_X64_MSR_ICR:
1977                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978         case HV_X64_MSR_TPR:
1979                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980         default:
1981                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982                             "data 0x%llx\n", msr, data);
1983                 return 1;
1984         }
1985
1986         return 0;
1987 }
1988
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991         gpa_t gpa = data & ~0x3f;
1992
1993         /* Bits 2:5 are reserved, Should be zero */
1994         if (data & 0x3c)
1995                 return 1;
1996
1997         vcpu->arch.apf.msr_val = data;
1998
1999         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000                 kvm_clear_async_pf_completion_queue(vcpu);
2001                 kvm_async_pf_hash_reset(vcpu);
2002                 return 0;
2003         }
2004
2005         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006                                         sizeof(u32)))
2007                 return 1;
2008
2009         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010         kvm_async_pf_wakeup_all(vcpu);
2011         return 0;
2012 }
2013
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016         vcpu->arch.pv_time_enabled = false;
2017 }
2018
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021         u64 delta;
2022
2023         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024                 return;
2025
2026         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028         vcpu->arch.st.accum_steal = delta;
2029 }
2030
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034                 return;
2035
2036         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038                 return;
2039
2040         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041         vcpu->arch.st.steal.version += 2;
2042         vcpu->arch.st.accum_steal = 0;
2043
2044         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050         bool pr = false;
2051         u32 msr = msr_info->index;
2052         u64 data = msr_info->data;
2053
2054         switch (msr) {
2055         case MSR_AMD64_NB_CFG:
2056         case MSR_IA32_UCODE_REV:
2057         case MSR_IA32_UCODE_WRITE:
2058         case MSR_VM_HSAVE_PA:
2059         case MSR_AMD64_PATCH_LOADER:
2060         case MSR_AMD64_BU_CFG2:
2061                 break;
2062
2063         case MSR_EFER:
2064                 return set_efer(vcpu, data);
2065         case MSR_K7_HWCR:
2066                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2067                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2068                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2069                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2070                 if (data != 0) {
2071                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072                                     data);
2073                         return 1;
2074                 }
2075                 break;
2076         case MSR_FAM10H_MMIO_CONF_BASE:
2077                 if (data != 0) {
2078                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079                                     "0x%llx\n", data);
2080                         return 1;
2081                 }
2082                 break;
2083         case MSR_IA32_DEBUGCTLMSR:
2084                 if (!data) {
2085                         /* We support the non-activated case already */
2086                         break;
2087                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088                         /* Values other than LBR and BTF are vendor-specific,
2089                            thus reserved and should throw a #GP */
2090                         return 1;
2091                 }
2092                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093                             __func__, data);
2094                 break;
2095         case 0x200 ... 0x2ff:
2096                 return kvm_mtrr_set_msr(vcpu, msr, data);
2097         case MSR_IA32_APICBASE:
2098                 return kvm_set_apic_base(vcpu, msr_info);
2099         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100                 return kvm_x2apic_msr_write(vcpu, msr, data);
2101         case MSR_IA32_TSCDEADLINE:
2102                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103                 break;
2104         case MSR_IA32_TSC_ADJUST:
2105                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106                         if (!msr_info->host_initiated) {
2107                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109                         }
2110                         vcpu->arch.ia32_tsc_adjust_msr = data;
2111                 }
2112                 break;
2113         case MSR_IA32_MISC_ENABLE:
2114                 vcpu->arch.ia32_misc_enable_msr = data;
2115                 break;
2116         case MSR_IA32_SMBASE:
2117                 if (!msr_info->host_initiated)
2118                         return 1;
2119                 vcpu->arch.smbase = data;
2120                 break;
2121         case MSR_KVM_WALL_CLOCK_NEW:
2122         case MSR_KVM_WALL_CLOCK:
2123                 vcpu->kvm->arch.wall_clock = data;
2124                 kvm_write_wall_clock(vcpu->kvm, data);
2125                 break;
2126         case MSR_KVM_SYSTEM_TIME_NEW:
2127         case MSR_KVM_SYSTEM_TIME: {
2128                 u64 gpa_offset;
2129                 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131                 kvmclock_reset(vcpu);
2132
2133                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138                                         &vcpu->requests);
2139
2140                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2141
2142                         ka->kvmclock_offset = -get_kernel_ns();
2143                 }
2144
2145                 vcpu->arch.time = data;
2146                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147
2148                 /* we verify if the enable bit is set... */
2149                 if (!(data & 1))
2150                         break;
2151
2152                 gpa_offset = data & ~(PAGE_MASK | 1);
2153
2154                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155                      &vcpu->arch.pv_time, data & ~1ULL,
2156                      sizeof(struct pvclock_vcpu_time_info)))
2157                         vcpu->arch.pv_time_enabled = false;
2158                 else
2159                         vcpu->arch.pv_time_enabled = true;
2160
2161                 break;
2162         }
2163         case MSR_KVM_ASYNC_PF_EN:
2164                 if (kvm_pv_enable_async_pf(vcpu, data))
2165                         return 1;
2166                 break;
2167         case MSR_KVM_STEAL_TIME:
2168
2169                 if (unlikely(!sched_info_on()))
2170                         return 1;
2171
2172                 if (data & KVM_STEAL_RESERVED_MASK)
2173                         return 1;
2174
2175                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176                                                 data & KVM_STEAL_VALID_BITS,
2177                                                 sizeof(struct kvm_steal_time)))
2178                         return 1;
2179
2180                 vcpu->arch.st.msr_val = data;
2181
2182                 if (!(data & KVM_MSR_ENABLED))
2183                         break;
2184
2185                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186
2187                 preempt_disable();
2188                 accumulate_steal_time(vcpu);
2189                 preempt_enable();
2190
2191                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192
2193                 break;
2194         case MSR_KVM_PV_EOI_EN:
2195                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196                         return 1;
2197                 break;
2198
2199         case MSR_IA32_MCG_CTL:
2200         case MSR_IA32_MCG_STATUS:
2201         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202                 return set_msr_mce(vcpu, msr, data);
2203
2204         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206                 pr = true; /* fall through */
2207         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2208         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2209                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2210                         return kvm_pmu_set_msr(vcpu, msr_info);
2211
2212                 if (pr || data != 0)
2213                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2214                                     "0x%x data 0x%llx\n", msr, data);
2215                 break;
2216         case MSR_K7_CLK_CTL:
2217                 /*
2218                  * Ignore all writes to this no longer documented MSR.
2219                  * Writes are only relevant for old K7 processors,
2220                  * all pre-dating SVM, but a recommended workaround from
2221                  * AMD for these chips. It is possible to specify the
2222                  * affected processor models on the command line, hence
2223                  * the need to ignore the workaround.
2224                  */
2225                 break;
2226         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2227                 if (kvm_hv_msr_partition_wide(msr)) {
2228                         int r;
2229                         mutex_lock(&vcpu->kvm->lock);
2230                         r = set_msr_hyperv_pw(vcpu, msr, data);
2231                         mutex_unlock(&vcpu->kvm->lock);
2232                         return r;
2233                 } else
2234                         return set_msr_hyperv(vcpu, msr, data);
2235                 break;
2236         case MSR_IA32_BBL_CR_CTL3:
2237                 /* Drop writes to this legacy MSR -- see rdmsr
2238                  * counterpart for further detail.
2239                  */
2240                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2241                 break;
2242         case MSR_AMD64_OSVW_ID_LENGTH:
2243                 if (!guest_cpuid_has_osvw(vcpu))
2244                         return 1;
2245                 vcpu->arch.osvw.length = data;
2246                 break;
2247         case MSR_AMD64_OSVW_STATUS:
2248                 if (!guest_cpuid_has_osvw(vcpu))
2249                         return 1;
2250                 vcpu->arch.osvw.status = data;
2251                 break;
2252         default:
2253                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2254                         return xen_hvm_config(vcpu, data);
2255                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2256                         return kvm_pmu_set_msr(vcpu, msr_info);
2257                 if (!ignore_msrs) {
2258                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2259                                     msr, data);
2260                         return 1;
2261                 } else {
2262                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2263                                     msr, data);
2264                         break;
2265                 }
2266         }
2267         return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2270
2271
2272 /*
2273  * Reads an msr value (of 'msr_index') into 'pdata'.
2274  * Returns 0 on success, non-0 otherwise.
2275  * Assumes vcpu_load() was already called.
2276  */
2277 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2278 {
2279         return kvm_x86_ops->get_msr(vcpu, msr);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_get_msr);
2282
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285         u64 data;
2286         u64 mcg_cap = vcpu->arch.mcg_cap;
2287         unsigned bank_num = mcg_cap & 0xff;
2288
2289         switch (msr) {
2290         case MSR_IA32_P5_MC_ADDR:
2291         case MSR_IA32_P5_MC_TYPE:
2292                 data = 0;
2293                 break;
2294         case MSR_IA32_MCG_CAP:
2295                 data = vcpu->arch.mcg_cap;
2296                 break;
2297         case MSR_IA32_MCG_CTL:
2298                 if (!(mcg_cap & MCG_CTL_P))
2299                         return 1;
2300                 data = vcpu->arch.mcg_ctl;
2301                 break;
2302         case MSR_IA32_MCG_STATUS:
2303                 data = vcpu->arch.mcg_status;
2304                 break;
2305         default:
2306                 if (msr >= MSR_IA32_MC0_CTL &&
2307                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2308                         u32 offset = msr - MSR_IA32_MC0_CTL;
2309                         data = vcpu->arch.mce_banks[offset];
2310                         break;
2311                 }
2312                 return 1;
2313         }
2314         *pdata = data;
2315         return 0;
2316 }
2317
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320         u64 data = 0;
2321         struct kvm *kvm = vcpu->kvm;
2322
2323         switch (msr) {
2324         case HV_X64_MSR_GUEST_OS_ID:
2325                 data = kvm->arch.hv_guest_os_id;
2326                 break;
2327         case HV_X64_MSR_HYPERCALL:
2328                 data = kvm->arch.hv_hypercall;
2329                 break;
2330         case HV_X64_MSR_TIME_REF_COUNT: {
2331                 data =
2332                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333                 break;
2334         }
2335         case HV_X64_MSR_REFERENCE_TSC:
2336                 data = kvm->arch.hv_tsc_page;
2337                 break;
2338         default:
2339                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340                 return 1;
2341         }
2342
2343         *pdata = data;
2344         return 0;
2345 }
2346
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349         u64 data = 0;
2350
2351         switch (msr) {
2352         case HV_X64_MSR_VP_INDEX: {
2353                 int r;
2354                 struct kvm_vcpu *v;
2355                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2356                         if (v == vcpu) {
2357                                 data = r;
2358                                 break;
2359                         }
2360                 }
2361                 break;
2362         }
2363         case HV_X64_MSR_EOI:
2364                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2365         case HV_X64_MSR_ICR:
2366                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2367         case HV_X64_MSR_TPR:
2368                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2369         case HV_X64_MSR_APIC_ASSIST_PAGE:
2370                 data = vcpu->arch.hv_vapic;
2371                 break;
2372         default:
2373                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2374                 return 1;
2375         }
2376         *pdata = data;
2377         return 0;
2378 }
2379
2380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2381 {
2382         switch (msr_info->index) {
2383         case MSR_IA32_PLATFORM_ID:
2384         case MSR_IA32_EBL_CR_POWERON:
2385         case MSR_IA32_DEBUGCTLMSR:
2386         case MSR_IA32_LASTBRANCHFROMIP:
2387         case MSR_IA32_LASTBRANCHTOIP:
2388         case MSR_IA32_LASTINTFROMIP:
2389         case MSR_IA32_LASTINTTOIP:
2390         case MSR_K8_SYSCFG:
2391         case MSR_K7_HWCR:
2392         case MSR_VM_HSAVE_PA:
2393         case MSR_K8_INT_PENDING_MSG:
2394         case MSR_AMD64_NB_CFG:
2395         case MSR_FAM10H_MMIO_CONF_BASE:
2396         case MSR_AMD64_BU_CFG2:
2397                 msr_info->data = 0;
2398                 break;
2399         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2400         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2401         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2402         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2403                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2404                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2405                 msr_info->data = 0;
2406                 break;
2407         case MSR_IA32_UCODE_REV:
2408                 msr_info->data = 0x100000000ULL;
2409                 break;
2410         case MSR_MTRRcap:
2411         case 0x200 ... 0x2ff:
2412                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2413         case 0xcd: /* fsb frequency */
2414                 msr_info->data = 3;
2415                 break;
2416                 /*
2417                  * MSR_EBC_FREQUENCY_ID
2418                  * Conservative value valid for even the basic CPU models.
2419                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2420                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2421                  * and 266MHz for model 3, or 4. Set Core Clock
2422                  * Frequency to System Bus Frequency Ratio to 1 (bits
2423                  * 31:24) even though these are only valid for CPU
2424                  * models > 2, however guests may end up dividing or
2425                  * multiplying by zero otherwise.
2426                  */
2427         case MSR_EBC_FREQUENCY_ID:
2428                 msr_info->data = 1 << 24;
2429                 break;
2430         case MSR_IA32_APICBASE:
2431                 msr_info->data = kvm_get_apic_base(vcpu);
2432                 break;
2433         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2434                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2435                 break;
2436         case MSR_IA32_TSCDEADLINE:
2437                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2438                 break;
2439         case MSR_IA32_TSC_ADJUST:
2440                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2441                 break;
2442         case MSR_IA32_MISC_ENABLE:
2443                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2444                 break;
2445         case MSR_IA32_SMBASE:
2446                 if (!msr_info->host_initiated)
2447                         return 1;
2448                 msr_info->data = vcpu->arch.smbase;
2449                 break;
2450         case MSR_IA32_PERF_STATUS:
2451                 /* TSC increment by tick */
2452                 msr_info->data = 1000ULL;
2453                 /* CPU multiplier */
2454                 msr_info->data |= (((uint64_t)4ULL) << 40);
2455                 break;
2456         case MSR_EFER:
2457                 msr_info->data = vcpu->arch.efer;
2458                 break;
2459         case MSR_KVM_WALL_CLOCK:
2460         case MSR_KVM_WALL_CLOCK_NEW:
2461                 msr_info->data = vcpu->kvm->arch.wall_clock;
2462                 break;
2463         case MSR_KVM_SYSTEM_TIME:
2464         case MSR_KVM_SYSTEM_TIME_NEW:
2465                 msr_info->data = vcpu->arch.time;
2466                 break;
2467         case MSR_KVM_ASYNC_PF_EN:
2468                 msr_info->data = vcpu->arch.apf.msr_val;
2469                 break;
2470         case MSR_KVM_STEAL_TIME:
2471                 msr_info->data = vcpu->arch.st.msr_val;
2472                 break;
2473         case MSR_KVM_PV_EOI_EN:
2474                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2475                 break;
2476         case MSR_IA32_P5_MC_ADDR:
2477         case MSR_IA32_P5_MC_TYPE:
2478         case MSR_IA32_MCG_CAP:
2479         case MSR_IA32_MCG_CTL:
2480         case MSR_IA32_MCG_STATUS:
2481         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2482                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2483         case MSR_K7_CLK_CTL:
2484                 /*
2485                  * Provide expected ramp-up count for K7. All other
2486                  * are set to zero, indicating minimum divisors for
2487                  * every field.
2488                  *
2489                  * This prevents guest kernels on AMD host with CPU
2490                  * type 6, model 8 and higher from exploding due to
2491                  * the rdmsr failing.
2492                  */
2493                 msr_info->data = 0x20000000;
2494                 break;
2495         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2496                 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2497                         int r;
2498                         mutex_lock(&vcpu->kvm->lock);
2499                         r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2500                         mutex_unlock(&vcpu->kvm->lock);
2501                         return r;
2502                 } else
2503                         return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2504                 break;
2505         case MSR_IA32_BBL_CR_CTL3:
2506                 /* This legacy MSR exists but isn't fully documented in current
2507                  * silicon.  It is however accessed by winxp in very narrow
2508                  * scenarios where it sets bit #19, itself documented as
2509                  * a "reserved" bit.  Best effort attempt to source coherent
2510                  * read data here should the balance of the register be
2511                  * interpreted by the guest:
2512                  *
2513                  * L2 cache control register 3: 64GB range, 256KB size,
2514                  * enabled, latency 0x1, configured
2515                  */
2516                 msr_info->data = 0xbe702111;
2517                 break;
2518         case MSR_AMD64_OSVW_ID_LENGTH:
2519                 if (!guest_cpuid_has_osvw(vcpu))
2520                         return 1;
2521                 msr_info->data = vcpu->arch.osvw.length;
2522                 break;
2523         case MSR_AMD64_OSVW_STATUS:
2524                 if (!guest_cpuid_has_osvw(vcpu))
2525                         return 1;
2526                 msr_info->data = vcpu->arch.osvw.status;
2527                 break;
2528         default:
2529                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2530                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2531                 if (!ignore_msrs) {
2532                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2533                         return 1;
2534                 } else {
2535                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2536                         msr_info->data = 0;
2537                 }
2538                 break;
2539         }
2540         return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2543
2544 /*
2545  * Read or write a bunch of msrs. All parameters are kernel addresses.
2546  *
2547  * @return number of msrs set successfully.
2548  */
2549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2550                     struct kvm_msr_entry *entries,
2551                     int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                   unsigned index, u64 *data))
2553 {
2554         int i, idx;
2555
2556         idx = srcu_read_lock(&vcpu->kvm->srcu);
2557         for (i = 0; i < msrs->nmsrs; ++i)
2558                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2559                         break;
2560         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2561
2562         return i;
2563 }
2564
2565 /*
2566  * Read or write a bunch of msrs. Parameters are user addresses.
2567  *
2568  * @return number of msrs set successfully.
2569  */
2570 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2571                   int (*do_msr)(struct kvm_vcpu *vcpu,
2572                                 unsigned index, u64 *data),
2573                   int writeback)
2574 {
2575         struct kvm_msrs msrs;
2576         struct kvm_msr_entry *entries;
2577         int r, n;
2578         unsigned size;
2579
2580         r = -EFAULT;
2581         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2582                 goto out;
2583
2584         r = -E2BIG;
2585         if (msrs.nmsrs >= MAX_IO_MSRS)
2586                 goto out;
2587
2588         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2589         entries = memdup_user(user_msrs->entries, size);
2590         if (IS_ERR(entries)) {
2591                 r = PTR_ERR(entries);
2592                 goto out;
2593         }
2594
2595         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2596         if (r < 0)
2597                 goto out_free;
2598
2599         r = -EFAULT;
2600         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2601                 goto out_free;
2602
2603         r = n;
2604
2605 out_free:
2606         kfree(entries);
2607 out:
2608         return r;
2609 }
2610
2611 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2612 {
2613         int r;
2614
2615         switch (ext) {
2616         case KVM_CAP_IRQCHIP:
2617         case KVM_CAP_HLT:
2618         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2619         case KVM_CAP_SET_TSS_ADDR:
2620         case KVM_CAP_EXT_CPUID:
2621         case KVM_CAP_EXT_EMUL_CPUID:
2622         case KVM_CAP_CLOCKSOURCE:
2623         case KVM_CAP_PIT:
2624         case KVM_CAP_NOP_IO_DELAY:
2625         case KVM_CAP_MP_STATE:
2626         case KVM_CAP_SYNC_MMU:
2627         case KVM_CAP_USER_NMI:
2628         case KVM_CAP_REINJECT_CONTROL:
2629         case KVM_CAP_IRQ_INJECT_STATUS:
2630         case KVM_CAP_IOEVENTFD:
2631         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2632         case KVM_CAP_PIT2:
2633         case KVM_CAP_PIT_STATE2:
2634         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2635         case KVM_CAP_XEN_HVM:
2636         case KVM_CAP_ADJUST_CLOCK:
2637         case KVM_CAP_VCPU_EVENTS:
2638         case KVM_CAP_HYPERV:
2639         case KVM_CAP_HYPERV_VAPIC:
2640         case KVM_CAP_HYPERV_SPIN:
2641         case KVM_CAP_PCI_SEGMENT:
2642         case KVM_CAP_DEBUGREGS:
2643         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2644         case KVM_CAP_XSAVE:
2645         case KVM_CAP_ASYNC_PF:
2646         case KVM_CAP_GET_TSC_KHZ:
2647         case KVM_CAP_KVMCLOCK_CTRL:
2648         case KVM_CAP_READONLY_MEM:
2649         case KVM_CAP_HYPERV_TIME:
2650         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2651         case KVM_CAP_TSC_DEADLINE_TIMER:
2652         case KVM_CAP_ENABLE_CAP_VM:
2653         case KVM_CAP_DISABLE_QUIRKS:
2654 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2655         case KVM_CAP_ASSIGN_DEV_IRQ:
2656         case KVM_CAP_PCI_2_3:
2657 #endif
2658                 r = 1;
2659                 break;
2660         case KVM_CAP_X86_SMM:
2661                 /* SMBASE is usually relocated above 1M on modern chipsets,
2662                  * and SMM handlers might indeed rely on 4G segment limits,
2663                  * so do not report SMM to be available if real mode is
2664                  * emulated via vm86 mode.  Still, do not go to great lengths
2665                  * to avoid userspace's usage of the feature, because it is a
2666                  * fringe case that is not enabled except via specific settings
2667                  * of the module parameters.
2668                  */
2669                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2670                 break;
2671         case KVM_CAP_COALESCED_MMIO:
2672                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2673                 break;
2674         case KVM_CAP_VAPIC:
2675                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2676                 break;
2677         case KVM_CAP_NR_VCPUS:
2678                 r = KVM_SOFT_MAX_VCPUS;
2679                 break;
2680         case KVM_CAP_MAX_VCPUS:
2681                 r = KVM_MAX_VCPUS;
2682                 break;
2683         case KVM_CAP_NR_MEMSLOTS:
2684                 r = KVM_USER_MEM_SLOTS;
2685                 break;
2686         case KVM_CAP_PV_MMU:    /* obsolete */
2687                 r = 0;
2688                 break;
2689 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2690         case KVM_CAP_IOMMU:
2691                 r = iommu_present(&pci_bus_type);
2692                 break;
2693 #endif
2694         case KVM_CAP_MCE:
2695                 r = KVM_MAX_MCE_BANKS;
2696                 break;
2697         case KVM_CAP_XCRS:
2698                 r = cpu_has_xsave;
2699                 break;
2700         case KVM_CAP_TSC_CONTROL:
2701                 r = kvm_has_tsc_control;
2702                 break;
2703         default:
2704                 r = 0;
2705                 break;
2706         }
2707         return r;
2708
2709 }
2710
2711 long kvm_arch_dev_ioctl(struct file *filp,
2712                         unsigned int ioctl, unsigned long arg)
2713 {
2714         void __user *argp = (void __user *)arg;
2715         long r;
2716
2717         switch (ioctl) {
2718         case KVM_GET_MSR_INDEX_LIST: {
2719                 struct kvm_msr_list __user *user_msr_list = argp;
2720                 struct kvm_msr_list msr_list;
2721                 unsigned n;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2725                         goto out;
2726                 n = msr_list.nmsrs;
2727                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2728                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2729                         goto out;
2730                 r = -E2BIG;
2731                 if (n < msr_list.nmsrs)
2732                         goto out;
2733                 r = -EFAULT;
2734                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2735                                  num_msrs_to_save * sizeof(u32)))
2736                         goto out;
2737                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2738                                  &emulated_msrs,
2739                                  num_emulated_msrs * sizeof(u32)))
2740                         goto out;
2741                 r = 0;
2742                 break;
2743         }
2744         case KVM_GET_SUPPORTED_CPUID:
2745         case KVM_GET_EMULATED_CPUID: {
2746                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2747                 struct kvm_cpuid2 cpuid;
2748
2749                 r = -EFAULT;
2750                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2751                         goto out;
2752
2753                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2754                                             ioctl);
2755                 if (r)
2756                         goto out;
2757
2758                 r = -EFAULT;
2759                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2760                         goto out;
2761                 r = 0;
2762                 break;
2763         }
2764         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2765                 u64 mce_cap;
2766
2767                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2768                 r = -EFAULT;
2769                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2770                         goto out;
2771                 r = 0;
2772                 break;
2773         }
2774         default:
2775                 r = -EINVAL;
2776         }
2777 out:
2778         return r;
2779 }
2780
2781 static void wbinvd_ipi(void *garbage)
2782 {
2783         wbinvd();
2784 }
2785
2786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2787 {
2788         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2789 }
2790
2791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2792 {
2793         /* Address WBINVD may be executed by guest */
2794         if (need_emulate_wbinvd(vcpu)) {
2795                 if (kvm_x86_ops->has_wbinvd_exit())
2796                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2797                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2798                         smp_call_function_single(vcpu->cpu,
2799                                         wbinvd_ipi, NULL, 1);
2800         }
2801
2802         kvm_x86_ops->vcpu_load(vcpu, cpu);
2803
2804         /* Apply any externally detected TSC adjustments (due to suspend) */
2805         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2806                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2807                 vcpu->arch.tsc_offset_adjustment = 0;
2808                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2809         }
2810
2811         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2812                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2813                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2814                 if (tsc_delta < 0)
2815                         mark_tsc_unstable("KVM discovered backwards TSC");
2816                 if (check_tsc_unstable()) {
2817                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2818                                                 vcpu->arch.last_guest_tsc);
2819                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2820                         vcpu->arch.tsc_catchup = 1;
2821                 }
2822                 /*
2823                  * On a host with synchronized TSC, there is no need to update
2824                  * kvmclock on vcpu->cpu migration
2825                  */
2826                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2827                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2828                 if (vcpu->cpu != cpu)
2829                         kvm_migrate_timers(vcpu);
2830                 vcpu->cpu = cpu;
2831         }
2832
2833         accumulate_steal_time(vcpu);
2834         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2835 }
2836
2837 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2838 {
2839         kvm_x86_ops->vcpu_put(vcpu);
2840         kvm_put_guest_fpu(vcpu);
2841         vcpu->arch.last_host_tsc = native_read_tsc();
2842 }
2843
2844 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2845                                     struct kvm_lapic_state *s)
2846 {
2847         kvm_x86_ops->sync_pir_to_irr(vcpu);
2848         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2849
2850         return 0;
2851 }
2852
2853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2854                                     struct kvm_lapic_state *s)
2855 {
2856         kvm_apic_post_state_restore(vcpu, s);
2857         update_cr8_intercept(vcpu);
2858
2859         return 0;
2860 }
2861
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2863                                     struct kvm_interrupt *irq)
2864 {
2865         if (irq->irq >= KVM_NR_INTERRUPTS)
2866                 return -EINVAL;
2867         if (irqchip_in_kernel(vcpu->kvm))
2868                 return -ENXIO;
2869
2870         kvm_queue_interrupt(vcpu, irq->irq, false);
2871         kvm_make_request(KVM_REQ_EVENT, vcpu);
2872
2873         return 0;
2874 }
2875
2876 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2877 {
2878         kvm_inject_nmi(vcpu);
2879
2880         return 0;
2881 }
2882
2883 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2884 {
2885         kvm_make_request(KVM_REQ_SMI, vcpu);
2886
2887         return 0;
2888 }
2889
2890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2891                                            struct kvm_tpr_access_ctl *tac)
2892 {
2893         if (tac->flags)
2894                 return -EINVAL;
2895         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2896         return 0;
2897 }
2898
2899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2900                                         u64 mcg_cap)
2901 {
2902         int r;
2903         unsigned bank_num = mcg_cap & 0xff, bank;
2904
2905         r = -EINVAL;
2906         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2907                 goto out;
2908         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2909                 goto out;
2910         r = 0;
2911         vcpu->arch.mcg_cap = mcg_cap;
2912         /* Init IA32_MCG_CTL to all 1s */
2913         if (mcg_cap & MCG_CTL_P)
2914                 vcpu->arch.mcg_ctl = ~(u64)0;
2915         /* Init IA32_MCi_CTL to all 1s */
2916         for (bank = 0; bank < bank_num; bank++)
2917                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2918 out:
2919         return r;
2920 }
2921
2922 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2923                                       struct kvm_x86_mce *mce)
2924 {
2925         u64 mcg_cap = vcpu->arch.mcg_cap;
2926         unsigned bank_num = mcg_cap & 0xff;
2927         u64 *banks = vcpu->arch.mce_banks;
2928
2929         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2930                 return -EINVAL;
2931         /*
2932          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2933          * reporting is disabled
2934          */
2935         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2936             vcpu->arch.mcg_ctl != ~(u64)0)
2937                 return 0;
2938         banks += 4 * mce->bank;
2939         /*
2940          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2941          * reporting is disabled for the bank
2942          */
2943         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2944                 return 0;
2945         if (mce->status & MCI_STATUS_UC) {
2946                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2947                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2948                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2949                         return 0;
2950                 }
2951                 if (banks[1] & MCI_STATUS_VAL)
2952                         mce->status |= MCI_STATUS_OVER;
2953                 banks[2] = mce->addr;
2954                 banks[3] = mce->misc;
2955                 vcpu->arch.mcg_status = mce->mcg_status;
2956                 banks[1] = mce->status;
2957                 kvm_queue_exception(vcpu, MC_VECTOR);
2958         } else if (!(banks[1] & MCI_STATUS_VAL)
2959                    || !(banks[1] & MCI_STATUS_UC)) {
2960                 if (banks[1] & MCI_STATUS_VAL)
2961                         mce->status |= MCI_STATUS_OVER;
2962                 banks[2] = mce->addr;
2963                 banks[3] = mce->misc;
2964                 banks[1] = mce->status;
2965         } else
2966                 banks[1] |= MCI_STATUS_OVER;
2967         return 0;
2968 }
2969
2970 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2971                                                struct kvm_vcpu_events *events)
2972 {
2973         process_nmi(vcpu);
2974         events->exception.injected =
2975                 vcpu->arch.exception.pending &&
2976                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2977         events->exception.nr = vcpu->arch.exception.nr;
2978         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2979         events->exception.pad = 0;
2980         events->exception.error_code = vcpu->arch.exception.error_code;
2981
2982         events->interrupt.injected =
2983                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2984         events->interrupt.nr = vcpu->arch.interrupt.nr;
2985         events->interrupt.soft = 0;
2986         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2987
2988         events->nmi.injected = vcpu->arch.nmi_injected;
2989         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2990         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2991         events->nmi.pad = 0;
2992
2993         events->sipi_vector = 0; /* never valid when reporting to user space */
2994
2995         events->smi.smm = is_smm(vcpu);
2996         events->smi.pending = vcpu->arch.smi_pending;
2997         events->smi.smm_inside_nmi =
2998                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2999         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3000
3001         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3002                          | KVM_VCPUEVENT_VALID_SHADOW
3003                          | KVM_VCPUEVENT_VALID_SMM);
3004         memset(&events->reserved, 0, sizeof(events->reserved));
3005 }
3006
3007 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3008                                               struct kvm_vcpu_events *events)
3009 {
3010         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3011                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3012                               | KVM_VCPUEVENT_VALID_SHADOW
3013                               | KVM_VCPUEVENT_VALID_SMM))
3014                 return -EINVAL;
3015
3016         process_nmi(vcpu);
3017         vcpu->arch.exception.pending = events->exception.injected;
3018         vcpu->arch.exception.nr = events->exception.nr;
3019         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3020         vcpu->arch.exception.error_code = events->exception.error_code;
3021
3022         vcpu->arch.interrupt.pending = events->interrupt.injected;
3023         vcpu->arch.interrupt.nr = events->interrupt.nr;
3024         vcpu->arch.interrupt.soft = events->interrupt.soft;
3025         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3026                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3027                                                   events->interrupt.shadow);
3028
3029         vcpu->arch.nmi_injected = events->nmi.injected;
3030         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3031                 vcpu->arch.nmi_pending = events->nmi.pending;
3032         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3033
3034         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3035             kvm_vcpu_has_lapic(vcpu))
3036                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3037
3038         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3039                 if (events->smi.smm)
3040                         vcpu->arch.hflags |= HF_SMM_MASK;
3041                 else
3042                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3043                 vcpu->arch.smi_pending = events->smi.pending;
3044                 if (events->smi.smm_inside_nmi)
3045                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3046                 else
3047                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3048                 if (kvm_vcpu_has_lapic(vcpu)) {
3049                         if (events->smi.latched_init)
3050                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3051                         else
3052                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3053                 }
3054         }
3055
3056         kvm_make_request(KVM_REQ_EVENT, vcpu);
3057
3058         return 0;
3059 }
3060
3061 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3062                                              struct kvm_debugregs *dbgregs)
3063 {
3064         unsigned long val;
3065
3066         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3067         kvm_get_dr(vcpu, 6, &val);
3068         dbgregs->dr6 = val;
3069         dbgregs->dr7 = vcpu->arch.dr7;
3070         dbgregs->flags = 0;
3071         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3072 }
3073
3074 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3075                                             struct kvm_debugregs *dbgregs)
3076 {
3077         if (dbgregs->flags)
3078                 return -EINVAL;
3079
3080         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3081         kvm_update_dr0123(vcpu);
3082         vcpu->arch.dr6 = dbgregs->dr6;
3083         kvm_update_dr6(vcpu);
3084         vcpu->arch.dr7 = dbgregs->dr7;
3085         kvm_update_dr7(vcpu);
3086
3087         return 0;
3088 }
3089
3090 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3091
3092 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3093 {
3094         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095         u64 xstate_bv = xsave->header.xfeatures;
3096         u64 valid;
3097
3098         /*
3099          * Copy legacy XSAVE area, to avoid complications with CPUID
3100          * leaves 0 and 1 in the loop below.
3101          */
3102         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3103
3104         /* Set XSTATE_BV */
3105         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3106
3107         /*
3108          * Copy each region from the possibly compacted offset to the
3109          * non-compacted offset.
3110          */
3111         valid = xstate_bv & ~XSTATE_FPSSE;
3112         while (valid) {
3113                 u64 feature = valid & -valid;
3114                 int index = fls64(feature) - 1;
3115                 void *src = get_xsave_addr(xsave, feature);
3116
3117                 if (src) {
3118                         u32 size, offset, ecx, edx;
3119                         cpuid_count(XSTATE_CPUID, index,
3120                                     &size, &offset, &ecx, &edx);
3121                         memcpy(dest + offset, src, size);
3122                 }
3123
3124                 valid -= feature;
3125         }
3126 }
3127
3128 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3129 {
3130         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3131         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3132         u64 valid;
3133
3134         /*
3135          * Copy legacy XSAVE area, to avoid complications with CPUID
3136          * leaves 0 and 1 in the loop below.
3137          */
3138         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3139
3140         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3141         xsave->header.xfeatures = xstate_bv;
3142         if (cpu_has_xsaves)
3143                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3144
3145         /*
3146          * Copy each region from the non-compacted offset to the
3147          * possibly compacted offset.
3148          */
3149         valid = xstate_bv & ~XSTATE_FPSSE;
3150         while (valid) {
3151                 u64 feature = valid & -valid;
3152                 int index = fls64(feature) - 1;
3153                 void *dest = get_xsave_addr(xsave, feature);
3154
3155                 if (dest) {
3156                         u32 size, offset, ecx, edx;
3157                         cpuid_count(XSTATE_CPUID, index,
3158                                     &size, &offset, &ecx, &edx);
3159                         memcpy(dest, src + offset, size);
3160                 } else
3161                         WARN_ON_ONCE(1);
3162
3163                 valid -= feature;
3164         }
3165 }
3166
3167 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3168                                          struct kvm_xsave *guest_xsave)
3169 {
3170         if (cpu_has_xsave) {
3171                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3172                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3173         } else {
3174                 memcpy(guest_xsave->region,
3175                         &vcpu->arch.guest_fpu.state.fxsave,
3176                         sizeof(struct fxregs_state));
3177                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3178                         XSTATE_FPSSE;
3179         }
3180 }
3181
3182 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3183                                         struct kvm_xsave *guest_xsave)
3184 {
3185         u64 xstate_bv =
3186                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3187
3188         if (cpu_has_xsave) {
3189                 /*
3190                  * Here we allow setting states that are not present in
3191                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3192                  * with old userspace.
3193                  */
3194                 if (xstate_bv & ~kvm_supported_xcr0())
3195                         return -EINVAL;
3196                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3197         } else {
3198                 if (xstate_bv & ~XSTATE_FPSSE)
3199                         return -EINVAL;
3200                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3201                         guest_xsave->region, sizeof(struct fxregs_state));
3202         }
3203         return 0;
3204 }
3205
3206 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3207                                         struct kvm_xcrs *guest_xcrs)
3208 {
3209         if (!cpu_has_xsave) {
3210                 guest_xcrs->nr_xcrs = 0;
3211                 return;
3212         }
3213
3214         guest_xcrs->nr_xcrs = 1;
3215         guest_xcrs->flags = 0;
3216         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3217         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3218 }
3219
3220 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3221                                        struct kvm_xcrs *guest_xcrs)
3222 {
3223         int i, r = 0;
3224
3225         if (!cpu_has_xsave)
3226                 return -EINVAL;
3227
3228         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3229                 return -EINVAL;
3230
3231         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3232                 /* Only support XCR0 currently */
3233                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3234                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3235                                 guest_xcrs->xcrs[i].value);
3236                         break;
3237                 }
3238         if (r)
3239                 r = -EINVAL;
3240         return r;
3241 }
3242
3243 /*
3244  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3245  * stopped by the hypervisor.  This function will be called from the host only.
3246  * EINVAL is returned when the host attempts to set the flag for a guest that
3247  * does not support pv clocks.
3248  */
3249 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3250 {
3251         if (!vcpu->arch.pv_time_enabled)
3252                 return -EINVAL;
3253         vcpu->arch.pvclock_set_guest_stopped_request = true;
3254         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3255         return 0;
3256 }
3257
3258 long kvm_arch_vcpu_ioctl(struct file *filp,
3259                          unsigned int ioctl, unsigned long arg)
3260 {
3261         struct kvm_vcpu *vcpu = filp->private_data;
3262         void __user *argp = (void __user *)arg;
3263         int r;
3264         union {
3265                 struct kvm_lapic_state *lapic;
3266                 struct kvm_xsave *xsave;
3267                 struct kvm_xcrs *xcrs;
3268                 void *buffer;
3269         } u;
3270
3271         u.buffer = NULL;
3272         switch (ioctl) {
3273         case KVM_GET_LAPIC: {
3274                 r = -EINVAL;
3275                 if (!vcpu->arch.apic)
3276                         goto out;
3277                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3278
3279                 r = -ENOMEM;
3280                 if (!u.lapic)
3281                         goto out;
3282                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3283                 if (r)
3284                         goto out;
3285                 r = -EFAULT;
3286                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3287                         goto out;
3288                 r = 0;
3289                 break;
3290         }
3291         case KVM_SET_LAPIC: {
3292                 r = -EINVAL;
3293                 if (!vcpu->arch.apic)
3294                         goto out;
3295                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3296                 if (IS_ERR(u.lapic))
3297                         return PTR_ERR(u.lapic);
3298
3299                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3300                 break;
3301         }
3302         case KVM_INTERRUPT: {
3303                 struct kvm_interrupt irq;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&irq, argp, sizeof irq))
3307                         goto out;
3308                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3309                 break;
3310         }
3311         case KVM_NMI: {
3312                 r = kvm_vcpu_ioctl_nmi(vcpu);
3313                 break;
3314         }
3315         case KVM_SMI: {
3316                 r = kvm_vcpu_ioctl_smi(vcpu);
3317                 break;
3318         }
3319         case KVM_SET_CPUID: {
3320                 struct kvm_cpuid __user *cpuid_arg = argp;
3321                 struct kvm_cpuid cpuid;
3322
3323                 r = -EFAULT;
3324                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3325                         goto out;
3326                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3327                 break;
3328         }
3329         case KVM_SET_CPUID2: {
3330                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3331                 struct kvm_cpuid2 cpuid;
3332
3333                 r = -EFAULT;
3334                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3335                         goto out;
3336                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3337                                               cpuid_arg->entries);
3338                 break;
3339         }
3340         case KVM_GET_CPUID2: {
3341                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3342                 struct kvm_cpuid2 cpuid;
3343
3344                 r = -EFAULT;
3345                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3346                         goto out;
3347                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3348                                               cpuid_arg->entries);
3349                 if (r)
3350                         goto out;
3351                 r = -EFAULT;
3352                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3353                         goto out;
3354                 r = 0;
3355                 break;
3356         }
3357         case KVM_GET_MSRS:
3358                 r = msr_io(vcpu, argp, do_get_msr, 1);
3359                 break;
3360         case KVM_SET_MSRS:
3361                 r = msr_io(vcpu, argp, do_set_msr, 0);
3362                 break;
3363         case KVM_TPR_ACCESS_REPORTING: {
3364                 struct kvm_tpr_access_ctl tac;
3365
3366                 r = -EFAULT;
3367                 if (copy_from_user(&tac, argp, sizeof tac))
3368                         goto out;
3369                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3370                 if (r)
3371                         goto out;
3372                 r = -EFAULT;
3373                 if (copy_to_user(argp, &tac, sizeof tac))
3374                         goto out;
3375                 r = 0;
3376                 break;
3377         };
3378         case KVM_SET_VAPIC_ADDR: {
3379                 struct kvm_vapic_addr va;
3380
3381                 r = -EINVAL;
3382                 if (!irqchip_in_kernel(vcpu->kvm))
3383                         goto out;
3384                 r = -EFAULT;
3385                 if (copy_from_user(&va, argp, sizeof va))
3386                         goto out;
3387                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3388                 break;
3389         }
3390         case KVM_X86_SETUP_MCE: {
3391                 u64 mcg_cap;
3392
3393                 r = -EFAULT;
3394                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3395                         goto out;
3396                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3397                 break;
3398         }
3399         case KVM_X86_SET_MCE: {
3400                 struct kvm_x86_mce mce;
3401
3402                 r = -EFAULT;
3403                 if (copy_from_user(&mce, argp, sizeof mce))
3404                         goto out;
3405                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3406                 break;
3407         }
3408         case KVM_GET_VCPU_EVENTS: {
3409                 struct kvm_vcpu_events events;
3410
3411                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3412
3413                 r = -EFAULT;
3414                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3415                         break;
3416                 r = 0;
3417                 break;
3418         }
3419         case KVM_SET_VCPU_EVENTS: {
3420                 struct kvm_vcpu_events events;
3421
3422                 r = -EFAULT;
3423                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3424                         break;
3425
3426                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3427                 break;
3428         }
3429         case KVM_GET_DEBUGREGS: {
3430                 struct kvm_debugregs dbgregs;
3431
3432                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3433
3434                 r = -EFAULT;
3435                 if (copy_to_user(argp, &dbgregs,
3436                                  sizeof(struct kvm_debugregs)))
3437                         break;
3438                 r = 0;
3439                 break;
3440         }
3441         case KVM_SET_DEBUGREGS: {
3442                 struct kvm_debugregs dbgregs;
3443
3444                 r = -EFAULT;
3445                 if (copy_from_user(&dbgregs, argp,
3446                                    sizeof(struct kvm_debugregs)))
3447                         break;
3448
3449                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3450                 break;
3451         }
3452         case KVM_GET_XSAVE: {
3453                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3454                 r = -ENOMEM;
3455                 if (!u.xsave)
3456                         break;
3457
3458                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3459
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3462                         break;
3463                 r = 0;
3464                 break;
3465         }
3466         case KVM_SET_XSAVE: {
3467                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3468                 if (IS_ERR(u.xsave))
3469                         return PTR_ERR(u.xsave);
3470
3471                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3472                 break;
3473         }
3474         case KVM_GET_XCRS: {
3475                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3476                 r = -ENOMEM;
3477                 if (!u.xcrs)
3478                         break;
3479
3480                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3481
3482                 r = -EFAULT;
3483                 if (copy_to_user(argp, u.xcrs,
3484                                  sizeof(struct kvm_xcrs)))
3485                         break;
3486                 r = 0;
3487                 break;
3488         }
3489         case KVM_SET_XCRS: {
3490                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3491                 if (IS_ERR(u.xcrs))
3492                         return PTR_ERR(u.xcrs);
3493
3494                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3495                 break;
3496         }
3497         case KVM_SET_TSC_KHZ: {
3498                 u32 user_tsc_khz;
3499
3500                 r = -EINVAL;
3501                 user_tsc_khz = (u32)arg;
3502
3503                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3504                         goto out;
3505
3506                 if (user_tsc_khz == 0)
3507                         user_tsc_khz = tsc_khz;
3508
3509                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3510
3511                 r = 0;
3512                 goto out;
3513         }
3514         case KVM_GET_TSC_KHZ: {
3515                 r = vcpu->arch.virtual_tsc_khz;
3516                 goto out;
3517         }
3518         case KVM_KVMCLOCK_CTRL: {
3519                 r = kvm_set_guest_paused(vcpu);
3520                 goto out;
3521         }
3522         default:
3523                 r = -EINVAL;
3524         }
3525 out:
3526         kfree(u.buffer);
3527         return r;
3528 }
3529
3530 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3531 {
3532         return VM_FAULT_SIGBUS;
3533 }
3534
3535 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3536 {
3537         int ret;
3538
3539         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3540                 return -EINVAL;
3541         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3542         return ret;
3543 }
3544
3545 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3546                                               u64 ident_addr)
3547 {
3548         kvm->arch.ept_identity_map_addr = ident_addr;
3549         return 0;
3550 }
3551
3552 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3553                                           u32 kvm_nr_mmu_pages)
3554 {
3555         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3556                 return -EINVAL;
3557
3558         mutex_lock(&kvm->slots_lock);
3559
3560         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3561         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3562
3563         mutex_unlock(&kvm->slots_lock);
3564         return 0;
3565 }
3566
3567 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3568 {
3569         return kvm->arch.n_max_mmu_pages;
3570 }
3571
3572 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3573 {
3574         int r;
3575
3576         r = 0;
3577         switch (chip->chip_id) {
3578         case KVM_IRQCHIP_PIC_MASTER:
3579                 memcpy(&chip->chip.pic,
3580                         &pic_irqchip(kvm)->pics[0],
3581                         sizeof(struct kvm_pic_state));
3582                 break;
3583         case KVM_IRQCHIP_PIC_SLAVE:
3584                 memcpy(&chip->chip.pic,
3585                         &pic_irqchip(kvm)->pics[1],
3586                         sizeof(struct kvm_pic_state));
3587                 break;
3588         case KVM_IRQCHIP_IOAPIC:
3589                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3590                 break;
3591         default:
3592                 r = -EINVAL;
3593                 break;
3594         }
3595         return r;
3596 }
3597
3598 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3599 {
3600         int r;
3601
3602         r = 0;
3603         switch (chip->chip_id) {
3604         case KVM_IRQCHIP_PIC_MASTER:
3605                 spin_lock(&pic_irqchip(kvm)->lock);
3606                 memcpy(&pic_irqchip(kvm)->pics[0],
3607                         &chip->chip.pic,
3608                         sizeof(struct kvm_pic_state));
3609                 spin_unlock(&pic_irqchip(kvm)->lock);
3610                 break;
3611         case KVM_IRQCHIP_PIC_SLAVE:
3612                 spin_lock(&pic_irqchip(kvm)->lock);
3613                 memcpy(&pic_irqchip(kvm)->pics[1],
3614                         &chip->chip.pic,
3615                         sizeof(struct kvm_pic_state));
3616                 spin_unlock(&pic_irqchip(kvm)->lock);
3617                 break;
3618         case KVM_IRQCHIP_IOAPIC:
3619                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3620                 break;
3621         default:
3622                 r = -EINVAL;
3623                 break;
3624         }
3625         kvm_pic_update_irq(pic_irqchip(kvm));
3626         return r;
3627 }
3628
3629 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3630 {
3631         int r = 0;
3632
3633         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3635         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3636         return r;
3637 }
3638
3639 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3640 {
3641         int r = 0;
3642
3643         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3644         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3645         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3646         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647         return r;
3648 }
3649
3650 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3651 {
3652         int r = 0;
3653
3654         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3655         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3656                 sizeof(ps->channels));
3657         ps->flags = kvm->arch.vpit->pit_state.flags;
3658         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3659         memset(&ps->reserved, 0, sizeof(ps->reserved));
3660         return r;
3661 }
3662
3663 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3664 {
3665         int r = 0, start = 0;
3666         u32 prev_legacy, cur_legacy;
3667         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3668         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3669         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3670         if (!prev_legacy && cur_legacy)
3671                 start = 1;
3672         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3673                sizeof(kvm->arch.vpit->pit_state.channels));
3674         kvm->arch.vpit->pit_state.flags = ps->flags;
3675         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3676         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677         return r;
3678 }
3679
3680 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3681                                  struct kvm_reinject_control *control)
3682 {
3683         if (!kvm->arch.vpit)
3684                 return -ENXIO;
3685         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3686         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3687         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688         return 0;
3689 }
3690
3691 /**
3692  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3693  * @kvm: kvm instance
3694  * @log: slot id and address to which we copy the log
3695  *
3696  * Steps 1-4 below provide general overview of dirty page logging. See
3697  * kvm_get_dirty_log_protect() function description for additional details.
3698  *
3699  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3700  * always flush the TLB (step 4) even if previous step failed  and the dirty
3701  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3702  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3703  * writes will be marked dirty for next log read.
3704  *
3705  *   1. Take a snapshot of the bit and clear it if needed.
3706  *   2. Write protect the corresponding page.
3707  *   3. Copy the snapshot to the userspace.
3708  *   4. Flush TLB's if needed.
3709  */
3710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3711 {
3712         bool is_dirty = false;
3713         int r;
3714
3715         mutex_lock(&kvm->slots_lock);
3716
3717         /*
3718          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719          */
3720         if (kvm_x86_ops->flush_log_dirty)
3721                 kvm_x86_ops->flush_log_dirty(kvm);
3722
3723         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3724
3725         /*
3726          * All the TLBs can be flushed out of mmu lock, see the comments in
3727          * kvm_mmu_slot_remove_write_access().
3728          */
3729         lockdep_assert_held(&kvm->slots_lock);
3730         if (is_dirty)
3731                 kvm_flush_remote_tlbs(kvm);
3732
3733         mutex_unlock(&kvm->slots_lock);
3734         return r;
3735 }
3736
3737 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3738                         bool line_status)
3739 {
3740         if (!irqchip_in_kernel(kvm))
3741                 return -ENXIO;
3742
3743         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3744                                         irq_event->irq, irq_event->level,
3745                                         line_status);
3746         return 0;
3747 }
3748
3749 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3750                                    struct kvm_enable_cap *cap)
3751 {
3752         int r;
3753
3754         if (cap->flags)
3755                 return -EINVAL;
3756
3757         switch (cap->cap) {
3758         case KVM_CAP_DISABLE_QUIRKS:
3759                 kvm->arch.disabled_quirks = cap->args[0];
3760                 r = 0;
3761                 break;
3762         default:
3763                 r = -EINVAL;
3764                 break;
3765         }
3766         return r;
3767 }
3768
3769 long kvm_arch_vm_ioctl(struct file *filp,
3770                        unsigned int ioctl, unsigned long arg)
3771 {
3772         struct kvm *kvm = filp->private_data;
3773         void __user *argp = (void __user *)arg;
3774         int r = -ENOTTY;
3775         /*
3776          * This union makes it completely explicit to gcc-3.x
3777          * that these two variables' stack usage should be
3778          * combined, not added together.
3779          */
3780         union {
3781                 struct kvm_pit_state ps;
3782                 struct kvm_pit_state2 ps2;
3783                 struct kvm_pit_config pit_config;
3784         } u;
3785
3786         switch (ioctl) {
3787         case KVM_SET_TSS_ADDR:
3788                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3789                 break;
3790         case KVM_SET_IDENTITY_MAP_ADDR: {
3791                 u64 ident_addr;
3792
3793                 r = -EFAULT;
3794                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3795                         goto out;
3796                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3797                 break;
3798         }
3799         case KVM_SET_NR_MMU_PAGES:
3800                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3801                 break;
3802         case KVM_GET_NR_MMU_PAGES:
3803                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3804                 break;
3805         case KVM_CREATE_IRQCHIP: {
3806                 struct kvm_pic *vpic;
3807
3808                 mutex_lock(&kvm->lock);
3809                 r = -EEXIST;
3810                 if (kvm->arch.vpic)
3811                         goto create_irqchip_unlock;
3812                 r = -EINVAL;
3813                 if (atomic_read(&kvm->online_vcpus))
3814                         goto create_irqchip_unlock;
3815                 r = -ENOMEM;
3816                 vpic = kvm_create_pic(kvm);
3817                 if (vpic) {
3818                         r = kvm_ioapic_init(kvm);
3819                         if (r) {
3820                                 mutex_lock(&kvm->slots_lock);
3821                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3822                                                           &vpic->dev_master);
3823                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3824                                                           &vpic->dev_slave);
3825                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3826                                                           &vpic->dev_eclr);
3827                                 mutex_unlock(&kvm->slots_lock);
3828                                 kfree(vpic);
3829                                 goto create_irqchip_unlock;
3830                         }
3831                 } else
3832                         goto create_irqchip_unlock;
3833                 smp_wmb();
3834                 kvm->arch.vpic = vpic;
3835                 smp_wmb();
3836                 r = kvm_setup_default_irq_routing(kvm);
3837                 if (r) {
3838                         mutex_lock(&kvm->slots_lock);
3839                         mutex_lock(&kvm->irq_lock);
3840                         kvm_ioapic_destroy(kvm);
3841                         kvm_destroy_pic(kvm);
3842                         mutex_unlock(&kvm->irq_lock);
3843                         mutex_unlock(&kvm->slots_lock);
3844                 }
3845         create_irqchip_unlock:
3846                 mutex_unlock(&kvm->lock);
3847                 break;
3848         }
3849         case KVM_CREATE_PIT:
3850                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3851                 goto create_pit;
3852         case KVM_CREATE_PIT2:
3853                 r = -EFAULT;
3854                 if (copy_from_user(&u.pit_config, argp,
3855                                    sizeof(struct kvm_pit_config)))
3856                         goto out;
3857         create_pit:
3858                 mutex_lock(&kvm->slots_lock);
3859                 r = -EEXIST;
3860                 if (kvm->arch.vpit)
3861                         goto create_pit_unlock;
3862                 r = -ENOMEM;
3863                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3864                 if (kvm->arch.vpit)
3865                         r = 0;
3866         create_pit_unlock:
3867                 mutex_unlock(&kvm->slots_lock);
3868                 break;
3869         case KVM_GET_IRQCHIP: {
3870                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3871                 struct kvm_irqchip *chip;
3872
3873                 chip = memdup_user(argp, sizeof(*chip));
3874                 if (IS_ERR(chip)) {
3875                         r = PTR_ERR(chip);
3876                         goto out;
3877                 }
3878
3879                 r = -ENXIO;
3880                 if (!irqchip_in_kernel(kvm))
3881                         goto get_irqchip_out;
3882                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3883                 if (r)
3884                         goto get_irqchip_out;
3885                 r = -EFAULT;
3886                 if (copy_to_user(argp, chip, sizeof *chip))
3887                         goto get_irqchip_out;
3888                 r = 0;
3889         get_irqchip_out:
3890                 kfree(chip);
3891                 break;
3892         }
3893         case KVM_SET_IRQCHIP: {
3894                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3895                 struct kvm_irqchip *chip;
3896
3897                 chip = memdup_user(argp, sizeof(*chip));
3898                 if (IS_ERR(chip)) {
3899                         r = PTR_ERR(chip);
3900                         goto out;
3901                 }
3902
3903                 r = -ENXIO;
3904                 if (!irqchip_in_kernel(kvm))
3905                         goto set_irqchip_out;
3906                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3907                 if (r)
3908                         goto set_irqchip_out;
3909                 r = 0;
3910         set_irqchip_out:
3911                 kfree(chip);
3912                 break;
3913         }
3914         case KVM_GET_PIT: {
3915                 r = -EFAULT;
3916                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3917                         goto out;
3918                 r = -ENXIO;
3919                 if (!kvm->arch.vpit)
3920                         goto out;
3921                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3922                 if (r)
3923                         goto out;
3924                 r = -EFAULT;
3925                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3926                         goto out;
3927                 r = 0;
3928                 break;
3929         }
3930         case KVM_SET_PIT: {
3931                 r = -EFAULT;
3932                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3933                         goto out;
3934                 r = -ENXIO;
3935                 if (!kvm->arch.vpit)
3936                         goto out;
3937                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3938                 break;
3939         }
3940         case KVM_GET_PIT2: {
3941                 r = -ENXIO;
3942                 if (!kvm->arch.vpit)
3943                         goto out;
3944                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3945                 if (r)
3946                         goto out;
3947                 r = -EFAULT;
3948                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3949                         goto out;
3950                 r = 0;
3951                 break;
3952         }
3953         case KVM_SET_PIT2: {
3954                 r = -EFAULT;
3955                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3956                         goto out;
3957                 r = -ENXIO;
3958                 if (!kvm->arch.vpit)
3959                         goto out;
3960                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3961                 break;
3962         }
3963         case KVM_REINJECT_CONTROL: {
3964                 struct kvm_reinject_control control;
3965                 r =  -EFAULT;
3966                 if (copy_from_user(&control, argp, sizeof(control)))
3967                         goto out;
3968                 r = kvm_vm_ioctl_reinject(kvm, &control);
3969                 break;
3970         }
3971         case KVM_XEN_HVM_CONFIG: {
3972                 r = -EFAULT;
3973                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3974                                    sizeof(struct kvm_xen_hvm_config)))
3975                         goto out;
3976                 r = -EINVAL;
3977                 if (kvm->arch.xen_hvm_config.flags)
3978                         goto out;
3979                 r = 0;
3980                 break;
3981         }
3982         case KVM_SET_CLOCK: {
3983                 struct kvm_clock_data user_ns;
3984                 u64 now_ns;
3985                 s64 delta;
3986
3987                 r = -EFAULT;
3988                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3989                         goto out;
3990
3991                 r = -EINVAL;
3992                 if (user_ns.flags)
3993                         goto out;
3994
3995                 r = 0;
3996                 local_irq_disable();
3997                 now_ns = get_kernel_ns();
3998                 delta = user_ns.clock - now_ns;
3999                 local_irq_enable();
4000                 kvm->arch.kvmclock_offset = delta;
4001                 kvm_gen_update_masterclock(kvm);
4002                 break;
4003         }
4004         case KVM_GET_CLOCK: {
4005                 struct kvm_clock_data user_ns;
4006                 u64 now_ns;
4007
4008                 local_irq_disable();
4009                 now_ns = get_kernel_ns();
4010                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4011                 local_irq_enable();
4012                 user_ns.flags = 0;
4013                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4014
4015                 r = -EFAULT;
4016                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4017                         goto out;
4018                 r = 0;
4019                 break;
4020         }
4021         case KVM_ENABLE_CAP: {
4022                 struct kvm_enable_cap cap;
4023
4024                 r = -EFAULT;
4025                 if (copy_from_user(&cap, argp, sizeof(cap)))
4026                         goto out;
4027                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4028                 break;
4029         }
4030         default:
4031                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4032         }
4033 out:
4034         return r;
4035 }
4036
4037 static void kvm_init_msr_list(void)
4038 {
4039         u32 dummy[2];
4040         unsigned i, j;
4041
4042         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4043                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4044                         continue;
4045
4046                 /*
4047                  * Even MSRs that are valid in the host may not be exposed
4048                  * to the guests in some cases.  We could work around this
4049                  * in VMX with the generic MSR save/load machinery, but it
4050                  * is not really worthwhile since it will really only
4051                  * happen with nested virtualization.
4052                  */
4053                 switch (msrs_to_save[i]) {
4054                 case MSR_IA32_BNDCFGS:
4055                         if (!kvm_x86_ops->mpx_supported())
4056                                 continue;
4057                         break;
4058                 default:
4059                         break;
4060                 }
4061
4062                 if (j < i)
4063                         msrs_to_save[j] = msrs_to_save[i];
4064                 j++;
4065         }
4066         num_msrs_to_save = j;
4067
4068         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4069                 switch (emulated_msrs[i]) {
4070                 case MSR_IA32_SMBASE:
4071                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4072                                 continue;
4073                         break;
4074                 default:
4075                         break;
4076                 }
4077
4078                 if (j < i)
4079                         emulated_msrs[j] = emulated_msrs[i];
4080                 j++;
4081         }
4082         num_emulated_msrs = j;
4083 }
4084
4085 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4086                            const void *v)
4087 {
4088         int handled = 0;
4089         int n;
4090
4091         do {
4092                 n = min(len, 8);
4093                 if (!(vcpu->arch.apic &&
4094                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4095                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4096                         break;
4097                 handled += n;
4098                 addr += n;
4099                 len -= n;
4100                 v += n;
4101         } while (len);
4102
4103         return handled;
4104 }
4105
4106 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4107 {
4108         int handled = 0;
4109         int n;
4110
4111         do {
4112                 n = min(len, 8);
4113                 if (!(vcpu->arch.apic &&
4114                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4115                                          addr, n, v))
4116                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4117                         break;
4118                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4119                 handled += n;
4120                 addr += n;
4121                 len -= n;
4122                 v += n;
4123         } while (len);
4124
4125         return handled;
4126 }
4127
4128 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4129                         struct kvm_segment *var, int seg)
4130 {
4131         kvm_x86_ops->set_segment(vcpu, var, seg);
4132 }
4133
4134 void kvm_get_segment(struct kvm_vcpu *vcpu,
4135                      struct kvm_segment *var, int seg)
4136 {
4137         kvm_x86_ops->get_segment(vcpu, var, seg);
4138 }
4139
4140 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4141                            struct x86_exception *exception)
4142 {
4143         gpa_t t_gpa;
4144
4145         BUG_ON(!mmu_is_nested(vcpu));
4146
4147         /* NPT walks are always user-walks */
4148         access |= PFERR_USER_MASK;
4149         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4150
4151         return t_gpa;
4152 }
4153
4154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4155                               struct x86_exception *exception)
4156 {
4157         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4158         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4159 }
4160
4161  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4162                                 struct x86_exception *exception)
4163 {
4164         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4165         access |= PFERR_FETCH_MASK;
4166         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4167 }
4168
4169 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4170                                struct x86_exception *exception)
4171 {
4172         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4173         access |= PFERR_WRITE_MASK;
4174         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175 }
4176
4177 /* uses this to access any guest's mapped memory without checking CPL */
4178 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4179                                 struct x86_exception *exception)
4180 {
4181         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4182 }
4183
4184 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4185                                       struct kvm_vcpu *vcpu, u32 access,
4186                                       struct x86_exception *exception)
4187 {
4188         void *data = val;
4189         int r = X86EMUL_CONTINUE;
4190
4191         while (bytes) {
4192                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4193                                                             exception);
4194                 unsigned offset = addr & (PAGE_SIZE-1);
4195                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4196                 int ret;
4197
4198                 if (gpa == UNMAPPED_GVA)
4199                         return X86EMUL_PROPAGATE_FAULT;
4200                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4201                                                offset, toread);
4202                 if (ret < 0) {
4203                         r = X86EMUL_IO_NEEDED;
4204                         goto out;
4205                 }
4206
4207                 bytes -= toread;
4208                 data += toread;
4209                 addr += toread;
4210         }
4211 out:
4212         return r;
4213 }
4214
4215 /* used for instruction fetching */
4216 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4217                                 gva_t addr, void *val, unsigned int bytes,
4218                                 struct x86_exception *exception)
4219 {
4220         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4222         unsigned offset;
4223         int ret;
4224
4225         /* Inline kvm_read_guest_virt_helper for speed.  */
4226         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4227                                                     exception);
4228         if (unlikely(gpa == UNMAPPED_GVA))
4229                 return X86EMUL_PROPAGATE_FAULT;
4230
4231         offset = addr & (PAGE_SIZE-1);
4232         if (WARN_ON(offset + bytes > PAGE_SIZE))
4233                 bytes = (unsigned)PAGE_SIZE - offset;
4234         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4235                                        offset, bytes);
4236         if (unlikely(ret < 0))
4237                 return X86EMUL_IO_NEEDED;
4238
4239         return X86EMUL_CONTINUE;
4240 }
4241
4242 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4243                                gva_t addr, void *val, unsigned int bytes,
4244                                struct x86_exception *exception)
4245 {
4246         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4248
4249         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4250                                           exception);
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4253
4254 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4255                                       gva_t addr, void *val, unsigned int bytes,
4256                                       struct x86_exception *exception)
4257 {
4258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4259         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4260 }
4261
4262 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4263                                        gva_t addr, void *val,
4264                                        unsigned int bytes,
4265                                        struct x86_exception *exception)
4266 {
4267         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4268         void *data = val;
4269         int r = X86EMUL_CONTINUE;
4270
4271         while (bytes) {
4272                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4273                                                              PFERR_WRITE_MASK,
4274                                                              exception);
4275                 unsigned offset = addr & (PAGE_SIZE-1);
4276                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4277                 int ret;
4278
4279                 if (gpa == UNMAPPED_GVA)
4280                         return X86EMUL_PROPAGATE_FAULT;
4281                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4282                 if (ret < 0) {
4283                         r = X86EMUL_IO_NEEDED;
4284                         goto out;
4285                 }
4286
4287                 bytes -= towrite;
4288                 data += towrite;
4289                 addr += towrite;
4290         }
4291 out:
4292         return r;
4293 }
4294 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4295
4296 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4297                                 gpa_t *gpa, struct x86_exception *exception,
4298                                 bool write)
4299 {
4300         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4301                 | (write ? PFERR_WRITE_MASK : 0);
4302
4303         if (vcpu_match_mmio_gva(vcpu, gva)
4304             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4305                                  vcpu->arch.access, access)) {
4306                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4307                                         (gva & (PAGE_SIZE - 1));
4308                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4309                 return 1;
4310         }
4311
4312         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4313
4314         if (*gpa == UNMAPPED_GVA)
4315                 return -1;
4316
4317         /* For APIC access vmexit */
4318         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4319                 return 1;
4320
4321         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4322                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4323                 return 1;
4324         }
4325
4326         return 0;
4327 }
4328
4329 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4330                         const void *val, int bytes)
4331 {
4332         int ret;
4333
4334         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4335         if (ret < 0)
4336                 return 0;
4337         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4338         return 1;
4339 }
4340
4341 struct read_write_emulator_ops {
4342         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4343                                   int bytes);
4344         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4345                                   void *val, int bytes);
4346         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4347                                int bytes, void *val);
4348         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4349                                     void *val, int bytes);
4350         bool write;
4351 };
4352
4353 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4354 {
4355         if (vcpu->mmio_read_completed) {
4356                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4357                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4358                 vcpu->mmio_read_completed = 0;
4359                 return 1;
4360         }
4361
4362         return 0;
4363 }
4364
4365 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4366                         void *val, int bytes)
4367 {
4368         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4369 }
4370
4371 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4372                          void *val, int bytes)
4373 {
4374         return emulator_write_phys(vcpu, gpa, val, bytes);
4375 }
4376
4377 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4378 {
4379         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4380         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4381 }
4382
4383 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4384                           void *val, int bytes)
4385 {
4386         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4387         return X86EMUL_IO_NEEDED;
4388 }
4389
4390 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4391                            void *val, int bytes)
4392 {
4393         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4394
4395         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4396         return X86EMUL_CONTINUE;
4397 }
4398
4399 static const struct read_write_emulator_ops read_emultor = {
4400         .read_write_prepare = read_prepare,
4401         .read_write_emulate = read_emulate,
4402         .read_write_mmio = vcpu_mmio_read,
4403         .read_write_exit_mmio = read_exit_mmio,
4404 };
4405
4406 static const struct read_write_emulator_ops write_emultor = {
4407         .read_write_emulate = write_emulate,
4408         .read_write_mmio = write_mmio,
4409         .read_write_exit_mmio = write_exit_mmio,
4410         .write = true,
4411 };
4412
4413 static int emulator_read_write_onepage(unsigned long addr, void *val,
4414                                        unsigned int bytes,
4415                                        struct x86_exception *exception,
4416                                        struct kvm_vcpu *vcpu,
4417                                        const struct read_write_emulator_ops *ops)
4418 {
4419         gpa_t gpa;
4420         int handled, ret;
4421         bool write = ops->write;
4422         struct kvm_mmio_fragment *frag;
4423
4424         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4425
4426         if (ret < 0)
4427                 return X86EMUL_PROPAGATE_FAULT;
4428
4429         /* For APIC access vmexit */
4430         if (ret)
4431                 goto mmio;
4432
4433         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4434                 return X86EMUL_CONTINUE;
4435
4436 mmio:
4437         /*
4438          * Is this MMIO handled locally?
4439          */
4440         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4441         if (handled == bytes)
4442                 return X86EMUL_CONTINUE;
4443
4444         gpa += handled;
4445         bytes -= handled;
4446         val += handled;
4447
4448         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4449         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4450         frag->gpa = gpa;
4451         frag->data = val;
4452         frag->len = bytes;
4453         return X86EMUL_CONTINUE;
4454 }
4455
4456 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4457                         unsigned long addr,
4458                         void *val, unsigned int bytes,
4459                         struct x86_exception *exception,
4460                         const struct read_write_emulator_ops *ops)
4461 {
4462         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4463         gpa_t gpa;
4464         int rc;
4465
4466         if (ops->read_write_prepare &&
4467                   ops->read_write_prepare(vcpu, val, bytes))
4468                 return X86EMUL_CONTINUE;
4469
4470         vcpu->mmio_nr_fragments = 0;
4471
4472         /* Crossing a page boundary? */
4473         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4474                 int now;
4475
4476                 now = -addr & ~PAGE_MASK;
4477                 rc = emulator_read_write_onepage(addr, val, now, exception,
4478                                                  vcpu, ops);
4479
4480                 if (rc != X86EMUL_CONTINUE)
4481                         return rc;
4482                 addr += now;
4483                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4484                         addr = (u32)addr;
4485                 val += now;
4486                 bytes -= now;
4487         }
4488
4489         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4490                                          vcpu, ops);
4491         if (rc != X86EMUL_CONTINUE)
4492                 return rc;
4493
4494         if (!vcpu->mmio_nr_fragments)
4495                 return rc;
4496
4497         gpa = vcpu->mmio_fragments[0].gpa;
4498
4499         vcpu->mmio_needed = 1;
4500         vcpu->mmio_cur_fragment = 0;
4501
4502         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4503         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4504         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4505         vcpu->run->mmio.phys_addr = gpa;
4506
4507         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4508 }
4509
4510 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4511                                   unsigned long addr,
4512                                   void *val,
4513                                   unsigned int bytes,
4514                                   struct x86_exception *exception)
4515 {
4516         return emulator_read_write(ctxt, addr, val, bytes,
4517                                    exception, &read_emultor);
4518 }
4519
4520 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4521                             unsigned long addr,
4522                             const void *val,
4523                             unsigned int bytes,
4524                             struct x86_exception *exception)
4525 {
4526         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4527                                    exception, &write_emultor);
4528 }
4529
4530 #define CMPXCHG_TYPE(t, ptr, old, new) \
4531         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4532
4533 #ifdef CONFIG_X86_64
4534 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4535 #else
4536 #  define CMPXCHG64(ptr, old, new) \
4537         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4538 #endif
4539
4540 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4541                                      unsigned long addr,
4542                                      const void *old,
4543                                      const void *new,
4544                                      unsigned int bytes,
4545                                      struct x86_exception *exception)
4546 {
4547         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548         gpa_t gpa;
4549         struct page *page;
4550         char *kaddr;
4551         bool exchanged;
4552
4553         /* guests cmpxchg8b have to be emulated atomically */
4554         if (bytes > 8 || (bytes & (bytes - 1)))
4555                 goto emul_write;
4556
4557         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4558
4559         if (gpa == UNMAPPED_GVA ||
4560             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4561                 goto emul_write;
4562
4563         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4564                 goto emul_write;
4565
4566         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4567         if (is_error_page(page))
4568                 goto emul_write;
4569
4570         kaddr = kmap_atomic(page);
4571         kaddr += offset_in_page(gpa);
4572         switch (bytes) {
4573         case 1:
4574                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4575                 break;
4576         case 2:
4577                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4578                 break;
4579         case 4:
4580                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4581                 break;
4582         case 8:
4583                 exchanged = CMPXCHG64(kaddr, old, new);
4584                 break;
4585         default:
4586                 BUG();
4587         }
4588         kunmap_atomic(kaddr);
4589         kvm_release_page_dirty(page);
4590
4591         if (!exchanged)
4592                 return X86EMUL_CMPXCHG_FAILED;
4593
4594         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4595         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4596
4597         return X86EMUL_CONTINUE;
4598
4599 emul_write:
4600         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4601
4602         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4603 }
4604
4605 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4606 {
4607         /* TODO: String I/O for in kernel device */
4608         int r;
4609
4610         if (vcpu->arch.pio.in)
4611                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4612                                     vcpu->arch.pio.size, pd);
4613         else
4614                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4615                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4616                                      pd);
4617         return r;
4618 }
4619
4620 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4621                                unsigned short port, void *val,
4622                                unsigned int count, bool in)
4623 {
4624         vcpu->arch.pio.port = port;
4625         vcpu->arch.pio.in = in;
4626         vcpu->arch.pio.count  = count;
4627         vcpu->arch.pio.size = size;
4628
4629         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4630                 vcpu->arch.pio.count = 0;
4631                 return 1;
4632         }
4633
4634         vcpu->run->exit_reason = KVM_EXIT_IO;
4635         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4636         vcpu->run->io.size = size;
4637         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4638         vcpu->run->io.count = count;
4639         vcpu->run->io.port = port;
4640
4641         return 0;
4642 }
4643
4644 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4645                                     int size, unsigned short port, void *val,
4646                                     unsigned int count)
4647 {
4648         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4649         int ret;
4650
4651         if (vcpu->arch.pio.count)
4652                 goto data_avail;
4653
4654         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4655         if (ret) {
4656 data_avail:
4657                 memcpy(val, vcpu->arch.pio_data, size * count);
4658                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4659                 vcpu->arch.pio.count = 0;
4660                 return 1;
4661         }
4662
4663         return 0;
4664 }
4665
4666 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4667                                      int size, unsigned short port,
4668                                      const void *val, unsigned int count)
4669 {
4670         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4671
4672         memcpy(vcpu->arch.pio_data, val, size * count);
4673         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4674         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4675 }
4676
4677 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4678 {
4679         return kvm_x86_ops->get_segment_base(vcpu, seg);
4680 }
4681
4682 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4683 {
4684         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4685 }
4686
4687 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4688 {
4689         if (!need_emulate_wbinvd(vcpu))
4690                 return X86EMUL_CONTINUE;
4691
4692         if (kvm_x86_ops->has_wbinvd_exit()) {
4693                 int cpu = get_cpu();
4694
4695                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4696                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4697                                 wbinvd_ipi, NULL, 1);
4698                 put_cpu();
4699                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4700         } else
4701                 wbinvd();
4702         return X86EMUL_CONTINUE;
4703 }
4704
4705 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4706 {
4707         kvm_x86_ops->skip_emulated_instruction(vcpu);
4708         return kvm_emulate_wbinvd_noskip(vcpu);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4711
4712
4713
4714 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4715 {
4716         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4717 }
4718
4719 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4720                            unsigned long *dest)
4721 {
4722         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4723 }
4724
4725 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4726                            unsigned long value)
4727 {
4728
4729         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4730 }
4731
4732 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4733 {
4734         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4735 }
4736
4737 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4738 {
4739         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740         unsigned long value;
4741
4742         switch (cr) {
4743         case 0:
4744                 value = kvm_read_cr0(vcpu);
4745                 break;
4746         case 2:
4747                 value = vcpu->arch.cr2;
4748                 break;
4749         case 3:
4750                 value = kvm_read_cr3(vcpu);
4751                 break;
4752         case 4:
4753                 value = kvm_read_cr4(vcpu);
4754                 break;
4755         case 8:
4756                 value = kvm_get_cr8(vcpu);
4757                 break;
4758         default:
4759                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4760                 return 0;
4761         }
4762
4763         return value;
4764 }
4765
4766 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4767 {
4768         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4769         int res = 0;
4770
4771         switch (cr) {
4772         case 0:
4773                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4774                 break;
4775         case 2:
4776                 vcpu->arch.cr2 = val;
4777                 break;
4778         case 3:
4779                 res = kvm_set_cr3(vcpu, val);
4780                 break;
4781         case 4:
4782                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4783                 break;
4784         case 8:
4785                 res = kvm_set_cr8(vcpu, val);
4786                 break;
4787         default:
4788                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4789                 res = -1;
4790         }
4791
4792         return res;
4793 }
4794
4795 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4796 {
4797         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4798 }
4799
4800 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4801 {
4802         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4803 }
4804
4805 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4806 {
4807         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4808 }
4809
4810 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4811 {
4812         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4813 }
4814
4815 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4816 {
4817         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4818 }
4819
4820 static unsigned long emulator_get_cached_segment_base(
4821         struct x86_emulate_ctxt *ctxt, int seg)
4822 {
4823         return get_segment_base(emul_to_vcpu(ctxt), seg);
4824 }
4825
4826 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4827                                  struct desc_struct *desc, u32 *base3,
4828                                  int seg)
4829 {
4830         struct kvm_segment var;
4831
4832         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4833         *selector = var.selector;
4834
4835         if (var.unusable) {
4836                 memset(desc, 0, sizeof(*desc));
4837                 return false;
4838         }
4839
4840         if (var.g)
4841                 var.limit >>= 12;
4842         set_desc_limit(desc, var.limit);
4843         set_desc_base(desc, (unsigned long)var.base);
4844 #ifdef CONFIG_X86_64
4845         if (base3)
4846                 *base3 = var.base >> 32;
4847 #endif
4848         desc->type = var.type;
4849         desc->s = var.s;
4850         desc->dpl = var.dpl;
4851         desc->p = var.present;
4852         desc->avl = var.avl;
4853         desc->l = var.l;
4854         desc->d = var.db;
4855         desc->g = var.g;
4856
4857         return true;
4858 }
4859
4860 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4861                                  struct desc_struct *desc, u32 base3,
4862                                  int seg)
4863 {
4864         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865         struct kvm_segment var;
4866
4867         var.selector = selector;
4868         var.base = get_desc_base(desc);
4869 #ifdef CONFIG_X86_64
4870         var.base |= ((u64)base3) << 32;
4871 #endif
4872         var.limit = get_desc_limit(desc);
4873         if (desc->g)
4874                 var.limit = (var.limit << 12) | 0xfff;
4875         var.type = desc->type;
4876         var.dpl = desc->dpl;
4877         var.db = desc->d;
4878         var.s = desc->s;
4879         var.l = desc->l;
4880         var.g = desc->g;
4881         var.avl = desc->avl;
4882         var.present = desc->p;
4883         var.unusable = !var.present;
4884         var.padding = 0;
4885
4886         kvm_set_segment(vcpu, &var, seg);
4887         return;
4888 }
4889
4890 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4891                             u32 msr_index, u64 *pdata)
4892 {
4893         struct msr_data msr;
4894         int r;
4895
4896         msr.index = msr_index;
4897         msr.host_initiated = false;
4898         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4899         if (r)
4900                 return r;
4901
4902         *pdata = msr.data;
4903         return 0;
4904 }
4905
4906 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4907                             u32 msr_index, u64 data)
4908 {
4909         struct msr_data msr;
4910
4911         msr.data = data;
4912         msr.index = msr_index;
4913         msr.host_initiated = false;
4914         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4915 }
4916
4917 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4918 {
4919         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920
4921         return vcpu->arch.smbase;
4922 }
4923
4924 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4925 {
4926         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927
4928         vcpu->arch.smbase = smbase;
4929 }
4930
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932                               u32 pmc)
4933 {
4934         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4935 }
4936
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938                              u32 pmc, u64 *pdata)
4939 {
4940         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950         preempt_disable();
4951         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952         /*
4953          * CR0.TS may reference the host fpu state, not the guest fpu state,
4954          * so it may be clear at this point.
4955          */
4956         clts();
4957 }
4958
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961         preempt_enable();
4962 }
4963
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965                               struct x86_instruction_info *info,
4966                               enum x86_intercept_stage stage)
4967 {
4968         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986
4987 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4988 {
4989         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4990 }
4991
4992 static const struct x86_emulate_ops emulate_ops = {
4993         .read_gpr            = emulator_read_gpr,
4994         .write_gpr           = emulator_write_gpr,
4995         .read_std            = kvm_read_guest_virt_system,
4996         .write_std           = kvm_write_guest_virt_system,
4997         .fetch               = kvm_fetch_guest_virt,
4998         .read_emulated       = emulator_read_emulated,
4999         .write_emulated      = emulator_write_emulated,
5000         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5001         .invlpg              = emulator_invlpg,
5002         .pio_in_emulated     = emulator_pio_in_emulated,
5003         .pio_out_emulated    = emulator_pio_out_emulated,
5004         .get_segment         = emulator_get_segment,
5005         .set_segment         = emulator_set_segment,
5006         .get_cached_segment_base = emulator_get_cached_segment_base,
5007         .get_gdt             = emulator_get_gdt,
5008         .get_idt             = emulator_get_idt,
5009         .set_gdt             = emulator_set_gdt,
5010         .set_idt             = emulator_set_idt,
5011         .get_cr              = emulator_get_cr,
5012         .set_cr              = emulator_set_cr,
5013         .cpl                 = emulator_get_cpl,
5014         .get_dr              = emulator_get_dr,
5015         .set_dr              = emulator_set_dr,
5016         .get_smbase          = emulator_get_smbase,
5017         .set_smbase          = emulator_set_smbase,
5018         .set_msr             = emulator_set_msr,
5019         .get_msr             = emulator_get_msr,
5020         .check_pmc           = emulator_check_pmc,
5021         .read_pmc            = emulator_read_pmc,
5022         .halt                = emulator_halt,
5023         .wbinvd              = emulator_wbinvd,
5024         .fix_hypercall       = emulator_fix_hypercall,
5025         .get_fpu             = emulator_get_fpu,
5026         .put_fpu             = emulator_put_fpu,
5027         .intercept           = emulator_intercept,
5028         .get_cpuid           = emulator_get_cpuid,
5029         .set_nmi_mask        = emulator_set_nmi_mask,
5030 };
5031
5032 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5033 {
5034         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5035         /*
5036          * an sti; sti; sequence only disable interrupts for the first
5037          * instruction. So, if the last instruction, be it emulated or
5038          * not, left the system with the INT_STI flag enabled, it
5039          * means that the last instruction is an sti. We should not
5040          * leave the flag on in this case. The same goes for mov ss
5041          */
5042         if (int_shadow & mask)
5043                 mask = 0;
5044         if (unlikely(int_shadow || mask)) {
5045                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5046                 if (!mask)
5047                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5048         }
5049 }
5050
5051 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5052 {
5053         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5054         if (ctxt->exception.vector == PF_VECTOR)
5055                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5056
5057         if (ctxt->exception.error_code_valid)
5058                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5059                                       ctxt->exception.error_code);
5060         else
5061                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5062         return false;
5063 }
5064
5065 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5066 {
5067         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5068         int cs_db, cs_l;
5069
5070         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5071
5072         ctxt->eflags = kvm_get_rflags(vcpu);
5073         ctxt->eip = kvm_rip_read(vcpu);
5074         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5075                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5076                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5077                      cs_db                              ? X86EMUL_MODE_PROT32 :
5078                                                           X86EMUL_MODE_PROT16;
5079         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5080         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5081         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5082         ctxt->emul_flags = vcpu->arch.hflags;
5083
5084         init_decode_cache(ctxt);
5085         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5086 }
5087
5088 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5089 {
5090         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5091         int ret;
5092
5093         init_emulate_ctxt(vcpu);
5094
5095         ctxt->op_bytes = 2;
5096         ctxt->ad_bytes = 2;
5097         ctxt->_eip = ctxt->eip + inc_eip;
5098         ret = emulate_int_real(ctxt, irq);
5099
5100         if (ret != X86EMUL_CONTINUE)
5101                 return EMULATE_FAIL;
5102
5103         ctxt->eip = ctxt->_eip;
5104         kvm_rip_write(vcpu, ctxt->eip);
5105         kvm_set_rflags(vcpu, ctxt->eflags);
5106
5107         if (irq == NMI_VECTOR)
5108                 vcpu->arch.nmi_pending = 0;
5109         else
5110                 vcpu->arch.interrupt.pending = false;
5111
5112         return EMULATE_DONE;
5113 }
5114 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5115
5116 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5117 {
5118         int r = EMULATE_DONE;
5119
5120         ++vcpu->stat.insn_emulation_fail;
5121         trace_kvm_emulate_insn_failed(vcpu);
5122         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5123                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5124                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5125                 vcpu->run->internal.ndata = 0;
5126                 r = EMULATE_FAIL;
5127         }
5128         kvm_queue_exception(vcpu, UD_VECTOR);
5129
5130         return r;
5131 }
5132
5133 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5134                                   bool write_fault_to_shadow_pgtable,
5135                                   int emulation_type)
5136 {
5137         gpa_t gpa = cr2;
5138         pfn_t pfn;
5139
5140         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5141                 return false;
5142
5143         if (!vcpu->arch.mmu.direct_map) {
5144                 /*
5145                  * Write permission should be allowed since only
5146                  * write access need to be emulated.
5147                  */
5148                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5149
5150                 /*
5151                  * If the mapping is invalid in guest, let cpu retry
5152                  * it to generate fault.
5153                  */
5154                 if (gpa == UNMAPPED_GVA)
5155                         return true;
5156         }
5157
5158         /*
5159          * Do not retry the unhandleable instruction if it faults on the
5160          * readonly host memory, otherwise it will goto a infinite loop:
5161          * retry instruction -> write #PF -> emulation fail -> retry
5162          * instruction -> ...
5163          */
5164         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5165
5166         /*
5167          * If the instruction failed on the error pfn, it can not be fixed,
5168          * report the error to userspace.
5169          */
5170         if (is_error_noslot_pfn(pfn))
5171                 return false;
5172
5173         kvm_release_pfn_clean(pfn);
5174
5175         /* The instructions are well-emulated on direct mmu. */
5176         if (vcpu->arch.mmu.direct_map) {
5177                 unsigned int indirect_shadow_pages;
5178
5179                 spin_lock(&vcpu->kvm->mmu_lock);
5180                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5181                 spin_unlock(&vcpu->kvm->mmu_lock);
5182
5183                 if (indirect_shadow_pages)
5184                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5185
5186                 return true;
5187         }
5188
5189         /*
5190          * if emulation was due to access to shadowed page table
5191          * and it failed try to unshadow page and re-enter the
5192          * guest to let CPU execute the instruction.
5193          */
5194         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5195
5196         /*
5197          * If the access faults on its page table, it can not
5198          * be fixed by unprotecting shadow page and it should
5199          * be reported to userspace.
5200          */
5201         return !write_fault_to_shadow_pgtable;
5202 }
5203
5204 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5205                               unsigned long cr2,  int emulation_type)
5206 {
5207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5209
5210         last_retry_eip = vcpu->arch.last_retry_eip;
5211         last_retry_addr = vcpu->arch.last_retry_addr;
5212
5213         /*
5214          * If the emulation is caused by #PF and it is non-page_table
5215          * writing instruction, it means the VM-EXIT is caused by shadow
5216          * page protected, we can zap the shadow page and retry this
5217          * instruction directly.
5218          *
5219          * Note: if the guest uses a non-page-table modifying instruction
5220          * on the PDE that points to the instruction, then we will unmap
5221          * the instruction and go to an infinite loop. So, we cache the
5222          * last retried eip and the last fault address, if we meet the eip
5223          * and the address again, we can break out of the potential infinite
5224          * loop.
5225          */
5226         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5227
5228         if (!(emulation_type & EMULTYPE_RETRY))
5229                 return false;
5230
5231         if (x86_page_table_writing_insn(ctxt))
5232                 return false;
5233
5234         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5235                 return false;
5236
5237         vcpu->arch.last_retry_eip = ctxt->eip;
5238         vcpu->arch.last_retry_addr = cr2;
5239
5240         if (!vcpu->arch.mmu.direct_map)
5241                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5242
5243         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5244
5245         return true;
5246 }
5247
5248 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5249 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5250
5251 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5252 {
5253         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5254                 /* This is a good place to trace that we are exiting SMM.  */
5255                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5256
5257                 if (unlikely(vcpu->arch.smi_pending)) {
5258                         kvm_make_request(KVM_REQ_SMI, vcpu);
5259                         vcpu->arch.smi_pending = 0;
5260                 } else {
5261                         /* Process a latched INIT, if any.  */
5262                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5263                 }
5264         }
5265
5266         kvm_mmu_reset_context(vcpu);
5267 }
5268
5269 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5270 {
5271         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5272
5273         vcpu->arch.hflags = emul_flags;
5274
5275         if (changed & HF_SMM_MASK)
5276                 kvm_smm_changed(vcpu);
5277 }
5278
5279 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5280                                 unsigned long *db)
5281 {
5282         u32 dr6 = 0;
5283         int i;
5284         u32 enable, rwlen;
5285
5286         enable = dr7;
5287         rwlen = dr7 >> 16;
5288         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5289                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5290                         dr6 |= (1 << i);
5291         return dr6;
5292 }
5293
5294 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5295 {
5296         struct kvm_run *kvm_run = vcpu->run;
5297
5298         /*
5299          * rflags is the old, "raw" value of the flags.  The new value has
5300          * not been saved yet.
5301          *
5302          * This is correct even for TF set by the guest, because "the
5303          * processor will not generate this exception after the instruction
5304          * that sets the TF flag".
5305          */
5306         if (unlikely(rflags & X86_EFLAGS_TF)) {
5307                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5308                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5309                                                   DR6_RTM;
5310                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5311                         kvm_run->debug.arch.exception = DB_VECTOR;
5312                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5313                         *r = EMULATE_USER_EXIT;
5314                 } else {
5315                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5316                         /*
5317                          * "Certain debug exceptions may clear bit 0-3.  The
5318                          * remaining contents of the DR6 register are never
5319                          * cleared by the processor".
5320                          */
5321                         vcpu->arch.dr6 &= ~15;
5322                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5323                         kvm_queue_exception(vcpu, DB_VECTOR);
5324                 }
5325         }
5326 }
5327
5328 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5329 {
5330         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5331             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5332                 struct kvm_run *kvm_run = vcpu->run;
5333                 unsigned long eip = kvm_get_linear_rip(vcpu);
5334                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5335                                            vcpu->arch.guest_debug_dr7,
5336                                            vcpu->arch.eff_db);
5337
5338                 if (dr6 != 0) {
5339                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5340                         kvm_run->debug.arch.pc = eip;
5341                         kvm_run->debug.arch.exception = DB_VECTOR;
5342                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5343                         *r = EMULATE_USER_EXIT;
5344                         return true;
5345                 }
5346         }
5347
5348         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5349             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5350                 unsigned long eip = kvm_get_linear_rip(vcpu);
5351                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5352                                            vcpu->arch.dr7,
5353                                            vcpu->arch.db);
5354
5355                 if (dr6 != 0) {
5356                         vcpu->arch.dr6 &= ~15;
5357                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5358                         kvm_queue_exception(vcpu, DB_VECTOR);
5359                         *r = EMULATE_DONE;
5360                         return true;
5361                 }
5362         }
5363
5364         return false;
5365 }
5366
5367 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5368                             unsigned long cr2,
5369                             int emulation_type,
5370                             void *insn,
5371                             int insn_len)
5372 {
5373         int r;
5374         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375         bool writeback = true;
5376         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5377
5378         /*
5379          * Clear write_fault_to_shadow_pgtable here to ensure it is
5380          * never reused.
5381          */
5382         vcpu->arch.write_fault_to_shadow_pgtable = false;
5383         kvm_clear_exception_queue(vcpu);
5384
5385         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5386                 init_emulate_ctxt(vcpu);
5387
5388                 /*
5389                  * We will reenter on the same instruction since
5390                  * we do not set complete_userspace_io.  This does not
5391                  * handle watchpoints yet, those would be handled in
5392                  * the emulate_ops.
5393                  */
5394                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5395                         return r;
5396
5397                 ctxt->interruptibility = 0;
5398                 ctxt->have_exception = false;
5399                 ctxt->exception.vector = -1;
5400                 ctxt->perm_ok = false;
5401
5402                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5403
5404                 r = x86_decode_insn(ctxt, insn, insn_len);
5405
5406                 trace_kvm_emulate_insn_start(vcpu);
5407                 ++vcpu->stat.insn_emulation;
5408                 if (r != EMULATION_OK)  {
5409                         if (emulation_type & EMULTYPE_TRAP_UD)
5410                                 return EMULATE_FAIL;
5411                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5412                                                 emulation_type))
5413                                 return EMULATE_DONE;
5414                         if (emulation_type & EMULTYPE_SKIP)
5415                                 return EMULATE_FAIL;
5416                         return handle_emulation_failure(vcpu);
5417                 }
5418         }
5419
5420         if (emulation_type & EMULTYPE_SKIP) {
5421                 kvm_rip_write(vcpu, ctxt->_eip);
5422                 if (ctxt->eflags & X86_EFLAGS_RF)
5423                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5424                 return EMULATE_DONE;
5425         }
5426
5427         if (retry_instruction(ctxt, cr2, emulation_type))
5428                 return EMULATE_DONE;
5429
5430         /* this is needed for vmware backdoor interface to work since it
5431            changes registers values  during IO operation */
5432         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5433                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5434                 emulator_invalidate_register_cache(ctxt);
5435         }
5436
5437 restart:
5438         r = x86_emulate_insn(ctxt);
5439
5440         if (r == EMULATION_INTERCEPTED)
5441                 return EMULATE_DONE;
5442
5443         if (r == EMULATION_FAILED) {
5444                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5445                                         emulation_type))
5446                         return EMULATE_DONE;
5447
5448                 return handle_emulation_failure(vcpu);
5449         }
5450
5451         if (ctxt->have_exception) {
5452                 r = EMULATE_DONE;
5453                 if (inject_emulated_exception(vcpu))
5454                         return r;
5455         } else if (vcpu->arch.pio.count) {
5456                 if (!vcpu->arch.pio.in) {
5457                         /* FIXME: return into emulator if single-stepping.  */
5458                         vcpu->arch.pio.count = 0;
5459                 } else {
5460                         writeback = false;
5461                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5462                 }
5463                 r = EMULATE_USER_EXIT;
5464         } else if (vcpu->mmio_needed) {
5465                 if (!vcpu->mmio_is_write)
5466                         writeback = false;
5467                 r = EMULATE_USER_EXIT;
5468                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5469         } else if (r == EMULATION_RESTART)
5470                 goto restart;
5471         else
5472                 r = EMULATE_DONE;
5473
5474         if (writeback) {
5475                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5476                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5477                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5478                 if (vcpu->arch.hflags != ctxt->emul_flags)
5479                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5480                 kvm_rip_write(vcpu, ctxt->eip);
5481                 if (r == EMULATE_DONE)
5482                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5483                 if (!ctxt->have_exception ||
5484                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5485                         __kvm_set_rflags(vcpu, ctxt->eflags);
5486
5487                 /*
5488                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5489                  * do nothing, and it will be requested again as soon as
5490                  * the shadow expires.  But we still need to check here,
5491                  * because POPF has no interrupt shadow.
5492                  */
5493                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5494                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5495         } else
5496                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5497
5498         return r;
5499 }
5500 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5501
5502 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5503 {
5504         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5505         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5506                                             size, port, &val, 1);
5507         /* do not return to emulator after return from userspace */
5508         vcpu->arch.pio.count = 0;
5509         return ret;
5510 }
5511 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5512
5513 static void tsc_bad(void *info)
5514 {
5515         __this_cpu_write(cpu_tsc_khz, 0);
5516 }
5517
5518 static void tsc_khz_changed(void *data)
5519 {
5520         struct cpufreq_freqs *freq = data;
5521         unsigned long khz = 0;
5522
5523         if (data)
5524                 khz = freq->new;
5525         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5526                 khz = cpufreq_quick_get(raw_smp_processor_id());
5527         if (!khz)
5528                 khz = tsc_khz;
5529         __this_cpu_write(cpu_tsc_khz, khz);
5530 }
5531
5532 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5533                                      void *data)
5534 {
5535         struct cpufreq_freqs *freq = data;
5536         struct kvm *kvm;
5537         struct kvm_vcpu *vcpu;
5538         int i, send_ipi = 0;
5539
5540         /*
5541          * We allow guests to temporarily run on slowing clocks,
5542          * provided we notify them after, or to run on accelerating
5543          * clocks, provided we notify them before.  Thus time never
5544          * goes backwards.
5545          *
5546          * However, we have a problem.  We can't atomically update
5547          * the frequency of a given CPU from this function; it is
5548          * merely a notifier, which can be called from any CPU.
5549          * Changing the TSC frequency at arbitrary points in time
5550          * requires a recomputation of local variables related to
5551          * the TSC for each VCPU.  We must flag these local variables
5552          * to be updated and be sure the update takes place with the
5553          * new frequency before any guests proceed.
5554          *
5555          * Unfortunately, the combination of hotplug CPU and frequency
5556          * change creates an intractable locking scenario; the order
5557          * of when these callouts happen is undefined with respect to
5558          * CPU hotplug, and they can race with each other.  As such,
5559          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5560          * undefined; you can actually have a CPU frequency change take
5561          * place in between the computation of X and the setting of the
5562          * variable.  To protect against this problem, all updates of
5563          * the per_cpu tsc_khz variable are done in an interrupt
5564          * protected IPI, and all callers wishing to update the value
5565          * must wait for a synchronous IPI to complete (which is trivial
5566          * if the caller is on the CPU already).  This establishes the
5567          * necessary total order on variable updates.
5568          *
5569          * Note that because a guest time update may take place
5570          * anytime after the setting of the VCPU's request bit, the
5571          * correct TSC value must be set before the request.  However,
5572          * to ensure the update actually makes it to any guest which
5573          * starts running in hardware virtualization between the set
5574          * and the acquisition of the spinlock, we must also ping the
5575          * CPU after setting the request bit.
5576          *
5577          */
5578
5579         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5580                 return 0;
5581         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5582                 return 0;
5583
5584         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5585
5586         spin_lock(&kvm_lock);
5587         list_for_each_entry(kvm, &vm_list, vm_list) {
5588                 kvm_for_each_vcpu(i, vcpu, kvm) {
5589                         if (vcpu->cpu != freq->cpu)
5590                                 continue;
5591                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5592                         if (vcpu->cpu != smp_processor_id())
5593                                 send_ipi = 1;
5594                 }
5595         }
5596         spin_unlock(&kvm_lock);
5597
5598         if (freq->old < freq->new && send_ipi) {
5599                 /*
5600                  * We upscale the frequency.  Must make the guest
5601                  * doesn't see old kvmclock values while running with
5602                  * the new frequency, otherwise we risk the guest sees
5603                  * time go backwards.
5604                  *
5605                  * In case we update the frequency for another cpu
5606                  * (which might be in guest context) send an interrupt
5607                  * to kick the cpu out of guest context.  Next time
5608                  * guest context is entered kvmclock will be updated,
5609                  * so the guest will not see stale values.
5610                  */
5611                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5612         }
5613         return 0;
5614 }
5615
5616 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5617         .notifier_call  = kvmclock_cpufreq_notifier
5618 };
5619
5620 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5621                                         unsigned long action, void *hcpu)
5622 {
5623         unsigned int cpu = (unsigned long)hcpu;
5624
5625         switch (action) {
5626                 case CPU_ONLINE:
5627                 case CPU_DOWN_FAILED:
5628                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5629                         break;
5630                 case CPU_DOWN_PREPARE:
5631                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5632                         break;
5633         }
5634         return NOTIFY_OK;
5635 }
5636
5637 static struct notifier_block kvmclock_cpu_notifier_block = {
5638         .notifier_call  = kvmclock_cpu_notifier,
5639         .priority = -INT_MAX
5640 };
5641
5642 static void kvm_timer_init(void)
5643 {
5644         int cpu;
5645
5646         max_tsc_khz = tsc_khz;
5647
5648         cpu_notifier_register_begin();
5649         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5650 #ifdef CONFIG_CPU_FREQ
5651                 struct cpufreq_policy policy;
5652                 memset(&policy, 0, sizeof(policy));
5653                 cpu = get_cpu();
5654                 cpufreq_get_policy(&policy, cpu);
5655                 if (policy.cpuinfo.max_freq)
5656                         max_tsc_khz = policy.cpuinfo.max_freq;
5657                 put_cpu();
5658 #endif
5659                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5660                                           CPUFREQ_TRANSITION_NOTIFIER);
5661         }
5662         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5663         for_each_online_cpu(cpu)
5664                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5665
5666         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5667         cpu_notifier_register_done();
5668
5669 }
5670
5671 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5672
5673 int kvm_is_in_guest(void)
5674 {
5675         return __this_cpu_read(current_vcpu) != NULL;
5676 }
5677
5678 static int kvm_is_user_mode(void)
5679 {
5680         int user_mode = 3;
5681
5682         if (__this_cpu_read(current_vcpu))
5683                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5684
5685         return user_mode != 0;
5686 }
5687
5688 static unsigned long kvm_get_guest_ip(void)
5689 {
5690         unsigned long ip = 0;
5691
5692         if (__this_cpu_read(current_vcpu))
5693                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5694
5695         return ip;
5696 }
5697
5698 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5699         .is_in_guest            = kvm_is_in_guest,
5700         .is_user_mode           = kvm_is_user_mode,
5701         .get_guest_ip           = kvm_get_guest_ip,
5702 };
5703
5704 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5705 {
5706         __this_cpu_write(current_vcpu, vcpu);
5707 }
5708 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5709
5710 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5711 {
5712         __this_cpu_write(current_vcpu, NULL);
5713 }
5714 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5715
5716 static void kvm_set_mmio_spte_mask(void)
5717 {
5718         u64 mask;
5719         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5720
5721         /*
5722          * Set the reserved bits and the present bit of an paging-structure
5723          * entry to generate page fault with PFER.RSV = 1.
5724          */
5725          /* Mask the reserved physical address bits. */
5726         mask = rsvd_bits(maxphyaddr, 51);
5727
5728         /* Bit 62 is always reserved for 32bit host. */
5729         mask |= 0x3ull << 62;
5730
5731         /* Set the present bit. */
5732         mask |= 1ull;
5733
5734 #ifdef CONFIG_X86_64
5735         /*
5736          * If reserved bit is not supported, clear the present bit to disable
5737          * mmio page fault.
5738          */
5739         if (maxphyaddr == 52)
5740                 mask &= ~1ull;
5741 #endif
5742
5743         kvm_mmu_set_mmio_spte_mask(mask);
5744 }
5745
5746 #ifdef CONFIG_X86_64
5747 static void pvclock_gtod_update_fn(struct work_struct *work)
5748 {
5749         struct kvm *kvm;
5750
5751         struct kvm_vcpu *vcpu;
5752         int i;
5753
5754         spin_lock(&kvm_lock);
5755         list_for_each_entry(kvm, &vm_list, vm_list)
5756                 kvm_for_each_vcpu(i, vcpu, kvm)
5757                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5758         atomic_set(&kvm_guest_has_master_clock, 0);
5759         spin_unlock(&kvm_lock);
5760 }
5761
5762 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5763
5764 /*
5765  * Notification about pvclock gtod data update.
5766  */
5767 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5768                                void *priv)
5769 {
5770         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5771         struct timekeeper *tk = priv;
5772
5773         update_pvclock_gtod(tk);
5774
5775         /* disable master clock if host does not trust, or does not
5776          * use, TSC clocksource
5777          */
5778         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5779             atomic_read(&kvm_guest_has_master_clock) != 0)
5780                 queue_work(system_long_wq, &pvclock_gtod_work);
5781
5782         return 0;
5783 }
5784
5785 static struct notifier_block pvclock_gtod_notifier = {
5786         .notifier_call = pvclock_gtod_notify,
5787 };
5788 #endif
5789
5790 int kvm_arch_init(void *opaque)
5791 {
5792         int r;
5793         struct kvm_x86_ops *ops = opaque;
5794
5795         if (kvm_x86_ops) {
5796                 printk(KERN_ERR "kvm: already loaded the other module\n");
5797                 r = -EEXIST;
5798                 goto out;
5799         }
5800
5801         if (!ops->cpu_has_kvm_support()) {
5802                 printk(KERN_ERR "kvm: no hardware support\n");
5803                 r = -EOPNOTSUPP;
5804                 goto out;
5805         }
5806         if (ops->disabled_by_bios()) {
5807                 printk(KERN_ERR "kvm: disabled by bios\n");
5808                 r = -EOPNOTSUPP;
5809                 goto out;
5810         }
5811
5812         r = -ENOMEM;
5813         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5814         if (!shared_msrs) {
5815                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5816                 goto out;
5817         }
5818
5819         r = kvm_mmu_module_init();
5820         if (r)
5821                 goto out_free_percpu;
5822
5823         kvm_set_mmio_spte_mask();
5824
5825         kvm_x86_ops = ops;
5826
5827         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5828                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5829
5830         kvm_timer_init();
5831
5832         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5833
5834         if (cpu_has_xsave)
5835                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5836
5837         kvm_lapic_init();
5838 #ifdef CONFIG_X86_64
5839         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5840 #endif
5841
5842         return 0;
5843
5844 out_free_percpu:
5845         free_percpu(shared_msrs);
5846 out:
5847         return r;
5848 }
5849
5850 void kvm_arch_exit(void)
5851 {
5852         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5853
5854         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5855                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5856                                             CPUFREQ_TRANSITION_NOTIFIER);
5857         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5858 #ifdef CONFIG_X86_64
5859         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5860 #endif
5861         kvm_x86_ops = NULL;
5862         kvm_mmu_module_exit();
5863         free_percpu(shared_msrs);
5864 }
5865
5866 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5867 {
5868         ++vcpu->stat.halt_exits;
5869         if (irqchip_in_kernel(vcpu->kvm)) {
5870                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5871                 return 1;
5872         } else {
5873                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5874                 return 0;
5875         }
5876 }
5877 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5878
5879 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5880 {
5881         kvm_x86_ops->skip_emulated_instruction(vcpu);
5882         return kvm_vcpu_halt(vcpu);
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5885
5886 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5887 {
5888         u64 param, ingpa, outgpa, ret;
5889         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5890         bool fast, longmode;
5891
5892         /*
5893          * hypercall generates UD from non zero cpl and real mode
5894          * per HYPER-V spec
5895          */
5896         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5897                 kvm_queue_exception(vcpu, UD_VECTOR);
5898                 return 0;
5899         }
5900
5901         longmode = is_64_bit_mode(vcpu);
5902
5903         if (!longmode) {
5904                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5905                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5906                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5907                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5908                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5909                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5910         }
5911 #ifdef CONFIG_X86_64
5912         else {
5913                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5914                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5915                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5916         }
5917 #endif
5918
5919         code = param & 0xffff;
5920         fast = (param >> 16) & 0x1;
5921         rep_cnt = (param >> 32) & 0xfff;
5922         rep_idx = (param >> 48) & 0xfff;
5923
5924         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5925
5926         switch (code) {
5927         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5928                 kvm_vcpu_on_spin(vcpu);
5929                 break;
5930         default:
5931                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5932                 break;
5933         }
5934
5935         ret = res | (((u64)rep_done & 0xfff) << 32);
5936         if (longmode) {
5937                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5938         } else {
5939                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5940                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5941         }
5942
5943         return 1;
5944 }
5945
5946 /*
5947  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5948  *
5949  * @apicid - apicid of vcpu to be kicked.
5950  */
5951 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5952 {
5953         struct kvm_lapic_irq lapic_irq;
5954
5955         lapic_irq.shorthand = 0;
5956         lapic_irq.dest_mode = 0;
5957         lapic_irq.dest_id = apicid;
5958         lapic_irq.msi_redir_hint = false;
5959
5960         lapic_irq.delivery_mode = APIC_DM_REMRD;
5961         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5962 }
5963
5964 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5965 {
5966         unsigned long nr, a0, a1, a2, a3, ret;
5967         int op_64_bit, r = 1;
5968
5969         kvm_x86_ops->skip_emulated_instruction(vcpu);
5970
5971         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5972                 return kvm_hv_hypercall(vcpu);
5973
5974         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5975         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5976         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5977         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5978         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5979
5980         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5981
5982         op_64_bit = is_64_bit_mode(vcpu);
5983         if (!op_64_bit) {
5984                 nr &= 0xFFFFFFFF;
5985                 a0 &= 0xFFFFFFFF;
5986                 a1 &= 0xFFFFFFFF;
5987                 a2 &= 0xFFFFFFFF;
5988                 a3 &= 0xFFFFFFFF;
5989         }
5990
5991         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5992                 ret = -KVM_EPERM;
5993                 goto out;
5994         }
5995
5996         switch (nr) {
5997         case KVM_HC_VAPIC_POLL_IRQ:
5998                 ret = 0;
5999                 break;
6000         case KVM_HC_KICK_CPU:
6001                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6002                 ret = 0;
6003                 break;
6004         default:
6005                 ret = -KVM_ENOSYS;
6006                 break;
6007         }
6008 out:
6009         if (!op_64_bit)
6010                 ret = (u32)ret;
6011         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6012         ++vcpu->stat.hypercalls;
6013         return r;
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6016
6017 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6018 {
6019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6020         char instruction[3];
6021         unsigned long rip = kvm_rip_read(vcpu);
6022
6023         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6024
6025         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6026 }
6027
6028 /*
6029  * Check if userspace requested an interrupt window, and that the
6030  * interrupt window is open.
6031  *
6032  * No need to exit to userspace if we already have an interrupt queued.
6033  */
6034 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6035 {
6036         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6037                 vcpu->run->request_interrupt_window &&
6038                 kvm_arch_interrupt_allowed(vcpu));
6039 }
6040
6041 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6042 {
6043         struct kvm_run *kvm_run = vcpu->run;
6044
6045         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6046         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6047         kvm_run->cr8 = kvm_get_cr8(vcpu);
6048         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6049         if (irqchip_in_kernel(vcpu->kvm))
6050                 kvm_run->ready_for_interrupt_injection = 1;
6051         else
6052                 kvm_run->ready_for_interrupt_injection =
6053                         kvm_arch_interrupt_allowed(vcpu) &&
6054                         !kvm_cpu_has_interrupt(vcpu) &&
6055                         !kvm_event_needs_reinjection(vcpu);
6056 }
6057
6058 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6059 {
6060         int max_irr, tpr;
6061
6062         if (!kvm_x86_ops->update_cr8_intercept)
6063                 return;
6064
6065         if (!vcpu->arch.apic)
6066                 return;
6067
6068         if (!vcpu->arch.apic->vapic_addr)
6069                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6070         else
6071                 max_irr = -1;
6072
6073         if (max_irr != -1)
6074                 max_irr >>= 4;
6075
6076         tpr = kvm_lapic_get_cr8(vcpu);
6077
6078         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6079 }
6080
6081 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6082 {
6083         int r;
6084
6085         /* try to reinject previous events if any */
6086         if (vcpu->arch.exception.pending) {
6087                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6088                                         vcpu->arch.exception.has_error_code,
6089                                         vcpu->arch.exception.error_code);
6090
6091                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6092                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6093                                              X86_EFLAGS_RF);
6094
6095                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6096                     (vcpu->arch.dr7 & DR7_GD)) {
6097                         vcpu->arch.dr7 &= ~DR7_GD;
6098                         kvm_update_dr7(vcpu);
6099                 }
6100
6101                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6102                                           vcpu->arch.exception.has_error_code,
6103                                           vcpu->arch.exception.error_code,
6104                                           vcpu->arch.exception.reinject);
6105                 return 0;
6106         }
6107
6108         if (vcpu->arch.nmi_injected) {
6109                 kvm_x86_ops->set_nmi(vcpu);
6110                 return 0;
6111         }
6112
6113         if (vcpu->arch.interrupt.pending) {
6114                 kvm_x86_ops->set_irq(vcpu);
6115                 return 0;
6116         }
6117
6118         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6119                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6120                 if (r != 0)
6121                         return r;
6122         }
6123
6124         /* try to inject new event if pending */
6125         if (vcpu->arch.nmi_pending) {
6126                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6127                         --vcpu->arch.nmi_pending;
6128                         vcpu->arch.nmi_injected = true;
6129                         kvm_x86_ops->set_nmi(vcpu);
6130                 }
6131         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6132                 /*
6133                  * Because interrupts can be injected asynchronously, we are
6134                  * calling check_nested_events again here to avoid a race condition.
6135                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6136                  * proposal and current concerns.  Perhaps we should be setting
6137                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6138                  */
6139                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6140                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6141                         if (r != 0)
6142                                 return r;
6143                 }
6144                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6145                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6146                                             false);
6147                         kvm_x86_ops->set_irq(vcpu);
6148                 }
6149         }
6150         return 0;
6151 }
6152
6153 static void process_nmi(struct kvm_vcpu *vcpu)
6154 {
6155         unsigned limit = 2;
6156
6157         /*
6158          * x86 is limited to one NMI running, and one NMI pending after it.
6159          * If an NMI is already in progress, limit further NMIs to just one.
6160          * Otherwise, allow two (and we'll inject the first one immediately).
6161          */
6162         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6163                 limit = 1;
6164
6165         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6166         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6167         kvm_make_request(KVM_REQ_EVENT, vcpu);
6168 }
6169
6170 #define put_smstate(type, buf, offset, val)                       \
6171         *(type *)((buf) + (offset) - 0x7e00) = val
6172
6173 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6174 {
6175         u32 flags = 0;
6176         flags |= seg->g       << 23;
6177         flags |= seg->db      << 22;
6178         flags |= seg->l       << 21;
6179         flags |= seg->avl     << 20;
6180         flags |= seg->present << 15;
6181         flags |= seg->dpl     << 13;
6182         flags |= seg->s       << 12;
6183         flags |= seg->type    << 8;
6184         return flags;
6185 }
6186
6187 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6188 {
6189         struct kvm_segment seg;
6190         int offset;
6191
6192         kvm_get_segment(vcpu, &seg, n);
6193         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6194
6195         if (n < 3)
6196                 offset = 0x7f84 + n * 12;
6197         else
6198                 offset = 0x7f2c + (n - 3) * 12;
6199
6200         put_smstate(u32, buf, offset + 8, seg.base);
6201         put_smstate(u32, buf, offset + 4, seg.limit);
6202         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6203 }
6204
6205 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6206 {
6207         struct kvm_segment seg;
6208         int offset;
6209         u16 flags;
6210
6211         kvm_get_segment(vcpu, &seg, n);
6212         offset = 0x7e00 + n * 16;
6213
6214         flags = process_smi_get_segment_flags(&seg) >> 8;
6215         put_smstate(u16, buf, offset, seg.selector);
6216         put_smstate(u16, buf, offset + 2, flags);
6217         put_smstate(u32, buf, offset + 4, seg.limit);
6218         put_smstate(u64, buf, offset + 8, seg.base);
6219 }
6220
6221 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6222 {
6223         struct desc_ptr dt;
6224         struct kvm_segment seg;
6225         unsigned long val;
6226         int i;
6227
6228         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6229         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6230         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6231         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6232
6233         for (i = 0; i < 8; i++)
6234                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6235
6236         kvm_get_dr(vcpu, 6, &val);
6237         put_smstate(u32, buf, 0x7fcc, (u32)val);
6238         kvm_get_dr(vcpu, 7, &val);
6239         put_smstate(u32, buf, 0x7fc8, (u32)val);
6240
6241         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6242         put_smstate(u32, buf, 0x7fc4, seg.selector);
6243         put_smstate(u32, buf, 0x7f64, seg.base);
6244         put_smstate(u32, buf, 0x7f60, seg.limit);
6245         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6246
6247         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6248         put_smstate(u32, buf, 0x7fc0, seg.selector);
6249         put_smstate(u32, buf, 0x7f80, seg.base);
6250         put_smstate(u32, buf, 0x7f7c, seg.limit);
6251         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6252
6253         kvm_x86_ops->get_gdt(vcpu, &dt);
6254         put_smstate(u32, buf, 0x7f74, dt.address);
6255         put_smstate(u32, buf, 0x7f70, dt.size);
6256
6257         kvm_x86_ops->get_idt(vcpu, &dt);
6258         put_smstate(u32, buf, 0x7f58, dt.address);
6259         put_smstate(u32, buf, 0x7f54, dt.size);
6260
6261         for (i = 0; i < 6; i++)
6262                 process_smi_save_seg_32(vcpu, buf, i);
6263
6264         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6265
6266         /* revision id */
6267         put_smstate(u32, buf, 0x7efc, 0x00020000);
6268         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6269 }
6270
6271 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6272 {
6273 #ifdef CONFIG_X86_64
6274         struct desc_ptr dt;
6275         struct kvm_segment seg;
6276         unsigned long val;
6277         int i;
6278
6279         for (i = 0; i < 16; i++)
6280                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6281
6282         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6283         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6284
6285         kvm_get_dr(vcpu, 6, &val);
6286         put_smstate(u64, buf, 0x7f68, val);
6287         kvm_get_dr(vcpu, 7, &val);
6288         put_smstate(u64, buf, 0x7f60, val);
6289
6290         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6291         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6292         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6293
6294         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6295
6296         /* revision id */
6297         put_smstate(u32, buf, 0x7efc, 0x00020064);
6298
6299         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6300
6301         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6302         put_smstate(u16, buf, 0x7e90, seg.selector);
6303         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6304         put_smstate(u32, buf, 0x7e94, seg.limit);
6305         put_smstate(u64, buf, 0x7e98, seg.base);
6306
6307         kvm_x86_ops->get_idt(vcpu, &dt);
6308         put_smstate(u32, buf, 0x7e84, dt.size);
6309         put_smstate(u64, buf, 0x7e88, dt.address);
6310
6311         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6312         put_smstate(u16, buf, 0x7e70, seg.selector);
6313         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6314         put_smstate(u32, buf, 0x7e74, seg.limit);
6315         put_smstate(u64, buf, 0x7e78, seg.base);
6316
6317         kvm_x86_ops->get_gdt(vcpu, &dt);
6318         put_smstate(u32, buf, 0x7e64, dt.size);
6319         put_smstate(u64, buf, 0x7e68, dt.address);
6320
6321         for (i = 0; i < 6; i++)
6322                 process_smi_save_seg_64(vcpu, buf, i);
6323 #else
6324         WARN_ON_ONCE(1);
6325 #endif
6326 }
6327
6328 static void process_smi(struct kvm_vcpu *vcpu)
6329 {
6330         struct kvm_segment cs, ds;
6331         char buf[512];
6332         u32 cr0;
6333
6334         if (is_smm(vcpu)) {
6335                 vcpu->arch.smi_pending = true;
6336                 return;
6337         }
6338
6339         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6340         vcpu->arch.hflags |= HF_SMM_MASK;
6341         memset(buf, 0, 512);
6342         if (guest_cpuid_has_longmode(vcpu))
6343                 process_smi_save_state_64(vcpu, buf);
6344         else
6345                 process_smi_save_state_32(vcpu, buf);
6346
6347         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6348
6349         if (kvm_x86_ops->get_nmi_mask(vcpu))
6350                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6351         else
6352                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6353
6354         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6355         kvm_rip_write(vcpu, 0x8000);
6356
6357         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6358         kvm_x86_ops->set_cr0(vcpu, cr0);
6359         vcpu->arch.cr0 = cr0;
6360
6361         kvm_x86_ops->set_cr4(vcpu, 0);
6362
6363         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6364
6365         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6366         cs.base = vcpu->arch.smbase;
6367
6368         ds.selector = 0;
6369         ds.base = 0;
6370
6371         cs.limit    = ds.limit = 0xffffffff;
6372         cs.type     = ds.type = 0x3;
6373         cs.dpl      = ds.dpl = 0;
6374         cs.db       = ds.db = 0;
6375         cs.s        = ds.s = 1;
6376         cs.l        = ds.l = 0;
6377         cs.g        = ds.g = 1;
6378         cs.avl      = ds.avl = 0;
6379         cs.present  = ds.present = 1;
6380         cs.unusable = ds.unusable = 0;
6381         cs.padding  = ds.padding = 0;
6382
6383         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6384         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6385         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6386         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6387         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6388         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6389
6390         if (guest_cpuid_has_longmode(vcpu))
6391                 kvm_x86_ops->set_efer(vcpu, 0);
6392
6393         kvm_update_cpuid(vcpu);
6394         kvm_mmu_reset_context(vcpu);
6395 }
6396
6397 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6398 {
6399         u64 eoi_exit_bitmap[4];
6400         u32 tmr[8];
6401
6402         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6403                 return;
6404
6405         memset(eoi_exit_bitmap, 0, 32);
6406         memset(tmr, 0, 32);
6407
6408         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6409         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6410         kvm_apic_update_tmr(vcpu, tmr);
6411 }
6412
6413 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6414 {
6415         ++vcpu->stat.tlb_flush;
6416         kvm_x86_ops->tlb_flush(vcpu);
6417 }
6418
6419 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6420 {
6421         struct page *page = NULL;
6422
6423         if (!irqchip_in_kernel(vcpu->kvm))
6424                 return;
6425
6426         if (!kvm_x86_ops->set_apic_access_page_addr)
6427                 return;
6428
6429         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6430         if (is_error_page(page))
6431                 return;
6432         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6433
6434         /*
6435          * Do not pin apic access page in memory, the MMU notifier
6436          * will call us again if it is migrated or swapped out.
6437          */
6438         put_page(page);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6441
6442 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6443                                            unsigned long address)
6444 {
6445         /*
6446          * The physical address of apic access page is stored in the VMCS.
6447          * Update it when it becomes invalid.
6448          */
6449         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6450                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6451 }
6452
6453 /*
6454  * Returns 1 to let vcpu_run() continue the guest execution loop without
6455  * exiting to the userspace.  Otherwise, the value will be returned to the
6456  * userspace.
6457  */
6458 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6459 {
6460         int r;
6461         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6462                 vcpu->run->request_interrupt_window;
6463         bool req_immediate_exit = false;
6464
6465         if (vcpu->requests) {
6466                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6467                         kvm_mmu_unload(vcpu);
6468                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6469                         __kvm_migrate_timers(vcpu);
6470                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6471                         kvm_gen_update_masterclock(vcpu->kvm);
6472                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6473                         kvm_gen_kvmclock_update(vcpu);
6474                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6475                         r = kvm_guest_time_update(vcpu);
6476                         if (unlikely(r))
6477                                 goto out;
6478                 }
6479                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6480                         kvm_mmu_sync_roots(vcpu);
6481                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6482                         kvm_vcpu_flush_tlb(vcpu);
6483                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6484                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6485                         r = 0;
6486                         goto out;
6487                 }
6488                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6489                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6490                         r = 0;
6491                         goto out;
6492                 }
6493                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6494                         vcpu->fpu_active = 0;
6495                         kvm_x86_ops->fpu_deactivate(vcpu);
6496                 }
6497                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6498                         /* Page is swapped out. Do synthetic halt */
6499                         vcpu->arch.apf.halted = true;
6500                         r = 1;
6501                         goto out;
6502                 }
6503                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6504                         record_steal_time(vcpu);
6505                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6506                         process_smi(vcpu);
6507                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6508                         process_nmi(vcpu);
6509                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6510                         kvm_pmu_handle_event(vcpu);
6511                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6512                         kvm_pmu_deliver_pmi(vcpu);
6513                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514                         vcpu_scan_ioapic(vcpu);
6515                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516                         kvm_vcpu_reload_apic_access_page(vcpu);
6517         }
6518
6519         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6520                 kvm_apic_accept_events(vcpu);
6521                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6522                         r = 1;
6523                         goto out;
6524                 }
6525
6526                 if (inject_pending_event(vcpu, req_int_win) != 0)
6527                         req_immediate_exit = true;
6528                 /* enable NMI/IRQ window open exits if needed */
6529                 else if (vcpu->arch.nmi_pending)
6530                         kvm_x86_ops->enable_nmi_window(vcpu);
6531                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6532                         kvm_x86_ops->enable_irq_window(vcpu);
6533
6534                 if (kvm_lapic_enabled(vcpu)) {
6535                         /*
6536                          * Update architecture specific hints for APIC
6537                          * virtual interrupt delivery.
6538                          */
6539                         if (kvm_x86_ops->hwapic_irr_update)
6540                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6541                                         kvm_lapic_find_highest_irr(vcpu));
6542                         update_cr8_intercept(vcpu);
6543                         kvm_lapic_sync_to_vapic(vcpu);
6544                 }
6545         }
6546
6547         r = kvm_mmu_reload(vcpu);
6548         if (unlikely(r)) {
6549                 goto cancel_injection;
6550         }
6551
6552         preempt_disable();
6553
6554         kvm_x86_ops->prepare_guest_switch(vcpu);
6555         if (vcpu->fpu_active)
6556                 kvm_load_guest_fpu(vcpu);
6557         kvm_load_guest_xcr0(vcpu);
6558
6559         vcpu->mode = IN_GUEST_MODE;
6560
6561         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6562
6563         /* We should set ->mode before check ->requests,
6564          * see the comment in make_all_cpus_request.
6565          */
6566         smp_mb__after_srcu_read_unlock();
6567
6568         local_irq_disable();
6569
6570         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6571             || need_resched() || signal_pending(current)) {
6572                 vcpu->mode = OUTSIDE_GUEST_MODE;
6573                 smp_wmb();
6574                 local_irq_enable();
6575                 preempt_enable();
6576                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6577                 r = 1;
6578                 goto cancel_injection;
6579         }
6580
6581         if (req_immediate_exit)
6582                 smp_send_reschedule(vcpu->cpu);
6583
6584         __kvm_guest_enter();
6585
6586         if (unlikely(vcpu->arch.switch_db_regs)) {
6587                 set_debugreg(0, 7);
6588                 set_debugreg(vcpu->arch.eff_db[0], 0);
6589                 set_debugreg(vcpu->arch.eff_db[1], 1);
6590                 set_debugreg(vcpu->arch.eff_db[2], 2);
6591                 set_debugreg(vcpu->arch.eff_db[3], 3);
6592                 set_debugreg(vcpu->arch.dr6, 6);
6593                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6594         }
6595
6596         trace_kvm_entry(vcpu->vcpu_id);
6597         wait_lapic_expire(vcpu);
6598         kvm_x86_ops->run(vcpu);
6599
6600         /*
6601          * Do this here before restoring debug registers on the host.  And
6602          * since we do this before handling the vmexit, a DR access vmexit
6603          * can (a) read the correct value of the debug registers, (b) set
6604          * KVM_DEBUGREG_WONT_EXIT again.
6605          */
6606         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6607                 int i;
6608
6609                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6610                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6611                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6612                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6613         }
6614
6615         /*
6616          * If the guest has used debug registers, at least dr7
6617          * will be disabled while returning to the host.
6618          * If we don't have active breakpoints in the host, we don't
6619          * care about the messed up debug address registers. But if
6620          * we have some of them active, restore the old state.
6621          */
6622         if (hw_breakpoint_active())
6623                 hw_breakpoint_restore();
6624
6625         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6626                                                            native_read_tsc());
6627
6628         vcpu->mode = OUTSIDE_GUEST_MODE;
6629         smp_wmb();
6630
6631         /* Interrupt is enabled by handle_external_intr() */
6632         kvm_x86_ops->handle_external_intr(vcpu);
6633
6634         ++vcpu->stat.exits;
6635
6636         /*
6637          * We must have an instruction between local_irq_enable() and
6638          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6639          * the interrupt shadow.  The stat.exits increment will do nicely.
6640          * But we need to prevent reordering, hence this barrier():
6641          */
6642         barrier();
6643
6644         kvm_guest_exit();
6645
6646         preempt_enable();
6647
6648         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6649
6650         /*
6651          * Profile KVM exit RIPs:
6652          */
6653         if (unlikely(prof_on == KVM_PROFILING)) {
6654                 unsigned long rip = kvm_rip_read(vcpu);
6655                 profile_hit(KVM_PROFILING, (void *)rip);
6656         }
6657
6658         if (unlikely(vcpu->arch.tsc_always_catchup))
6659                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6660
6661         if (vcpu->arch.apic_attention)
6662                 kvm_lapic_sync_from_vapic(vcpu);
6663
6664         r = kvm_x86_ops->handle_exit(vcpu);
6665         return r;
6666
6667 cancel_injection:
6668         kvm_x86_ops->cancel_injection(vcpu);
6669         if (unlikely(vcpu->arch.apic_attention))
6670                 kvm_lapic_sync_from_vapic(vcpu);
6671 out:
6672         return r;
6673 }
6674
6675 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6676 {
6677         if (!kvm_arch_vcpu_runnable(vcpu)) {
6678                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6679                 kvm_vcpu_block(vcpu);
6680                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6681                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6682                         return 1;
6683         }
6684
6685         kvm_apic_accept_events(vcpu);
6686         switch(vcpu->arch.mp_state) {
6687         case KVM_MP_STATE_HALTED:
6688                 vcpu->arch.pv.pv_unhalted = false;
6689                 vcpu->arch.mp_state =
6690                         KVM_MP_STATE_RUNNABLE;
6691         case KVM_MP_STATE_RUNNABLE:
6692                 vcpu->arch.apf.halted = false;
6693                 break;
6694         case KVM_MP_STATE_INIT_RECEIVED:
6695                 break;
6696         default:
6697                 return -EINTR;
6698                 break;
6699         }
6700         return 1;
6701 }
6702
6703 static int vcpu_run(struct kvm_vcpu *vcpu)
6704 {
6705         int r;
6706         struct kvm *kvm = vcpu->kvm;
6707
6708         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6709
6710         for (;;) {
6711                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6712                     !vcpu->arch.apf.halted)
6713                         r = vcpu_enter_guest(vcpu);
6714                 else
6715                         r = vcpu_block(kvm, vcpu);
6716                 if (r <= 0)
6717                         break;
6718
6719                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6720                 if (kvm_cpu_has_pending_timer(vcpu))
6721                         kvm_inject_pending_timer_irqs(vcpu);
6722
6723                 if (dm_request_for_irq_injection(vcpu)) {
6724                         r = -EINTR;
6725                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6726                         ++vcpu->stat.request_irq_exits;
6727                         break;
6728                 }
6729
6730                 kvm_check_async_pf_completion(vcpu);
6731
6732                 if (signal_pending(current)) {
6733                         r = -EINTR;
6734                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6735                         ++vcpu->stat.signal_exits;
6736                         break;
6737                 }
6738                 if (need_resched()) {
6739                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6740                         cond_resched();
6741                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6742                 }
6743         }
6744
6745         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6746
6747         return r;
6748 }
6749
6750 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6751 {
6752         int r;
6753         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6754         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6755         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6756         if (r != EMULATE_DONE)
6757                 return 0;
6758         return 1;
6759 }
6760
6761 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6762 {
6763         BUG_ON(!vcpu->arch.pio.count);
6764
6765         return complete_emulated_io(vcpu);
6766 }
6767
6768 /*
6769  * Implements the following, as a state machine:
6770  *
6771  * read:
6772  *   for each fragment
6773  *     for each mmio piece in the fragment
6774  *       write gpa, len
6775  *       exit
6776  *       copy data
6777  *   execute insn
6778  *
6779  * write:
6780  *   for each fragment
6781  *     for each mmio piece in the fragment
6782  *       write gpa, len
6783  *       copy data
6784  *       exit
6785  */
6786 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6787 {
6788         struct kvm_run *run = vcpu->run;
6789         struct kvm_mmio_fragment *frag;
6790         unsigned len;
6791
6792         BUG_ON(!vcpu->mmio_needed);
6793
6794         /* Complete previous fragment */
6795         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6796         len = min(8u, frag->len);
6797         if (!vcpu->mmio_is_write)
6798                 memcpy(frag->data, run->mmio.data, len);
6799
6800         if (frag->len <= 8) {
6801                 /* Switch to the next fragment. */
6802                 frag++;
6803                 vcpu->mmio_cur_fragment++;
6804         } else {
6805                 /* Go forward to the next mmio piece. */
6806                 frag->data += len;
6807                 frag->gpa += len;
6808                 frag->len -= len;
6809         }
6810
6811         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6812                 vcpu->mmio_needed = 0;
6813
6814                 /* FIXME: return into emulator if single-stepping.  */
6815                 if (vcpu->mmio_is_write)
6816                         return 1;
6817                 vcpu->mmio_read_completed = 1;
6818                 return complete_emulated_io(vcpu);
6819         }
6820
6821         run->exit_reason = KVM_EXIT_MMIO;
6822         run->mmio.phys_addr = frag->gpa;
6823         if (vcpu->mmio_is_write)
6824                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6825         run->mmio.len = min(8u, frag->len);
6826         run->mmio.is_write = vcpu->mmio_is_write;
6827         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6828         return 0;
6829 }
6830
6831
6832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6833 {
6834         struct fpu *fpu = &current->thread.fpu;
6835         int r;
6836         sigset_t sigsaved;
6837
6838         fpu__activate_curr(fpu);
6839
6840         if (vcpu->sigset_active)
6841                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6842
6843         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6844                 kvm_vcpu_block(vcpu);
6845                 kvm_apic_accept_events(vcpu);
6846                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6847                 r = -EAGAIN;
6848                 goto out;
6849         }
6850
6851         /* re-sync apic's tpr */
6852         if (!irqchip_in_kernel(vcpu->kvm)) {
6853                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6854                         r = -EINVAL;
6855                         goto out;
6856                 }
6857         }
6858
6859         if (unlikely(vcpu->arch.complete_userspace_io)) {
6860                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6861                 vcpu->arch.complete_userspace_io = NULL;
6862                 r = cui(vcpu);
6863                 if (r <= 0)
6864                         goto out;
6865         } else
6866                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6867
6868         r = vcpu_run(vcpu);
6869
6870 out:
6871         post_kvm_run_save(vcpu);
6872         if (vcpu->sigset_active)
6873                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6874
6875         return r;
6876 }
6877
6878 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6879 {
6880         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6881                 /*
6882                  * We are here if userspace calls get_regs() in the middle of
6883                  * instruction emulation. Registers state needs to be copied
6884                  * back from emulation context to vcpu. Userspace shouldn't do
6885                  * that usually, but some bad designed PV devices (vmware
6886                  * backdoor interface) need this to work
6887                  */
6888                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6889                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6890         }
6891         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6892         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6893         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6894         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6895         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6896         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6897         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6898         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6899 #ifdef CONFIG_X86_64
6900         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6901         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6902         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6903         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6904         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6905         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6906         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6907         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6908 #endif
6909
6910         regs->rip = kvm_rip_read(vcpu);
6911         regs->rflags = kvm_get_rflags(vcpu);
6912
6913         return 0;
6914 }
6915
6916 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6917 {
6918         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6919         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6920
6921         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6922         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6923         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6924         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6925         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6926         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6927         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6928         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6929 #ifdef CONFIG_X86_64
6930         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6931         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6932         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6933         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6934         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6935         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6936         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6937         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6938 #endif
6939
6940         kvm_rip_write(vcpu, regs->rip);
6941         kvm_set_rflags(vcpu, regs->rflags);
6942
6943         vcpu->arch.exception.pending = false;
6944
6945         kvm_make_request(KVM_REQ_EVENT, vcpu);
6946
6947         return 0;
6948 }
6949
6950 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6951 {
6952         struct kvm_segment cs;
6953
6954         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6955         *db = cs.db;
6956         *l = cs.l;
6957 }
6958 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6959
6960 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6961                                   struct kvm_sregs *sregs)
6962 {
6963         struct desc_ptr dt;
6964
6965         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6966         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6967         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6968         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6969         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6970         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6971
6972         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6973         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6974
6975         kvm_x86_ops->get_idt(vcpu, &dt);
6976         sregs->idt.limit = dt.size;
6977         sregs->idt.base = dt.address;
6978         kvm_x86_ops->get_gdt(vcpu, &dt);
6979         sregs->gdt.limit = dt.size;
6980         sregs->gdt.base = dt.address;
6981
6982         sregs->cr0 = kvm_read_cr0(vcpu);
6983         sregs->cr2 = vcpu->arch.cr2;
6984         sregs->cr3 = kvm_read_cr3(vcpu);
6985         sregs->cr4 = kvm_read_cr4(vcpu);
6986         sregs->cr8 = kvm_get_cr8(vcpu);
6987         sregs->efer = vcpu->arch.efer;
6988         sregs->apic_base = kvm_get_apic_base(vcpu);
6989
6990         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6991
6992         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6993                 set_bit(vcpu->arch.interrupt.nr,
6994                         (unsigned long *)sregs->interrupt_bitmap);
6995
6996         return 0;
6997 }
6998
6999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7000                                     struct kvm_mp_state *mp_state)
7001 {
7002         kvm_apic_accept_events(vcpu);
7003         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7004                                         vcpu->arch.pv.pv_unhalted)
7005                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7006         else
7007                 mp_state->mp_state = vcpu->arch.mp_state;
7008
7009         return 0;
7010 }
7011
7012 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7013                                     struct kvm_mp_state *mp_state)
7014 {
7015         if (!kvm_vcpu_has_lapic(vcpu) &&
7016             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7017                 return -EINVAL;
7018
7019         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7020                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7021                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7022         } else
7023                 vcpu->arch.mp_state = mp_state->mp_state;
7024         kvm_make_request(KVM_REQ_EVENT, vcpu);
7025         return 0;
7026 }
7027
7028 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7029                     int reason, bool has_error_code, u32 error_code)
7030 {
7031         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7032         int ret;
7033
7034         init_emulate_ctxt(vcpu);
7035
7036         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7037                                    has_error_code, error_code);
7038
7039         if (ret)
7040                 return EMULATE_FAIL;
7041
7042         kvm_rip_write(vcpu, ctxt->eip);
7043         kvm_set_rflags(vcpu, ctxt->eflags);
7044         kvm_make_request(KVM_REQ_EVENT, vcpu);
7045         return EMULATE_DONE;
7046 }
7047 EXPORT_SYMBOL_GPL(kvm_task_switch);
7048
7049 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7050                                   struct kvm_sregs *sregs)
7051 {
7052         struct msr_data apic_base_msr;
7053         int mmu_reset_needed = 0;
7054         int pending_vec, max_bits, idx;
7055         struct desc_ptr dt;
7056
7057         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7058                 return -EINVAL;
7059
7060         dt.size = sregs->idt.limit;
7061         dt.address = sregs->idt.base;
7062         kvm_x86_ops->set_idt(vcpu, &dt);
7063         dt.size = sregs->gdt.limit;
7064         dt.address = sregs->gdt.base;
7065         kvm_x86_ops->set_gdt(vcpu, &dt);
7066
7067         vcpu->arch.cr2 = sregs->cr2;
7068         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7069         vcpu->arch.cr3 = sregs->cr3;
7070         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7071
7072         kvm_set_cr8(vcpu, sregs->cr8);
7073
7074         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7075         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7076         apic_base_msr.data = sregs->apic_base;
7077         apic_base_msr.host_initiated = true;
7078         kvm_set_apic_base(vcpu, &apic_base_msr);
7079
7080         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7081         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7082         vcpu->arch.cr0 = sregs->cr0;
7083
7084         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7085         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7086         if (sregs->cr4 & X86_CR4_OSXSAVE)
7087                 kvm_update_cpuid(vcpu);
7088
7089         idx = srcu_read_lock(&vcpu->kvm->srcu);
7090         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7091                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7092                 mmu_reset_needed = 1;
7093         }
7094         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7095
7096         if (mmu_reset_needed)
7097                 kvm_mmu_reset_context(vcpu);
7098
7099         max_bits = KVM_NR_INTERRUPTS;
7100         pending_vec = find_first_bit(
7101                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7102         if (pending_vec < max_bits) {
7103                 kvm_queue_interrupt(vcpu, pending_vec, false);
7104                 pr_debug("Set back pending irq %d\n", pending_vec);
7105         }
7106
7107         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7108         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7109         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7110         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7111         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7112         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7113
7114         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7115         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7116
7117         update_cr8_intercept(vcpu);
7118
7119         /* Older userspace won't unhalt the vcpu on reset. */
7120         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7121             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7122             !is_protmode(vcpu))
7123                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7124
7125         kvm_make_request(KVM_REQ_EVENT, vcpu);
7126
7127         return 0;
7128 }
7129
7130 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7131                                         struct kvm_guest_debug *dbg)
7132 {
7133         unsigned long rflags;
7134         int i, r;
7135
7136         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7137                 r = -EBUSY;
7138                 if (vcpu->arch.exception.pending)
7139                         goto out;
7140                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7141                         kvm_queue_exception(vcpu, DB_VECTOR);
7142                 else
7143                         kvm_queue_exception(vcpu, BP_VECTOR);
7144         }
7145
7146         /*
7147          * Read rflags as long as potentially injected trace flags are still
7148          * filtered out.
7149          */
7150         rflags = kvm_get_rflags(vcpu);
7151
7152         vcpu->guest_debug = dbg->control;
7153         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7154                 vcpu->guest_debug = 0;
7155
7156         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7157                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7158                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7159                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7160         } else {
7161                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7162                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7163         }
7164         kvm_update_dr7(vcpu);
7165
7166         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7167                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7168                         get_segment_base(vcpu, VCPU_SREG_CS);
7169
7170         /*
7171          * Trigger an rflags update that will inject or remove the trace
7172          * flags.
7173          */
7174         kvm_set_rflags(vcpu, rflags);
7175
7176         kvm_x86_ops->update_db_bp_intercept(vcpu);
7177
7178         r = 0;
7179
7180 out:
7181
7182         return r;
7183 }
7184
7185 /*
7186  * Translate a guest virtual address to a guest physical address.
7187  */
7188 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7189                                     struct kvm_translation *tr)
7190 {
7191         unsigned long vaddr = tr->linear_address;
7192         gpa_t gpa;
7193         int idx;
7194
7195         idx = srcu_read_lock(&vcpu->kvm->srcu);
7196         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7197         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7198         tr->physical_address = gpa;
7199         tr->valid = gpa != UNMAPPED_GVA;
7200         tr->writeable = 1;
7201         tr->usermode = 0;
7202
7203         return 0;
7204 }
7205
7206 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7207 {
7208         struct fxregs_state *fxsave =
7209                         &vcpu->arch.guest_fpu.state.fxsave;
7210
7211         memcpy(fpu->fpr, fxsave->st_space, 128);
7212         fpu->fcw = fxsave->cwd;
7213         fpu->fsw = fxsave->swd;
7214         fpu->ftwx = fxsave->twd;
7215         fpu->last_opcode = fxsave->fop;
7216         fpu->last_ip = fxsave->rip;
7217         fpu->last_dp = fxsave->rdp;
7218         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7219
7220         return 0;
7221 }
7222
7223 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7224 {
7225         struct fxregs_state *fxsave =
7226                         &vcpu->arch.guest_fpu.state.fxsave;
7227
7228         memcpy(fxsave->st_space, fpu->fpr, 128);
7229         fxsave->cwd = fpu->fcw;
7230         fxsave->swd = fpu->fsw;
7231         fxsave->twd = fpu->ftwx;
7232         fxsave->fop = fpu->last_opcode;
7233         fxsave->rip = fpu->last_ip;
7234         fxsave->rdp = fpu->last_dp;
7235         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7236
7237         return 0;
7238 }
7239
7240 static void fx_init(struct kvm_vcpu *vcpu)
7241 {
7242         fpstate_init(&vcpu->arch.guest_fpu.state);
7243         if (cpu_has_xsaves)
7244                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7245                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7246
7247         /*
7248          * Ensure guest xcr0 is valid for loading
7249          */
7250         vcpu->arch.xcr0 = XSTATE_FP;
7251
7252         vcpu->arch.cr0 |= X86_CR0_ET;
7253 }
7254
7255 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7256 {
7257         if (vcpu->guest_fpu_loaded)
7258                 return;
7259
7260         /*
7261          * Restore all possible states in the guest,
7262          * and assume host would use all available bits.
7263          * Guest xcr0 would be loaded later.
7264          */
7265         kvm_put_guest_xcr0(vcpu);
7266         vcpu->guest_fpu_loaded = 1;
7267         __kernel_fpu_begin();
7268         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7269         trace_kvm_fpu(1);
7270 }
7271
7272 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7273 {
7274         kvm_put_guest_xcr0(vcpu);
7275
7276         if (!vcpu->guest_fpu_loaded) {
7277                 vcpu->fpu_counter = 0;
7278                 return;
7279         }
7280
7281         vcpu->guest_fpu_loaded = 0;
7282         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7283         __kernel_fpu_end();
7284         ++vcpu->stat.fpu_reload;
7285         /*
7286          * If using eager FPU mode, or if the guest is a frequent user
7287          * of the FPU, just leave the FPU active for next time.
7288          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7289          * the FPU in bursts will revert to loading it on demand.
7290          */
7291         if (!vcpu->arch.eager_fpu) {
7292                 if (++vcpu->fpu_counter < 5)
7293                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7294         }
7295         trace_kvm_fpu(0);
7296 }
7297
7298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7299 {
7300         kvmclock_reset(vcpu);
7301
7302         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7303         kvm_x86_ops->vcpu_free(vcpu);
7304 }
7305
7306 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7307                                                 unsigned int id)
7308 {
7309         struct kvm_vcpu *vcpu;
7310
7311         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7312                 printk_once(KERN_WARNING
7313                 "kvm: SMP vm created on host with unstable TSC; "
7314                 "guest TSC will not be reliable\n");
7315
7316         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7317
7318         return vcpu;
7319 }
7320
7321 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7322 {
7323         int r;
7324
7325         kvm_vcpu_mtrr_init(vcpu);
7326         r = vcpu_load(vcpu);
7327         if (r)
7328                 return r;
7329         kvm_vcpu_reset(vcpu, false);
7330         kvm_mmu_setup(vcpu);
7331         vcpu_put(vcpu);
7332         return r;
7333 }
7334
7335 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7336 {
7337         struct msr_data msr;
7338         struct kvm *kvm = vcpu->kvm;
7339
7340         if (vcpu_load(vcpu))
7341                 return;
7342         msr.data = 0x0;
7343         msr.index = MSR_IA32_TSC;
7344         msr.host_initiated = true;
7345         kvm_write_tsc(vcpu, &msr);
7346         vcpu_put(vcpu);
7347
7348         if (!kvmclock_periodic_sync)
7349                 return;
7350
7351         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7352                                         KVMCLOCK_SYNC_PERIOD);
7353 }
7354
7355 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7356 {
7357         int r;
7358         vcpu->arch.apf.msr_val = 0;
7359
7360         r = vcpu_load(vcpu);
7361         BUG_ON(r);
7362         kvm_mmu_unload(vcpu);
7363         vcpu_put(vcpu);
7364
7365         kvm_x86_ops->vcpu_free(vcpu);
7366 }
7367
7368 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7369 {
7370         vcpu->arch.hflags = 0;
7371
7372         atomic_set(&vcpu->arch.nmi_queued, 0);
7373         vcpu->arch.nmi_pending = 0;
7374         vcpu->arch.nmi_injected = false;
7375         kvm_clear_interrupt_queue(vcpu);
7376         kvm_clear_exception_queue(vcpu);
7377
7378         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7379         kvm_update_dr0123(vcpu);
7380         vcpu->arch.dr6 = DR6_INIT;
7381         kvm_update_dr6(vcpu);
7382         vcpu->arch.dr7 = DR7_FIXED_1;
7383         kvm_update_dr7(vcpu);
7384
7385         vcpu->arch.cr2 = 0;
7386
7387         kvm_make_request(KVM_REQ_EVENT, vcpu);
7388         vcpu->arch.apf.msr_val = 0;
7389         vcpu->arch.st.msr_val = 0;
7390
7391         kvmclock_reset(vcpu);
7392
7393         kvm_clear_async_pf_completion_queue(vcpu);
7394         kvm_async_pf_hash_reset(vcpu);
7395         vcpu->arch.apf.halted = false;
7396
7397         if (!init_event) {
7398                 kvm_pmu_reset(vcpu);
7399                 vcpu->arch.smbase = 0x30000;
7400         }
7401
7402         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7403         vcpu->arch.regs_avail = ~0;
7404         vcpu->arch.regs_dirty = ~0;
7405
7406         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7407 }
7408
7409 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7410 {
7411         struct kvm_segment cs;
7412
7413         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7414         cs.selector = vector << 8;
7415         cs.base = vector << 12;
7416         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7417         kvm_rip_write(vcpu, 0);
7418 }
7419
7420 int kvm_arch_hardware_enable(void)
7421 {
7422         struct kvm *kvm;
7423         struct kvm_vcpu *vcpu;
7424         int i;
7425         int ret;
7426         u64 local_tsc;
7427         u64 max_tsc = 0;
7428         bool stable, backwards_tsc = false;
7429
7430         kvm_shared_msr_cpu_online();
7431         ret = kvm_x86_ops->hardware_enable();
7432         if (ret != 0)
7433                 return ret;
7434
7435         local_tsc = native_read_tsc();
7436         stable = !check_tsc_unstable();
7437         list_for_each_entry(kvm, &vm_list, vm_list) {
7438                 kvm_for_each_vcpu(i, vcpu, kvm) {
7439                         if (!stable && vcpu->cpu == smp_processor_id())
7440                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7441                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7442                                 backwards_tsc = true;
7443                                 if (vcpu->arch.last_host_tsc > max_tsc)
7444                                         max_tsc = vcpu->arch.last_host_tsc;
7445                         }
7446                 }
7447         }
7448
7449         /*
7450          * Sometimes, even reliable TSCs go backwards.  This happens on
7451          * platforms that reset TSC during suspend or hibernate actions, but
7452          * maintain synchronization.  We must compensate.  Fortunately, we can
7453          * detect that condition here, which happens early in CPU bringup,
7454          * before any KVM threads can be running.  Unfortunately, we can't
7455          * bring the TSCs fully up to date with real time, as we aren't yet far
7456          * enough into CPU bringup that we know how much real time has actually
7457          * elapsed; our helper function, get_kernel_ns() will be using boot
7458          * variables that haven't been updated yet.
7459          *
7460          * So we simply find the maximum observed TSC above, then record the
7461          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7462          * the adjustment will be applied.  Note that we accumulate
7463          * adjustments, in case multiple suspend cycles happen before some VCPU
7464          * gets a chance to run again.  In the event that no KVM threads get a
7465          * chance to run, we will miss the entire elapsed period, as we'll have
7466          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7467          * loose cycle time.  This isn't too big a deal, since the loss will be
7468          * uniform across all VCPUs (not to mention the scenario is extremely
7469          * unlikely). It is possible that a second hibernate recovery happens
7470          * much faster than a first, causing the observed TSC here to be
7471          * smaller; this would require additional padding adjustment, which is
7472          * why we set last_host_tsc to the local tsc observed here.
7473          *
7474          * N.B. - this code below runs only on platforms with reliable TSC,
7475          * as that is the only way backwards_tsc is set above.  Also note
7476          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7477          * have the same delta_cyc adjustment applied if backwards_tsc
7478          * is detected.  Note further, this adjustment is only done once,
7479          * as we reset last_host_tsc on all VCPUs to stop this from being
7480          * called multiple times (one for each physical CPU bringup).
7481          *
7482          * Platforms with unreliable TSCs don't have to deal with this, they
7483          * will be compensated by the logic in vcpu_load, which sets the TSC to
7484          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7485          * guarantee that they stay in perfect synchronization.
7486          */
7487         if (backwards_tsc) {
7488                 u64 delta_cyc = max_tsc - local_tsc;
7489                 backwards_tsc_observed = true;
7490                 list_for_each_entry(kvm, &vm_list, vm_list) {
7491                         kvm_for_each_vcpu(i, vcpu, kvm) {
7492                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7493                                 vcpu->arch.last_host_tsc = local_tsc;
7494                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7495                         }
7496
7497                         /*
7498                          * We have to disable TSC offset matching.. if you were
7499                          * booting a VM while issuing an S4 host suspend....
7500                          * you may have some problem.  Solving this issue is
7501                          * left as an exercise to the reader.
7502                          */
7503                         kvm->arch.last_tsc_nsec = 0;
7504                         kvm->arch.last_tsc_write = 0;
7505                 }
7506
7507         }
7508         return 0;
7509 }
7510
7511 void kvm_arch_hardware_disable(void)
7512 {
7513         kvm_x86_ops->hardware_disable();
7514         drop_user_return_notifiers();
7515 }
7516
7517 int kvm_arch_hardware_setup(void)
7518 {
7519         int r;
7520
7521         r = kvm_x86_ops->hardware_setup();
7522         if (r != 0)
7523                 return r;
7524
7525         kvm_init_msr_list();
7526         return 0;
7527 }
7528
7529 void kvm_arch_hardware_unsetup(void)
7530 {
7531         kvm_x86_ops->hardware_unsetup();
7532 }
7533
7534 void kvm_arch_check_processor_compat(void *rtn)
7535 {
7536         kvm_x86_ops->check_processor_compatibility(rtn);
7537 }
7538
7539 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7540 {
7541         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7542 }
7543
7544 struct static_key kvm_no_apic_vcpu __read_mostly;
7545
7546 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7547 {
7548         struct page *page;
7549         struct kvm *kvm;
7550         int r;
7551
7552         BUG_ON(vcpu->kvm == NULL);
7553         kvm = vcpu->kvm;
7554
7555         vcpu->arch.pv.pv_unhalted = false;
7556         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7557         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7558                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7559         else
7560                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7561
7562         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7563         if (!page) {
7564                 r = -ENOMEM;
7565                 goto fail;
7566         }
7567         vcpu->arch.pio_data = page_address(page);
7568
7569         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7570
7571         r = kvm_mmu_create(vcpu);
7572         if (r < 0)
7573                 goto fail_free_pio_data;
7574
7575         if (irqchip_in_kernel(kvm)) {
7576                 r = kvm_create_lapic(vcpu);
7577                 if (r < 0)
7578                         goto fail_mmu_destroy;
7579         } else
7580                 static_key_slow_inc(&kvm_no_apic_vcpu);
7581
7582         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7583                                        GFP_KERNEL);
7584         if (!vcpu->arch.mce_banks) {
7585                 r = -ENOMEM;
7586                 goto fail_free_lapic;
7587         }
7588         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7589
7590         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7591                 r = -ENOMEM;
7592                 goto fail_free_mce_banks;
7593         }
7594
7595         fx_init(vcpu);
7596
7597         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7598         vcpu->arch.pv_time_enabled = false;
7599
7600         vcpu->arch.guest_supported_xcr0 = 0;
7601         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7602
7603         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7604
7605         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7606
7607         kvm_async_pf_hash_reset(vcpu);
7608         kvm_pmu_init(vcpu);
7609
7610         return 0;
7611
7612 fail_free_mce_banks:
7613         kfree(vcpu->arch.mce_banks);
7614 fail_free_lapic:
7615         kvm_free_lapic(vcpu);
7616 fail_mmu_destroy:
7617         kvm_mmu_destroy(vcpu);
7618 fail_free_pio_data:
7619         free_page((unsigned long)vcpu->arch.pio_data);
7620 fail:
7621         return r;
7622 }
7623
7624 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7625 {
7626         int idx;
7627
7628         kvm_pmu_destroy(vcpu);
7629         kfree(vcpu->arch.mce_banks);
7630         kvm_free_lapic(vcpu);
7631         idx = srcu_read_lock(&vcpu->kvm->srcu);
7632         kvm_mmu_destroy(vcpu);
7633         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7634         free_page((unsigned long)vcpu->arch.pio_data);
7635         if (!irqchip_in_kernel(vcpu->kvm))
7636                 static_key_slow_dec(&kvm_no_apic_vcpu);
7637 }
7638
7639 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7640 {
7641         kvm_x86_ops->sched_in(vcpu, cpu);
7642 }
7643
7644 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7645 {
7646         if (type)
7647                 return -EINVAL;
7648
7649         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7650         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7651         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7652         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7653         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7654
7655         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7656         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7657         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7658         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7659                 &kvm->arch.irq_sources_bitmap);
7660
7661         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7662         mutex_init(&kvm->arch.apic_map_lock);
7663         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7664
7665         pvclock_update_vm_gtod_copy(kvm);
7666
7667         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7668         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7669
7670         return 0;
7671 }
7672
7673 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7674 {
7675         int r;
7676         r = vcpu_load(vcpu);
7677         BUG_ON(r);
7678         kvm_mmu_unload(vcpu);
7679         vcpu_put(vcpu);
7680 }
7681
7682 static void kvm_free_vcpus(struct kvm *kvm)
7683 {
7684         unsigned int i;
7685         struct kvm_vcpu *vcpu;
7686
7687         /*
7688          * Unpin any mmu pages first.
7689          */
7690         kvm_for_each_vcpu(i, vcpu, kvm) {
7691                 kvm_clear_async_pf_completion_queue(vcpu);
7692                 kvm_unload_vcpu_mmu(vcpu);
7693         }
7694         kvm_for_each_vcpu(i, vcpu, kvm)
7695                 kvm_arch_vcpu_free(vcpu);
7696
7697         mutex_lock(&kvm->lock);
7698         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7699                 kvm->vcpus[i] = NULL;
7700
7701         atomic_set(&kvm->online_vcpus, 0);
7702         mutex_unlock(&kvm->lock);
7703 }
7704
7705 void kvm_arch_sync_events(struct kvm *kvm)
7706 {
7707         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7708         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7709         kvm_free_all_assigned_devices(kvm);
7710         kvm_free_pit(kvm);
7711 }
7712
7713 int __x86_set_memory_region(struct kvm *kvm,
7714                             const struct kvm_userspace_memory_region *mem)
7715 {
7716         int i, r;
7717
7718         /* Called with kvm->slots_lock held.  */
7719         BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7720
7721         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7722                 struct kvm_userspace_memory_region m = *mem;
7723
7724                 m.slot |= i << 16;
7725                 r = __kvm_set_memory_region(kvm, &m);
7726                 if (r < 0)
7727                         return r;
7728         }
7729
7730         return 0;
7731 }
7732 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7733
7734 int x86_set_memory_region(struct kvm *kvm,
7735                           const struct kvm_userspace_memory_region *mem)
7736 {
7737         int r;
7738
7739         mutex_lock(&kvm->slots_lock);
7740         r = __x86_set_memory_region(kvm, mem);
7741         mutex_unlock(&kvm->slots_lock);
7742
7743         return r;
7744 }
7745 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7746
7747 void kvm_arch_destroy_vm(struct kvm *kvm)
7748 {
7749         if (current->mm == kvm->mm) {
7750                 /*
7751                  * Free memory regions allocated on behalf of userspace,
7752                  * unless the the memory map has changed due to process exit
7753                  * or fd copying.
7754                  */
7755                 struct kvm_userspace_memory_region mem;
7756                 memset(&mem, 0, sizeof(mem));
7757                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7758                 x86_set_memory_region(kvm, &mem);
7759
7760                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7761                 x86_set_memory_region(kvm, &mem);
7762
7763                 mem.slot = TSS_PRIVATE_MEMSLOT;
7764                 x86_set_memory_region(kvm, &mem);
7765         }
7766         kvm_iommu_unmap_guest(kvm);
7767         kfree(kvm->arch.vpic);
7768         kfree(kvm->arch.vioapic);
7769         kvm_free_vcpus(kvm);
7770         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7771 }
7772
7773 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7774                            struct kvm_memory_slot *dont)
7775 {
7776         int i;
7777
7778         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7779                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7780                         kvfree(free->arch.rmap[i]);
7781                         free->arch.rmap[i] = NULL;
7782                 }
7783                 if (i == 0)
7784                         continue;
7785
7786                 if (!dont || free->arch.lpage_info[i - 1] !=
7787                              dont->arch.lpage_info[i - 1]) {
7788                         kvfree(free->arch.lpage_info[i - 1]);
7789                         free->arch.lpage_info[i - 1] = NULL;
7790                 }
7791         }
7792 }
7793
7794 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7795                             unsigned long npages)
7796 {
7797         int i;
7798
7799         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7800                 unsigned long ugfn;
7801                 int lpages;
7802                 int level = i + 1;
7803
7804                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7805                                       slot->base_gfn, level) + 1;
7806
7807                 slot->arch.rmap[i] =
7808                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7809                 if (!slot->arch.rmap[i])
7810                         goto out_free;
7811                 if (i == 0)
7812                         continue;
7813
7814                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7815                                         sizeof(*slot->arch.lpage_info[i - 1]));
7816                 if (!slot->arch.lpage_info[i - 1])
7817                         goto out_free;
7818
7819                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7820                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7821                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7822                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7823                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7824                 /*
7825                  * If the gfn and userspace address are not aligned wrt each
7826                  * other, or if explicitly asked to, disable large page
7827                  * support for this slot
7828                  */
7829                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7830                     !kvm_largepages_enabled()) {
7831                         unsigned long j;
7832
7833                         for (j = 0; j < lpages; ++j)
7834                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7835                 }
7836         }
7837
7838         return 0;
7839
7840 out_free:
7841         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7842                 kvfree(slot->arch.rmap[i]);
7843                 slot->arch.rmap[i] = NULL;
7844                 if (i == 0)
7845                         continue;
7846
7847                 kvfree(slot->arch.lpage_info[i - 1]);
7848                 slot->arch.lpage_info[i - 1] = NULL;
7849         }
7850         return -ENOMEM;
7851 }
7852
7853 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7854 {
7855         /*
7856          * memslots->generation has been incremented.
7857          * mmio generation may have reached its maximum value.
7858          */
7859         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7860 }
7861
7862 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7863                                 struct kvm_memory_slot *memslot,
7864                                 const struct kvm_userspace_memory_region *mem,
7865                                 enum kvm_mr_change change)
7866 {
7867         /*
7868          * Only private memory slots need to be mapped here since
7869          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7870          */
7871         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7872                 unsigned long userspace_addr;
7873
7874                 /*
7875                  * MAP_SHARED to prevent internal slot pages from being moved
7876                  * by fork()/COW.
7877                  */
7878                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7879                                          PROT_READ | PROT_WRITE,
7880                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7881
7882                 if (IS_ERR((void *)userspace_addr))
7883                         return PTR_ERR((void *)userspace_addr);
7884
7885                 memslot->userspace_addr = userspace_addr;
7886         }
7887
7888         return 0;
7889 }
7890
7891 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7892                                      struct kvm_memory_slot *new)
7893 {
7894         /* Still write protect RO slot */
7895         if (new->flags & KVM_MEM_READONLY) {
7896                 kvm_mmu_slot_remove_write_access(kvm, new);
7897                 return;
7898         }
7899
7900         /*
7901          * Call kvm_x86_ops dirty logging hooks when they are valid.
7902          *
7903          * kvm_x86_ops->slot_disable_log_dirty is called when:
7904          *
7905          *  - KVM_MR_CREATE with dirty logging is disabled
7906          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7907          *
7908          * The reason is, in case of PML, we need to set D-bit for any slots
7909          * with dirty logging disabled in order to eliminate unnecessary GPA
7910          * logging in PML buffer (and potential PML buffer full VMEXT). This
7911          * guarantees leaving PML enabled during guest's lifetime won't have
7912          * any additonal overhead from PML when guest is running with dirty
7913          * logging disabled for memory slots.
7914          *
7915          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7916          * to dirty logging mode.
7917          *
7918          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7919          *
7920          * In case of write protect:
7921          *
7922          * Write protect all pages for dirty logging.
7923          *
7924          * All the sptes including the large sptes which point to this
7925          * slot are set to readonly. We can not create any new large
7926          * spte on this slot until the end of the logging.
7927          *
7928          * See the comments in fast_page_fault().
7929          */
7930         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7931                 if (kvm_x86_ops->slot_enable_log_dirty)
7932                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7933                 else
7934                         kvm_mmu_slot_remove_write_access(kvm, new);
7935         } else {
7936                 if (kvm_x86_ops->slot_disable_log_dirty)
7937                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7938         }
7939 }
7940
7941 void kvm_arch_commit_memory_region(struct kvm *kvm,
7942                                 const struct kvm_userspace_memory_region *mem,
7943                                 const struct kvm_memory_slot *old,
7944                                 const struct kvm_memory_slot *new,
7945                                 enum kvm_mr_change change)
7946 {
7947         int nr_mmu_pages = 0;
7948
7949         if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7950                 int ret;
7951
7952                 ret = vm_munmap(old->userspace_addr,
7953                                 old->npages * PAGE_SIZE);
7954                 if (ret < 0)
7955                         printk(KERN_WARNING
7956                                "kvm_vm_ioctl_set_memory_region: "
7957                                "failed to munmap memory\n");
7958         }
7959
7960         if (!kvm->arch.n_requested_mmu_pages)
7961                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7962
7963         if (nr_mmu_pages)
7964                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7965
7966         /*
7967          * Dirty logging tracks sptes in 4k granularity, meaning that large
7968          * sptes have to be split.  If live migration is successful, the guest
7969          * in the source machine will be destroyed and large sptes will be
7970          * created in the destination. However, if the guest continues to run
7971          * in the source machine (for example if live migration fails), small
7972          * sptes will remain around and cause bad performance.
7973          *
7974          * Scan sptes if dirty logging has been stopped, dropping those
7975          * which can be collapsed into a single large-page spte.  Later
7976          * page faults will create the large-page sptes.
7977          */
7978         if ((change != KVM_MR_DELETE) &&
7979                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7980                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7981                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7982
7983         /*
7984          * Set up write protection and/or dirty logging for the new slot.
7985          *
7986          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7987          * been zapped so no dirty logging staff is needed for old slot. For
7988          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7989          * new and it's also covered when dealing with the new slot.
7990          *
7991          * FIXME: const-ify all uses of struct kvm_memory_slot.
7992          */
7993         if (change != KVM_MR_DELETE)
7994                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7995 }
7996
7997 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7998 {
7999         kvm_mmu_invalidate_zap_all_pages(kvm);
8000 }
8001
8002 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8003                                    struct kvm_memory_slot *slot)
8004 {
8005         kvm_mmu_invalidate_zap_all_pages(kvm);
8006 }
8007
8008 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8009 {
8010         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8011                 kvm_x86_ops->check_nested_events(vcpu, false);
8012
8013         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8014                 !vcpu->arch.apf.halted)
8015                 || !list_empty_careful(&vcpu->async_pf.done)
8016                 || kvm_apic_has_events(vcpu)
8017                 || vcpu->arch.pv.pv_unhalted
8018                 || atomic_read(&vcpu->arch.nmi_queued) ||
8019                 (kvm_arch_interrupt_allowed(vcpu) &&
8020                  kvm_cpu_has_interrupt(vcpu));
8021 }
8022
8023 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8024 {
8025         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8026 }
8027
8028 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8029 {
8030         return kvm_x86_ops->interrupt_allowed(vcpu);
8031 }
8032
8033 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8034 {
8035         if (is_64_bit_mode(vcpu))
8036                 return kvm_rip_read(vcpu);
8037         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8038                      kvm_rip_read(vcpu));
8039 }
8040 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8041
8042 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8043 {
8044         return kvm_get_linear_rip(vcpu) == linear_rip;
8045 }
8046 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8047
8048 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8049 {
8050         unsigned long rflags;
8051
8052         rflags = kvm_x86_ops->get_rflags(vcpu);
8053         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8054                 rflags &= ~X86_EFLAGS_TF;
8055         return rflags;
8056 }
8057 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8058
8059 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8060 {
8061         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8062             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8063                 rflags |= X86_EFLAGS_TF;
8064         kvm_x86_ops->set_rflags(vcpu, rflags);
8065 }
8066
8067 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8068 {
8069         __kvm_set_rflags(vcpu, rflags);
8070         kvm_make_request(KVM_REQ_EVENT, vcpu);
8071 }
8072 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8073
8074 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8075 {
8076         int r;
8077
8078         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8079               work->wakeup_all)
8080                 return;
8081
8082         r = kvm_mmu_reload(vcpu);
8083         if (unlikely(r))
8084                 return;
8085
8086         if (!vcpu->arch.mmu.direct_map &&
8087               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8088                 return;
8089
8090         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8091 }
8092
8093 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8094 {
8095         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8096 }
8097
8098 static inline u32 kvm_async_pf_next_probe(u32 key)
8099 {
8100         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8101 }
8102
8103 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8104 {
8105         u32 key = kvm_async_pf_hash_fn(gfn);
8106
8107         while (vcpu->arch.apf.gfns[key] != ~0)
8108                 key = kvm_async_pf_next_probe(key);
8109
8110         vcpu->arch.apf.gfns[key] = gfn;
8111 }
8112
8113 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8114 {
8115         int i;
8116         u32 key = kvm_async_pf_hash_fn(gfn);
8117
8118         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8119                      (vcpu->arch.apf.gfns[key] != gfn &&
8120                       vcpu->arch.apf.gfns[key] != ~0); i++)
8121                 key = kvm_async_pf_next_probe(key);
8122
8123         return key;
8124 }
8125
8126 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8127 {
8128         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8129 }
8130
8131 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8132 {
8133         u32 i, j, k;
8134
8135         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8136         while (true) {
8137                 vcpu->arch.apf.gfns[i] = ~0;
8138                 do {
8139                         j = kvm_async_pf_next_probe(j);
8140                         if (vcpu->arch.apf.gfns[j] == ~0)
8141                                 return;
8142                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8143                         /*
8144                          * k lies cyclically in ]i,j]
8145                          * |    i.k.j |
8146                          * |....j i.k.| or  |.k..j i...|
8147                          */
8148                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8149                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8150                 i = j;
8151         }
8152 }
8153
8154 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8155 {
8156
8157         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8158                                       sizeof(val));
8159 }
8160
8161 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8162                                      struct kvm_async_pf *work)
8163 {
8164         struct x86_exception fault;
8165
8166         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8167         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8168
8169         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8170             (vcpu->arch.apf.send_user_only &&
8171              kvm_x86_ops->get_cpl(vcpu) == 0))
8172                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8173         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8174                 fault.vector = PF_VECTOR;
8175                 fault.error_code_valid = true;
8176                 fault.error_code = 0;
8177                 fault.nested_page_fault = false;
8178                 fault.address = work->arch.token;
8179                 kvm_inject_page_fault(vcpu, &fault);
8180         }
8181 }
8182
8183 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8184                                  struct kvm_async_pf *work)
8185 {
8186         struct x86_exception fault;
8187
8188         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8189         if (work->wakeup_all)
8190                 work->arch.token = ~0; /* broadcast wakeup */
8191         else
8192                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8193
8194         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8195             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8196                 fault.vector = PF_VECTOR;
8197                 fault.error_code_valid = true;
8198                 fault.error_code = 0;
8199                 fault.nested_page_fault = false;
8200                 fault.address = work->arch.token;
8201                 kvm_inject_page_fault(vcpu, &fault);
8202         }
8203         vcpu->arch.apf.halted = false;
8204         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8205 }
8206
8207 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8208 {
8209         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8210                 return true;
8211         else
8212                 return !kvm_event_needs_reinjection(vcpu) &&
8213                         kvm_x86_ops->interrupt_allowed(vcpu);
8214 }
8215
8216 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8217 {
8218         atomic_inc(&kvm->arch.noncoherent_dma_count);
8219 }
8220 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8221
8222 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8223 {
8224         atomic_dec(&kvm->arch.noncoherent_dma_count);
8225 }
8226 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8227
8228 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8229 {
8230         return atomic_read(&kvm->arch.noncoherent_dma_count);
8231 }
8232 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8233
8234 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8235 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8236 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8237 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8238 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);