]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'drm-nouveau-fixes' of git://anongit.freedesktop.org/git/nouveau/linux...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169         int i;
170         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171                 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176         unsigned slot;
177         struct kvm_shared_msrs *locals
178                 = container_of(urn, struct kvm_shared_msrs, urn);
179         struct kvm_shared_msr_values *values;
180
181         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182                 values = &locals->values[slot];
183                 if (values->host != values->curr) {
184                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
185                         values->curr = values->host;
186                 }
187         }
188         locals->registered = false;
189         user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194         u64 value;
195         unsigned int cpu = smp_processor_id();
196         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
197
198         /* only read, and nobody should modify it at this time,
199          * so don't need lock */
200         if (slot >= shared_msrs_global.nr) {
201                 printk(KERN_ERR "kvm: invalid MSR slot!");
202                 return;
203         }
204         rdmsrl_safe(msr, &value);
205         smsr->values[slot].host = value;
206         smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211         if (slot >= shared_msrs_global.nr)
212                 shared_msrs_global.nr = slot + 1;
213         shared_msrs_global.msrs[slot] = msr;
214         /* we need ensured the shared_msr_global have been updated */
215         smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221         unsigned i;
222
223         for (i = 0; i < shared_msrs_global.nr; ++i)
224                 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229         unsigned int cpu = smp_processor_id();
230         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
231
232         if (((value ^ smsr->values[slot].curr) & mask) == 0)
233                 return;
234         smsr->values[slot].curr = value;
235         wrmsrl(shared_msrs_global.msrs[slot], value);
236         if (!smsr->registered) {
237                 smsr->urn.on_user_return = kvm_on_user_return;
238                 user_return_notifier_register(&smsr->urn);
239                 smsr->registered = true;
240         }
241 }
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
243
244 static void drop_user_return_notifiers(void *ignore)
245 {
246         unsigned int cpu = smp_processor_id();
247         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248
249         if (smsr->registered)
250                 kvm_on_user_return(&smsr->urn);
251 }
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255         return vcpu->arch.apic_base;
256 }
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
258
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
260 {
261         /* TODO: reserve bits check */
262         kvm_lapic_set_base(vcpu, data);
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN            0
267 #define EXCPT_CONTRIBUTORY      1
268 #define EXCPT_PF                2
269
270 static int exception_class(int vector)
271 {
272         switch (vector) {
273         case PF_VECTOR:
274                 return EXCPT_PF;
275         case DE_VECTOR:
276         case TS_VECTOR:
277         case NP_VECTOR:
278         case SS_VECTOR:
279         case GP_VECTOR:
280                 return EXCPT_CONTRIBUTORY;
281         default:
282                 break;
283         }
284         return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288                 unsigned nr, bool has_error, u32 error_code,
289                 bool reinject)
290 {
291         u32 prev_nr;
292         int class1, class2;
293
294         kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296         if (!vcpu->arch.exception.pending) {
297         queue:
298                 vcpu->arch.exception.pending = true;
299                 vcpu->arch.exception.has_error_code = has_error;
300                 vcpu->arch.exception.nr = nr;
301                 vcpu->arch.exception.error_code = error_code;
302                 vcpu->arch.exception.reinject = reinject;
303                 return;
304         }
305
306         /* to check exception */
307         prev_nr = vcpu->arch.exception.nr;
308         if (prev_nr == DF_VECTOR) {
309                 /* triple fault -> shutdown */
310                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311                 return;
312         }
313         class1 = exception_class(prev_nr);
314         class2 = exception_class(nr);
315         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317                 /* generate double fault per SDM Table 5-5 */
318                 vcpu->arch.exception.pending = true;
319                 vcpu->arch.exception.has_error_code = true;
320                 vcpu->arch.exception.nr = DF_VECTOR;
321                 vcpu->arch.exception.error_code = 0;
322         } else
323                 /* replace previous exception with a new one in a hope
324                    that instruction re-execution will regenerate lost
325                    exception */
326                 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337         kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343         if (err)
344                 kvm_inject_gp(vcpu, 0);
345         else
346                 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352         ++vcpu->stat.pf_guest;
353         vcpu->arch.cr2 = fault->address;
354         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362         else
363                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368         atomic_inc(&vcpu->arch.nmi_queued);
369         kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381         kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392                 return true;
393         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394         return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404                             gfn_t ngfn, void *data, int offset, int len,
405                             u32 access)
406 {
407         gfn_t real_gfn;
408         gpa_t ngpa;
409
410         ngpa     = gfn_to_gpa(ngfn);
411         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412         if (real_gfn == UNMAPPED_GVA)
413                 return -EFAULT;
414
415         real_gfn = gpa_to_gfn(real_gfn);
416
417         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422                                void *data, int offset, int len, u32 access)
423 {
424         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425                                        data, offset, len, access);
426 }
427
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435         int i;
436         int ret;
437         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440                                       offset * sizeof(u64), sizeof(pdpte),
441                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
442         if (ret < 0) {
443                 ret = 0;
444                 goto out;
445         }
446         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447                 if (is_present_gpte(pdpte[i]) &&
448                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449                         ret = 0;
450                         goto out;
451                 }
452         }
453         ret = 1;
454
455         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_avail);
458         __set_bit(VCPU_EXREG_PDPTR,
459                   (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462         return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469         bool changed = true;
470         int offset;
471         gfn_t gfn;
472         int r;
473
474         if (is_long_mode(vcpu) || !is_pae(vcpu))
475                 return false;
476
477         if (!test_bit(VCPU_EXREG_PDPTR,
478                       (unsigned long *)&vcpu->arch.regs_avail))
479                 return true;
480
481         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
485         if (r < 0)
486                 goto out;
487         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490         return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495         unsigned long old_cr0 = kvm_read_cr0(vcpu);
496         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497                                     X86_CR0_CD | X86_CR0_NW;
498
499         cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502         if (cr0 & 0xffffffff00000000UL)
503                 return 1;
504 #endif
505
506         cr0 &= ~CR0_RESERVED_BITS;
507
508         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509                 return 1;
510
511         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512                 return 1;
513
514         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516                 if ((vcpu->arch.efer & EFER_LME)) {
517                         int cs_db, cs_l;
518
519                         if (!is_pae(vcpu))
520                                 return 1;
521                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522                         if (cs_l)
523                                 return 1;
524                 } else
525 #endif
526                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527                                                  kvm_read_cr3(vcpu)))
528                         return 1;
529         }
530
531         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532                 return 1;
533
534         kvm_x86_ops->set_cr0(vcpu, cr0);
535
536         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537                 kvm_clear_async_pf_completion_queue(vcpu);
538                 kvm_async_pf_hash_reset(vcpu);
539         }
540
541         if ((cr0 ^ old_cr0) & update_bits)
542                 kvm_mmu_reset_context(vcpu);
543         return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         u64 xcr0;
556
557         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558         if (index != XCR_XFEATURE_ENABLED_MASK)
559                 return 1;
560         xcr0 = xcr;
561         if (kvm_x86_ops->get_cpl(vcpu) != 0)
562                 return 1;
563         if (!(xcr0 & XSTATE_FP))
564                 return 1;
565         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566                 return 1;
567         if (xcr0 & ~host_xcr0)
568                 return 1;
569         vcpu->arch.xcr0 = xcr0;
570         vcpu->guest_xcr0_loaded = 0;
571         return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576         if (__kvm_set_xcr(vcpu, index, xcr)) {
577                 kvm_inject_gp(vcpu, 0);
578                 return 1;
579         }
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586         unsigned long old_cr4 = kvm_read_cr4(vcpu);
587         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588                                    X86_CR4_PAE | X86_CR4_SMEP;
589         if (cr4 & CR4_RESERVED_BITS)
590                 return 1;
591
592         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593                 return 1;
594
595         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596                 return 1;
597
598         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                    kvm_read_cr3(vcpu)))
608                 return 1;
609
610         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611                 if (!guest_cpuid_has_pcid(vcpu))
612                         return 1;
613
614                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616                         return 1;
617         }
618
619         if (kvm_x86_ops->set_cr4(vcpu, cr4))
620                 return 1;
621
622         if (((cr4 ^ old_cr4) & pdptr_bits) ||
623             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 kvm_update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644                                 return 1;
645                 } else
646                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
647                                 return 1;
648         } else {
649                 if (is_pae(vcpu)) {
650                         if (cr3 & CR3_PAE_RESERVED_BITS)
651                                 return 1;
652                         if (is_paging(vcpu) &&
653                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654                                 return 1;
655                 }
656                 /*
657                  * We don't check reserved bits in nonpae mode, because
658                  * this isn't enforced, and VMware depends on this.
659                  */
660         }
661
662         /*
663          * Does the new cr3 value map to physical memory? (Note, we
664          * catch an invalid cr3 even in real-mode, because it would
665          * cause trouble later on when we turn on paging anyway.)
666          *
667          * A real CPU would silently accept an invalid cr3 and would
668          * attempt to use it - with largely undefined (and often hard
669          * to debug) behavior on the guest side.
670          */
671         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672                 return 1;
673         vcpu->arch.cr3 = cr3;
674         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675         vcpu->arch.mmu.new_cr3(vcpu);
676         return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682         if (cr8 & CR8_RESERVED_BITS)
683                 return 1;
684         if (irqchip_in_kernel(vcpu->kvm))
685                 kvm_lapic_set_tpr(vcpu, cr8);
686         else
687                 vcpu->arch.cr8 = cr8;
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694         if (irqchip_in_kernel(vcpu->kvm))
695                 return kvm_lapic_get_cr8(vcpu);
696         else
697                 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
702 {
703         unsigned long dr7;
704
705         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706                 dr7 = vcpu->arch.guest_debug_dr7;
707         else
708                 dr7 = vcpu->arch.dr7;
709         kvm_x86_ops->set_dr7(vcpu, dr7);
710         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
711 }
712
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
714 {
715         switch (dr) {
716         case 0 ... 3:
717                 vcpu->arch.db[dr] = val;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719                         vcpu->arch.eff_db[dr] = val;
720                 break;
721         case 4:
722                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723                         return 1; /* #UD */
724                 /* fall through */
725         case 6:
726                 if (val & 0xffffffff00000000ULL)
727                         return -1; /* #GP */
728                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729                 break;
730         case 5:
731                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732                         return 1; /* #UD */
733                 /* fall through */
734         default: /* 7 */
735                 if (val & 0xffffffff00000000ULL)
736                         return -1; /* #GP */
737                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738                 kvm_update_dr7(vcpu);
739                 break;
740         }
741
742         return 0;
743 }
744
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
746 {
747         int res;
748
749         res = __kvm_set_dr(vcpu, dr, val);
750         if (res > 0)
751                 kvm_queue_exception(vcpu, UD_VECTOR);
752         else if (res < 0)
753                 kvm_inject_gp(vcpu, 0);
754
755         return res;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
758
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761         switch (dr) {
762         case 0 ... 3:
763                 *val = vcpu->arch.db[dr];
764                 break;
765         case 4:
766                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767                         return 1;
768                 /* fall through */
769         case 6:
770                 *val = vcpu->arch.dr6;
771                 break;
772         case 5:
773                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774                         return 1;
775                 /* fall through */
776         default: /* 7 */
777                 *val = vcpu->arch.dr7;
778                 break;
779         }
780
781         return 0;
782 }
783
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
785 {
786         if (_kvm_get_dr(vcpu, dr, val)) {
787                 kvm_queue_exception(vcpu, UD_VECTOR);
788                 return 1;
789         }
790         return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
793
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
795 {
796         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797         u64 data;
798         int err;
799
800         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801         if (err)
802                 return err;
803         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805         return err;
806 }
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
808
809 /*
810  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
812  *
813  * This list is modified at module load time to reflect the
814  * capabilities of the host cpu. This capabilities test skips MSRs that are
815  * kvm-specific. Those are put in the beginning of the list.
816  */
817
818 #define KVM_SAVE_MSRS_BEGIN     10
819 static u32 msrs_to_save[] = {
820         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824         MSR_KVM_PV_EOI_EN,
825         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826         MSR_STAR,
827 #ifdef CONFIG_X86_64
828         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
831 };
832
833 static unsigned num_msrs_to_save;
834
835 static const u32 emulated_msrs[] = {
836         MSR_IA32_TSC_ADJUST,
837         MSR_IA32_TSCDEADLINE,
838         MSR_IA32_MISC_ENABLE,
839         MSR_IA32_MCG_STATUS,
840         MSR_IA32_MCG_CTL,
841 };
842
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
844 {
845         u64 old_efer = vcpu->arch.efer;
846
847         if (efer & efer_reserved_bits)
848                 return 1;
849
850         if (is_paging(vcpu)
851             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852                 return 1;
853
854         if (efer & EFER_FFXSR) {
855                 struct kvm_cpuid_entry2 *feat;
856
857                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859                         return 1;
860         }
861
862         if (efer & EFER_SVME) {
863                 struct kvm_cpuid_entry2 *feat;
864
865                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867                         return 1;
868         }
869
870         efer &= ~EFER_LMA;
871         efer |= vcpu->arch.efer & EFER_LMA;
872
873         kvm_x86_ops->set_efer(vcpu, efer);
874
875         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
876
877         /* Update reserved bits */
878         if ((efer ^ old_efer) & EFER_NX)
879                 kvm_mmu_reset_context(vcpu);
880
881         return 0;
882 }
883
884 void kvm_enable_efer_bits(u64 mask)
885 {
886        efer_reserved_bits &= ~mask;
887 }
888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
889
890
891 /*
892  * Writes msr value into into the appropriate "register".
893  * Returns 0 on success, non-0 otherwise.
894  * Assumes vcpu_load() was already called.
895  */
896 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
897 {
898         return kvm_x86_ops->set_msr(vcpu, msr);
899 }
900
901 /*
902  * Adapt set_msr() to msr_io()'s calling convention
903  */
904 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
905 {
906         struct msr_data msr;
907
908         msr.data = *data;
909         msr.index = index;
910         msr.host_initiated = true;
911         return kvm_set_msr(vcpu, &msr);
912 }
913
914 #ifdef CONFIG_X86_64
915 struct pvclock_gtod_data {
916         seqcount_t      seq;
917
918         struct { /* extract of a clocksource struct */
919                 int vclock_mode;
920                 cycle_t cycle_last;
921                 cycle_t mask;
922                 u32     mult;
923                 u32     shift;
924         } clock;
925
926         /* open coded 'struct timespec' */
927         u64             monotonic_time_snsec;
928         time_t          monotonic_time_sec;
929 };
930
931 static struct pvclock_gtod_data pvclock_gtod_data;
932
933 static void update_pvclock_gtod(struct timekeeper *tk)
934 {
935         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
936
937         write_seqcount_begin(&vdata->seq);
938
939         /* copy pvclock gtod data */
940         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
941         vdata->clock.cycle_last         = tk->clock->cycle_last;
942         vdata->clock.mask               = tk->clock->mask;
943         vdata->clock.mult               = tk->mult;
944         vdata->clock.shift              = tk->shift;
945
946         vdata->monotonic_time_sec       = tk->xtime_sec
947                                         + tk->wall_to_monotonic.tv_sec;
948         vdata->monotonic_time_snsec     = tk->xtime_nsec
949                                         + (tk->wall_to_monotonic.tv_nsec
950                                                 << tk->shift);
951         while (vdata->monotonic_time_snsec >=
952                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
953                 vdata->monotonic_time_snsec -=
954                                         ((u64)NSEC_PER_SEC) << tk->shift;
955                 vdata->monotonic_time_sec++;
956         }
957
958         write_seqcount_end(&vdata->seq);
959 }
960 #endif
961
962
963 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
964 {
965         int version;
966         int r;
967         struct pvclock_wall_clock wc;
968         struct timespec boot;
969
970         if (!wall_clock)
971                 return;
972
973         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
974         if (r)
975                 return;
976
977         if (version & 1)
978                 ++version;  /* first time write, random junk */
979
980         ++version;
981
982         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
983
984         /*
985          * The guest calculates current wall clock time by adding
986          * system time (updated by kvm_guest_time_update below) to the
987          * wall clock specified here.  guest system time equals host
988          * system time for us, thus we must fill in host boot time here.
989          */
990         getboottime(&boot);
991
992         if (kvm->arch.kvmclock_offset) {
993                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
994                 boot = timespec_sub(boot, ts);
995         }
996         wc.sec = boot.tv_sec;
997         wc.nsec = boot.tv_nsec;
998         wc.version = version;
999
1000         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1001
1002         version++;
1003         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1004 }
1005
1006 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1007 {
1008         uint32_t quotient, remainder;
1009
1010         /* Don't try to replace with do_div(), this one calculates
1011          * "(dividend << 32) / divisor" */
1012         __asm__ ( "divl %4"
1013                   : "=a" (quotient), "=d" (remainder)
1014                   : "0" (0), "1" (dividend), "r" (divisor) );
1015         return quotient;
1016 }
1017
1018 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1019                                s8 *pshift, u32 *pmultiplier)
1020 {
1021         uint64_t scaled64;
1022         int32_t  shift = 0;
1023         uint64_t tps64;
1024         uint32_t tps32;
1025
1026         tps64 = base_khz * 1000LL;
1027         scaled64 = scaled_khz * 1000LL;
1028         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1029                 tps64 >>= 1;
1030                 shift--;
1031         }
1032
1033         tps32 = (uint32_t)tps64;
1034         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1035                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1036                         scaled64 >>= 1;
1037                 else
1038                         tps32 <<= 1;
1039                 shift++;
1040         }
1041
1042         *pshift = shift;
1043         *pmultiplier = div_frac(scaled64, tps32);
1044
1045         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1047 }
1048
1049 static inline u64 get_kernel_ns(void)
1050 {
1051         struct timespec ts;
1052
1053         WARN_ON(preemptible());
1054         ktime_get_ts(&ts);
1055         monotonic_to_bootbased(&ts);
1056         return timespec_to_ns(&ts);
1057 }
1058
1059 #ifdef CONFIG_X86_64
1060 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1061 #endif
1062
1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1064 unsigned long max_tsc_khz;
1065
1066 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1067 {
1068         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1069                                    vcpu->arch.virtual_tsc_shift);
1070 }
1071
1072 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1073 {
1074         u64 v = (u64)khz * (1000000 + ppm);
1075         do_div(v, 1000000);
1076         return v;
1077 }
1078
1079 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1080 {
1081         u32 thresh_lo, thresh_hi;
1082         int use_scaling = 0;
1083
1084         /* Compute a scale to convert nanoseconds in TSC cycles */
1085         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1086                            &vcpu->arch.virtual_tsc_shift,
1087                            &vcpu->arch.virtual_tsc_mult);
1088         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1089
1090         /*
1091          * Compute the variation in TSC rate which is acceptable
1092          * within the range of tolerance and decide if the
1093          * rate being applied is within that bounds of the hardware
1094          * rate.  If so, no scaling or compensation need be done.
1095          */
1096         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1097         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1098         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1099                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1100                 use_scaling = 1;
1101         }
1102         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1103 }
1104
1105 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1106 {
1107         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1108                                       vcpu->arch.virtual_tsc_mult,
1109                                       vcpu->arch.virtual_tsc_shift);
1110         tsc += vcpu->arch.this_tsc_write;
1111         return tsc;
1112 }
1113
1114 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1115 {
1116 #ifdef CONFIG_X86_64
1117         bool vcpus_matched;
1118         bool do_request = false;
1119         struct kvm_arch *ka = &vcpu->kvm->arch;
1120         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1121
1122         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1123                          atomic_read(&vcpu->kvm->online_vcpus));
1124
1125         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1126                 if (!ka->use_master_clock)
1127                         do_request = 1;
1128
1129         if (!vcpus_matched && ka->use_master_clock)
1130                         do_request = 1;
1131
1132         if (do_request)
1133                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1134
1135         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1136                             atomic_read(&vcpu->kvm->online_vcpus),
1137                             ka->use_master_clock, gtod->clock.vclock_mode);
1138 #endif
1139 }
1140
1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1142 {
1143         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1144         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1145 }
1146
1147 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1148 {
1149         struct kvm *kvm = vcpu->kvm;
1150         u64 offset, ns, elapsed;
1151         unsigned long flags;
1152         s64 usdiff;
1153         bool matched;
1154         u64 data = msr->data;
1155
1156         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1157         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1158         ns = get_kernel_ns();
1159         elapsed = ns - kvm->arch.last_tsc_nsec;
1160
1161         /* n.b - signed multiplication and division required */
1162         usdiff = data - kvm->arch.last_tsc_write;
1163 #ifdef CONFIG_X86_64
1164         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1165 #else
1166         /* do_div() only does unsigned */
1167         asm("idivl %2; xor %%edx, %%edx"
1168             : "=A"(usdiff)
1169             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1170 #endif
1171         do_div(elapsed, 1000);
1172         usdiff -= elapsed;
1173         if (usdiff < 0)
1174                 usdiff = -usdiff;
1175
1176         /*
1177          * Special case: TSC write with a small delta (1 second) of virtual
1178          * cycle time against real time is interpreted as an attempt to
1179          * synchronize the CPU.
1180          *
1181          * For a reliable TSC, we can match TSC offsets, and for an unstable
1182          * TSC, we add elapsed time in this computation.  We could let the
1183          * compensation code attempt to catch up if we fall behind, but
1184          * it's better to try to match offsets from the beginning.
1185          */
1186         if (usdiff < USEC_PER_SEC &&
1187             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1188                 if (!check_tsc_unstable()) {
1189                         offset = kvm->arch.cur_tsc_offset;
1190                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1191                 } else {
1192                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1193                         data += delta;
1194                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1195                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1196                 }
1197                 matched = true;
1198         } else {
1199                 /*
1200                  * We split periods of matched TSC writes into generations.
1201                  * For each generation, we track the original measured
1202                  * nanosecond time, offset, and write, so if TSCs are in
1203                  * sync, we can match exact offset, and if not, we can match
1204                  * exact software computation in compute_guest_tsc()
1205                  *
1206                  * These values are tracked in kvm->arch.cur_xxx variables.
1207                  */
1208                 kvm->arch.cur_tsc_generation++;
1209                 kvm->arch.cur_tsc_nsec = ns;
1210                 kvm->arch.cur_tsc_write = data;
1211                 kvm->arch.cur_tsc_offset = offset;
1212                 matched = false;
1213                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214                          kvm->arch.cur_tsc_generation, data);
1215         }
1216
1217         /*
1218          * We also track th most recent recorded KHZ, write and time to
1219          * allow the matching interval to be extended at each write.
1220          */
1221         kvm->arch.last_tsc_nsec = ns;
1222         kvm->arch.last_tsc_write = data;
1223         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1224
1225         /* Reset of TSC must disable overshoot protection below */
1226         vcpu->arch.hv_clock.tsc_timestamp = 0;
1227         vcpu->arch.last_guest_tsc = data;
1228
1229         /* Keep track of which generation this VCPU has synchronized to */
1230         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1231         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1232         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1233
1234         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1235                 update_ia32_tsc_adjust_msr(vcpu, offset);
1236         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1237         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1238
1239         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1240         if (matched)
1241                 kvm->arch.nr_vcpus_matched_tsc++;
1242         else
1243                 kvm->arch.nr_vcpus_matched_tsc = 0;
1244
1245         kvm_track_tsc_matching(vcpu);
1246         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1247 }
1248
1249 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1250
1251 #ifdef CONFIG_X86_64
1252
1253 static cycle_t read_tsc(void)
1254 {
1255         cycle_t ret;
1256         u64 last;
1257
1258         /*
1259          * Empirically, a fence (of type that depends on the CPU)
1260          * before rdtsc is enough to ensure that rdtsc is ordered
1261          * with respect to loads.  The various CPU manuals are unclear
1262          * as to whether rdtsc can be reordered with later loads,
1263          * but no one has ever seen it happen.
1264          */
1265         rdtsc_barrier();
1266         ret = (cycle_t)vget_cycles();
1267
1268         last = pvclock_gtod_data.clock.cycle_last;
1269
1270         if (likely(ret >= last))
1271                 return ret;
1272
1273         /*
1274          * GCC likes to generate cmov here, but this branch is extremely
1275          * predictable (it's just a funciton of time and the likely is
1276          * very likely) and there's a data dependence, so force GCC
1277          * to generate a branch instead.  I don't barrier() because
1278          * we don't actually need a barrier, and if this function
1279          * ever gets inlined it will generate worse code.
1280          */
1281         asm volatile ("");
1282         return last;
1283 }
1284
1285 static inline u64 vgettsc(cycle_t *cycle_now)
1286 {
1287         long v;
1288         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1289
1290         *cycle_now = read_tsc();
1291
1292         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1293         return v * gtod->clock.mult;
1294 }
1295
1296 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1297 {
1298         unsigned long seq;
1299         u64 ns;
1300         int mode;
1301         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1302
1303         ts->tv_nsec = 0;
1304         do {
1305                 seq = read_seqcount_begin(&gtod->seq);
1306                 mode = gtod->clock.vclock_mode;
1307                 ts->tv_sec = gtod->monotonic_time_sec;
1308                 ns = gtod->monotonic_time_snsec;
1309                 ns += vgettsc(cycle_now);
1310                 ns >>= gtod->clock.shift;
1311         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1312         timespec_add_ns(ts, ns);
1313
1314         return mode;
1315 }
1316
1317 /* returns true if host is using tsc clocksource */
1318 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1319 {
1320         struct timespec ts;
1321
1322         /* checked again under seqlock below */
1323         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1324                 return false;
1325
1326         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1327                 return false;
1328
1329         monotonic_to_bootbased(&ts);
1330         *kernel_ns = timespec_to_ns(&ts);
1331
1332         return true;
1333 }
1334 #endif
1335
1336 /*
1337  *
1338  * Assuming a stable TSC across physical CPUS, and a stable TSC
1339  * across virtual CPUs, the following condition is possible.
1340  * Each numbered line represents an event visible to both
1341  * CPUs at the next numbered event.
1342  *
1343  * "timespecX" represents host monotonic time. "tscX" represents
1344  * RDTSC value.
1345  *
1346  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1347  *
1348  * 1.  read timespec0,tsc0
1349  * 2.                                   | timespec1 = timespec0 + N
1350  *                                      | tsc1 = tsc0 + M
1351  * 3. transition to guest               | transition to guest
1352  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1354  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1355  *
1356  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1357  *
1358  *      - ret0 < ret1
1359  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1360  *              ...
1361  *      - 0 < N - M => M < N
1362  *
1363  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364  * always the case (the difference between two distinct xtime instances
1365  * might be smaller then the difference between corresponding TSC reads,
1366  * when updating guest vcpus pvclock areas).
1367  *
1368  * To avoid that problem, do not allow visibility of distinct
1369  * system_timestamp/tsc_timestamp values simultaneously: use a master
1370  * copy of host monotonic time values. Update that master copy
1371  * in lockstep.
1372  *
1373  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1374  *
1375  */
1376
1377 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1378 {
1379 #ifdef CONFIG_X86_64
1380         struct kvm_arch *ka = &kvm->arch;
1381         int vclock_mode;
1382         bool host_tsc_clocksource, vcpus_matched;
1383
1384         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385                         atomic_read(&kvm->online_vcpus));
1386
1387         /*
1388          * If the host uses TSC clock, then passthrough TSC as stable
1389          * to the guest.
1390          */
1391         host_tsc_clocksource = kvm_get_time_and_clockread(
1392                                         &ka->master_kernel_ns,
1393                                         &ka->master_cycle_now);
1394
1395         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1396
1397         if (ka->use_master_clock)
1398                 atomic_set(&kvm_guest_has_master_clock, 1);
1399
1400         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1401         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1402                                         vcpus_matched);
1403 #endif
1404 }
1405
1406 static int kvm_guest_time_update(struct kvm_vcpu *v)
1407 {
1408         unsigned long flags, this_tsc_khz;
1409         struct kvm_vcpu_arch *vcpu = &v->arch;
1410         struct kvm_arch *ka = &v->kvm->arch;
1411         void *shared_kaddr;
1412         s64 kernel_ns, max_kernel_ns;
1413         u64 tsc_timestamp, host_tsc;
1414         struct pvclock_vcpu_time_info *guest_hv_clock;
1415         u8 pvclock_flags;
1416         bool use_master_clock;
1417
1418         kernel_ns = 0;
1419         host_tsc = 0;
1420
1421         /* Keep irq disabled to prevent changes to the clock */
1422         local_irq_save(flags);
1423         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1424         if (unlikely(this_tsc_khz == 0)) {
1425                 local_irq_restore(flags);
1426                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1427                 return 1;
1428         }
1429
1430         /*
1431          * If the host uses TSC clock, then passthrough TSC as stable
1432          * to the guest.
1433          */
1434         spin_lock(&ka->pvclock_gtod_sync_lock);
1435         use_master_clock = ka->use_master_clock;
1436         if (use_master_clock) {
1437                 host_tsc = ka->master_cycle_now;
1438                 kernel_ns = ka->master_kernel_ns;
1439         }
1440         spin_unlock(&ka->pvclock_gtod_sync_lock);
1441         if (!use_master_clock) {
1442                 host_tsc = native_read_tsc();
1443                 kernel_ns = get_kernel_ns();
1444         }
1445
1446         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1447
1448         /*
1449          * We may have to catch up the TSC to match elapsed wall clock
1450          * time for two reasons, even if kvmclock is used.
1451          *   1) CPU could have been running below the maximum TSC rate
1452          *   2) Broken TSC compensation resets the base at each VCPU
1453          *      entry to avoid unknown leaps of TSC even when running
1454          *      again on the same CPU.  This may cause apparent elapsed
1455          *      time to disappear, and the guest to stand still or run
1456          *      very slowly.
1457          */
1458         if (vcpu->tsc_catchup) {
1459                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1460                 if (tsc > tsc_timestamp) {
1461                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1462                         tsc_timestamp = tsc;
1463                 }
1464         }
1465
1466         local_irq_restore(flags);
1467
1468         if (!vcpu->time_page)
1469                 return 0;
1470
1471         /*
1472          * Time as measured by the TSC may go backwards when resetting the base
1473          * tsc_timestamp.  The reason for this is that the TSC resolution is
1474          * higher than the resolution of the other clock scales.  Thus, many
1475          * possible measurments of the TSC correspond to one measurement of any
1476          * other clock, and so a spread of values is possible.  This is not a
1477          * problem for the computation of the nanosecond clock; with TSC rates
1478          * around 1GHZ, there can only be a few cycles which correspond to one
1479          * nanosecond value, and any path through this code will inevitably
1480          * take longer than that.  However, with the kernel_ns value itself,
1481          * the precision may be much lower, down to HZ granularity.  If the
1482          * first sampling of TSC against kernel_ns ends in the low part of the
1483          * range, and the second in the high end of the range, we can get:
1484          *
1485          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1486          *
1487          * As the sampling errors potentially range in the thousands of cycles,
1488          * it is possible such a time value has already been observed by the
1489          * guest.  To protect against this, we must compute the system time as
1490          * observed by the guest and ensure the new system time is greater.
1491          */
1492         max_kernel_ns = 0;
1493         if (vcpu->hv_clock.tsc_timestamp) {
1494                 max_kernel_ns = vcpu->last_guest_tsc -
1495                                 vcpu->hv_clock.tsc_timestamp;
1496                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1497                                     vcpu->hv_clock.tsc_to_system_mul,
1498                                     vcpu->hv_clock.tsc_shift);
1499                 max_kernel_ns += vcpu->last_kernel_ns;
1500         }
1501
1502         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1503                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1504                                    &vcpu->hv_clock.tsc_shift,
1505                                    &vcpu->hv_clock.tsc_to_system_mul);
1506                 vcpu->hw_tsc_khz = this_tsc_khz;
1507         }
1508
1509         /* with a master <monotonic time, tsc value> tuple,
1510          * pvclock clock reads always increase at the (scaled) rate
1511          * of guest TSC - no need to deal with sampling errors.
1512          */
1513         if (!use_master_clock) {
1514                 if (max_kernel_ns > kernel_ns)
1515                         kernel_ns = max_kernel_ns;
1516         }
1517         /* With all the info we got, fill in the values */
1518         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1519         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1520         vcpu->last_kernel_ns = kernel_ns;
1521         vcpu->last_guest_tsc = tsc_timestamp;
1522
1523         /*
1524          * The interface expects us to write an even number signaling that the
1525          * update is finished. Since the guest won't see the intermediate
1526          * state, we just increase by 2 at the end.
1527          */
1528         vcpu->hv_clock.version += 2;
1529
1530         shared_kaddr = kmap_atomic(vcpu->time_page);
1531
1532         guest_hv_clock = shared_kaddr + vcpu->time_offset;
1533
1534         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535         pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1536
1537         if (vcpu->pvclock_set_guest_stopped_request) {
1538                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1539                 vcpu->pvclock_set_guest_stopped_request = false;
1540         }
1541
1542         /* If the host uses TSC clocksource, then it is stable */
1543         if (use_master_clock)
1544                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1545
1546         vcpu->hv_clock.flags = pvclock_flags;
1547
1548         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1549                sizeof(vcpu->hv_clock));
1550
1551         kunmap_atomic(shared_kaddr);
1552
1553         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1554         return 0;
1555 }
1556
1557 static bool msr_mtrr_valid(unsigned msr)
1558 {
1559         switch (msr) {
1560         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1561         case MSR_MTRRfix64K_00000:
1562         case MSR_MTRRfix16K_80000:
1563         case MSR_MTRRfix16K_A0000:
1564         case MSR_MTRRfix4K_C0000:
1565         case MSR_MTRRfix4K_C8000:
1566         case MSR_MTRRfix4K_D0000:
1567         case MSR_MTRRfix4K_D8000:
1568         case MSR_MTRRfix4K_E0000:
1569         case MSR_MTRRfix4K_E8000:
1570         case MSR_MTRRfix4K_F0000:
1571         case MSR_MTRRfix4K_F8000:
1572         case MSR_MTRRdefType:
1573         case MSR_IA32_CR_PAT:
1574                 return true;
1575         case 0x2f8:
1576                 return true;
1577         }
1578         return false;
1579 }
1580
1581 static bool valid_pat_type(unsigned t)
1582 {
1583         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1584 }
1585
1586 static bool valid_mtrr_type(unsigned t)
1587 {
1588         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1589 }
1590
1591 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1592 {
1593         int i;
1594
1595         if (!msr_mtrr_valid(msr))
1596                 return false;
1597
1598         if (msr == MSR_IA32_CR_PAT) {
1599                 for (i = 0; i < 8; i++)
1600                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1601                                 return false;
1602                 return true;
1603         } else if (msr == MSR_MTRRdefType) {
1604                 if (data & ~0xcff)
1605                         return false;
1606                 return valid_mtrr_type(data & 0xff);
1607         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1608                 for (i = 0; i < 8 ; i++)
1609                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1610                                 return false;
1611                 return true;
1612         }
1613
1614         /* variable MTRRs */
1615         return valid_mtrr_type(data & 0xff);
1616 }
1617
1618 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1619 {
1620         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1621
1622         if (!mtrr_valid(vcpu, msr, data))
1623                 return 1;
1624
1625         if (msr == MSR_MTRRdefType) {
1626                 vcpu->arch.mtrr_state.def_type = data;
1627                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1628         } else if (msr == MSR_MTRRfix64K_00000)
1629                 p[0] = data;
1630         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1632         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1634         else if (msr == MSR_IA32_CR_PAT)
1635                 vcpu->arch.pat = data;
1636         else {  /* Variable MTRRs */
1637                 int idx, is_mtrr_mask;
1638                 u64 *pt;
1639
1640                 idx = (msr - 0x200) / 2;
1641                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1642                 if (!is_mtrr_mask)
1643                         pt =
1644                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1645                 else
1646                         pt =
1647                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1648                 *pt = data;
1649         }
1650
1651         kvm_mmu_reset_context(vcpu);
1652         return 0;
1653 }
1654
1655 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1656 {
1657         u64 mcg_cap = vcpu->arch.mcg_cap;
1658         unsigned bank_num = mcg_cap & 0xff;
1659
1660         switch (msr) {
1661         case MSR_IA32_MCG_STATUS:
1662                 vcpu->arch.mcg_status = data;
1663                 break;
1664         case MSR_IA32_MCG_CTL:
1665                 if (!(mcg_cap & MCG_CTL_P))
1666                         return 1;
1667                 if (data != 0 && data != ~(u64)0)
1668                         return -1;
1669                 vcpu->arch.mcg_ctl = data;
1670                 break;
1671         default:
1672                 if (msr >= MSR_IA32_MC0_CTL &&
1673                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1674                         u32 offset = msr - MSR_IA32_MC0_CTL;
1675                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1676                          * some Linux kernels though clear bit 10 in bank 4 to
1677                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678                          * this to avoid an uncatched #GP in the guest
1679                          */
1680                         if ((offset & 0x3) == 0 &&
1681                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1682                                 return -1;
1683                         vcpu->arch.mce_banks[offset] = data;
1684                         break;
1685                 }
1686                 return 1;
1687         }
1688         return 0;
1689 }
1690
1691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1692 {
1693         struct kvm *kvm = vcpu->kvm;
1694         int lm = is_long_mode(vcpu);
1695         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1696                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1697         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1698                 : kvm->arch.xen_hvm_config.blob_size_32;
1699         u32 page_num = data & ~PAGE_MASK;
1700         u64 page_addr = data & PAGE_MASK;
1701         u8 *page;
1702         int r;
1703
1704         r = -E2BIG;
1705         if (page_num >= blob_size)
1706                 goto out;
1707         r = -ENOMEM;
1708         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1709         if (IS_ERR(page)) {
1710                 r = PTR_ERR(page);
1711                 goto out;
1712         }
1713         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1714                 goto out_free;
1715         r = 0;
1716 out_free:
1717         kfree(page);
1718 out:
1719         return r;
1720 }
1721
1722 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1723 {
1724         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1725 }
1726
1727 static bool kvm_hv_msr_partition_wide(u32 msr)
1728 {
1729         bool r = false;
1730         switch (msr) {
1731         case HV_X64_MSR_GUEST_OS_ID:
1732         case HV_X64_MSR_HYPERCALL:
1733                 r = true;
1734                 break;
1735         }
1736
1737         return r;
1738 }
1739
1740 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1741 {
1742         struct kvm *kvm = vcpu->kvm;
1743
1744         switch (msr) {
1745         case HV_X64_MSR_GUEST_OS_ID:
1746                 kvm->arch.hv_guest_os_id = data;
1747                 /* setting guest os id to zero disables hypercall page */
1748                 if (!kvm->arch.hv_guest_os_id)
1749                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1750                 break;
1751         case HV_X64_MSR_HYPERCALL: {
1752                 u64 gfn;
1753                 unsigned long addr;
1754                 u8 instructions[4];
1755
1756                 /* if guest os id is not set hypercall should remain disabled */
1757                 if (!kvm->arch.hv_guest_os_id)
1758                         break;
1759                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1760                         kvm->arch.hv_hypercall = data;
1761                         break;
1762                 }
1763                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1764                 addr = gfn_to_hva(kvm, gfn);
1765                 if (kvm_is_error_hva(addr))
1766                         return 1;
1767                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1768                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1769                 if (__copy_to_user((void __user *)addr, instructions, 4))
1770                         return 1;
1771                 kvm->arch.hv_hypercall = data;
1772                 break;
1773         }
1774         default:
1775                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1776                             "data 0x%llx\n", msr, data);
1777                 return 1;
1778         }
1779         return 0;
1780 }
1781
1782 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1783 {
1784         switch (msr) {
1785         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1786                 unsigned long addr;
1787
1788                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1789                         vcpu->arch.hv_vapic = data;
1790                         break;
1791                 }
1792                 addr = gfn_to_hva(vcpu->kvm, data >>
1793                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1794                 if (kvm_is_error_hva(addr))
1795                         return 1;
1796                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1797                         return 1;
1798                 vcpu->arch.hv_vapic = data;
1799                 break;
1800         }
1801         case HV_X64_MSR_EOI:
1802                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1803         case HV_X64_MSR_ICR:
1804                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1805         case HV_X64_MSR_TPR:
1806                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1807         default:
1808                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809                             "data 0x%llx\n", msr, data);
1810                 return 1;
1811         }
1812
1813         return 0;
1814 }
1815
1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1817 {
1818         gpa_t gpa = data & ~0x3f;
1819
1820         /* Bits 2:5 are reserved, Should be zero */
1821         if (data & 0x3c)
1822                 return 1;
1823
1824         vcpu->arch.apf.msr_val = data;
1825
1826         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1827                 kvm_clear_async_pf_completion_queue(vcpu);
1828                 kvm_async_pf_hash_reset(vcpu);
1829                 return 0;
1830         }
1831
1832         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1833                 return 1;
1834
1835         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1836         kvm_async_pf_wakeup_all(vcpu);
1837         return 0;
1838 }
1839
1840 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1841 {
1842         if (vcpu->arch.time_page) {
1843                 kvm_release_page_dirty(vcpu->arch.time_page);
1844                 vcpu->arch.time_page = NULL;
1845         }
1846 }
1847
1848 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1849 {
1850         u64 delta;
1851
1852         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1853                 return;
1854
1855         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1856         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1857         vcpu->arch.st.accum_steal = delta;
1858 }
1859
1860 static void record_steal_time(struct kvm_vcpu *vcpu)
1861 {
1862         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1863                 return;
1864
1865         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1866                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1867                 return;
1868
1869         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1870         vcpu->arch.st.steal.version += 2;
1871         vcpu->arch.st.accum_steal = 0;
1872
1873         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1874                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1875 }
1876
1877 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1878 {
1879         bool pr = false;
1880         u32 msr = msr_info->index;
1881         u64 data = msr_info->data;
1882
1883         switch (msr) {
1884         case MSR_EFER:
1885                 return set_efer(vcpu, data);
1886         case MSR_K7_HWCR:
1887                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1888                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1889                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1890                 if (data != 0) {
1891                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1892                                     data);
1893                         return 1;
1894                 }
1895                 break;
1896         case MSR_FAM10H_MMIO_CONF_BASE:
1897                 if (data != 0) {
1898                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1899                                     "0x%llx\n", data);
1900                         return 1;
1901                 }
1902                 break;
1903         case MSR_AMD64_NB_CFG:
1904                 break;
1905         case MSR_IA32_DEBUGCTLMSR:
1906                 if (!data) {
1907                         /* We support the non-activated case already */
1908                         break;
1909                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1910                         /* Values other than LBR and BTF are vendor-specific,
1911                            thus reserved and should throw a #GP */
1912                         return 1;
1913                 }
1914                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1915                             __func__, data);
1916                 break;
1917         case MSR_IA32_UCODE_REV:
1918         case MSR_IA32_UCODE_WRITE:
1919         case MSR_VM_HSAVE_PA:
1920         case MSR_AMD64_PATCH_LOADER:
1921                 break;
1922         case 0x200 ... 0x2ff:
1923                 return set_msr_mtrr(vcpu, msr, data);
1924         case MSR_IA32_APICBASE:
1925                 kvm_set_apic_base(vcpu, data);
1926                 break;
1927         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1928                 return kvm_x2apic_msr_write(vcpu, msr, data);
1929         case MSR_IA32_TSCDEADLINE:
1930                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1931                 break;
1932         case MSR_IA32_TSC_ADJUST:
1933                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1934                         if (!msr_info->host_initiated) {
1935                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1936                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1937                         }
1938                         vcpu->arch.ia32_tsc_adjust_msr = data;
1939                 }
1940                 break;
1941         case MSR_IA32_MISC_ENABLE:
1942                 vcpu->arch.ia32_misc_enable_msr = data;
1943                 break;
1944         case MSR_KVM_WALL_CLOCK_NEW:
1945         case MSR_KVM_WALL_CLOCK:
1946                 vcpu->kvm->arch.wall_clock = data;
1947                 kvm_write_wall_clock(vcpu->kvm, data);
1948                 break;
1949         case MSR_KVM_SYSTEM_TIME_NEW:
1950         case MSR_KVM_SYSTEM_TIME: {
1951                 kvmclock_reset(vcpu);
1952
1953                 vcpu->arch.time = data;
1954                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1955
1956                 /* we verify if the enable bit is set... */
1957                 if (!(data & 1))
1958                         break;
1959
1960                 /* ...but clean it before doing the actual write */
1961                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1962
1963                 vcpu->arch.time_page =
1964                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1965
1966                 if (is_error_page(vcpu->arch.time_page))
1967                         vcpu->arch.time_page = NULL;
1968
1969                 break;
1970         }
1971         case MSR_KVM_ASYNC_PF_EN:
1972                 if (kvm_pv_enable_async_pf(vcpu, data))
1973                         return 1;
1974                 break;
1975         case MSR_KVM_STEAL_TIME:
1976
1977                 if (unlikely(!sched_info_on()))
1978                         return 1;
1979
1980                 if (data & KVM_STEAL_RESERVED_MASK)
1981                         return 1;
1982
1983                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1984                                                         data & KVM_STEAL_VALID_BITS))
1985                         return 1;
1986
1987                 vcpu->arch.st.msr_val = data;
1988
1989                 if (!(data & KVM_MSR_ENABLED))
1990                         break;
1991
1992                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1993
1994                 preempt_disable();
1995                 accumulate_steal_time(vcpu);
1996                 preempt_enable();
1997
1998                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1999
2000                 break;
2001         case MSR_KVM_PV_EOI_EN:
2002                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2003                         return 1;
2004                 break;
2005
2006         case MSR_IA32_MCG_CTL:
2007         case MSR_IA32_MCG_STATUS:
2008         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009                 return set_msr_mce(vcpu, msr, data);
2010
2011         /* Performance counters are not protected by a CPUID bit,
2012          * so we should check all of them in the generic path for the sake of
2013          * cross vendor migration.
2014          * Writing a zero into the event select MSRs disables them,
2015          * which we perfectly emulate ;-). Any other value should be at least
2016          * reported, some guests depend on them.
2017          */
2018         case MSR_K7_EVNTSEL0:
2019         case MSR_K7_EVNTSEL1:
2020         case MSR_K7_EVNTSEL2:
2021         case MSR_K7_EVNTSEL3:
2022                 if (data != 0)
2023                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2024                                     "0x%x data 0x%llx\n", msr, data);
2025                 break;
2026         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2027          * so we ignore writes to make it happy.
2028          */
2029         case MSR_K7_PERFCTR0:
2030         case MSR_K7_PERFCTR1:
2031         case MSR_K7_PERFCTR2:
2032         case MSR_K7_PERFCTR3:
2033                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2034                             "0x%x data 0x%llx\n", msr, data);
2035                 break;
2036         case MSR_P6_PERFCTR0:
2037         case MSR_P6_PERFCTR1:
2038                 pr = true;
2039         case MSR_P6_EVNTSEL0:
2040         case MSR_P6_EVNTSEL1:
2041                 if (kvm_pmu_msr(vcpu, msr))
2042                         return kvm_pmu_set_msr(vcpu, msr, data);
2043
2044                 if (pr || data != 0)
2045                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2046                                     "0x%x data 0x%llx\n", msr, data);
2047                 break;
2048         case MSR_K7_CLK_CTL:
2049                 /*
2050                  * Ignore all writes to this no longer documented MSR.
2051                  * Writes are only relevant for old K7 processors,
2052                  * all pre-dating SVM, but a recommended workaround from
2053                  * AMD for these chips. It is possible to specify the
2054                  * affected processor models on the command line, hence
2055                  * the need to ignore the workaround.
2056                  */
2057                 break;
2058         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2059                 if (kvm_hv_msr_partition_wide(msr)) {
2060                         int r;
2061                         mutex_lock(&vcpu->kvm->lock);
2062                         r = set_msr_hyperv_pw(vcpu, msr, data);
2063                         mutex_unlock(&vcpu->kvm->lock);
2064                         return r;
2065                 } else
2066                         return set_msr_hyperv(vcpu, msr, data);
2067                 break;
2068         case MSR_IA32_BBL_CR_CTL3:
2069                 /* Drop writes to this legacy MSR -- see rdmsr
2070                  * counterpart for further detail.
2071                  */
2072                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2073                 break;
2074         case MSR_AMD64_OSVW_ID_LENGTH:
2075                 if (!guest_cpuid_has_osvw(vcpu))
2076                         return 1;
2077                 vcpu->arch.osvw.length = data;
2078                 break;
2079         case MSR_AMD64_OSVW_STATUS:
2080                 if (!guest_cpuid_has_osvw(vcpu))
2081                         return 1;
2082                 vcpu->arch.osvw.status = data;
2083                 break;
2084         default:
2085                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2086                         return xen_hvm_config(vcpu, data);
2087                 if (kvm_pmu_msr(vcpu, msr))
2088                         return kvm_pmu_set_msr(vcpu, msr, data);
2089                 if (!ignore_msrs) {
2090                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2091                                     msr, data);
2092                         return 1;
2093                 } else {
2094                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2095                                     msr, data);
2096                         break;
2097                 }
2098         }
2099         return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2102
2103
2104 /*
2105  * Reads an msr value (of 'msr_index') into 'pdata'.
2106  * Returns 0 on success, non-0 otherwise.
2107  * Assumes vcpu_load() was already called.
2108  */
2109 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2110 {
2111         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2112 }
2113
2114 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2115 {
2116         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2117
2118         if (!msr_mtrr_valid(msr))
2119                 return 1;
2120
2121         if (msr == MSR_MTRRdefType)
2122                 *pdata = vcpu->arch.mtrr_state.def_type +
2123                          (vcpu->arch.mtrr_state.enabled << 10);
2124         else if (msr == MSR_MTRRfix64K_00000)
2125                 *pdata = p[0];
2126         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2127                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2128         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2129                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2130         else if (msr == MSR_IA32_CR_PAT)
2131                 *pdata = vcpu->arch.pat;
2132         else {  /* Variable MTRRs */
2133                 int idx, is_mtrr_mask;
2134                 u64 *pt;
2135
2136                 idx = (msr - 0x200) / 2;
2137                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2138                 if (!is_mtrr_mask)
2139                         pt =
2140                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2141                 else
2142                         pt =
2143                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2144                 *pdata = *pt;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2151 {
2152         u64 data;
2153         u64 mcg_cap = vcpu->arch.mcg_cap;
2154         unsigned bank_num = mcg_cap & 0xff;
2155
2156         switch (msr) {
2157         case MSR_IA32_P5_MC_ADDR:
2158         case MSR_IA32_P5_MC_TYPE:
2159                 data = 0;
2160                 break;
2161         case MSR_IA32_MCG_CAP:
2162                 data = vcpu->arch.mcg_cap;
2163                 break;
2164         case MSR_IA32_MCG_CTL:
2165                 if (!(mcg_cap & MCG_CTL_P))
2166                         return 1;
2167                 data = vcpu->arch.mcg_ctl;
2168                 break;
2169         case MSR_IA32_MCG_STATUS:
2170                 data = vcpu->arch.mcg_status;
2171                 break;
2172         default:
2173                 if (msr >= MSR_IA32_MC0_CTL &&
2174                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2175                         u32 offset = msr - MSR_IA32_MC0_CTL;
2176                         data = vcpu->arch.mce_banks[offset];
2177                         break;
2178                 }
2179                 return 1;
2180         }
2181         *pdata = data;
2182         return 0;
2183 }
2184
2185 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2186 {
2187         u64 data = 0;
2188         struct kvm *kvm = vcpu->kvm;
2189
2190         switch (msr) {
2191         case HV_X64_MSR_GUEST_OS_ID:
2192                 data = kvm->arch.hv_guest_os_id;
2193                 break;
2194         case HV_X64_MSR_HYPERCALL:
2195                 data = kvm->arch.hv_hypercall;
2196                 break;
2197         default:
2198                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2199                 return 1;
2200         }
2201
2202         *pdata = data;
2203         return 0;
2204 }
2205
2206 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2207 {
2208         u64 data = 0;
2209
2210         switch (msr) {
2211         case HV_X64_MSR_VP_INDEX: {
2212                 int r;
2213                 struct kvm_vcpu *v;
2214                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2215                         if (v == vcpu)
2216                                 data = r;
2217                 break;
2218         }
2219         case HV_X64_MSR_EOI:
2220                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2221         case HV_X64_MSR_ICR:
2222                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2223         case HV_X64_MSR_TPR:
2224                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2225         case HV_X64_MSR_APIC_ASSIST_PAGE:
2226                 data = vcpu->arch.hv_vapic;
2227                 break;
2228         default:
2229                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2230                 return 1;
2231         }
2232         *pdata = data;
2233         return 0;
2234 }
2235
2236 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2237 {
2238         u64 data;
2239
2240         switch (msr) {
2241         case MSR_IA32_PLATFORM_ID:
2242         case MSR_IA32_EBL_CR_POWERON:
2243         case MSR_IA32_DEBUGCTLMSR:
2244         case MSR_IA32_LASTBRANCHFROMIP:
2245         case MSR_IA32_LASTBRANCHTOIP:
2246         case MSR_IA32_LASTINTFROMIP:
2247         case MSR_IA32_LASTINTTOIP:
2248         case MSR_K8_SYSCFG:
2249         case MSR_K7_HWCR:
2250         case MSR_VM_HSAVE_PA:
2251         case MSR_K7_EVNTSEL0:
2252         case MSR_K7_PERFCTR0:
2253         case MSR_K8_INT_PENDING_MSG:
2254         case MSR_AMD64_NB_CFG:
2255         case MSR_FAM10H_MMIO_CONF_BASE:
2256                 data = 0;
2257                 break;
2258         case MSR_P6_PERFCTR0:
2259         case MSR_P6_PERFCTR1:
2260         case MSR_P6_EVNTSEL0:
2261         case MSR_P6_EVNTSEL1:
2262                 if (kvm_pmu_msr(vcpu, msr))
2263                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2264                 data = 0;
2265                 break;
2266         case MSR_IA32_UCODE_REV:
2267                 data = 0x100000000ULL;
2268                 break;
2269         case MSR_MTRRcap:
2270                 data = 0x500 | KVM_NR_VAR_MTRR;
2271                 break;
2272         case 0x200 ... 0x2ff:
2273                 return get_msr_mtrr(vcpu, msr, pdata);
2274         case 0xcd: /* fsb frequency */
2275                 data = 3;
2276                 break;
2277                 /*
2278                  * MSR_EBC_FREQUENCY_ID
2279                  * Conservative value valid for even the basic CPU models.
2280                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282                  * and 266MHz for model 3, or 4. Set Core Clock
2283                  * Frequency to System Bus Frequency Ratio to 1 (bits
2284                  * 31:24) even though these are only valid for CPU
2285                  * models > 2, however guests may end up dividing or
2286                  * multiplying by zero otherwise.
2287                  */
2288         case MSR_EBC_FREQUENCY_ID:
2289                 data = 1 << 24;
2290                 break;
2291         case MSR_IA32_APICBASE:
2292                 data = kvm_get_apic_base(vcpu);
2293                 break;
2294         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296                 break;
2297         case MSR_IA32_TSCDEADLINE:
2298                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299                 break;
2300         case MSR_IA32_TSC_ADJUST:
2301                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302                 break;
2303         case MSR_IA32_MISC_ENABLE:
2304                 data = vcpu->arch.ia32_misc_enable_msr;
2305                 break;
2306         case MSR_IA32_PERF_STATUS:
2307                 /* TSC increment by tick */
2308                 data = 1000ULL;
2309                 /* CPU multiplier */
2310                 data |= (((uint64_t)4ULL) << 40);
2311                 break;
2312         case MSR_EFER:
2313                 data = vcpu->arch.efer;
2314                 break;
2315         case MSR_KVM_WALL_CLOCK:
2316         case MSR_KVM_WALL_CLOCK_NEW:
2317                 data = vcpu->kvm->arch.wall_clock;
2318                 break;
2319         case MSR_KVM_SYSTEM_TIME:
2320         case MSR_KVM_SYSTEM_TIME_NEW:
2321                 data = vcpu->arch.time;
2322                 break;
2323         case MSR_KVM_ASYNC_PF_EN:
2324                 data = vcpu->arch.apf.msr_val;
2325                 break;
2326         case MSR_KVM_STEAL_TIME:
2327                 data = vcpu->arch.st.msr_val;
2328                 break;
2329         case MSR_KVM_PV_EOI_EN:
2330                 data = vcpu->arch.pv_eoi.msr_val;
2331                 break;
2332         case MSR_IA32_P5_MC_ADDR:
2333         case MSR_IA32_P5_MC_TYPE:
2334         case MSR_IA32_MCG_CAP:
2335         case MSR_IA32_MCG_CTL:
2336         case MSR_IA32_MCG_STATUS:
2337         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338                 return get_msr_mce(vcpu, msr, pdata);
2339         case MSR_K7_CLK_CTL:
2340                 /*
2341                  * Provide expected ramp-up count for K7. All other
2342                  * are set to zero, indicating minimum divisors for
2343                  * every field.
2344                  *
2345                  * This prevents guest kernels on AMD host with CPU
2346                  * type 6, model 8 and higher from exploding due to
2347                  * the rdmsr failing.
2348                  */
2349                 data = 0x20000000;
2350                 break;
2351         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352                 if (kvm_hv_msr_partition_wide(msr)) {
2353                         int r;
2354                         mutex_lock(&vcpu->kvm->lock);
2355                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356                         mutex_unlock(&vcpu->kvm->lock);
2357                         return r;
2358                 } else
2359                         return get_msr_hyperv(vcpu, msr, pdata);
2360                 break;
2361         case MSR_IA32_BBL_CR_CTL3:
2362                 /* This legacy MSR exists but isn't fully documented in current
2363                  * silicon.  It is however accessed by winxp in very narrow
2364                  * scenarios where it sets bit #19, itself documented as
2365                  * a "reserved" bit.  Best effort attempt to source coherent
2366                  * read data here should the balance of the register be
2367                  * interpreted by the guest:
2368                  *
2369                  * L2 cache control register 3: 64GB range, 256KB size,
2370                  * enabled, latency 0x1, configured
2371                  */
2372                 data = 0xbe702111;
2373                 break;
2374         case MSR_AMD64_OSVW_ID_LENGTH:
2375                 if (!guest_cpuid_has_osvw(vcpu))
2376                         return 1;
2377                 data = vcpu->arch.osvw.length;
2378                 break;
2379         case MSR_AMD64_OSVW_STATUS:
2380                 if (!guest_cpuid_has_osvw(vcpu))
2381                         return 1;
2382                 data = vcpu->arch.osvw.status;
2383                 break;
2384         default:
2385                 if (kvm_pmu_msr(vcpu, msr))
2386                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2387                 if (!ignore_msrs) {
2388                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389                         return 1;
2390                 } else {
2391                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392                         data = 0;
2393                 }
2394                 break;
2395         }
2396         *pdata = data;
2397         return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2400
2401 /*
2402  * Read or write a bunch of msrs. All parameters are kernel addresses.
2403  *
2404  * @return number of msrs set successfully.
2405  */
2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407                     struct kvm_msr_entry *entries,
2408                     int (*do_msr)(struct kvm_vcpu *vcpu,
2409                                   unsigned index, u64 *data))
2410 {
2411         int i, idx;
2412
2413         idx = srcu_read_lock(&vcpu->kvm->srcu);
2414         for (i = 0; i < msrs->nmsrs; ++i)
2415                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416                         break;
2417         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2418
2419         return i;
2420 }
2421
2422 /*
2423  * Read or write a bunch of msrs. Parameters are user addresses.
2424  *
2425  * @return number of msrs set successfully.
2426  */
2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428                   int (*do_msr)(struct kvm_vcpu *vcpu,
2429                                 unsigned index, u64 *data),
2430                   int writeback)
2431 {
2432         struct kvm_msrs msrs;
2433         struct kvm_msr_entry *entries;
2434         int r, n;
2435         unsigned size;
2436
2437         r = -EFAULT;
2438         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439                 goto out;
2440
2441         r = -E2BIG;
2442         if (msrs.nmsrs >= MAX_IO_MSRS)
2443                 goto out;
2444
2445         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446         entries = memdup_user(user_msrs->entries, size);
2447         if (IS_ERR(entries)) {
2448                 r = PTR_ERR(entries);
2449                 goto out;
2450         }
2451
2452         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453         if (r < 0)
2454                 goto out_free;
2455
2456         r = -EFAULT;
2457         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458                 goto out_free;
2459
2460         r = n;
2461
2462 out_free:
2463         kfree(entries);
2464 out:
2465         return r;
2466 }
2467
2468 int kvm_dev_ioctl_check_extension(long ext)
2469 {
2470         int r;
2471
2472         switch (ext) {
2473         case KVM_CAP_IRQCHIP:
2474         case KVM_CAP_HLT:
2475         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476         case KVM_CAP_SET_TSS_ADDR:
2477         case KVM_CAP_EXT_CPUID:
2478         case KVM_CAP_CLOCKSOURCE:
2479         case KVM_CAP_PIT:
2480         case KVM_CAP_NOP_IO_DELAY:
2481         case KVM_CAP_MP_STATE:
2482         case KVM_CAP_SYNC_MMU:
2483         case KVM_CAP_USER_NMI:
2484         case KVM_CAP_REINJECT_CONTROL:
2485         case KVM_CAP_IRQ_INJECT_STATUS:
2486         case KVM_CAP_ASSIGN_DEV_IRQ:
2487         case KVM_CAP_IRQFD:
2488         case KVM_CAP_IOEVENTFD:
2489         case KVM_CAP_PIT2:
2490         case KVM_CAP_PIT_STATE2:
2491         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492         case KVM_CAP_XEN_HVM:
2493         case KVM_CAP_ADJUST_CLOCK:
2494         case KVM_CAP_VCPU_EVENTS:
2495         case KVM_CAP_HYPERV:
2496         case KVM_CAP_HYPERV_VAPIC:
2497         case KVM_CAP_HYPERV_SPIN:
2498         case KVM_CAP_PCI_SEGMENT:
2499         case KVM_CAP_DEBUGREGS:
2500         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501         case KVM_CAP_XSAVE:
2502         case KVM_CAP_ASYNC_PF:
2503         case KVM_CAP_GET_TSC_KHZ:
2504         case KVM_CAP_PCI_2_3:
2505         case KVM_CAP_KVMCLOCK_CTRL:
2506         case KVM_CAP_READONLY_MEM:
2507         case KVM_CAP_IRQFD_RESAMPLE:
2508                 r = 1;
2509                 break;
2510         case KVM_CAP_COALESCED_MMIO:
2511                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512                 break;
2513         case KVM_CAP_VAPIC:
2514                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515                 break;
2516         case KVM_CAP_NR_VCPUS:
2517                 r = KVM_SOFT_MAX_VCPUS;
2518                 break;
2519         case KVM_CAP_MAX_VCPUS:
2520                 r = KVM_MAX_VCPUS;
2521                 break;
2522         case KVM_CAP_NR_MEMSLOTS:
2523                 r = KVM_MEMORY_SLOTS;
2524                 break;
2525         case KVM_CAP_PV_MMU:    /* obsolete */
2526                 r = 0;
2527                 break;
2528         case KVM_CAP_IOMMU:
2529                 r = iommu_present(&pci_bus_type);
2530                 break;
2531         case KVM_CAP_MCE:
2532                 r = KVM_MAX_MCE_BANKS;
2533                 break;
2534         case KVM_CAP_XCRS:
2535                 r = cpu_has_xsave;
2536                 break;
2537         case KVM_CAP_TSC_CONTROL:
2538                 r = kvm_has_tsc_control;
2539                 break;
2540         case KVM_CAP_TSC_DEADLINE_TIMER:
2541                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542                 break;
2543         default:
2544                 r = 0;
2545                 break;
2546         }
2547         return r;
2548
2549 }
2550
2551 long kvm_arch_dev_ioctl(struct file *filp,
2552                         unsigned int ioctl, unsigned long arg)
2553 {
2554         void __user *argp = (void __user *)arg;
2555         long r;
2556
2557         switch (ioctl) {
2558         case KVM_GET_MSR_INDEX_LIST: {
2559                 struct kvm_msr_list __user *user_msr_list = argp;
2560                 struct kvm_msr_list msr_list;
2561                 unsigned n;
2562
2563                 r = -EFAULT;
2564                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565                         goto out;
2566                 n = msr_list.nmsrs;
2567                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569                         goto out;
2570                 r = -E2BIG;
2571                 if (n < msr_list.nmsrs)
2572                         goto out;
2573                 r = -EFAULT;
2574                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575                                  num_msrs_to_save * sizeof(u32)))
2576                         goto out;
2577                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578                                  &emulated_msrs,
2579                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580                         goto out;
2581                 r = 0;
2582                 break;
2583         }
2584         case KVM_GET_SUPPORTED_CPUID: {
2585                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2586                 struct kvm_cpuid2 cpuid;
2587
2588                 r = -EFAULT;
2589                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590                         goto out;
2591                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592                                                       cpuid_arg->entries);
2593                 if (r)
2594                         goto out;
2595
2596                 r = -EFAULT;
2597                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598                         goto out;
2599                 r = 0;
2600                 break;
2601         }
2602         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603                 u64 mce_cap;
2604
2605                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2606                 r = -EFAULT;
2607                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608                         goto out;
2609                 r = 0;
2610                 break;
2611         }
2612         default:
2613                 r = -EINVAL;
2614         }
2615 out:
2616         return r;
2617 }
2618
2619 static void wbinvd_ipi(void *garbage)
2620 {
2621         wbinvd();
2622 }
2623
2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2625 {
2626         return vcpu->kvm->arch.iommu_domain &&
2627                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2628 }
2629
2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2631 {
2632         /* Address WBINVD may be executed by guest */
2633         if (need_emulate_wbinvd(vcpu)) {
2634                 if (kvm_x86_ops->has_wbinvd_exit())
2635                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637                         smp_call_function_single(vcpu->cpu,
2638                                         wbinvd_ipi, NULL, 1);
2639         }
2640
2641         kvm_x86_ops->vcpu_load(vcpu, cpu);
2642
2643         /* Apply any externally detected TSC adjustments (due to suspend) */
2644         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646                 vcpu->arch.tsc_offset_adjustment = 0;
2647                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2648         }
2649
2650         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2653                 if (tsc_delta < 0)
2654                         mark_tsc_unstable("KVM discovered backwards TSC");
2655                 if (check_tsc_unstable()) {
2656                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657                                                 vcpu->arch.last_guest_tsc);
2658                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659                         vcpu->arch.tsc_catchup = 1;
2660                 }
2661                 /*
2662                  * On a host with synchronized TSC, there is no need to update
2663                  * kvmclock on vcpu->cpu migration
2664                  */
2665                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667                 if (vcpu->cpu != cpu)
2668                         kvm_migrate_timers(vcpu);
2669                 vcpu->cpu = cpu;
2670         }
2671
2672         accumulate_steal_time(vcpu);
2673         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2674 }
2675
2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2677 {
2678         kvm_x86_ops->vcpu_put(vcpu);
2679         kvm_put_guest_fpu(vcpu);
2680         vcpu->arch.last_host_tsc = native_read_tsc();
2681 }
2682
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684                                     struct kvm_lapic_state *s)
2685 {
2686         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2687
2688         return 0;
2689 }
2690
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692                                     struct kvm_lapic_state *s)
2693 {
2694         kvm_apic_post_state_restore(vcpu, s);
2695         update_cr8_intercept(vcpu);
2696
2697         return 0;
2698 }
2699
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701                                     struct kvm_interrupt *irq)
2702 {
2703         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704                 return -EINVAL;
2705         if (irqchip_in_kernel(vcpu->kvm))
2706                 return -ENXIO;
2707
2708         kvm_queue_interrupt(vcpu, irq->irq, false);
2709         kvm_make_request(KVM_REQ_EVENT, vcpu);
2710
2711         return 0;
2712 }
2713
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2715 {
2716         kvm_inject_nmi(vcpu);
2717
2718         return 0;
2719 }
2720
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722                                            struct kvm_tpr_access_ctl *tac)
2723 {
2724         if (tac->flags)
2725                 return -EINVAL;
2726         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727         return 0;
2728 }
2729
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731                                         u64 mcg_cap)
2732 {
2733         int r;
2734         unsigned bank_num = mcg_cap & 0xff, bank;
2735
2736         r = -EINVAL;
2737         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738                 goto out;
2739         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740                 goto out;
2741         r = 0;
2742         vcpu->arch.mcg_cap = mcg_cap;
2743         /* Init IA32_MCG_CTL to all 1s */
2744         if (mcg_cap & MCG_CTL_P)
2745                 vcpu->arch.mcg_ctl = ~(u64)0;
2746         /* Init IA32_MCi_CTL to all 1s */
2747         for (bank = 0; bank < bank_num; bank++)
2748                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749 out:
2750         return r;
2751 }
2752
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754                                       struct kvm_x86_mce *mce)
2755 {
2756         u64 mcg_cap = vcpu->arch.mcg_cap;
2757         unsigned bank_num = mcg_cap & 0xff;
2758         u64 *banks = vcpu->arch.mce_banks;
2759
2760         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761                 return -EINVAL;
2762         /*
2763          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764          * reporting is disabled
2765          */
2766         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767             vcpu->arch.mcg_ctl != ~(u64)0)
2768                 return 0;
2769         banks += 4 * mce->bank;
2770         /*
2771          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772          * reporting is disabled for the bank
2773          */
2774         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775                 return 0;
2776         if (mce->status & MCI_STATUS_UC) {
2777                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780                         return 0;
2781                 }
2782                 if (banks[1] & MCI_STATUS_VAL)
2783                         mce->status |= MCI_STATUS_OVER;
2784                 banks[2] = mce->addr;
2785                 banks[3] = mce->misc;
2786                 vcpu->arch.mcg_status = mce->mcg_status;
2787                 banks[1] = mce->status;
2788                 kvm_queue_exception(vcpu, MC_VECTOR);
2789         } else if (!(banks[1] & MCI_STATUS_VAL)
2790                    || !(banks[1] & MCI_STATUS_UC)) {
2791                 if (banks[1] & MCI_STATUS_VAL)
2792                         mce->status |= MCI_STATUS_OVER;
2793                 banks[2] = mce->addr;
2794                 banks[3] = mce->misc;
2795                 banks[1] = mce->status;
2796         } else
2797                 banks[1] |= MCI_STATUS_OVER;
2798         return 0;
2799 }
2800
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802                                                struct kvm_vcpu_events *events)
2803 {
2804         process_nmi(vcpu);
2805         events->exception.injected =
2806                 vcpu->arch.exception.pending &&
2807                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2808         events->exception.nr = vcpu->arch.exception.nr;
2809         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810         events->exception.pad = 0;
2811         events->exception.error_code = vcpu->arch.exception.error_code;
2812
2813         events->interrupt.injected =
2814                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815         events->interrupt.nr = vcpu->arch.interrupt.nr;
2816         events->interrupt.soft = 0;
2817         events->interrupt.shadow =
2818                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2819                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2820
2821         events->nmi.injected = vcpu->arch.nmi_injected;
2822         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824         events->nmi.pad = 0;
2825
2826         events->sipi_vector = vcpu->arch.sipi_vector;
2827
2828         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830                          | KVM_VCPUEVENT_VALID_SHADOW);
2831         memset(&events->reserved, 0, sizeof(events->reserved));
2832 }
2833
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835                                               struct kvm_vcpu_events *events)
2836 {
2837         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839                               | KVM_VCPUEVENT_VALID_SHADOW))
2840                 return -EINVAL;
2841
2842         process_nmi(vcpu);
2843         vcpu->arch.exception.pending = events->exception.injected;
2844         vcpu->arch.exception.nr = events->exception.nr;
2845         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846         vcpu->arch.exception.error_code = events->exception.error_code;
2847
2848         vcpu->arch.interrupt.pending = events->interrupt.injected;
2849         vcpu->arch.interrupt.nr = events->interrupt.nr;
2850         vcpu->arch.interrupt.soft = events->interrupt.soft;
2851         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2853                                                   events->interrupt.shadow);
2854
2855         vcpu->arch.nmi_injected = events->nmi.injected;
2856         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857                 vcpu->arch.nmi_pending = events->nmi.pending;
2858         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2859
2860         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861                 vcpu->arch.sipi_vector = events->sipi_vector;
2862
2863         kvm_make_request(KVM_REQ_EVENT, vcpu);
2864
2865         return 0;
2866 }
2867
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869                                              struct kvm_debugregs *dbgregs)
2870 {
2871         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872         dbgregs->dr6 = vcpu->arch.dr6;
2873         dbgregs->dr7 = vcpu->arch.dr7;
2874         dbgregs->flags = 0;
2875         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2876 }
2877
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879                                             struct kvm_debugregs *dbgregs)
2880 {
2881         if (dbgregs->flags)
2882                 return -EINVAL;
2883
2884         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885         vcpu->arch.dr6 = dbgregs->dr6;
2886         vcpu->arch.dr7 = dbgregs->dr7;
2887
2888         return 0;
2889 }
2890
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892                                          struct kvm_xsave *guest_xsave)
2893 {
2894         if (cpu_has_xsave)
2895                 memcpy(guest_xsave->region,
2896                         &vcpu->arch.guest_fpu.state->xsave,
2897                         xstate_size);
2898         else {
2899                 memcpy(guest_xsave->region,
2900                         &vcpu->arch.guest_fpu.state->fxsave,
2901                         sizeof(struct i387_fxsave_struct));
2902                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903                         XSTATE_FPSSE;
2904         }
2905 }
2906
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908                                         struct kvm_xsave *guest_xsave)
2909 {
2910         u64 xstate_bv =
2911                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2912
2913         if (cpu_has_xsave)
2914                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915                         guest_xsave->region, xstate_size);
2916         else {
2917                 if (xstate_bv & ~XSTATE_FPSSE)
2918                         return -EINVAL;
2919                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2921         }
2922         return 0;
2923 }
2924
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926                                         struct kvm_xcrs *guest_xcrs)
2927 {
2928         if (!cpu_has_xsave) {
2929                 guest_xcrs->nr_xcrs = 0;
2930                 return;
2931         }
2932
2933         guest_xcrs->nr_xcrs = 1;
2934         guest_xcrs->flags = 0;
2935         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940                                        struct kvm_xcrs *guest_xcrs)
2941 {
2942         int i, r = 0;
2943
2944         if (!cpu_has_xsave)
2945                 return -EINVAL;
2946
2947         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948                 return -EINVAL;
2949
2950         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951                 /* Only support XCR0 currently */
2952                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954                                 guest_xcrs->xcrs[0].value);
2955                         break;
2956                 }
2957         if (r)
2958                 r = -EINVAL;
2959         return r;
2960 }
2961
2962 /*
2963  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964  * stopped by the hypervisor.  This function will be called from the host only.
2965  * EINVAL is returned when the host attempts to set the flag for a guest that
2966  * does not support pv clocks.
2967  */
2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2969 {
2970         if (!vcpu->arch.time_page)
2971                 return -EINVAL;
2972         vcpu->arch.pvclock_set_guest_stopped_request = true;
2973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974         return 0;
2975 }
2976
2977 long kvm_arch_vcpu_ioctl(struct file *filp,
2978                          unsigned int ioctl, unsigned long arg)
2979 {
2980         struct kvm_vcpu *vcpu = filp->private_data;
2981         void __user *argp = (void __user *)arg;
2982         int r;
2983         union {
2984                 struct kvm_lapic_state *lapic;
2985                 struct kvm_xsave *xsave;
2986                 struct kvm_xcrs *xcrs;
2987                 void *buffer;
2988         } u;
2989
2990         u.buffer = NULL;
2991         switch (ioctl) {
2992         case KVM_GET_LAPIC: {
2993                 r = -EINVAL;
2994                 if (!vcpu->arch.apic)
2995                         goto out;
2996                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2997
2998                 r = -ENOMEM;
2999                 if (!u.lapic)
3000                         goto out;
3001                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002                 if (r)
3003                         goto out;
3004                 r = -EFAULT;
3005                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006                         goto out;
3007                 r = 0;
3008                 break;
3009         }
3010         case KVM_SET_LAPIC: {
3011                 r = -EINVAL;
3012                 if (!vcpu->arch.apic)
3013                         goto out;
3014                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015                 if (IS_ERR(u.lapic))
3016                         return PTR_ERR(u.lapic);
3017
3018                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019                 break;
3020         }
3021         case KVM_INTERRUPT: {
3022                 struct kvm_interrupt irq;
3023
3024                 r = -EFAULT;
3025                 if (copy_from_user(&irq, argp, sizeof irq))
3026                         goto out;
3027                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028                 break;
3029         }
3030         case KVM_NMI: {
3031                 r = kvm_vcpu_ioctl_nmi(vcpu);
3032                 break;
3033         }
3034         case KVM_SET_CPUID: {
3035                 struct kvm_cpuid __user *cpuid_arg = argp;
3036                 struct kvm_cpuid cpuid;
3037
3038                 r = -EFAULT;
3039                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040                         goto out;
3041                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042                 break;
3043         }
3044         case KVM_SET_CPUID2: {
3045                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3046                 struct kvm_cpuid2 cpuid;
3047
3048                 r = -EFAULT;
3049                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050                         goto out;
3051                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052                                               cpuid_arg->entries);
3053                 break;
3054         }
3055         case KVM_GET_CPUID2: {
3056                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3057                 struct kvm_cpuid2 cpuid;
3058
3059                 r = -EFAULT;
3060                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061                         goto out;
3062                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063                                               cpuid_arg->entries);
3064                 if (r)
3065                         goto out;
3066                 r = -EFAULT;
3067                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068                         goto out;
3069                 r = 0;
3070                 break;
3071         }
3072         case KVM_GET_MSRS:
3073                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074                 break;
3075         case KVM_SET_MSRS:
3076                 r = msr_io(vcpu, argp, do_set_msr, 0);
3077                 break;
3078         case KVM_TPR_ACCESS_REPORTING: {
3079                 struct kvm_tpr_access_ctl tac;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&tac, argp, sizeof tac))
3083                         goto out;
3084                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085                 if (r)
3086                         goto out;
3087                 r = -EFAULT;
3088                 if (copy_to_user(argp, &tac, sizeof tac))
3089                         goto out;
3090                 r = 0;
3091                 break;
3092         };
3093         case KVM_SET_VAPIC_ADDR: {
3094                 struct kvm_vapic_addr va;
3095
3096                 r = -EINVAL;
3097                 if (!irqchip_in_kernel(vcpu->kvm))
3098                         goto out;
3099                 r = -EFAULT;
3100                 if (copy_from_user(&va, argp, sizeof va))
3101                         goto out;
3102                 r = 0;
3103                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104                 break;
3105         }
3106         case KVM_X86_SETUP_MCE: {
3107                 u64 mcg_cap;
3108
3109                 r = -EFAULT;
3110                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111                         goto out;
3112                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113                 break;
3114         }
3115         case KVM_X86_SET_MCE: {
3116                 struct kvm_x86_mce mce;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&mce, argp, sizeof mce))
3120                         goto out;
3121                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122                 break;
3123         }
3124         case KVM_GET_VCPU_EVENTS: {
3125                 struct kvm_vcpu_events events;
3126
3127                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3128
3129                 r = -EFAULT;
3130                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131                         break;
3132                 r = 0;
3133                 break;
3134         }
3135         case KVM_SET_VCPU_EVENTS: {
3136                 struct kvm_vcpu_events events;
3137
3138                 r = -EFAULT;
3139                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140                         break;
3141
3142                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143                 break;
3144         }
3145         case KVM_GET_DEBUGREGS: {
3146                 struct kvm_debugregs dbgregs;
3147
3148                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3149
3150                 r = -EFAULT;
3151                 if (copy_to_user(argp, &dbgregs,
3152                                  sizeof(struct kvm_debugregs)))
3153                         break;
3154                 r = 0;
3155                 break;
3156         }
3157         case KVM_SET_DEBUGREGS: {
3158                 struct kvm_debugregs dbgregs;
3159
3160                 r = -EFAULT;
3161                 if (copy_from_user(&dbgregs, argp,
3162                                    sizeof(struct kvm_debugregs)))
3163                         break;
3164
3165                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166                 break;
3167         }
3168         case KVM_GET_XSAVE: {
3169                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170                 r = -ENOMEM;
3171                 if (!u.xsave)
3172                         break;
3173
3174                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3175
3176                 r = -EFAULT;
3177                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178                         break;
3179                 r = 0;
3180                 break;
3181         }
3182         case KVM_SET_XSAVE: {
3183                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184                 if (IS_ERR(u.xsave))
3185                         return PTR_ERR(u.xsave);
3186
3187                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188                 break;
3189         }
3190         case KVM_GET_XCRS: {
3191                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192                 r = -ENOMEM;
3193                 if (!u.xcrs)
3194                         break;
3195
3196                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(argp, u.xcrs,
3200                                  sizeof(struct kvm_xcrs)))
3201                         break;
3202                 r = 0;
3203                 break;
3204         }
3205         case KVM_SET_XCRS: {
3206                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207                 if (IS_ERR(u.xcrs))
3208                         return PTR_ERR(u.xcrs);
3209
3210                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211                 break;
3212         }
3213         case KVM_SET_TSC_KHZ: {
3214                 u32 user_tsc_khz;
3215
3216                 r = -EINVAL;
3217                 user_tsc_khz = (u32)arg;
3218
3219                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220                         goto out;
3221
3222                 if (user_tsc_khz == 0)
3223                         user_tsc_khz = tsc_khz;
3224
3225                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3226
3227                 r = 0;
3228                 goto out;
3229         }
3230         case KVM_GET_TSC_KHZ: {
3231                 r = vcpu->arch.virtual_tsc_khz;
3232                 goto out;
3233         }
3234         case KVM_KVMCLOCK_CTRL: {
3235                 r = kvm_set_guest_paused(vcpu);
3236                 goto out;
3237         }
3238         default:
3239                 r = -EINVAL;
3240         }
3241 out:
3242         kfree(u.buffer);
3243         return r;
3244 }
3245
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3247 {
3248         return VM_FAULT_SIGBUS;
3249 }
3250
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3252 {
3253         int ret;
3254
3255         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256                 return -EINVAL;
3257         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258         return ret;
3259 }
3260
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262                                               u64 ident_addr)
3263 {
3264         kvm->arch.ept_identity_map_addr = ident_addr;
3265         return 0;
3266 }
3267
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269                                           u32 kvm_nr_mmu_pages)
3270 {
3271         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272                 return -EINVAL;
3273
3274         mutex_lock(&kvm->slots_lock);
3275         spin_lock(&kvm->mmu_lock);
3276
3277         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3278         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3279
3280         spin_unlock(&kvm->mmu_lock);
3281         mutex_unlock(&kvm->slots_lock);
3282         return 0;
3283 }
3284
3285 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3286 {
3287         return kvm->arch.n_max_mmu_pages;
3288 }
3289
3290 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3291 {
3292         int r;
3293
3294         r = 0;
3295         switch (chip->chip_id) {
3296         case KVM_IRQCHIP_PIC_MASTER:
3297                 memcpy(&chip->chip.pic,
3298                         &pic_irqchip(kvm)->pics[0],
3299                         sizeof(struct kvm_pic_state));
3300                 break;
3301         case KVM_IRQCHIP_PIC_SLAVE:
3302                 memcpy(&chip->chip.pic,
3303                         &pic_irqchip(kvm)->pics[1],
3304                         sizeof(struct kvm_pic_state));
3305                 break;
3306         case KVM_IRQCHIP_IOAPIC:
3307                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3308                 break;
3309         default:
3310                 r = -EINVAL;
3311                 break;
3312         }
3313         return r;
3314 }
3315
3316 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3317 {
3318         int r;
3319
3320         r = 0;
3321         switch (chip->chip_id) {
3322         case KVM_IRQCHIP_PIC_MASTER:
3323                 spin_lock(&pic_irqchip(kvm)->lock);
3324                 memcpy(&pic_irqchip(kvm)->pics[0],
3325                         &chip->chip.pic,
3326                         sizeof(struct kvm_pic_state));
3327                 spin_unlock(&pic_irqchip(kvm)->lock);
3328                 break;
3329         case KVM_IRQCHIP_PIC_SLAVE:
3330                 spin_lock(&pic_irqchip(kvm)->lock);
3331                 memcpy(&pic_irqchip(kvm)->pics[1],
3332                         &chip->chip.pic,
3333                         sizeof(struct kvm_pic_state));
3334                 spin_unlock(&pic_irqchip(kvm)->lock);
3335                 break;
3336         case KVM_IRQCHIP_IOAPIC:
3337                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3338                 break;
3339         default:
3340                 r = -EINVAL;
3341                 break;
3342         }
3343         kvm_pic_update_irq(pic_irqchip(kvm));
3344         return r;
3345 }
3346
3347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3348 {
3349         int r = 0;
3350
3351         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3352         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3353         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3354         return r;
3355 }
3356
3357 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3358 {
3359         int r = 0;
3360
3361         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3362         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3363         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3364         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3365         return r;
3366 }
3367
3368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3369 {
3370         int r = 0;
3371
3372         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3373         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3374                 sizeof(ps->channels));
3375         ps->flags = kvm->arch.vpit->pit_state.flags;
3376         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3377         memset(&ps->reserved, 0, sizeof(ps->reserved));
3378         return r;
3379 }
3380
3381 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3382 {
3383         int r = 0, start = 0;
3384         u32 prev_legacy, cur_legacy;
3385         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3387         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3388         if (!prev_legacy && cur_legacy)
3389                 start = 1;
3390         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3391                sizeof(kvm->arch.vpit->pit_state.channels));
3392         kvm->arch.vpit->pit_state.flags = ps->flags;
3393         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3394         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3395         return r;
3396 }
3397
3398 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3399                                  struct kvm_reinject_control *control)
3400 {
3401         if (!kvm->arch.vpit)
3402                 return -ENXIO;
3403         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3404         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3405         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3406         return 0;
3407 }
3408
3409 /**
3410  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3411  * @kvm: kvm instance
3412  * @log: slot id and address to which we copy the log
3413  *
3414  * We need to keep it in mind that VCPU threads can write to the bitmap
3415  * concurrently.  So, to avoid losing data, we keep the following order for
3416  * each bit:
3417  *
3418  *   1. Take a snapshot of the bit and clear it if needed.
3419  *   2. Write protect the corresponding page.
3420  *   3. Flush TLB's if needed.
3421  *   4. Copy the snapshot to the userspace.
3422  *
3423  * Between 2 and 3, the guest may write to the page using the remaining TLB
3424  * entry.  This is not a problem because the page will be reported dirty at
3425  * step 4 using the snapshot taken before and step 3 ensures that successive
3426  * writes will be logged for the next call.
3427  */
3428 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3429 {
3430         int r;
3431         struct kvm_memory_slot *memslot;
3432         unsigned long n, i;
3433         unsigned long *dirty_bitmap;
3434         unsigned long *dirty_bitmap_buffer;
3435         bool is_dirty = false;
3436
3437         mutex_lock(&kvm->slots_lock);
3438
3439         r = -EINVAL;
3440         if (log->slot >= KVM_MEMORY_SLOTS)
3441                 goto out;
3442
3443         memslot = id_to_memslot(kvm->memslots, log->slot);
3444
3445         dirty_bitmap = memslot->dirty_bitmap;
3446         r = -ENOENT;
3447         if (!dirty_bitmap)
3448                 goto out;
3449
3450         n = kvm_dirty_bitmap_bytes(memslot);
3451
3452         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3453         memset(dirty_bitmap_buffer, 0, n);
3454
3455         spin_lock(&kvm->mmu_lock);
3456
3457         for (i = 0; i < n / sizeof(long); i++) {
3458                 unsigned long mask;
3459                 gfn_t offset;
3460
3461                 if (!dirty_bitmap[i])
3462                         continue;
3463
3464                 is_dirty = true;
3465
3466                 mask = xchg(&dirty_bitmap[i], 0);
3467                 dirty_bitmap_buffer[i] = mask;
3468
3469                 offset = i * BITS_PER_LONG;
3470                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3471         }
3472         if (is_dirty)
3473                 kvm_flush_remote_tlbs(kvm);
3474
3475         spin_unlock(&kvm->mmu_lock);
3476
3477         r = -EFAULT;
3478         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3479                 goto out;
3480
3481         r = 0;
3482 out:
3483         mutex_unlock(&kvm->slots_lock);
3484         return r;
3485 }
3486
3487 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3488 {
3489         if (!irqchip_in_kernel(kvm))
3490                 return -ENXIO;
3491
3492         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3493                                         irq_event->irq, irq_event->level);
3494         return 0;
3495 }
3496
3497 long kvm_arch_vm_ioctl(struct file *filp,
3498                        unsigned int ioctl, unsigned long arg)
3499 {
3500         struct kvm *kvm = filp->private_data;
3501         void __user *argp = (void __user *)arg;
3502         int r = -ENOTTY;
3503         /*
3504          * This union makes it completely explicit to gcc-3.x
3505          * that these two variables' stack usage should be
3506          * combined, not added together.
3507          */
3508         union {
3509                 struct kvm_pit_state ps;
3510                 struct kvm_pit_state2 ps2;
3511                 struct kvm_pit_config pit_config;
3512         } u;
3513
3514         switch (ioctl) {
3515         case KVM_SET_TSS_ADDR:
3516                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3517                 break;
3518         case KVM_SET_IDENTITY_MAP_ADDR: {
3519                 u64 ident_addr;
3520
3521                 r = -EFAULT;
3522                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3523                         goto out;
3524                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3525                 break;
3526         }
3527         case KVM_SET_NR_MMU_PAGES:
3528                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3529                 break;
3530         case KVM_GET_NR_MMU_PAGES:
3531                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3532                 break;
3533         case KVM_CREATE_IRQCHIP: {
3534                 struct kvm_pic *vpic;
3535
3536                 mutex_lock(&kvm->lock);
3537                 r = -EEXIST;
3538                 if (kvm->arch.vpic)
3539                         goto create_irqchip_unlock;
3540                 r = -EINVAL;
3541                 if (atomic_read(&kvm->online_vcpus))
3542                         goto create_irqchip_unlock;
3543                 r = -ENOMEM;
3544                 vpic = kvm_create_pic(kvm);
3545                 if (vpic) {
3546                         r = kvm_ioapic_init(kvm);
3547                         if (r) {
3548                                 mutex_lock(&kvm->slots_lock);
3549                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550                                                           &vpic->dev_master);
3551                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552                                                           &vpic->dev_slave);
3553                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3554                                                           &vpic->dev_eclr);
3555                                 mutex_unlock(&kvm->slots_lock);
3556                                 kfree(vpic);
3557                                 goto create_irqchip_unlock;
3558                         }
3559                 } else
3560                         goto create_irqchip_unlock;
3561                 smp_wmb();
3562                 kvm->arch.vpic = vpic;
3563                 smp_wmb();
3564                 r = kvm_setup_default_irq_routing(kvm);
3565                 if (r) {
3566                         mutex_lock(&kvm->slots_lock);
3567                         mutex_lock(&kvm->irq_lock);
3568                         kvm_ioapic_destroy(kvm);
3569                         kvm_destroy_pic(kvm);
3570                         mutex_unlock(&kvm->irq_lock);
3571                         mutex_unlock(&kvm->slots_lock);
3572                 }
3573         create_irqchip_unlock:
3574                 mutex_unlock(&kvm->lock);
3575                 break;
3576         }
3577         case KVM_CREATE_PIT:
3578                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3579                 goto create_pit;
3580         case KVM_CREATE_PIT2:
3581                 r = -EFAULT;
3582                 if (copy_from_user(&u.pit_config, argp,
3583                                    sizeof(struct kvm_pit_config)))
3584                         goto out;
3585         create_pit:
3586                 mutex_lock(&kvm->slots_lock);
3587                 r = -EEXIST;
3588                 if (kvm->arch.vpit)
3589                         goto create_pit_unlock;
3590                 r = -ENOMEM;
3591                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3592                 if (kvm->arch.vpit)
3593                         r = 0;
3594         create_pit_unlock:
3595                 mutex_unlock(&kvm->slots_lock);
3596                 break;
3597         case KVM_GET_IRQCHIP: {
3598                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3599                 struct kvm_irqchip *chip;
3600
3601                 chip = memdup_user(argp, sizeof(*chip));
3602                 if (IS_ERR(chip)) {
3603                         r = PTR_ERR(chip);
3604                         goto out;
3605                 }
3606
3607                 r = -ENXIO;
3608                 if (!irqchip_in_kernel(kvm))
3609                         goto get_irqchip_out;
3610                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3611                 if (r)
3612                         goto get_irqchip_out;
3613                 r = -EFAULT;
3614                 if (copy_to_user(argp, chip, sizeof *chip))
3615                         goto get_irqchip_out;
3616                 r = 0;
3617         get_irqchip_out:
3618                 kfree(chip);
3619                 break;
3620         }
3621         case KVM_SET_IRQCHIP: {
3622                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3623                 struct kvm_irqchip *chip;
3624
3625                 chip = memdup_user(argp, sizeof(*chip));
3626                 if (IS_ERR(chip)) {
3627                         r = PTR_ERR(chip);
3628                         goto out;
3629                 }
3630
3631                 r = -ENXIO;
3632                 if (!irqchip_in_kernel(kvm))
3633                         goto set_irqchip_out;
3634                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3635                 if (r)
3636                         goto set_irqchip_out;
3637                 r = 0;
3638         set_irqchip_out:
3639                 kfree(chip);
3640                 break;
3641         }
3642         case KVM_GET_PIT: {
3643                 r = -EFAULT;
3644                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3645                         goto out;
3646                 r = -ENXIO;
3647                 if (!kvm->arch.vpit)
3648                         goto out;
3649                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3650                 if (r)
3651                         goto out;
3652                 r = -EFAULT;
3653                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3654                         goto out;
3655                 r = 0;
3656                 break;
3657         }
3658         case KVM_SET_PIT: {
3659                 r = -EFAULT;
3660                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3661                         goto out;
3662                 r = -ENXIO;
3663                 if (!kvm->arch.vpit)
3664                         goto out;
3665                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3666                 break;
3667         }
3668         case KVM_GET_PIT2: {
3669                 r = -ENXIO;
3670                 if (!kvm->arch.vpit)
3671                         goto out;
3672                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3673                 if (r)
3674                         goto out;
3675                 r = -EFAULT;
3676                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3677                         goto out;
3678                 r = 0;
3679                 break;
3680         }
3681         case KVM_SET_PIT2: {
3682                 r = -EFAULT;
3683                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3684                         goto out;
3685                 r = -ENXIO;
3686                 if (!kvm->arch.vpit)
3687                         goto out;
3688                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3689                 break;
3690         }
3691         case KVM_REINJECT_CONTROL: {
3692                 struct kvm_reinject_control control;
3693                 r =  -EFAULT;
3694                 if (copy_from_user(&control, argp, sizeof(control)))
3695                         goto out;
3696                 r = kvm_vm_ioctl_reinject(kvm, &control);
3697                 break;
3698         }
3699         case KVM_XEN_HVM_CONFIG: {
3700                 r = -EFAULT;
3701                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3702                                    sizeof(struct kvm_xen_hvm_config)))
3703                         goto out;
3704                 r = -EINVAL;
3705                 if (kvm->arch.xen_hvm_config.flags)
3706                         goto out;
3707                 r = 0;
3708                 break;
3709         }
3710         case KVM_SET_CLOCK: {
3711                 struct kvm_clock_data user_ns;
3712                 u64 now_ns;
3713                 s64 delta;
3714
3715                 r = -EFAULT;
3716                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3717                         goto out;
3718
3719                 r = -EINVAL;
3720                 if (user_ns.flags)
3721                         goto out;
3722
3723                 r = 0;
3724                 local_irq_disable();
3725                 now_ns = get_kernel_ns();
3726                 delta = user_ns.clock - now_ns;
3727                 local_irq_enable();
3728                 kvm->arch.kvmclock_offset = delta;
3729                 break;
3730         }
3731         case KVM_GET_CLOCK: {
3732                 struct kvm_clock_data user_ns;
3733                 u64 now_ns;
3734
3735                 local_irq_disable();
3736                 now_ns = get_kernel_ns();
3737                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3738                 local_irq_enable();
3739                 user_ns.flags = 0;
3740                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3741
3742                 r = -EFAULT;
3743                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3744                         goto out;
3745                 r = 0;
3746                 break;
3747         }
3748
3749         default:
3750                 ;
3751         }
3752 out:
3753         return r;
3754 }
3755
3756 static void kvm_init_msr_list(void)
3757 {
3758         u32 dummy[2];
3759         unsigned i, j;
3760
3761         /* skip the first msrs in the list. KVM-specific */
3762         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3763                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3764                         continue;
3765                 if (j < i)
3766                         msrs_to_save[j] = msrs_to_save[i];
3767                 j++;
3768         }
3769         num_msrs_to_save = j;
3770 }
3771
3772 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3773                            const void *v)
3774 {
3775         int handled = 0;
3776         int n;
3777
3778         do {
3779                 n = min(len, 8);
3780                 if (!(vcpu->arch.apic &&
3781                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3782                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3783                         break;
3784                 handled += n;
3785                 addr += n;
3786                 len -= n;
3787                 v += n;
3788         } while (len);
3789
3790         return handled;
3791 }
3792
3793 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3794 {
3795         int handled = 0;
3796         int n;
3797
3798         do {
3799                 n = min(len, 8);
3800                 if (!(vcpu->arch.apic &&
3801                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3802                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3803                         break;
3804                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3805                 handled += n;
3806                 addr += n;
3807                 len -= n;
3808                 v += n;
3809         } while (len);
3810
3811         return handled;
3812 }
3813
3814 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3815                         struct kvm_segment *var, int seg)
3816 {
3817         kvm_x86_ops->set_segment(vcpu, var, seg);
3818 }
3819
3820 void kvm_get_segment(struct kvm_vcpu *vcpu,
3821                      struct kvm_segment *var, int seg)
3822 {
3823         kvm_x86_ops->get_segment(vcpu, var, seg);
3824 }
3825
3826 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3827 {
3828         gpa_t t_gpa;
3829         struct x86_exception exception;
3830
3831         BUG_ON(!mmu_is_nested(vcpu));
3832
3833         /* NPT walks are always user-walks */
3834         access |= PFERR_USER_MASK;
3835         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3836
3837         return t_gpa;
3838 }
3839
3840 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3841                               struct x86_exception *exception)
3842 {
3843         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3844         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3845 }
3846
3847  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3848                                 struct x86_exception *exception)
3849 {
3850         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3851         access |= PFERR_FETCH_MASK;
3852         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3853 }
3854
3855 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3856                                struct x86_exception *exception)
3857 {
3858         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3859         access |= PFERR_WRITE_MASK;
3860         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3861 }
3862
3863 /* uses this to access any guest's mapped memory without checking CPL */
3864 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3865                                 struct x86_exception *exception)
3866 {
3867         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3868 }
3869
3870 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3871                                       struct kvm_vcpu *vcpu, u32 access,
3872                                       struct x86_exception *exception)
3873 {
3874         void *data = val;
3875         int r = X86EMUL_CONTINUE;
3876
3877         while (bytes) {
3878                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3879                                                             exception);
3880                 unsigned offset = addr & (PAGE_SIZE-1);
3881                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3882                 int ret;
3883
3884                 if (gpa == UNMAPPED_GVA)
3885                         return X86EMUL_PROPAGATE_FAULT;
3886                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3887                 if (ret < 0) {
3888                         r = X86EMUL_IO_NEEDED;
3889                         goto out;
3890                 }
3891
3892                 bytes -= toread;
3893                 data += toread;
3894                 addr += toread;
3895         }
3896 out:
3897         return r;
3898 }
3899
3900 /* used for instruction fetching */
3901 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3902                                 gva_t addr, void *val, unsigned int bytes,
3903                                 struct x86_exception *exception)
3904 {
3905         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3906         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3907
3908         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3909                                           access | PFERR_FETCH_MASK,
3910                                           exception);
3911 }
3912
3913 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3914                                gva_t addr, void *val, unsigned int bytes,
3915                                struct x86_exception *exception)
3916 {
3917         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3918         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3919
3920         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3921                                           exception);
3922 }
3923 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3924
3925 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3926                                       gva_t addr, void *val, unsigned int bytes,
3927                                       struct x86_exception *exception)
3928 {
3929         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3930         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3931 }
3932
3933 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3934                                        gva_t addr, void *val,
3935                                        unsigned int bytes,
3936                                        struct x86_exception *exception)
3937 {
3938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939         void *data = val;
3940         int r = X86EMUL_CONTINUE;
3941
3942         while (bytes) {
3943                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3944                                                              PFERR_WRITE_MASK,
3945                                                              exception);
3946                 unsigned offset = addr & (PAGE_SIZE-1);
3947                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3948                 int ret;
3949
3950                 if (gpa == UNMAPPED_GVA)
3951                         return X86EMUL_PROPAGATE_FAULT;
3952                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3953                 if (ret < 0) {
3954                         r = X86EMUL_IO_NEEDED;
3955                         goto out;
3956                 }
3957
3958                 bytes -= towrite;
3959                 data += towrite;
3960                 addr += towrite;
3961         }
3962 out:
3963         return r;
3964 }
3965 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3966
3967 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3968                                 gpa_t *gpa, struct x86_exception *exception,
3969                                 bool write)
3970 {
3971         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3972                 | (write ? PFERR_WRITE_MASK : 0);
3973
3974         if (vcpu_match_mmio_gva(vcpu, gva)
3975             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3976                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3977                                         (gva & (PAGE_SIZE - 1));
3978                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3979                 return 1;
3980         }
3981
3982         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3983
3984         if (*gpa == UNMAPPED_GVA)
3985                 return -1;
3986
3987         /* For APIC access vmexit */
3988         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3989                 return 1;
3990
3991         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3992                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3993                 return 1;
3994         }
3995
3996         return 0;
3997 }
3998
3999 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4000                         const void *val, int bytes)
4001 {
4002         int ret;
4003
4004         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4005         if (ret < 0)
4006                 return 0;
4007         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4008         return 1;
4009 }
4010
4011 struct read_write_emulator_ops {
4012         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4013                                   int bytes);
4014         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015                                   void *val, int bytes);
4016         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017                                int bytes, void *val);
4018         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4019                                     void *val, int bytes);
4020         bool write;
4021 };
4022
4023 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4024 {
4025         if (vcpu->mmio_read_completed) {
4026                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4027                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4028                 vcpu->mmio_read_completed = 0;
4029                 return 1;
4030         }
4031
4032         return 0;
4033 }
4034
4035 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4036                         void *val, int bytes)
4037 {
4038         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4039 }
4040
4041 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4042                          void *val, int bytes)
4043 {
4044         return emulator_write_phys(vcpu, gpa, val, bytes);
4045 }
4046
4047 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4048 {
4049         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4050         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4051 }
4052
4053 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4054                           void *val, int bytes)
4055 {
4056         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4057         return X86EMUL_IO_NEEDED;
4058 }
4059
4060 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4061                            void *val, int bytes)
4062 {
4063         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4064
4065         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4066         return X86EMUL_CONTINUE;
4067 }
4068
4069 static const struct read_write_emulator_ops read_emultor = {
4070         .read_write_prepare = read_prepare,
4071         .read_write_emulate = read_emulate,
4072         .read_write_mmio = vcpu_mmio_read,
4073         .read_write_exit_mmio = read_exit_mmio,
4074 };
4075
4076 static const struct read_write_emulator_ops write_emultor = {
4077         .read_write_emulate = write_emulate,
4078         .read_write_mmio = write_mmio,
4079         .read_write_exit_mmio = write_exit_mmio,
4080         .write = true,
4081 };
4082
4083 static int emulator_read_write_onepage(unsigned long addr, void *val,
4084                                        unsigned int bytes,
4085                                        struct x86_exception *exception,
4086                                        struct kvm_vcpu *vcpu,
4087                                        const struct read_write_emulator_ops *ops)
4088 {
4089         gpa_t gpa;
4090         int handled, ret;
4091         bool write = ops->write;
4092         struct kvm_mmio_fragment *frag;
4093
4094         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4095
4096         if (ret < 0)
4097                 return X86EMUL_PROPAGATE_FAULT;
4098
4099         /* For APIC access vmexit */
4100         if (ret)
4101                 goto mmio;
4102
4103         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4104                 return X86EMUL_CONTINUE;
4105
4106 mmio:
4107         /*
4108          * Is this MMIO handled locally?
4109          */
4110         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4111         if (handled == bytes)
4112                 return X86EMUL_CONTINUE;
4113
4114         gpa += handled;
4115         bytes -= handled;
4116         val += handled;
4117
4118         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4119         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4120         frag->gpa = gpa;
4121         frag->data = val;
4122         frag->len = bytes;
4123         return X86EMUL_CONTINUE;
4124 }
4125
4126 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4127                         void *val, unsigned int bytes,
4128                         struct x86_exception *exception,
4129                         const struct read_write_emulator_ops *ops)
4130 {
4131         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4132         gpa_t gpa;
4133         int rc;
4134
4135         if (ops->read_write_prepare &&
4136                   ops->read_write_prepare(vcpu, val, bytes))
4137                 return X86EMUL_CONTINUE;
4138
4139         vcpu->mmio_nr_fragments = 0;
4140
4141         /* Crossing a page boundary? */
4142         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4143                 int now;
4144
4145                 now = -addr & ~PAGE_MASK;
4146                 rc = emulator_read_write_onepage(addr, val, now, exception,
4147                                                  vcpu, ops);
4148
4149                 if (rc != X86EMUL_CONTINUE)
4150                         return rc;
4151                 addr += now;
4152                 val += now;
4153                 bytes -= now;
4154         }
4155
4156         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4157                                          vcpu, ops);
4158         if (rc != X86EMUL_CONTINUE)
4159                 return rc;
4160
4161         if (!vcpu->mmio_nr_fragments)
4162                 return rc;
4163
4164         gpa = vcpu->mmio_fragments[0].gpa;
4165
4166         vcpu->mmio_needed = 1;
4167         vcpu->mmio_cur_fragment = 0;
4168
4169         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4170         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4171         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4172         vcpu->run->mmio.phys_addr = gpa;
4173
4174         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4175 }
4176
4177 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4178                                   unsigned long addr,
4179                                   void *val,
4180                                   unsigned int bytes,
4181                                   struct x86_exception *exception)
4182 {
4183         return emulator_read_write(ctxt, addr, val, bytes,
4184                                    exception, &read_emultor);
4185 }
4186
4187 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4188                             unsigned long addr,
4189                             const void *val,
4190                             unsigned int bytes,
4191                             struct x86_exception *exception)
4192 {
4193         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4194                                    exception, &write_emultor);
4195 }
4196
4197 #define CMPXCHG_TYPE(t, ptr, old, new) \
4198         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4199
4200 #ifdef CONFIG_X86_64
4201 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4202 #else
4203 #  define CMPXCHG64(ptr, old, new) \
4204         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4205 #endif
4206
4207 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4208                                      unsigned long addr,
4209                                      const void *old,
4210                                      const void *new,
4211                                      unsigned int bytes,
4212                                      struct x86_exception *exception)
4213 {
4214         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4215         gpa_t gpa;
4216         struct page *page;
4217         char *kaddr;
4218         bool exchanged;
4219
4220         /* guests cmpxchg8b have to be emulated atomically */
4221         if (bytes > 8 || (bytes & (bytes - 1)))
4222                 goto emul_write;
4223
4224         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4225
4226         if (gpa == UNMAPPED_GVA ||
4227             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4228                 goto emul_write;
4229
4230         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4231                 goto emul_write;
4232
4233         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4234         if (is_error_page(page))
4235                 goto emul_write;
4236
4237         kaddr = kmap_atomic(page);
4238         kaddr += offset_in_page(gpa);
4239         switch (bytes) {
4240         case 1:
4241                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4242                 break;
4243         case 2:
4244                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4245                 break;
4246         case 4:
4247                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4248                 break;
4249         case 8:
4250                 exchanged = CMPXCHG64(kaddr, old, new);
4251                 break;
4252         default:
4253                 BUG();
4254         }
4255         kunmap_atomic(kaddr);
4256         kvm_release_page_dirty(page);
4257
4258         if (!exchanged)
4259                 return X86EMUL_CMPXCHG_FAILED;
4260
4261         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4262
4263         return X86EMUL_CONTINUE;
4264
4265 emul_write:
4266         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4267
4268         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4269 }
4270
4271 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4272 {
4273         /* TODO: String I/O for in kernel device */
4274         int r;
4275
4276         if (vcpu->arch.pio.in)
4277                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4278                                     vcpu->arch.pio.size, pd);
4279         else
4280                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4281                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4282                                      pd);
4283         return r;
4284 }
4285
4286 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4287                                unsigned short port, void *val,
4288                                unsigned int count, bool in)
4289 {
4290         trace_kvm_pio(!in, port, size, count);
4291
4292         vcpu->arch.pio.port = port;
4293         vcpu->arch.pio.in = in;
4294         vcpu->arch.pio.count  = count;
4295         vcpu->arch.pio.size = size;
4296
4297         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4298                 vcpu->arch.pio.count = 0;
4299                 return 1;
4300         }
4301
4302         vcpu->run->exit_reason = KVM_EXIT_IO;
4303         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4304         vcpu->run->io.size = size;
4305         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4306         vcpu->run->io.count = count;
4307         vcpu->run->io.port = port;
4308
4309         return 0;
4310 }
4311
4312 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4313                                     int size, unsigned short port, void *val,
4314                                     unsigned int count)
4315 {
4316         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317         int ret;
4318
4319         if (vcpu->arch.pio.count)
4320                 goto data_avail;
4321
4322         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4323         if (ret) {
4324 data_avail:
4325                 memcpy(val, vcpu->arch.pio_data, size * count);
4326                 vcpu->arch.pio.count = 0;
4327                 return 1;
4328         }
4329
4330         return 0;
4331 }
4332
4333 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4334                                      int size, unsigned short port,
4335                                      const void *val, unsigned int count)
4336 {
4337         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4338
4339         memcpy(vcpu->arch.pio_data, val, size * count);
4340         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4341 }
4342
4343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4344 {
4345         return kvm_x86_ops->get_segment_base(vcpu, seg);
4346 }
4347
4348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4349 {
4350         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4351 }
4352
4353 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4354 {
4355         if (!need_emulate_wbinvd(vcpu))
4356                 return X86EMUL_CONTINUE;
4357
4358         if (kvm_x86_ops->has_wbinvd_exit()) {
4359                 int cpu = get_cpu();
4360
4361                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4362                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4363                                 wbinvd_ipi, NULL, 1);
4364                 put_cpu();
4365                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4366         } else
4367                 wbinvd();
4368         return X86EMUL_CONTINUE;
4369 }
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4371
4372 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4373 {
4374         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4375 }
4376
4377 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4378 {
4379         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4380 }
4381
4382 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4383 {
4384
4385         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4386 }
4387
4388 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4389 {
4390         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4391 }
4392
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4394 {
4395         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4396         unsigned long value;
4397
4398         switch (cr) {
4399         case 0:
4400                 value = kvm_read_cr0(vcpu);
4401                 break;
4402         case 2:
4403                 value = vcpu->arch.cr2;
4404                 break;
4405         case 3:
4406                 value = kvm_read_cr3(vcpu);
4407                 break;
4408         case 4:
4409                 value = kvm_read_cr4(vcpu);
4410                 break;
4411         case 8:
4412                 value = kvm_get_cr8(vcpu);
4413                 break;
4414         default:
4415                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4416                 return 0;
4417         }
4418
4419         return value;
4420 }
4421
4422 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4423 {
4424         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425         int res = 0;
4426
4427         switch (cr) {
4428         case 0:
4429                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4430                 break;
4431         case 2:
4432                 vcpu->arch.cr2 = val;
4433                 break;
4434         case 3:
4435                 res = kvm_set_cr3(vcpu, val);
4436                 break;
4437         case 4:
4438                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4439                 break;
4440         case 8:
4441                 res = kvm_set_cr8(vcpu, val);
4442                 break;
4443         default:
4444                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4445                 res = -1;
4446         }
4447
4448         return res;
4449 }
4450
4451 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4452 {
4453         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4454 }
4455
4456 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4457 {
4458         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4459 }
4460
4461 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4462 {
4463         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4464 }
4465
4466 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4467 {
4468         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4469 }
4470
4471 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4472 {
4473         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4474 }
4475
4476 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4477 {
4478         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4479 }
4480
4481 static unsigned long emulator_get_cached_segment_base(
4482         struct x86_emulate_ctxt *ctxt, int seg)
4483 {
4484         return get_segment_base(emul_to_vcpu(ctxt), seg);
4485 }
4486
4487 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4488                                  struct desc_struct *desc, u32 *base3,
4489                                  int seg)
4490 {
4491         struct kvm_segment var;
4492
4493         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4494         *selector = var.selector;
4495
4496         if (var.unusable)
4497                 return false;
4498
4499         if (var.g)
4500                 var.limit >>= 12;
4501         set_desc_limit(desc, var.limit);
4502         set_desc_base(desc, (unsigned long)var.base);
4503 #ifdef CONFIG_X86_64
4504         if (base3)
4505                 *base3 = var.base >> 32;
4506 #endif
4507         desc->type = var.type;
4508         desc->s = var.s;
4509         desc->dpl = var.dpl;
4510         desc->p = var.present;
4511         desc->avl = var.avl;
4512         desc->l = var.l;
4513         desc->d = var.db;
4514         desc->g = var.g;
4515
4516         return true;
4517 }
4518
4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520                                  struct desc_struct *desc, u32 base3,
4521                                  int seg)
4522 {
4523         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524         struct kvm_segment var;
4525
4526         var.selector = selector;
4527         var.base = get_desc_base(desc);
4528 #ifdef CONFIG_X86_64
4529         var.base |= ((u64)base3) << 32;
4530 #endif
4531         var.limit = get_desc_limit(desc);
4532         if (desc->g)
4533                 var.limit = (var.limit << 12) | 0xfff;
4534         var.type = desc->type;
4535         var.present = desc->p;
4536         var.dpl = desc->dpl;
4537         var.db = desc->d;
4538         var.s = desc->s;
4539         var.l = desc->l;
4540         var.g = desc->g;
4541         var.avl = desc->avl;
4542         var.present = desc->p;
4543         var.unusable = !var.present;
4544         var.padding = 0;
4545
4546         kvm_set_segment(vcpu, &var, seg);
4547         return;
4548 }
4549
4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551                             u32 msr_index, u64 *pdata)
4552 {
4553         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4554 }
4555
4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557                             u32 msr_index, u64 data)
4558 {
4559         struct msr_data msr;
4560
4561         msr.data = data;
4562         msr.index = msr_index;
4563         msr.host_initiated = false;
4564         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4565 }
4566
4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568                              u32 pmc, u64 *pdata)
4569 {
4570         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4571 }
4572
4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4574 {
4575         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4576 }
4577
4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4579 {
4580         preempt_disable();
4581         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4582         /*
4583          * CR0.TS may reference the host fpu state, not the guest fpu state,
4584          * so it may be clear at this point.
4585          */
4586         clts();
4587 }
4588
4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4590 {
4591         preempt_enable();
4592 }
4593
4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595                               struct x86_instruction_info *info,
4596                               enum x86_intercept_stage stage)
4597 {
4598         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4599 }
4600
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4603 {
4604         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4605 }
4606
4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4608 {
4609         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4610 }
4611
4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4613 {
4614         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4615 }
4616
4617 static const struct x86_emulate_ops emulate_ops = {
4618         .read_gpr            = emulator_read_gpr,
4619         .write_gpr           = emulator_write_gpr,
4620         .read_std            = kvm_read_guest_virt_system,
4621         .write_std           = kvm_write_guest_virt_system,
4622         .fetch               = kvm_fetch_guest_virt,
4623         .read_emulated       = emulator_read_emulated,
4624         .write_emulated      = emulator_write_emulated,
4625         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4626         .invlpg              = emulator_invlpg,
4627         .pio_in_emulated     = emulator_pio_in_emulated,
4628         .pio_out_emulated    = emulator_pio_out_emulated,
4629         .get_segment         = emulator_get_segment,
4630         .set_segment         = emulator_set_segment,
4631         .get_cached_segment_base = emulator_get_cached_segment_base,
4632         .get_gdt             = emulator_get_gdt,
4633         .get_idt             = emulator_get_idt,
4634         .set_gdt             = emulator_set_gdt,
4635         .set_idt             = emulator_set_idt,
4636         .get_cr              = emulator_get_cr,
4637         .set_cr              = emulator_set_cr,
4638         .set_rflags          = emulator_set_rflags,
4639         .cpl                 = emulator_get_cpl,
4640         .get_dr              = emulator_get_dr,
4641         .set_dr              = emulator_set_dr,
4642         .set_msr             = emulator_set_msr,
4643         .get_msr             = emulator_get_msr,
4644         .read_pmc            = emulator_read_pmc,
4645         .halt                = emulator_halt,
4646         .wbinvd              = emulator_wbinvd,
4647         .fix_hypercall       = emulator_fix_hypercall,
4648         .get_fpu             = emulator_get_fpu,
4649         .put_fpu             = emulator_put_fpu,
4650         .intercept           = emulator_intercept,
4651         .get_cpuid           = emulator_get_cpuid,
4652 };
4653
4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4655 {
4656         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4657         /*
4658          * an sti; sti; sequence only disable interrupts for the first
4659          * instruction. So, if the last instruction, be it emulated or
4660          * not, left the system with the INT_STI flag enabled, it
4661          * means that the last instruction is an sti. We should not
4662          * leave the flag on in this case. The same goes for mov ss
4663          */
4664         if (!(int_shadow & mask))
4665                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4666 }
4667
4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4669 {
4670         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671         if (ctxt->exception.vector == PF_VECTOR)
4672                 kvm_propagate_fault(vcpu, &ctxt->exception);
4673         else if (ctxt->exception.error_code_valid)
4674                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675                                       ctxt->exception.error_code);
4676         else
4677                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4678 }
4679
4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4681 {
4682         memset(&ctxt->twobyte, 0,
4683                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4684
4685         ctxt->fetch.start = 0;
4686         ctxt->fetch.end = 0;
4687         ctxt->io_read.pos = 0;
4688         ctxt->io_read.end = 0;
4689         ctxt->mem_read.pos = 0;
4690         ctxt->mem_read.end = 0;
4691 }
4692
4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4694 {
4695         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696         int cs_db, cs_l;
4697
4698         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4699
4700         ctxt->eflags = kvm_get_rflags(vcpu);
4701         ctxt->eip = kvm_rip_read(vcpu);
4702         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4703                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4704                      cs_l                               ? X86EMUL_MODE_PROT64 :
4705                      cs_db                              ? X86EMUL_MODE_PROT32 :
4706                                                           X86EMUL_MODE_PROT16;
4707         ctxt->guest_mode = is_guest_mode(vcpu);
4708
4709         init_decode_cache(ctxt);
4710         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4711 }
4712
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4714 {
4715         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716         int ret;
4717
4718         init_emulate_ctxt(vcpu);
4719
4720         ctxt->op_bytes = 2;
4721         ctxt->ad_bytes = 2;
4722         ctxt->_eip = ctxt->eip + inc_eip;
4723         ret = emulate_int_real(ctxt, irq);
4724
4725         if (ret != X86EMUL_CONTINUE)
4726                 return EMULATE_FAIL;
4727
4728         ctxt->eip = ctxt->_eip;
4729         kvm_rip_write(vcpu, ctxt->eip);
4730         kvm_set_rflags(vcpu, ctxt->eflags);
4731
4732         if (irq == NMI_VECTOR)
4733                 vcpu->arch.nmi_pending = 0;
4734         else
4735                 vcpu->arch.interrupt.pending = false;
4736
4737         return EMULATE_DONE;
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4740
4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4742 {
4743         int r = EMULATE_DONE;
4744
4745         ++vcpu->stat.insn_emulation_fail;
4746         trace_kvm_emulate_insn_failed(vcpu);
4747         if (!is_guest_mode(vcpu)) {
4748                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750                 vcpu->run->internal.ndata = 0;
4751                 r = EMULATE_FAIL;
4752         }
4753         kvm_queue_exception(vcpu, UD_VECTOR);
4754
4755         return r;
4756 }
4757
4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4759 {
4760         gpa_t gpa;
4761         pfn_t pfn;
4762
4763         if (tdp_enabled)
4764                 return false;
4765
4766         /*
4767          * if emulation was due to access to shadowed page table
4768          * and it failed try to unshadow page and re-enter the
4769          * guest to let CPU execute the instruction.
4770          */
4771         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4772                 return true;
4773
4774         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4775
4776         if (gpa == UNMAPPED_GVA)
4777                 return true; /* let cpu generate fault */
4778
4779         /*
4780          * Do not retry the unhandleable instruction if it faults on the
4781          * readonly host memory, otherwise it will goto a infinite loop:
4782          * retry instruction -> write #PF -> emulation fail -> retry
4783          * instruction -> ...
4784          */
4785         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786         if (!is_error_noslot_pfn(pfn)) {
4787                 kvm_release_pfn_clean(pfn);
4788                 return true;
4789         }
4790
4791         return false;
4792 }
4793
4794 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4795                               unsigned long cr2,  int emulation_type)
4796 {
4797         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4799
4800         last_retry_eip = vcpu->arch.last_retry_eip;
4801         last_retry_addr = vcpu->arch.last_retry_addr;
4802
4803         /*
4804          * If the emulation is caused by #PF and it is non-page_table
4805          * writing instruction, it means the VM-EXIT is caused by shadow
4806          * page protected, we can zap the shadow page and retry this
4807          * instruction directly.
4808          *
4809          * Note: if the guest uses a non-page-table modifying instruction
4810          * on the PDE that points to the instruction, then we will unmap
4811          * the instruction and go to an infinite loop. So, we cache the
4812          * last retried eip and the last fault address, if we meet the eip
4813          * and the address again, we can break out of the potential infinite
4814          * loop.
4815          */
4816         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4817
4818         if (!(emulation_type & EMULTYPE_RETRY))
4819                 return false;
4820
4821         if (x86_page_table_writing_insn(ctxt))
4822                 return false;
4823
4824         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4825                 return false;
4826
4827         vcpu->arch.last_retry_eip = ctxt->eip;
4828         vcpu->arch.last_retry_addr = cr2;
4829
4830         if (!vcpu->arch.mmu.direct_map)
4831                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4832
4833         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4834
4835         return true;
4836 }
4837
4838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4839 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4840
4841 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4842                             unsigned long cr2,
4843                             int emulation_type,
4844                             void *insn,
4845                             int insn_len)
4846 {
4847         int r;
4848         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4849         bool writeback = true;
4850
4851         kvm_clear_exception_queue(vcpu);
4852
4853         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4854                 init_emulate_ctxt(vcpu);
4855                 ctxt->interruptibility = 0;
4856                 ctxt->have_exception = false;
4857                 ctxt->perm_ok = false;
4858
4859                 ctxt->only_vendor_specific_insn
4860                         = emulation_type & EMULTYPE_TRAP_UD;
4861
4862                 r = x86_decode_insn(ctxt, insn, insn_len);
4863
4864                 trace_kvm_emulate_insn_start(vcpu);
4865                 ++vcpu->stat.insn_emulation;
4866                 if (r != EMULATION_OK)  {
4867                         if (emulation_type & EMULTYPE_TRAP_UD)
4868                                 return EMULATE_FAIL;
4869                         if (reexecute_instruction(vcpu, cr2))
4870                                 return EMULATE_DONE;
4871                         if (emulation_type & EMULTYPE_SKIP)
4872                                 return EMULATE_FAIL;
4873                         return handle_emulation_failure(vcpu);
4874                 }
4875         }
4876
4877         if (emulation_type & EMULTYPE_SKIP) {
4878                 kvm_rip_write(vcpu, ctxt->_eip);
4879                 return EMULATE_DONE;
4880         }
4881
4882         if (retry_instruction(ctxt, cr2, emulation_type))
4883                 return EMULATE_DONE;
4884
4885         /* this is needed for vmware backdoor interface to work since it
4886            changes registers values  during IO operation */
4887         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4888                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4889                 emulator_invalidate_register_cache(ctxt);
4890         }
4891
4892 restart:
4893         r = x86_emulate_insn(ctxt);
4894
4895         if (r == EMULATION_INTERCEPTED)
4896                 return EMULATE_DONE;
4897
4898         if (r == EMULATION_FAILED) {
4899                 if (reexecute_instruction(vcpu, cr2))
4900                         return EMULATE_DONE;
4901
4902                 return handle_emulation_failure(vcpu);
4903         }
4904
4905         if (ctxt->have_exception) {
4906                 inject_emulated_exception(vcpu);
4907                 r = EMULATE_DONE;
4908         } else if (vcpu->arch.pio.count) {
4909                 if (!vcpu->arch.pio.in)
4910                         vcpu->arch.pio.count = 0;
4911                 else {
4912                         writeback = false;
4913                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4914                 }
4915                 r = EMULATE_DO_MMIO;
4916         } else if (vcpu->mmio_needed) {
4917                 if (!vcpu->mmio_is_write)
4918                         writeback = false;
4919                 r = EMULATE_DO_MMIO;
4920                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4921         } else if (r == EMULATION_RESTART)
4922                 goto restart;
4923         else
4924                 r = EMULATE_DONE;
4925
4926         if (writeback) {
4927                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4928                 kvm_set_rflags(vcpu, ctxt->eflags);
4929                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4930                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4931                 kvm_rip_write(vcpu, ctxt->eip);
4932         } else
4933                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4934
4935         return r;
4936 }
4937 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4938
4939 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4940 {
4941         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4942         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4943                                             size, port, &val, 1);
4944         /* do not return to emulator after return from userspace */
4945         vcpu->arch.pio.count = 0;
4946         return ret;
4947 }
4948 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4949
4950 static void tsc_bad(void *info)
4951 {
4952         __this_cpu_write(cpu_tsc_khz, 0);
4953 }
4954
4955 static void tsc_khz_changed(void *data)
4956 {
4957         struct cpufreq_freqs *freq = data;
4958         unsigned long khz = 0;
4959
4960         if (data)
4961                 khz = freq->new;
4962         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4963                 khz = cpufreq_quick_get(raw_smp_processor_id());
4964         if (!khz)
4965                 khz = tsc_khz;
4966         __this_cpu_write(cpu_tsc_khz, khz);
4967 }
4968
4969 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4970                                      void *data)
4971 {
4972         struct cpufreq_freqs *freq = data;
4973         struct kvm *kvm;
4974         struct kvm_vcpu *vcpu;
4975         int i, send_ipi = 0;
4976
4977         /*
4978          * We allow guests to temporarily run on slowing clocks,
4979          * provided we notify them after, or to run on accelerating
4980          * clocks, provided we notify them before.  Thus time never
4981          * goes backwards.
4982          *
4983          * However, we have a problem.  We can't atomically update
4984          * the frequency of a given CPU from this function; it is
4985          * merely a notifier, which can be called from any CPU.
4986          * Changing the TSC frequency at arbitrary points in time
4987          * requires a recomputation of local variables related to
4988          * the TSC for each VCPU.  We must flag these local variables
4989          * to be updated and be sure the update takes place with the
4990          * new frequency before any guests proceed.
4991          *
4992          * Unfortunately, the combination of hotplug CPU and frequency
4993          * change creates an intractable locking scenario; the order
4994          * of when these callouts happen is undefined with respect to
4995          * CPU hotplug, and they can race with each other.  As such,
4996          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4997          * undefined; you can actually have a CPU frequency change take
4998          * place in between the computation of X and the setting of the
4999          * variable.  To protect against this problem, all updates of
5000          * the per_cpu tsc_khz variable are done in an interrupt
5001          * protected IPI, and all callers wishing to update the value
5002          * must wait for a synchronous IPI to complete (which is trivial
5003          * if the caller is on the CPU already).  This establishes the
5004          * necessary total order on variable updates.
5005          *
5006          * Note that because a guest time update may take place
5007          * anytime after the setting of the VCPU's request bit, the
5008          * correct TSC value must be set before the request.  However,
5009          * to ensure the update actually makes it to any guest which
5010          * starts running in hardware virtualization between the set
5011          * and the acquisition of the spinlock, we must also ping the
5012          * CPU after setting the request bit.
5013          *
5014          */
5015
5016         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5017                 return 0;
5018         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5019                 return 0;
5020
5021         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5022
5023         raw_spin_lock(&kvm_lock);
5024         list_for_each_entry(kvm, &vm_list, vm_list) {
5025                 kvm_for_each_vcpu(i, vcpu, kvm) {
5026                         if (vcpu->cpu != freq->cpu)
5027                                 continue;
5028                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5029                         if (vcpu->cpu != smp_processor_id())
5030                                 send_ipi = 1;
5031                 }
5032         }
5033         raw_spin_unlock(&kvm_lock);
5034
5035         if (freq->old < freq->new && send_ipi) {
5036                 /*
5037                  * We upscale the frequency.  Must make the guest
5038                  * doesn't see old kvmclock values while running with
5039                  * the new frequency, otherwise we risk the guest sees
5040                  * time go backwards.
5041                  *
5042                  * In case we update the frequency for another cpu
5043                  * (which might be in guest context) send an interrupt
5044                  * to kick the cpu out of guest context.  Next time
5045                  * guest context is entered kvmclock will be updated,
5046                  * so the guest will not see stale values.
5047                  */
5048                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5049         }
5050         return 0;
5051 }
5052
5053 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5054         .notifier_call  = kvmclock_cpufreq_notifier
5055 };
5056
5057 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5058                                         unsigned long action, void *hcpu)
5059 {
5060         unsigned int cpu = (unsigned long)hcpu;
5061
5062         switch (action) {
5063                 case CPU_ONLINE:
5064                 case CPU_DOWN_FAILED:
5065                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5066                         break;
5067                 case CPU_DOWN_PREPARE:
5068                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5069                         break;
5070         }
5071         return NOTIFY_OK;
5072 }
5073
5074 static struct notifier_block kvmclock_cpu_notifier_block = {
5075         .notifier_call  = kvmclock_cpu_notifier,
5076         .priority = -INT_MAX
5077 };
5078
5079 static void kvm_timer_init(void)
5080 {
5081         int cpu;
5082
5083         max_tsc_khz = tsc_khz;
5084         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5085         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5086 #ifdef CONFIG_CPU_FREQ
5087                 struct cpufreq_policy policy;
5088                 memset(&policy, 0, sizeof(policy));
5089                 cpu = get_cpu();
5090                 cpufreq_get_policy(&policy, cpu);
5091                 if (policy.cpuinfo.max_freq)
5092                         max_tsc_khz = policy.cpuinfo.max_freq;
5093                 put_cpu();
5094 #endif
5095                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5096                                           CPUFREQ_TRANSITION_NOTIFIER);
5097         }
5098         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5099         for_each_online_cpu(cpu)
5100                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5101 }
5102
5103 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5104
5105 int kvm_is_in_guest(void)
5106 {
5107         return __this_cpu_read(current_vcpu) != NULL;
5108 }
5109
5110 static int kvm_is_user_mode(void)
5111 {
5112         int user_mode = 3;
5113
5114         if (__this_cpu_read(current_vcpu))
5115                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5116
5117         return user_mode != 0;
5118 }
5119
5120 static unsigned long kvm_get_guest_ip(void)
5121 {
5122         unsigned long ip = 0;
5123
5124         if (__this_cpu_read(current_vcpu))
5125                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5126
5127         return ip;
5128 }
5129
5130 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5131         .is_in_guest            = kvm_is_in_guest,
5132         .is_user_mode           = kvm_is_user_mode,
5133         .get_guest_ip           = kvm_get_guest_ip,
5134 };
5135
5136 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5137 {
5138         __this_cpu_write(current_vcpu, vcpu);
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5141
5142 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5143 {
5144         __this_cpu_write(current_vcpu, NULL);
5145 }
5146 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5147
5148 static void kvm_set_mmio_spte_mask(void)
5149 {
5150         u64 mask;
5151         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5152
5153         /*
5154          * Set the reserved bits and the present bit of an paging-structure
5155          * entry to generate page fault with PFER.RSV = 1.
5156          */
5157         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5158         mask |= 1ull;
5159
5160 #ifdef CONFIG_X86_64
5161         /*
5162          * If reserved bit is not supported, clear the present bit to disable
5163          * mmio page fault.
5164          */
5165         if (maxphyaddr == 52)
5166                 mask &= ~1ull;
5167 #endif
5168
5169         kvm_mmu_set_mmio_spte_mask(mask);
5170 }
5171
5172 #ifdef CONFIG_X86_64
5173 static void pvclock_gtod_update_fn(struct work_struct *work)
5174 {
5175         struct kvm *kvm;
5176
5177         struct kvm_vcpu *vcpu;
5178         int i;
5179
5180         raw_spin_lock(&kvm_lock);
5181         list_for_each_entry(kvm, &vm_list, vm_list)
5182                 kvm_for_each_vcpu(i, vcpu, kvm)
5183                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5184         atomic_set(&kvm_guest_has_master_clock, 0);
5185         raw_spin_unlock(&kvm_lock);
5186 }
5187
5188 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5189
5190 /*
5191  * Notification about pvclock gtod data update.
5192  */
5193 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5194                                void *priv)
5195 {
5196         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5197         struct timekeeper *tk = priv;
5198
5199         update_pvclock_gtod(tk);
5200
5201         /* disable master clock if host does not trust, or does not
5202          * use, TSC clocksource
5203          */
5204         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5205             atomic_read(&kvm_guest_has_master_clock) != 0)
5206                 queue_work(system_long_wq, &pvclock_gtod_work);
5207
5208         return 0;
5209 }
5210
5211 static struct notifier_block pvclock_gtod_notifier = {
5212         .notifier_call = pvclock_gtod_notify,
5213 };
5214 #endif
5215
5216 int kvm_arch_init(void *opaque)
5217 {
5218         int r;
5219         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5220
5221         if (kvm_x86_ops) {
5222                 printk(KERN_ERR "kvm: already loaded the other module\n");
5223                 r = -EEXIST;
5224                 goto out;
5225         }
5226
5227         if (!ops->cpu_has_kvm_support()) {
5228                 printk(KERN_ERR "kvm: no hardware support\n");
5229                 r = -EOPNOTSUPP;
5230                 goto out;
5231         }
5232         if (ops->disabled_by_bios()) {
5233                 printk(KERN_ERR "kvm: disabled by bios\n");
5234                 r = -EOPNOTSUPP;
5235                 goto out;
5236         }
5237
5238         r = -ENOMEM;
5239         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5240         if (!shared_msrs) {
5241                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5242                 goto out;
5243         }
5244
5245         r = kvm_mmu_module_init();
5246         if (r)
5247                 goto out_free_percpu;
5248
5249         kvm_set_mmio_spte_mask();
5250         kvm_init_msr_list();
5251
5252         kvm_x86_ops = ops;
5253         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5254                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5255
5256         kvm_timer_init();
5257
5258         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5259
5260         if (cpu_has_xsave)
5261                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5262
5263         kvm_lapic_init();
5264 #ifdef CONFIG_X86_64
5265         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5266 #endif
5267
5268         return 0;
5269
5270 out_free_percpu:
5271         free_percpu(shared_msrs);
5272 out:
5273         return r;
5274 }
5275
5276 void kvm_arch_exit(void)
5277 {
5278         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5279
5280         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5281                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5282                                             CPUFREQ_TRANSITION_NOTIFIER);
5283         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5284 #ifdef CONFIG_X86_64
5285         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5286 #endif
5287         kvm_x86_ops = NULL;
5288         kvm_mmu_module_exit();
5289         free_percpu(shared_msrs);
5290 }
5291
5292 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5293 {
5294         ++vcpu->stat.halt_exits;
5295         if (irqchip_in_kernel(vcpu->kvm)) {
5296                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5297                 return 1;
5298         } else {
5299                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5300                 return 0;
5301         }
5302 }
5303 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5304
5305 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5306 {
5307         u64 param, ingpa, outgpa, ret;
5308         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5309         bool fast, longmode;
5310         int cs_db, cs_l;
5311
5312         /*
5313          * hypercall generates UD from non zero cpl and real mode
5314          * per HYPER-V spec
5315          */
5316         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5317                 kvm_queue_exception(vcpu, UD_VECTOR);
5318                 return 0;
5319         }
5320
5321         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5322         longmode = is_long_mode(vcpu) && cs_l == 1;
5323
5324         if (!longmode) {
5325                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5326                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5327                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5328                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5329                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5330                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5331         }
5332 #ifdef CONFIG_X86_64
5333         else {
5334                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5335                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5336                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5337         }
5338 #endif
5339
5340         code = param & 0xffff;
5341         fast = (param >> 16) & 0x1;
5342         rep_cnt = (param >> 32) & 0xfff;
5343         rep_idx = (param >> 48) & 0xfff;
5344
5345         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5346
5347         switch (code) {
5348         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5349                 kvm_vcpu_on_spin(vcpu);
5350                 break;
5351         default:
5352                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5353                 break;
5354         }
5355
5356         ret = res | (((u64)rep_done & 0xfff) << 32);
5357         if (longmode) {
5358                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5359         } else {
5360                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5361                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5362         }
5363
5364         return 1;
5365 }
5366
5367 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5368 {
5369         unsigned long nr, a0, a1, a2, a3, ret;
5370         int r = 1;
5371
5372         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5373                 return kvm_hv_hypercall(vcpu);
5374
5375         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5376         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5377         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5378         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5379         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5380
5381         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5382
5383         if (!is_long_mode(vcpu)) {
5384                 nr &= 0xFFFFFFFF;
5385                 a0 &= 0xFFFFFFFF;
5386                 a1 &= 0xFFFFFFFF;
5387                 a2 &= 0xFFFFFFFF;
5388                 a3 &= 0xFFFFFFFF;
5389         }
5390
5391         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5392                 ret = -KVM_EPERM;
5393                 goto out;
5394         }
5395
5396         switch (nr) {
5397         case KVM_HC_VAPIC_POLL_IRQ:
5398                 ret = 0;
5399                 break;
5400         default:
5401                 ret = -KVM_ENOSYS;
5402                 break;
5403         }
5404 out:
5405         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5406         ++vcpu->stat.hypercalls;
5407         return r;
5408 }
5409 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5410
5411 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5412 {
5413         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414         char instruction[3];
5415         unsigned long rip = kvm_rip_read(vcpu);
5416
5417         /*
5418          * Blow out the MMU to ensure that no other VCPU has an active mapping
5419          * to ensure that the updated hypercall appears atomically across all
5420          * VCPUs.
5421          */
5422         kvm_mmu_zap_all(vcpu->kvm);
5423
5424         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5425
5426         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5427 }
5428
5429 /*
5430  * Check if userspace requested an interrupt window, and that the
5431  * interrupt window is open.
5432  *
5433  * No need to exit to userspace if we already have an interrupt queued.
5434  */
5435 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5436 {
5437         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5438                 vcpu->run->request_interrupt_window &&
5439                 kvm_arch_interrupt_allowed(vcpu));
5440 }
5441
5442 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5443 {
5444         struct kvm_run *kvm_run = vcpu->run;
5445
5446         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5447         kvm_run->cr8 = kvm_get_cr8(vcpu);
5448         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5449         if (irqchip_in_kernel(vcpu->kvm))
5450                 kvm_run->ready_for_interrupt_injection = 1;
5451         else
5452                 kvm_run->ready_for_interrupt_injection =
5453                         kvm_arch_interrupt_allowed(vcpu) &&
5454                         !kvm_cpu_has_interrupt(vcpu) &&
5455                         !kvm_event_needs_reinjection(vcpu);
5456 }
5457
5458 static int vapic_enter(struct kvm_vcpu *vcpu)
5459 {
5460         struct kvm_lapic *apic = vcpu->arch.apic;
5461         struct page *page;
5462
5463         if (!apic || !apic->vapic_addr)
5464                 return 0;
5465
5466         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5467         if (is_error_page(page))
5468                 return -EFAULT;
5469
5470         vcpu->arch.apic->vapic_page = page;
5471         return 0;
5472 }
5473
5474 static void vapic_exit(struct kvm_vcpu *vcpu)
5475 {
5476         struct kvm_lapic *apic = vcpu->arch.apic;
5477         int idx;
5478
5479         if (!apic || !apic->vapic_addr)
5480                 return;
5481
5482         idx = srcu_read_lock(&vcpu->kvm->srcu);
5483         kvm_release_page_dirty(apic->vapic_page);
5484         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5485         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5486 }
5487
5488 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5489 {
5490         int max_irr, tpr;
5491
5492         if (!kvm_x86_ops->update_cr8_intercept)
5493                 return;
5494
5495         if (!vcpu->arch.apic)
5496                 return;
5497
5498         if (!vcpu->arch.apic->vapic_addr)
5499                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5500         else
5501                 max_irr = -1;
5502
5503         if (max_irr != -1)
5504                 max_irr >>= 4;
5505
5506         tpr = kvm_lapic_get_cr8(vcpu);
5507
5508         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5509 }
5510
5511 static void inject_pending_event(struct kvm_vcpu *vcpu)
5512 {
5513         /* try to reinject previous events if any */
5514         if (vcpu->arch.exception.pending) {
5515                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5516                                         vcpu->arch.exception.has_error_code,
5517                                         vcpu->arch.exception.error_code);
5518                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5519                                           vcpu->arch.exception.has_error_code,
5520                                           vcpu->arch.exception.error_code,
5521                                           vcpu->arch.exception.reinject);
5522                 return;
5523         }
5524
5525         if (vcpu->arch.nmi_injected) {
5526                 kvm_x86_ops->set_nmi(vcpu);
5527                 return;
5528         }
5529
5530         if (vcpu->arch.interrupt.pending) {
5531                 kvm_x86_ops->set_irq(vcpu);
5532                 return;
5533         }
5534
5535         /* try to inject new event if pending */
5536         if (vcpu->arch.nmi_pending) {
5537                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5538                         --vcpu->arch.nmi_pending;
5539                         vcpu->arch.nmi_injected = true;
5540                         kvm_x86_ops->set_nmi(vcpu);
5541                 }
5542         } else if (kvm_cpu_has_interrupt(vcpu)) {
5543                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5544                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5545                                             false);
5546                         kvm_x86_ops->set_irq(vcpu);
5547                 }
5548         }
5549 }
5550
5551 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5552 {
5553         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5554                         !vcpu->guest_xcr0_loaded) {
5555                 /* kvm_set_xcr() also depends on this */
5556                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5557                 vcpu->guest_xcr0_loaded = 1;
5558         }
5559 }
5560
5561 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5562 {
5563         if (vcpu->guest_xcr0_loaded) {
5564                 if (vcpu->arch.xcr0 != host_xcr0)
5565                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5566                 vcpu->guest_xcr0_loaded = 0;
5567         }
5568 }
5569
5570 static void process_nmi(struct kvm_vcpu *vcpu)
5571 {
5572         unsigned limit = 2;
5573
5574         /*
5575          * x86 is limited to one NMI running, and one NMI pending after it.
5576          * If an NMI is already in progress, limit further NMIs to just one.
5577          * Otherwise, allow two (and we'll inject the first one immediately).
5578          */
5579         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5580                 limit = 1;
5581
5582         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5583         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5584         kvm_make_request(KVM_REQ_EVENT, vcpu);
5585 }
5586
5587 static void kvm_gen_update_masterclock(struct kvm *kvm)
5588 {
5589 #ifdef CONFIG_X86_64
5590         int i;
5591         struct kvm_vcpu *vcpu;
5592         struct kvm_arch *ka = &kvm->arch;
5593
5594         spin_lock(&ka->pvclock_gtod_sync_lock);
5595         kvm_make_mclock_inprogress_request(kvm);
5596         /* no guest entries from this point */
5597         pvclock_update_vm_gtod_copy(kvm);
5598
5599         kvm_for_each_vcpu(i, vcpu, kvm)
5600                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5601
5602         /* guest entries allowed */
5603         kvm_for_each_vcpu(i, vcpu, kvm)
5604                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5605
5606         spin_unlock(&ka->pvclock_gtod_sync_lock);
5607 #endif
5608 }
5609
5610 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5611 {
5612         int r;
5613         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5614                 vcpu->run->request_interrupt_window;
5615         bool req_immediate_exit = 0;
5616
5617         if (vcpu->requests) {
5618                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5619                         kvm_mmu_unload(vcpu);
5620                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5621                         __kvm_migrate_timers(vcpu);
5622                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5623                         kvm_gen_update_masterclock(vcpu->kvm);
5624                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5625                         r = kvm_guest_time_update(vcpu);
5626                         if (unlikely(r))
5627                                 goto out;
5628                 }
5629                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5630                         kvm_mmu_sync_roots(vcpu);
5631                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5632                         kvm_x86_ops->tlb_flush(vcpu);
5633                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5634                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5635                         r = 0;
5636                         goto out;
5637                 }
5638                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5639                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5640                         r = 0;
5641                         goto out;
5642                 }
5643                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5644                         vcpu->fpu_active = 0;
5645                         kvm_x86_ops->fpu_deactivate(vcpu);
5646                 }
5647                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5648                         /* Page is swapped out. Do synthetic halt */
5649                         vcpu->arch.apf.halted = true;
5650                         r = 1;
5651                         goto out;
5652                 }
5653                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5654                         record_steal_time(vcpu);
5655                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5656                         process_nmi(vcpu);
5657                 req_immediate_exit =
5658                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5659                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5660                         kvm_handle_pmu_event(vcpu);
5661                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5662                         kvm_deliver_pmi(vcpu);
5663         }
5664
5665         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5666                 inject_pending_event(vcpu);
5667
5668                 /* enable NMI/IRQ window open exits if needed */
5669                 if (vcpu->arch.nmi_pending)
5670                         kvm_x86_ops->enable_nmi_window(vcpu);
5671                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5672                         kvm_x86_ops->enable_irq_window(vcpu);
5673
5674                 if (kvm_lapic_enabled(vcpu)) {
5675                         update_cr8_intercept(vcpu);
5676                         kvm_lapic_sync_to_vapic(vcpu);
5677                 }
5678         }
5679
5680         r = kvm_mmu_reload(vcpu);
5681         if (unlikely(r)) {
5682                 goto cancel_injection;
5683         }
5684
5685         preempt_disable();
5686
5687         kvm_x86_ops->prepare_guest_switch(vcpu);
5688         if (vcpu->fpu_active)
5689                 kvm_load_guest_fpu(vcpu);
5690         kvm_load_guest_xcr0(vcpu);
5691
5692         vcpu->mode = IN_GUEST_MODE;
5693
5694         /* We should set ->mode before check ->requests,
5695          * see the comment in make_all_cpus_request.
5696          */
5697         smp_mb();
5698
5699         local_irq_disable();
5700
5701         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5702             || need_resched() || signal_pending(current)) {
5703                 vcpu->mode = OUTSIDE_GUEST_MODE;
5704                 smp_wmb();
5705                 local_irq_enable();
5706                 preempt_enable();
5707                 r = 1;
5708                 goto cancel_injection;
5709         }
5710
5711         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5712
5713         if (req_immediate_exit)
5714                 smp_send_reschedule(vcpu->cpu);
5715
5716         kvm_guest_enter();
5717
5718         if (unlikely(vcpu->arch.switch_db_regs)) {
5719                 set_debugreg(0, 7);
5720                 set_debugreg(vcpu->arch.eff_db[0], 0);
5721                 set_debugreg(vcpu->arch.eff_db[1], 1);
5722                 set_debugreg(vcpu->arch.eff_db[2], 2);
5723                 set_debugreg(vcpu->arch.eff_db[3], 3);
5724         }
5725
5726         trace_kvm_entry(vcpu->vcpu_id);
5727         kvm_x86_ops->run(vcpu);
5728
5729         /*
5730          * If the guest has used debug registers, at least dr7
5731          * will be disabled while returning to the host.
5732          * If we don't have active breakpoints in the host, we don't
5733          * care about the messed up debug address registers. But if
5734          * we have some of them active, restore the old state.
5735          */
5736         if (hw_breakpoint_active())
5737                 hw_breakpoint_restore();
5738
5739         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5740                                                            native_read_tsc());
5741
5742         vcpu->mode = OUTSIDE_GUEST_MODE;
5743         smp_wmb();
5744         local_irq_enable();
5745
5746         ++vcpu->stat.exits;
5747
5748         /*
5749          * We must have an instruction between local_irq_enable() and
5750          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5751          * the interrupt shadow.  The stat.exits increment will do nicely.
5752          * But we need to prevent reordering, hence this barrier():
5753          */
5754         barrier();
5755
5756         kvm_guest_exit();
5757
5758         preempt_enable();
5759
5760         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5761
5762         /*
5763          * Profile KVM exit RIPs:
5764          */
5765         if (unlikely(prof_on == KVM_PROFILING)) {
5766                 unsigned long rip = kvm_rip_read(vcpu);
5767                 profile_hit(KVM_PROFILING, (void *)rip);
5768         }
5769
5770         if (unlikely(vcpu->arch.tsc_always_catchup))
5771                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5772
5773         if (vcpu->arch.apic_attention)
5774                 kvm_lapic_sync_from_vapic(vcpu);
5775
5776         r = kvm_x86_ops->handle_exit(vcpu);
5777         return r;
5778
5779 cancel_injection:
5780         kvm_x86_ops->cancel_injection(vcpu);
5781         if (unlikely(vcpu->arch.apic_attention))
5782                 kvm_lapic_sync_from_vapic(vcpu);
5783 out:
5784         return r;
5785 }
5786
5787
5788 static int __vcpu_run(struct kvm_vcpu *vcpu)
5789 {
5790         int r;
5791         struct kvm *kvm = vcpu->kvm;
5792
5793         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5794                 pr_debug("vcpu %d received sipi with vector # %x\n",
5795                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5796                 kvm_lapic_reset(vcpu);
5797                 r = kvm_vcpu_reset(vcpu);
5798                 if (r)
5799                         return r;
5800                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5801         }
5802
5803         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5804         r = vapic_enter(vcpu);
5805         if (r) {
5806                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5807                 return r;
5808         }
5809
5810         r = 1;
5811         while (r > 0) {
5812                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5813                     !vcpu->arch.apf.halted)
5814                         r = vcpu_enter_guest(vcpu);
5815                 else {
5816                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5817                         kvm_vcpu_block(vcpu);
5818                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5819                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5820                         {
5821                                 switch(vcpu->arch.mp_state) {
5822                                 case KVM_MP_STATE_HALTED:
5823                                         vcpu->arch.mp_state =
5824                                                 KVM_MP_STATE_RUNNABLE;
5825                                 case KVM_MP_STATE_RUNNABLE:
5826                                         vcpu->arch.apf.halted = false;
5827                                         break;
5828                                 case KVM_MP_STATE_SIPI_RECEIVED:
5829                                 default:
5830                                         r = -EINTR;
5831                                         break;
5832                                 }
5833                         }
5834                 }
5835
5836                 if (r <= 0)
5837                         break;
5838
5839                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5840                 if (kvm_cpu_has_pending_timer(vcpu))
5841                         kvm_inject_pending_timer_irqs(vcpu);
5842
5843                 if (dm_request_for_irq_injection(vcpu)) {
5844                         r = -EINTR;
5845                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5846                         ++vcpu->stat.request_irq_exits;
5847                 }
5848
5849                 kvm_check_async_pf_completion(vcpu);
5850
5851                 if (signal_pending(current)) {
5852                         r = -EINTR;
5853                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5854                         ++vcpu->stat.signal_exits;
5855                 }
5856                 if (need_resched()) {
5857                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5858                         kvm_resched(vcpu);
5859                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5860                 }
5861         }
5862
5863         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5864
5865         vapic_exit(vcpu);
5866
5867         return r;
5868 }
5869
5870 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5871 {
5872         int r;
5873         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5874         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5875         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5876         if (r != EMULATE_DONE)
5877                 return 0;
5878         return 1;
5879 }
5880
5881 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5882 {
5883         BUG_ON(!vcpu->arch.pio.count);
5884
5885         return complete_emulated_io(vcpu);
5886 }
5887
5888 /*
5889  * Implements the following, as a state machine:
5890  *
5891  * read:
5892  *   for each fragment
5893  *     for each mmio piece in the fragment
5894  *       write gpa, len
5895  *       exit
5896  *       copy data
5897  *   execute insn
5898  *
5899  * write:
5900  *   for each fragment
5901  *     for each mmio piece in the fragment
5902  *       write gpa, len
5903  *       copy data
5904  *       exit
5905  */
5906 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5907 {
5908         struct kvm_run *run = vcpu->run;
5909         struct kvm_mmio_fragment *frag;
5910         unsigned len;
5911
5912         BUG_ON(!vcpu->mmio_needed);
5913
5914         /* Complete previous fragment */
5915         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5916         len = min(8u, frag->len);
5917         if (!vcpu->mmio_is_write)
5918                 memcpy(frag->data, run->mmio.data, len);
5919
5920         if (frag->len <= 8) {
5921                 /* Switch to the next fragment. */
5922                 frag++;
5923                 vcpu->mmio_cur_fragment++;
5924         } else {
5925                 /* Go forward to the next mmio piece. */
5926                 frag->data += len;
5927                 frag->gpa += len;
5928                 frag->len -= len;
5929         }
5930
5931         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5932                 vcpu->mmio_needed = 0;
5933                 if (vcpu->mmio_is_write)
5934                         return 1;
5935                 vcpu->mmio_read_completed = 1;
5936                 return complete_emulated_io(vcpu);
5937         }
5938
5939         run->exit_reason = KVM_EXIT_MMIO;
5940         run->mmio.phys_addr = frag->gpa;
5941         if (vcpu->mmio_is_write)
5942                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5943         run->mmio.len = min(8u, frag->len);
5944         run->mmio.is_write = vcpu->mmio_is_write;
5945         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5946         return 0;
5947 }
5948
5949
5950 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5951 {
5952         int r;
5953         sigset_t sigsaved;
5954
5955         if (!tsk_used_math(current) && init_fpu(current))
5956                 return -ENOMEM;
5957
5958         if (vcpu->sigset_active)
5959                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5960
5961         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5962                 kvm_vcpu_block(vcpu);
5963                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5964                 r = -EAGAIN;
5965                 goto out;
5966         }
5967
5968         /* re-sync apic's tpr */
5969         if (!irqchip_in_kernel(vcpu->kvm)) {
5970                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5971                         r = -EINVAL;
5972                         goto out;
5973                 }
5974         }
5975
5976         if (unlikely(vcpu->arch.complete_userspace_io)) {
5977                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5978                 vcpu->arch.complete_userspace_io = NULL;
5979                 r = cui(vcpu);
5980                 if (r <= 0)
5981                         goto out;
5982         } else
5983                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5984
5985         r = __vcpu_run(vcpu);
5986
5987 out:
5988         post_kvm_run_save(vcpu);
5989         if (vcpu->sigset_active)
5990                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5991
5992         return r;
5993 }
5994
5995 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5996 {
5997         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5998                 /*
5999                  * We are here if userspace calls get_regs() in the middle of
6000                  * instruction emulation. Registers state needs to be copied
6001                  * back from emulation context to vcpu. Userspace shouldn't do
6002                  * that usually, but some bad designed PV devices (vmware
6003                  * backdoor interface) need this to work
6004                  */
6005                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6006                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6007         }
6008         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6014         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6015         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6016 #ifdef CONFIG_X86_64
6017         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6018         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6019         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6020         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6021         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6022         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6023         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6024         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6025 #endif
6026
6027         regs->rip = kvm_rip_read(vcpu);
6028         regs->rflags = kvm_get_rflags(vcpu);
6029
6030         return 0;
6031 }
6032
6033 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6034 {
6035         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6036         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6037
6038         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6039         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6040         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6041         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6042         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6043         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6044         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6045         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6046 #ifdef CONFIG_X86_64
6047         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6048         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6049         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6050         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6051         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6052         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6053         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6054         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6055 #endif
6056
6057         kvm_rip_write(vcpu, regs->rip);
6058         kvm_set_rflags(vcpu, regs->rflags);
6059
6060         vcpu->arch.exception.pending = false;
6061
6062         kvm_make_request(KVM_REQ_EVENT, vcpu);
6063
6064         return 0;
6065 }
6066
6067 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6068 {
6069         struct kvm_segment cs;
6070
6071         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072         *db = cs.db;
6073         *l = cs.l;
6074 }
6075 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6076
6077 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6078                                   struct kvm_sregs *sregs)
6079 {
6080         struct desc_ptr dt;
6081
6082         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6083         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6084         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6085         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6086         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6087         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6088
6089         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6090         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6091
6092         kvm_x86_ops->get_idt(vcpu, &dt);
6093         sregs->idt.limit = dt.size;
6094         sregs->idt.base = dt.address;
6095         kvm_x86_ops->get_gdt(vcpu, &dt);
6096         sregs->gdt.limit = dt.size;
6097         sregs->gdt.base = dt.address;
6098
6099         sregs->cr0 = kvm_read_cr0(vcpu);
6100         sregs->cr2 = vcpu->arch.cr2;
6101         sregs->cr3 = kvm_read_cr3(vcpu);
6102         sregs->cr4 = kvm_read_cr4(vcpu);
6103         sregs->cr8 = kvm_get_cr8(vcpu);
6104         sregs->efer = vcpu->arch.efer;
6105         sregs->apic_base = kvm_get_apic_base(vcpu);
6106
6107         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6108
6109         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6110                 set_bit(vcpu->arch.interrupt.nr,
6111                         (unsigned long *)sregs->interrupt_bitmap);
6112
6113         return 0;
6114 }
6115
6116 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6117                                     struct kvm_mp_state *mp_state)
6118 {
6119         mp_state->mp_state = vcpu->arch.mp_state;
6120         return 0;
6121 }
6122
6123 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6124                                     struct kvm_mp_state *mp_state)
6125 {
6126         vcpu->arch.mp_state = mp_state->mp_state;
6127         kvm_make_request(KVM_REQ_EVENT, vcpu);
6128         return 0;
6129 }
6130
6131 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6132                     int reason, bool has_error_code, u32 error_code)
6133 {
6134         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6135         int ret;
6136
6137         init_emulate_ctxt(vcpu);
6138
6139         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6140                                    has_error_code, error_code);
6141
6142         if (ret)
6143                 return EMULATE_FAIL;
6144
6145         kvm_rip_write(vcpu, ctxt->eip);
6146         kvm_set_rflags(vcpu, ctxt->eflags);
6147         kvm_make_request(KVM_REQ_EVENT, vcpu);
6148         return EMULATE_DONE;
6149 }
6150 EXPORT_SYMBOL_GPL(kvm_task_switch);
6151
6152 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6153                                   struct kvm_sregs *sregs)
6154 {
6155         int mmu_reset_needed = 0;
6156         int pending_vec, max_bits, idx;
6157         struct desc_ptr dt;
6158
6159         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6160                 return -EINVAL;
6161
6162         dt.size = sregs->idt.limit;
6163         dt.address = sregs->idt.base;
6164         kvm_x86_ops->set_idt(vcpu, &dt);
6165         dt.size = sregs->gdt.limit;
6166         dt.address = sregs->gdt.base;
6167         kvm_x86_ops->set_gdt(vcpu, &dt);
6168
6169         vcpu->arch.cr2 = sregs->cr2;
6170         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6171         vcpu->arch.cr3 = sregs->cr3;
6172         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6173
6174         kvm_set_cr8(vcpu, sregs->cr8);
6175
6176         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6177         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6178         kvm_set_apic_base(vcpu, sregs->apic_base);
6179
6180         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6181         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6182         vcpu->arch.cr0 = sregs->cr0;
6183
6184         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6185         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6186         if (sregs->cr4 & X86_CR4_OSXSAVE)
6187                 kvm_update_cpuid(vcpu);
6188
6189         idx = srcu_read_lock(&vcpu->kvm->srcu);
6190         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6191                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6192                 mmu_reset_needed = 1;
6193         }
6194         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6195
6196         if (mmu_reset_needed)
6197                 kvm_mmu_reset_context(vcpu);
6198
6199         max_bits = KVM_NR_INTERRUPTS;
6200         pending_vec = find_first_bit(
6201                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6202         if (pending_vec < max_bits) {
6203                 kvm_queue_interrupt(vcpu, pending_vec, false);
6204                 pr_debug("Set back pending irq %d\n", pending_vec);
6205         }
6206
6207         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6208         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6209         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6210         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6211         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6212         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6213
6214         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6215         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6216
6217         update_cr8_intercept(vcpu);
6218
6219         /* Older userspace won't unhalt the vcpu on reset. */
6220         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6221             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6222             !is_protmode(vcpu))
6223                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6224
6225         kvm_make_request(KVM_REQ_EVENT, vcpu);
6226
6227         return 0;
6228 }
6229
6230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6231                                         struct kvm_guest_debug *dbg)
6232 {
6233         unsigned long rflags;
6234         int i, r;
6235
6236         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6237                 r = -EBUSY;
6238                 if (vcpu->arch.exception.pending)
6239                         goto out;
6240                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6241                         kvm_queue_exception(vcpu, DB_VECTOR);
6242                 else
6243                         kvm_queue_exception(vcpu, BP_VECTOR);
6244         }
6245
6246         /*
6247          * Read rflags as long as potentially injected trace flags are still
6248          * filtered out.
6249          */
6250         rflags = kvm_get_rflags(vcpu);
6251
6252         vcpu->guest_debug = dbg->control;
6253         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6254                 vcpu->guest_debug = 0;
6255
6256         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6257                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6258                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6259                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6260         } else {
6261                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6262                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6263         }
6264         kvm_update_dr7(vcpu);
6265
6266         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6267                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6268                         get_segment_base(vcpu, VCPU_SREG_CS);
6269
6270         /*
6271          * Trigger an rflags update that will inject or remove the trace
6272          * flags.
6273          */
6274         kvm_set_rflags(vcpu, rflags);
6275
6276         kvm_x86_ops->update_db_bp_intercept(vcpu);
6277
6278         r = 0;
6279
6280 out:
6281
6282         return r;
6283 }
6284
6285 /*
6286  * Translate a guest virtual address to a guest physical address.
6287  */
6288 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6289                                     struct kvm_translation *tr)
6290 {
6291         unsigned long vaddr = tr->linear_address;
6292         gpa_t gpa;
6293         int idx;
6294
6295         idx = srcu_read_lock(&vcpu->kvm->srcu);
6296         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6297         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6298         tr->physical_address = gpa;
6299         tr->valid = gpa != UNMAPPED_GVA;
6300         tr->writeable = 1;
6301         tr->usermode = 0;
6302
6303         return 0;
6304 }
6305
6306 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6307 {
6308         struct i387_fxsave_struct *fxsave =
6309                         &vcpu->arch.guest_fpu.state->fxsave;
6310
6311         memcpy(fpu->fpr, fxsave->st_space, 128);
6312         fpu->fcw = fxsave->cwd;
6313         fpu->fsw = fxsave->swd;
6314         fpu->ftwx = fxsave->twd;
6315         fpu->last_opcode = fxsave->fop;
6316         fpu->last_ip = fxsave->rip;
6317         fpu->last_dp = fxsave->rdp;
6318         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6319
6320         return 0;
6321 }
6322
6323 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6324 {
6325         struct i387_fxsave_struct *fxsave =
6326                         &vcpu->arch.guest_fpu.state->fxsave;
6327
6328         memcpy(fxsave->st_space, fpu->fpr, 128);
6329         fxsave->cwd = fpu->fcw;
6330         fxsave->swd = fpu->fsw;
6331         fxsave->twd = fpu->ftwx;
6332         fxsave->fop = fpu->last_opcode;
6333         fxsave->rip = fpu->last_ip;
6334         fxsave->rdp = fpu->last_dp;
6335         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6336
6337         return 0;
6338 }
6339
6340 int fx_init(struct kvm_vcpu *vcpu)
6341 {
6342         int err;
6343
6344         err = fpu_alloc(&vcpu->arch.guest_fpu);
6345         if (err)
6346                 return err;
6347
6348         fpu_finit(&vcpu->arch.guest_fpu);
6349
6350         /*
6351          * Ensure guest xcr0 is valid for loading
6352          */
6353         vcpu->arch.xcr0 = XSTATE_FP;
6354
6355         vcpu->arch.cr0 |= X86_CR0_ET;
6356
6357         return 0;
6358 }
6359 EXPORT_SYMBOL_GPL(fx_init);
6360
6361 static void fx_free(struct kvm_vcpu *vcpu)
6362 {
6363         fpu_free(&vcpu->arch.guest_fpu);
6364 }
6365
6366 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6367 {
6368         if (vcpu->guest_fpu_loaded)
6369                 return;
6370
6371         /*
6372          * Restore all possible states in the guest,
6373          * and assume host would use all available bits.
6374          * Guest xcr0 would be loaded later.
6375          */
6376         kvm_put_guest_xcr0(vcpu);
6377         vcpu->guest_fpu_loaded = 1;
6378         __kernel_fpu_begin();
6379         fpu_restore_checking(&vcpu->arch.guest_fpu);
6380         trace_kvm_fpu(1);
6381 }
6382
6383 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6384 {
6385         kvm_put_guest_xcr0(vcpu);
6386
6387         if (!vcpu->guest_fpu_loaded)
6388                 return;
6389
6390         vcpu->guest_fpu_loaded = 0;
6391         fpu_save_init(&vcpu->arch.guest_fpu);
6392         __kernel_fpu_end();
6393         ++vcpu->stat.fpu_reload;
6394         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6395         trace_kvm_fpu(0);
6396 }
6397
6398 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6399 {
6400         kvmclock_reset(vcpu);
6401
6402         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6403         fx_free(vcpu);
6404         kvm_x86_ops->vcpu_free(vcpu);
6405 }
6406
6407 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6408                                                 unsigned int id)
6409 {
6410         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6411                 printk_once(KERN_WARNING
6412                 "kvm: SMP vm created on host with unstable TSC; "
6413                 "guest TSC will not be reliable\n");
6414         return kvm_x86_ops->vcpu_create(kvm, id);
6415 }
6416
6417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6418 {
6419         int r;
6420
6421         vcpu->arch.mtrr_state.have_fixed = 1;
6422         r = vcpu_load(vcpu);
6423         if (r)
6424                 return r;
6425         r = kvm_vcpu_reset(vcpu);
6426         if (r == 0)
6427                 r = kvm_mmu_setup(vcpu);
6428         vcpu_put(vcpu);
6429
6430         return r;
6431 }
6432
6433 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6434 {
6435         int r;
6436         struct msr_data msr;
6437
6438         r = vcpu_load(vcpu);
6439         if (r)
6440                 return r;
6441         msr.data = 0x0;
6442         msr.index = MSR_IA32_TSC;
6443         msr.host_initiated = true;
6444         kvm_write_tsc(vcpu, &msr);
6445         vcpu_put(vcpu);
6446
6447         return r;
6448 }
6449
6450 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6451 {
6452         int r;
6453         vcpu->arch.apf.msr_val = 0;
6454
6455         r = vcpu_load(vcpu);
6456         BUG_ON(r);
6457         kvm_mmu_unload(vcpu);
6458         vcpu_put(vcpu);
6459
6460         fx_free(vcpu);
6461         kvm_x86_ops->vcpu_free(vcpu);
6462 }
6463
6464 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6465 {
6466         atomic_set(&vcpu->arch.nmi_queued, 0);
6467         vcpu->arch.nmi_pending = 0;
6468         vcpu->arch.nmi_injected = false;
6469
6470         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6471         vcpu->arch.dr6 = DR6_FIXED_1;
6472         vcpu->arch.dr7 = DR7_FIXED_1;
6473         kvm_update_dr7(vcpu);
6474
6475         kvm_make_request(KVM_REQ_EVENT, vcpu);
6476         vcpu->arch.apf.msr_val = 0;
6477         vcpu->arch.st.msr_val = 0;
6478
6479         kvmclock_reset(vcpu);
6480
6481         kvm_clear_async_pf_completion_queue(vcpu);
6482         kvm_async_pf_hash_reset(vcpu);
6483         vcpu->arch.apf.halted = false;
6484
6485         kvm_pmu_reset(vcpu);
6486
6487         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6488         vcpu->arch.regs_avail = ~0;
6489         vcpu->arch.regs_dirty = ~0;
6490
6491         return kvm_x86_ops->vcpu_reset(vcpu);
6492 }
6493
6494 int kvm_arch_hardware_enable(void *garbage)
6495 {
6496         struct kvm *kvm;
6497         struct kvm_vcpu *vcpu;
6498         int i;
6499         int ret;
6500         u64 local_tsc;
6501         u64 max_tsc = 0;
6502         bool stable, backwards_tsc = false;
6503
6504         kvm_shared_msr_cpu_online();
6505         ret = kvm_x86_ops->hardware_enable(garbage);
6506         if (ret != 0)
6507                 return ret;
6508
6509         local_tsc = native_read_tsc();
6510         stable = !check_tsc_unstable();
6511         list_for_each_entry(kvm, &vm_list, vm_list) {
6512                 kvm_for_each_vcpu(i, vcpu, kvm) {
6513                         if (!stable && vcpu->cpu == smp_processor_id())
6514                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6515                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6516                                 backwards_tsc = true;
6517                                 if (vcpu->arch.last_host_tsc > max_tsc)
6518                                         max_tsc = vcpu->arch.last_host_tsc;
6519                         }
6520                 }
6521         }
6522
6523         /*
6524          * Sometimes, even reliable TSCs go backwards.  This happens on
6525          * platforms that reset TSC during suspend or hibernate actions, but
6526          * maintain synchronization.  We must compensate.  Fortunately, we can
6527          * detect that condition here, which happens early in CPU bringup,
6528          * before any KVM threads can be running.  Unfortunately, we can't
6529          * bring the TSCs fully up to date with real time, as we aren't yet far
6530          * enough into CPU bringup that we know how much real time has actually
6531          * elapsed; our helper function, get_kernel_ns() will be using boot
6532          * variables that haven't been updated yet.
6533          *
6534          * So we simply find the maximum observed TSC above, then record the
6535          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6536          * the adjustment will be applied.  Note that we accumulate
6537          * adjustments, in case multiple suspend cycles happen before some VCPU
6538          * gets a chance to run again.  In the event that no KVM threads get a
6539          * chance to run, we will miss the entire elapsed period, as we'll have
6540          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6541          * loose cycle time.  This isn't too big a deal, since the loss will be
6542          * uniform across all VCPUs (not to mention the scenario is extremely
6543          * unlikely). It is possible that a second hibernate recovery happens
6544          * much faster than a first, causing the observed TSC here to be
6545          * smaller; this would require additional padding adjustment, which is
6546          * why we set last_host_tsc to the local tsc observed here.
6547          *
6548          * N.B. - this code below runs only on platforms with reliable TSC,
6549          * as that is the only way backwards_tsc is set above.  Also note
6550          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6551          * have the same delta_cyc adjustment applied if backwards_tsc
6552          * is detected.  Note further, this adjustment is only done once,
6553          * as we reset last_host_tsc on all VCPUs to stop this from being
6554          * called multiple times (one for each physical CPU bringup).
6555          *
6556          * Platforms with unreliable TSCs don't have to deal with this, they
6557          * will be compensated by the logic in vcpu_load, which sets the TSC to
6558          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6559          * guarantee that they stay in perfect synchronization.
6560          */
6561         if (backwards_tsc) {
6562                 u64 delta_cyc = max_tsc - local_tsc;
6563                 list_for_each_entry(kvm, &vm_list, vm_list) {
6564                         kvm_for_each_vcpu(i, vcpu, kvm) {
6565                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6566                                 vcpu->arch.last_host_tsc = local_tsc;
6567                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6568                                         &vcpu->requests);
6569                         }
6570
6571                         /*
6572                          * We have to disable TSC offset matching.. if you were
6573                          * booting a VM while issuing an S4 host suspend....
6574                          * you may have some problem.  Solving this issue is
6575                          * left as an exercise to the reader.
6576                          */
6577                         kvm->arch.last_tsc_nsec = 0;
6578                         kvm->arch.last_tsc_write = 0;
6579                 }
6580
6581         }
6582         return 0;
6583 }
6584
6585 void kvm_arch_hardware_disable(void *garbage)
6586 {
6587         kvm_x86_ops->hardware_disable(garbage);
6588         drop_user_return_notifiers(garbage);
6589 }
6590
6591 int kvm_arch_hardware_setup(void)
6592 {
6593         return kvm_x86_ops->hardware_setup();
6594 }
6595
6596 void kvm_arch_hardware_unsetup(void)
6597 {
6598         kvm_x86_ops->hardware_unsetup();
6599 }
6600
6601 void kvm_arch_check_processor_compat(void *rtn)
6602 {
6603         kvm_x86_ops->check_processor_compatibility(rtn);
6604 }
6605
6606 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6607 {
6608         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6609 }
6610
6611 struct static_key kvm_no_apic_vcpu __read_mostly;
6612
6613 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6614 {
6615         struct page *page;
6616         struct kvm *kvm;
6617         int r;
6618
6619         BUG_ON(vcpu->kvm == NULL);
6620         kvm = vcpu->kvm;
6621
6622         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6623         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6624                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6625         else
6626                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6627
6628         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6629         if (!page) {
6630                 r = -ENOMEM;
6631                 goto fail;
6632         }
6633         vcpu->arch.pio_data = page_address(page);
6634
6635         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6636
6637         r = kvm_mmu_create(vcpu);
6638         if (r < 0)
6639                 goto fail_free_pio_data;
6640
6641         if (irqchip_in_kernel(kvm)) {
6642                 r = kvm_create_lapic(vcpu);
6643                 if (r < 0)
6644                         goto fail_mmu_destroy;
6645         } else
6646                 static_key_slow_inc(&kvm_no_apic_vcpu);
6647
6648         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6649                                        GFP_KERNEL);
6650         if (!vcpu->arch.mce_banks) {
6651                 r = -ENOMEM;
6652                 goto fail_free_lapic;
6653         }
6654         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6655
6656         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6657                 goto fail_free_mce_banks;
6658
6659         r = fx_init(vcpu);
6660         if (r)
6661                 goto fail_free_wbinvd_dirty_mask;
6662
6663         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6664         kvm_async_pf_hash_reset(vcpu);
6665         kvm_pmu_init(vcpu);
6666
6667         return 0;
6668 fail_free_wbinvd_dirty_mask:
6669         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6670 fail_free_mce_banks:
6671         kfree(vcpu->arch.mce_banks);
6672 fail_free_lapic:
6673         kvm_free_lapic(vcpu);
6674 fail_mmu_destroy:
6675         kvm_mmu_destroy(vcpu);
6676 fail_free_pio_data:
6677         free_page((unsigned long)vcpu->arch.pio_data);
6678 fail:
6679         return r;
6680 }
6681
6682 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6683 {
6684         int idx;
6685
6686         kvm_pmu_destroy(vcpu);
6687         kfree(vcpu->arch.mce_banks);
6688         kvm_free_lapic(vcpu);
6689         idx = srcu_read_lock(&vcpu->kvm->srcu);
6690         kvm_mmu_destroy(vcpu);
6691         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6692         free_page((unsigned long)vcpu->arch.pio_data);
6693         if (!irqchip_in_kernel(vcpu->kvm))
6694                 static_key_slow_dec(&kvm_no_apic_vcpu);
6695 }
6696
6697 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6698 {
6699         if (type)
6700                 return -EINVAL;
6701
6702         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6703         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6704
6705         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6706         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6707         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6708         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6709                 &kvm->arch.irq_sources_bitmap);
6710
6711         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6712         mutex_init(&kvm->arch.apic_map_lock);
6713         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6714
6715         pvclock_update_vm_gtod_copy(kvm);
6716
6717         return 0;
6718 }
6719
6720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6721 {
6722         int r;
6723         r = vcpu_load(vcpu);
6724         BUG_ON(r);
6725         kvm_mmu_unload(vcpu);
6726         vcpu_put(vcpu);
6727 }
6728
6729 static void kvm_free_vcpus(struct kvm *kvm)
6730 {
6731         unsigned int i;
6732         struct kvm_vcpu *vcpu;
6733
6734         /*
6735          * Unpin any mmu pages first.
6736          */
6737         kvm_for_each_vcpu(i, vcpu, kvm) {
6738                 kvm_clear_async_pf_completion_queue(vcpu);
6739                 kvm_unload_vcpu_mmu(vcpu);
6740         }
6741         kvm_for_each_vcpu(i, vcpu, kvm)
6742                 kvm_arch_vcpu_free(vcpu);
6743
6744         mutex_lock(&kvm->lock);
6745         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6746                 kvm->vcpus[i] = NULL;
6747
6748         atomic_set(&kvm->online_vcpus, 0);
6749         mutex_unlock(&kvm->lock);
6750 }
6751
6752 void kvm_arch_sync_events(struct kvm *kvm)
6753 {
6754         kvm_free_all_assigned_devices(kvm);
6755         kvm_free_pit(kvm);
6756 }
6757
6758 void kvm_arch_destroy_vm(struct kvm *kvm)
6759 {
6760         kvm_iommu_unmap_guest(kvm);
6761         kfree(kvm->arch.vpic);
6762         kfree(kvm->arch.vioapic);
6763         kvm_free_vcpus(kvm);
6764         if (kvm->arch.apic_access_page)
6765                 put_page(kvm->arch.apic_access_page);
6766         if (kvm->arch.ept_identity_pagetable)
6767                 put_page(kvm->arch.ept_identity_pagetable);
6768         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6769 }
6770
6771 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6772                            struct kvm_memory_slot *dont)
6773 {
6774         int i;
6775
6776         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6777                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6778                         kvm_kvfree(free->arch.rmap[i]);
6779                         free->arch.rmap[i] = NULL;
6780                 }
6781                 if (i == 0)
6782                         continue;
6783
6784                 if (!dont || free->arch.lpage_info[i - 1] !=
6785                              dont->arch.lpage_info[i - 1]) {
6786                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6787                         free->arch.lpage_info[i - 1] = NULL;
6788                 }
6789         }
6790 }
6791
6792 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6793 {
6794         int i;
6795
6796         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6797                 unsigned long ugfn;
6798                 int lpages;
6799                 int level = i + 1;
6800
6801                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6802                                       slot->base_gfn, level) + 1;
6803
6804                 slot->arch.rmap[i] =
6805                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6806                 if (!slot->arch.rmap[i])
6807                         goto out_free;
6808                 if (i == 0)
6809                         continue;
6810
6811                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6812                                         sizeof(*slot->arch.lpage_info[i - 1]));
6813                 if (!slot->arch.lpage_info[i - 1])
6814                         goto out_free;
6815
6816                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6817                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6818                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6819                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6820                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6821                 /*
6822                  * If the gfn and userspace address are not aligned wrt each
6823                  * other, or if explicitly asked to, disable large page
6824                  * support for this slot
6825                  */
6826                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6827                     !kvm_largepages_enabled()) {
6828                         unsigned long j;
6829
6830                         for (j = 0; j < lpages; ++j)
6831                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6832                 }
6833         }
6834
6835         return 0;
6836
6837 out_free:
6838         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6839                 kvm_kvfree(slot->arch.rmap[i]);
6840                 slot->arch.rmap[i] = NULL;
6841                 if (i == 0)
6842                         continue;
6843
6844                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6845                 slot->arch.lpage_info[i - 1] = NULL;
6846         }
6847         return -ENOMEM;
6848 }
6849
6850 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6851                                 struct kvm_memory_slot *memslot,
6852                                 struct kvm_memory_slot old,
6853                                 struct kvm_userspace_memory_region *mem,
6854                                 int user_alloc)
6855 {
6856         int npages = memslot->npages;
6857         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6858
6859         /* Prevent internal slot pages from being moved by fork()/COW. */
6860         if (memslot->id >= KVM_MEMORY_SLOTS)
6861                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6862
6863         /*To keep backward compatibility with older userspace,
6864          *x86 needs to handle !user_alloc case.
6865          */
6866         if (!user_alloc) {
6867                 if (npages && !old.npages) {
6868                         unsigned long userspace_addr;
6869
6870                         userspace_addr = vm_mmap(NULL, 0,
6871                                                  npages * PAGE_SIZE,
6872                                                  PROT_READ | PROT_WRITE,
6873                                                  map_flags,
6874                                                  0);
6875
6876                         if (IS_ERR((void *)userspace_addr))
6877                                 return PTR_ERR((void *)userspace_addr);
6878
6879                         memslot->userspace_addr = userspace_addr;
6880                 }
6881         }
6882
6883
6884         return 0;
6885 }
6886
6887 void kvm_arch_commit_memory_region(struct kvm *kvm,
6888                                 struct kvm_userspace_memory_region *mem,
6889                                 struct kvm_memory_slot old,
6890                                 int user_alloc)
6891 {
6892
6893         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6894
6895         if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6896                 int ret;
6897
6898                 ret = vm_munmap(old.userspace_addr,
6899                                 old.npages * PAGE_SIZE);
6900                 if (ret < 0)
6901                         printk(KERN_WARNING
6902                                "kvm_vm_ioctl_set_memory_region: "
6903                                "failed to munmap memory\n");
6904         }
6905
6906         if (!kvm->arch.n_requested_mmu_pages)
6907                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6908
6909         spin_lock(&kvm->mmu_lock);
6910         if (nr_mmu_pages)
6911                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6912         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6913         spin_unlock(&kvm->mmu_lock);
6914         /*
6915          * If memory slot is created, or moved, we need to clear all
6916          * mmio sptes.
6917          */
6918         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6919                 kvm_mmu_zap_all(kvm);
6920                 kvm_reload_remote_mmus(kvm);
6921         }
6922 }
6923
6924 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6925 {
6926         kvm_mmu_zap_all(kvm);
6927         kvm_reload_remote_mmus(kvm);
6928 }
6929
6930 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6931                                    struct kvm_memory_slot *slot)
6932 {
6933         kvm_arch_flush_shadow_all(kvm);
6934 }
6935
6936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6937 {
6938         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6939                 !vcpu->arch.apf.halted)
6940                 || !list_empty_careful(&vcpu->async_pf.done)
6941                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6942                 || atomic_read(&vcpu->arch.nmi_queued) ||
6943                 (kvm_arch_interrupt_allowed(vcpu) &&
6944                  kvm_cpu_has_interrupt(vcpu));
6945 }
6946
6947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6948 {
6949         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6950 }
6951
6952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6953 {
6954         return kvm_x86_ops->interrupt_allowed(vcpu);
6955 }
6956
6957 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6958 {
6959         unsigned long current_rip = kvm_rip_read(vcpu) +
6960                 get_segment_base(vcpu, VCPU_SREG_CS);
6961
6962         return current_rip == linear_rip;
6963 }
6964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6965
6966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6967 {
6968         unsigned long rflags;
6969
6970         rflags = kvm_x86_ops->get_rflags(vcpu);
6971         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6972                 rflags &= ~X86_EFLAGS_TF;
6973         return rflags;
6974 }
6975 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6976
6977 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6978 {
6979         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6980             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6981                 rflags |= X86_EFLAGS_TF;
6982         kvm_x86_ops->set_rflags(vcpu, rflags);
6983         kvm_make_request(KVM_REQ_EVENT, vcpu);
6984 }
6985 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6986
6987 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6988 {
6989         int r;
6990
6991         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6992               is_error_page(work->page))
6993                 return;
6994
6995         r = kvm_mmu_reload(vcpu);
6996         if (unlikely(r))
6997                 return;
6998
6999         if (!vcpu->arch.mmu.direct_map &&
7000               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7001                 return;
7002
7003         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7004 }
7005
7006 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7007 {
7008         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7009 }
7010
7011 static inline u32 kvm_async_pf_next_probe(u32 key)
7012 {
7013         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7014 }
7015
7016 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7017 {
7018         u32 key = kvm_async_pf_hash_fn(gfn);
7019
7020         while (vcpu->arch.apf.gfns[key] != ~0)
7021                 key = kvm_async_pf_next_probe(key);
7022
7023         vcpu->arch.apf.gfns[key] = gfn;
7024 }
7025
7026 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7027 {
7028         int i;
7029         u32 key = kvm_async_pf_hash_fn(gfn);
7030
7031         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7032                      (vcpu->arch.apf.gfns[key] != gfn &&
7033                       vcpu->arch.apf.gfns[key] != ~0); i++)
7034                 key = kvm_async_pf_next_probe(key);
7035
7036         return key;
7037 }
7038
7039 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7040 {
7041         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7042 }
7043
7044 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7045 {
7046         u32 i, j, k;
7047
7048         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7049         while (true) {
7050                 vcpu->arch.apf.gfns[i] = ~0;
7051                 do {
7052                         j = kvm_async_pf_next_probe(j);
7053                         if (vcpu->arch.apf.gfns[j] == ~0)
7054                                 return;
7055                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7056                         /*
7057                          * k lies cyclically in ]i,j]
7058                          * |    i.k.j |
7059                          * |....j i.k.| or  |.k..j i...|
7060                          */
7061                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7062                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7063                 i = j;
7064         }
7065 }
7066
7067 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7068 {
7069
7070         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7071                                       sizeof(val));
7072 }
7073
7074 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7075                                      struct kvm_async_pf *work)
7076 {
7077         struct x86_exception fault;
7078
7079         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7080         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7081
7082         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7083             (vcpu->arch.apf.send_user_only &&
7084              kvm_x86_ops->get_cpl(vcpu) == 0))
7085                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7086         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7087                 fault.vector = PF_VECTOR;
7088                 fault.error_code_valid = true;
7089                 fault.error_code = 0;
7090                 fault.nested_page_fault = false;
7091                 fault.address = work->arch.token;
7092                 kvm_inject_page_fault(vcpu, &fault);
7093         }
7094 }
7095
7096 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7097                                  struct kvm_async_pf *work)
7098 {
7099         struct x86_exception fault;
7100
7101         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7102         if (is_error_page(work->page))
7103                 work->arch.token = ~0; /* broadcast wakeup */
7104         else
7105                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7106
7107         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7108             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7109                 fault.vector = PF_VECTOR;
7110                 fault.error_code_valid = true;
7111                 fault.error_code = 0;
7112                 fault.nested_page_fault = false;
7113                 fault.address = work->arch.token;
7114                 kvm_inject_page_fault(vcpu, &fault);
7115         }
7116         vcpu->arch.apf.halted = false;
7117         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7118 }
7119
7120 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7121 {
7122         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7123                 return true;
7124         else
7125                 return !kvm_event_needs_reinjection(vcpu) &&
7126                         kvm_x86_ops->interrupt_allowed(vcpu);
7127 }
7128
7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);