]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'kvm-3.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169         int i;
170         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171                 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176         unsigned slot;
177         struct kvm_shared_msrs *locals
178                 = container_of(urn, struct kvm_shared_msrs, urn);
179         struct kvm_shared_msr_values *values;
180
181         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182                 values = &locals->values[slot];
183                 if (values->host != values->curr) {
184                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
185                         values->curr = values->host;
186                 }
187         }
188         locals->registered = false;
189         user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194         u64 value;
195         unsigned int cpu = smp_processor_id();
196         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
197
198         /* only read, and nobody should modify it at this time,
199          * so don't need lock */
200         if (slot >= shared_msrs_global.nr) {
201                 printk(KERN_ERR "kvm: invalid MSR slot!");
202                 return;
203         }
204         rdmsrl_safe(msr, &value);
205         smsr->values[slot].host = value;
206         smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211         if (slot >= shared_msrs_global.nr)
212                 shared_msrs_global.nr = slot + 1;
213         shared_msrs_global.msrs[slot] = msr;
214         /* we need ensured the shared_msr_global have been updated */
215         smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221         unsigned i;
222
223         for (i = 0; i < shared_msrs_global.nr; ++i)
224                 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229         unsigned int cpu = smp_processor_id();
230         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
231
232         if (((value ^ smsr->values[slot].curr) & mask) == 0)
233                 return;
234         smsr->values[slot].curr = value;
235         wrmsrl(shared_msrs_global.msrs[slot], value);
236         if (!smsr->registered) {
237                 smsr->urn.on_user_return = kvm_on_user_return;
238                 user_return_notifier_register(&smsr->urn);
239                 smsr->registered = true;
240         }
241 }
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
243
244 static void drop_user_return_notifiers(void *ignore)
245 {
246         unsigned int cpu = smp_processor_id();
247         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248
249         if (smsr->registered)
250                 kvm_on_user_return(&smsr->urn);
251 }
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255         return vcpu->arch.apic_base;
256 }
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
258
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
260 {
261         /* TODO: reserve bits check */
262         kvm_lapic_set_base(vcpu, data);
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN            0
267 #define EXCPT_CONTRIBUTORY      1
268 #define EXCPT_PF                2
269
270 static int exception_class(int vector)
271 {
272         switch (vector) {
273         case PF_VECTOR:
274                 return EXCPT_PF;
275         case DE_VECTOR:
276         case TS_VECTOR:
277         case NP_VECTOR:
278         case SS_VECTOR:
279         case GP_VECTOR:
280                 return EXCPT_CONTRIBUTORY;
281         default:
282                 break;
283         }
284         return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288                 unsigned nr, bool has_error, u32 error_code,
289                 bool reinject)
290 {
291         u32 prev_nr;
292         int class1, class2;
293
294         kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296         if (!vcpu->arch.exception.pending) {
297         queue:
298                 vcpu->arch.exception.pending = true;
299                 vcpu->arch.exception.has_error_code = has_error;
300                 vcpu->arch.exception.nr = nr;
301                 vcpu->arch.exception.error_code = error_code;
302                 vcpu->arch.exception.reinject = reinject;
303                 return;
304         }
305
306         /* to check exception */
307         prev_nr = vcpu->arch.exception.nr;
308         if (prev_nr == DF_VECTOR) {
309                 /* triple fault -> shutdown */
310                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311                 return;
312         }
313         class1 = exception_class(prev_nr);
314         class2 = exception_class(nr);
315         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317                 /* generate double fault per SDM Table 5-5 */
318                 vcpu->arch.exception.pending = true;
319                 vcpu->arch.exception.has_error_code = true;
320                 vcpu->arch.exception.nr = DF_VECTOR;
321                 vcpu->arch.exception.error_code = 0;
322         } else
323                 /* replace previous exception with a new one in a hope
324                    that instruction re-execution will regenerate lost
325                    exception */
326                 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337         kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343         if (err)
344                 kvm_inject_gp(vcpu, 0);
345         else
346                 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352         ++vcpu->stat.pf_guest;
353         vcpu->arch.cr2 = fault->address;
354         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362         else
363                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368         atomic_inc(&vcpu->arch.nmi_queued);
369         kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381         kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392                 return true;
393         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394         return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404                             gfn_t ngfn, void *data, int offset, int len,
405                             u32 access)
406 {
407         gfn_t real_gfn;
408         gpa_t ngpa;
409
410         ngpa     = gfn_to_gpa(ngfn);
411         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412         if (real_gfn == UNMAPPED_GVA)
413                 return -EFAULT;
414
415         real_gfn = gpa_to_gfn(real_gfn);
416
417         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422                                void *data, int offset, int len, u32 access)
423 {
424         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425                                        data, offset, len, access);
426 }
427
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435         int i;
436         int ret;
437         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440                                       offset * sizeof(u64), sizeof(pdpte),
441                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
442         if (ret < 0) {
443                 ret = 0;
444                 goto out;
445         }
446         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447                 if (is_present_gpte(pdpte[i]) &&
448                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449                         ret = 0;
450                         goto out;
451                 }
452         }
453         ret = 1;
454
455         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_avail);
458         __set_bit(VCPU_EXREG_PDPTR,
459                   (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462         return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469         bool changed = true;
470         int offset;
471         gfn_t gfn;
472         int r;
473
474         if (is_long_mode(vcpu) || !is_pae(vcpu))
475                 return false;
476
477         if (!test_bit(VCPU_EXREG_PDPTR,
478                       (unsigned long *)&vcpu->arch.regs_avail))
479                 return true;
480
481         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
485         if (r < 0)
486                 goto out;
487         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490         return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495         unsigned long old_cr0 = kvm_read_cr0(vcpu);
496         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497                                     X86_CR0_CD | X86_CR0_NW;
498
499         cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502         if (cr0 & 0xffffffff00000000UL)
503                 return 1;
504 #endif
505
506         cr0 &= ~CR0_RESERVED_BITS;
507
508         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509                 return 1;
510
511         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512                 return 1;
513
514         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516                 if ((vcpu->arch.efer & EFER_LME)) {
517                         int cs_db, cs_l;
518
519                         if (!is_pae(vcpu))
520                                 return 1;
521                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522                         if (cs_l)
523                                 return 1;
524                 } else
525 #endif
526                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527                                                  kvm_read_cr3(vcpu)))
528                         return 1;
529         }
530
531         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532                 return 1;
533
534         kvm_x86_ops->set_cr0(vcpu, cr0);
535
536         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537                 kvm_clear_async_pf_completion_queue(vcpu);
538                 kvm_async_pf_hash_reset(vcpu);
539         }
540
541         if ((cr0 ^ old_cr0) & update_bits)
542                 kvm_mmu_reset_context(vcpu);
543         return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         u64 xcr0;
556
557         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558         if (index != XCR_XFEATURE_ENABLED_MASK)
559                 return 1;
560         xcr0 = xcr;
561         if (kvm_x86_ops->get_cpl(vcpu) != 0)
562                 return 1;
563         if (!(xcr0 & XSTATE_FP))
564                 return 1;
565         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566                 return 1;
567         if (xcr0 & ~host_xcr0)
568                 return 1;
569         vcpu->arch.xcr0 = xcr0;
570         vcpu->guest_xcr0_loaded = 0;
571         return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576         if (__kvm_set_xcr(vcpu, index, xcr)) {
577                 kvm_inject_gp(vcpu, 0);
578                 return 1;
579         }
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586         unsigned long old_cr4 = kvm_read_cr4(vcpu);
587         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588                                    X86_CR4_PAE | X86_CR4_SMEP;
589         if (cr4 & CR4_RESERVED_BITS)
590                 return 1;
591
592         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593                 return 1;
594
595         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596                 return 1;
597
598         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                    kvm_read_cr3(vcpu)))
608                 return 1;
609
610         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611                 if (!guest_cpuid_has_pcid(vcpu))
612                         return 1;
613
614                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616                         return 1;
617         }
618
619         if (kvm_x86_ops->set_cr4(vcpu, cr4))
620                 return 1;
621
622         if (((cr4 ^ old_cr4) & pdptr_bits) ||
623             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 kvm_update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644                                 return 1;
645                 } else
646                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
647                                 return 1;
648         } else {
649                 if (is_pae(vcpu)) {
650                         if (cr3 & CR3_PAE_RESERVED_BITS)
651                                 return 1;
652                         if (is_paging(vcpu) &&
653                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654                                 return 1;
655                 }
656                 /*
657                  * We don't check reserved bits in nonpae mode, because
658                  * this isn't enforced, and VMware depends on this.
659                  */
660         }
661
662         /*
663          * Does the new cr3 value map to physical memory? (Note, we
664          * catch an invalid cr3 even in real-mode, because it would
665          * cause trouble later on when we turn on paging anyway.)
666          *
667          * A real CPU would silently accept an invalid cr3 and would
668          * attempt to use it - with largely undefined (and often hard
669          * to debug) behavior on the guest side.
670          */
671         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672                 return 1;
673         vcpu->arch.cr3 = cr3;
674         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675         vcpu->arch.mmu.new_cr3(vcpu);
676         return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682         if (cr8 & CR8_RESERVED_BITS)
683                 return 1;
684         if (irqchip_in_kernel(vcpu->kvm))
685                 kvm_lapic_set_tpr(vcpu, cr8);
686         else
687                 vcpu->arch.cr8 = cr8;
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694         if (irqchip_in_kernel(vcpu->kvm))
695                 return kvm_lapic_get_cr8(vcpu);
696         else
697                 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
702 {
703         unsigned long dr7;
704
705         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706                 dr7 = vcpu->arch.guest_debug_dr7;
707         else
708                 dr7 = vcpu->arch.dr7;
709         kvm_x86_ops->set_dr7(vcpu, dr7);
710         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
711 }
712
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
714 {
715         switch (dr) {
716         case 0 ... 3:
717                 vcpu->arch.db[dr] = val;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719                         vcpu->arch.eff_db[dr] = val;
720                 break;
721         case 4:
722                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723                         return 1; /* #UD */
724                 /* fall through */
725         case 6:
726                 if (val & 0xffffffff00000000ULL)
727                         return -1; /* #GP */
728                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729                 break;
730         case 5:
731                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732                         return 1; /* #UD */
733                 /* fall through */
734         default: /* 7 */
735                 if (val & 0xffffffff00000000ULL)
736                         return -1; /* #GP */
737                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738                 kvm_update_dr7(vcpu);
739                 break;
740         }
741
742         return 0;
743 }
744
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
746 {
747         int res;
748
749         res = __kvm_set_dr(vcpu, dr, val);
750         if (res > 0)
751                 kvm_queue_exception(vcpu, UD_VECTOR);
752         else if (res < 0)
753                 kvm_inject_gp(vcpu, 0);
754
755         return res;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
758
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761         switch (dr) {
762         case 0 ... 3:
763                 *val = vcpu->arch.db[dr];
764                 break;
765         case 4:
766                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767                         return 1;
768                 /* fall through */
769         case 6:
770                 *val = vcpu->arch.dr6;
771                 break;
772         case 5:
773                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774                         return 1;
775                 /* fall through */
776         default: /* 7 */
777                 *val = vcpu->arch.dr7;
778                 break;
779         }
780
781         return 0;
782 }
783
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
785 {
786         if (_kvm_get_dr(vcpu, dr, val)) {
787                 kvm_queue_exception(vcpu, UD_VECTOR);
788                 return 1;
789         }
790         return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
793
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
795 {
796         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797         u64 data;
798         int err;
799
800         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801         if (err)
802                 return err;
803         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805         return err;
806 }
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
808
809 /*
810  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
812  *
813  * This list is modified at module load time to reflect the
814  * capabilities of the host cpu. This capabilities test skips MSRs that are
815  * kvm-specific. Those are put in the beginning of the list.
816  */
817
818 #define KVM_SAVE_MSRS_BEGIN     10
819 static u32 msrs_to_save[] = {
820         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824         MSR_KVM_PV_EOI_EN,
825         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826         MSR_STAR,
827 #ifdef CONFIG_X86_64
828         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
831 };
832
833 static unsigned num_msrs_to_save;
834
835 static const u32 emulated_msrs[] = {
836         MSR_IA32_TSC_ADJUST,
837         MSR_IA32_TSCDEADLINE,
838         MSR_IA32_MISC_ENABLE,
839         MSR_IA32_MCG_STATUS,
840         MSR_IA32_MCG_CTL,
841 };
842
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
844 {
845         u64 old_efer = vcpu->arch.efer;
846
847         if (efer & efer_reserved_bits)
848                 return 1;
849
850         if (is_paging(vcpu)
851             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852                 return 1;
853
854         if (efer & EFER_FFXSR) {
855                 struct kvm_cpuid_entry2 *feat;
856
857                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859                         return 1;
860         }
861
862         if (efer & EFER_SVME) {
863                 struct kvm_cpuid_entry2 *feat;
864
865                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867                         return 1;
868         }
869
870         efer &= ~EFER_LMA;
871         efer |= vcpu->arch.efer & EFER_LMA;
872
873         kvm_x86_ops->set_efer(vcpu, efer);
874
875         /* Update reserved bits */
876         if ((efer ^ old_efer) & EFER_NX)
877                 kvm_mmu_reset_context(vcpu);
878
879         return 0;
880 }
881
882 void kvm_enable_efer_bits(u64 mask)
883 {
884        efer_reserved_bits &= ~mask;
885 }
886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
887
888
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
895 {
896         return kvm_x86_ops->set_msr(vcpu, msr);
897 }
898
899 /*
900  * Adapt set_msr() to msr_io()'s calling convention
901  */
902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
903 {
904         struct msr_data msr;
905
906         msr.data = *data;
907         msr.index = index;
908         msr.host_initiated = true;
909         return kvm_set_msr(vcpu, &msr);
910 }
911
912 #ifdef CONFIG_X86_64
913 struct pvclock_gtod_data {
914         seqcount_t      seq;
915
916         struct { /* extract of a clocksource struct */
917                 int vclock_mode;
918                 cycle_t cycle_last;
919                 cycle_t mask;
920                 u32     mult;
921                 u32     shift;
922         } clock;
923
924         /* open coded 'struct timespec' */
925         u64             monotonic_time_snsec;
926         time_t          monotonic_time_sec;
927 };
928
929 static struct pvclock_gtod_data pvclock_gtod_data;
930
931 static void update_pvclock_gtod(struct timekeeper *tk)
932 {
933         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
934
935         write_seqcount_begin(&vdata->seq);
936
937         /* copy pvclock gtod data */
938         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
939         vdata->clock.cycle_last         = tk->clock->cycle_last;
940         vdata->clock.mask               = tk->clock->mask;
941         vdata->clock.mult               = tk->mult;
942         vdata->clock.shift              = tk->shift;
943
944         vdata->monotonic_time_sec       = tk->xtime_sec
945                                         + tk->wall_to_monotonic.tv_sec;
946         vdata->monotonic_time_snsec     = tk->xtime_nsec
947                                         + (tk->wall_to_monotonic.tv_nsec
948                                                 << tk->shift);
949         while (vdata->monotonic_time_snsec >=
950                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
951                 vdata->monotonic_time_snsec -=
952                                         ((u64)NSEC_PER_SEC) << tk->shift;
953                 vdata->monotonic_time_sec++;
954         }
955
956         write_seqcount_end(&vdata->seq);
957 }
958 #endif
959
960
961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
962 {
963         int version;
964         int r;
965         struct pvclock_wall_clock wc;
966         struct timespec boot;
967
968         if (!wall_clock)
969                 return;
970
971         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
972         if (r)
973                 return;
974
975         if (version & 1)
976                 ++version;  /* first time write, random junk */
977
978         ++version;
979
980         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
981
982         /*
983          * The guest calculates current wall clock time by adding
984          * system time (updated by kvm_guest_time_update below) to the
985          * wall clock specified here.  guest system time equals host
986          * system time for us, thus we must fill in host boot time here.
987          */
988         getboottime(&boot);
989
990         if (kvm->arch.kvmclock_offset) {
991                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
992                 boot = timespec_sub(boot, ts);
993         }
994         wc.sec = boot.tv_sec;
995         wc.nsec = boot.tv_nsec;
996         wc.version = version;
997
998         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
999
1000         version++;
1001         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1002 }
1003
1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1005 {
1006         uint32_t quotient, remainder;
1007
1008         /* Don't try to replace with do_div(), this one calculates
1009          * "(dividend << 32) / divisor" */
1010         __asm__ ( "divl %4"
1011                   : "=a" (quotient), "=d" (remainder)
1012                   : "0" (0), "1" (dividend), "r" (divisor) );
1013         return quotient;
1014 }
1015
1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1017                                s8 *pshift, u32 *pmultiplier)
1018 {
1019         uint64_t scaled64;
1020         int32_t  shift = 0;
1021         uint64_t tps64;
1022         uint32_t tps32;
1023
1024         tps64 = base_khz * 1000LL;
1025         scaled64 = scaled_khz * 1000LL;
1026         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1027                 tps64 >>= 1;
1028                 shift--;
1029         }
1030
1031         tps32 = (uint32_t)tps64;
1032         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1033                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1034                         scaled64 >>= 1;
1035                 else
1036                         tps32 <<= 1;
1037                 shift++;
1038         }
1039
1040         *pshift = shift;
1041         *pmultiplier = div_frac(scaled64, tps32);
1042
1043         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1044                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1045 }
1046
1047 static inline u64 get_kernel_ns(void)
1048 {
1049         struct timespec ts;
1050
1051         WARN_ON(preemptible());
1052         ktime_get_ts(&ts);
1053         monotonic_to_bootbased(&ts);
1054         return timespec_to_ns(&ts);
1055 }
1056
1057 #ifdef CONFIG_X86_64
1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1059 #endif
1060
1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1062 unsigned long max_tsc_khz;
1063
1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1065 {
1066         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1067                                    vcpu->arch.virtual_tsc_shift);
1068 }
1069
1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1071 {
1072         u64 v = (u64)khz * (1000000 + ppm);
1073         do_div(v, 1000000);
1074         return v;
1075 }
1076
1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1078 {
1079         u32 thresh_lo, thresh_hi;
1080         int use_scaling = 0;
1081
1082         /* Compute a scale to convert nanoseconds in TSC cycles */
1083         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1084                            &vcpu->arch.virtual_tsc_shift,
1085                            &vcpu->arch.virtual_tsc_mult);
1086         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1087
1088         /*
1089          * Compute the variation in TSC rate which is acceptable
1090          * within the range of tolerance and decide if the
1091          * rate being applied is within that bounds of the hardware
1092          * rate.  If so, no scaling or compensation need be done.
1093          */
1094         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1095         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1096         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1097                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1098                 use_scaling = 1;
1099         }
1100         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1101 }
1102
1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1104 {
1105         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1106                                       vcpu->arch.virtual_tsc_mult,
1107                                       vcpu->arch.virtual_tsc_shift);
1108         tsc += vcpu->arch.this_tsc_write;
1109         return tsc;
1110 }
1111
1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115         bool vcpus_matched;
1116         bool do_request = false;
1117         struct kvm_arch *ka = &vcpu->kvm->arch;
1118         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1119
1120         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1121                          atomic_read(&vcpu->kvm->online_vcpus));
1122
1123         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1124                 if (!ka->use_master_clock)
1125                         do_request = 1;
1126
1127         if (!vcpus_matched && ka->use_master_clock)
1128                         do_request = 1;
1129
1130         if (do_request)
1131                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1132
1133         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1134                             atomic_read(&vcpu->kvm->online_vcpus),
1135                             ka->use_master_clock, gtod->clock.vclock_mode);
1136 #endif
1137 }
1138
1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1140 {
1141         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1142         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1143 }
1144
1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1146 {
1147         struct kvm *kvm = vcpu->kvm;
1148         u64 offset, ns, elapsed;
1149         unsigned long flags;
1150         s64 usdiff;
1151         bool matched;
1152         u64 data = msr->data;
1153
1154         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1155         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1156         ns = get_kernel_ns();
1157         elapsed = ns - kvm->arch.last_tsc_nsec;
1158
1159         /* n.b - signed multiplication and division required */
1160         usdiff = data - kvm->arch.last_tsc_write;
1161 #ifdef CONFIG_X86_64
1162         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1163 #else
1164         /* do_div() only does unsigned */
1165         asm("idivl %2; xor %%edx, %%edx"
1166             : "=A"(usdiff)
1167             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1168 #endif
1169         do_div(elapsed, 1000);
1170         usdiff -= elapsed;
1171         if (usdiff < 0)
1172                 usdiff = -usdiff;
1173
1174         /*
1175          * Special case: TSC write with a small delta (1 second) of virtual
1176          * cycle time against real time is interpreted as an attempt to
1177          * synchronize the CPU.
1178          *
1179          * For a reliable TSC, we can match TSC offsets, and for an unstable
1180          * TSC, we add elapsed time in this computation.  We could let the
1181          * compensation code attempt to catch up if we fall behind, but
1182          * it's better to try to match offsets from the beginning.
1183          */
1184         if (usdiff < USEC_PER_SEC &&
1185             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1186                 if (!check_tsc_unstable()) {
1187                         offset = kvm->arch.cur_tsc_offset;
1188                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1189                 } else {
1190                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1191                         data += delta;
1192                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1194                 }
1195                 matched = true;
1196         } else {
1197                 /*
1198                  * We split periods of matched TSC writes into generations.
1199                  * For each generation, we track the original measured
1200                  * nanosecond time, offset, and write, so if TSCs are in
1201                  * sync, we can match exact offset, and if not, we can match
1202                  * exact software computation in compute_guest_tsc()
1203                  *
1204                  * These values are tracked in kvm->arch.cur_xxx variables.
1205                  */
1206                 kvm->arch.cur_tsc_generation++;
1207                 kvm->arch.cur_tsc_nsec = ns;
1208                 kvm->arch.cur_tsc_write = data;
1209                 kvm->arch.cur_tsc_offset = offset;
1210                 matched = false;
1211                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1212                          kvm->arch.cur_tsc_generation, data);
1213         }
1214
1215         /*
1216          * We also track th most recent recorded KHZ, write and time to
1217          * allow the matching interval to be extended at each write.
1218          */
1219         kvm->arch.last_tsc_nsec = ns;
1220         kvm->arch.last_tsc_write = data;
1221         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1222
1223         /* Reset of TSC must disable overshoot protection below */
1224         vcpu->arch.hv_clock.tsc_timestamp = 0;
1225         vcpu->arch.last_guest_tsc = data;
1226
1227         /* Keep track of which generation this VCPU has synchronized to */
1228         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1229         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1230         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1231
1232         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1233                 update_ia32_tsc_adjust_msr(vcpu, offset);
1234         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1235         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1236
1237         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1238         if (matched)
1239                 kvm->arch.nr_vcpus_matched_tsc++;
1240         else
1241                 kvm->arch.nr_vcpus_matched_tsc = 0;
1242
1243         kvm_track_tsc_matching(vcpu);
1244         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1245 }
1246
1247 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1248
1249 #ifdef CONFIG_X86_64
1250
1251 static cycle_t read_tsc(void)
1252 {
1253         cycle_t ret;
1254         u64 last;
1255
1256         /*
1257          * Empirically, a fence (of type that depends on the CPU)
1258          * before rdtsc is enough to ensure that rdtsc is ordered
1259          * with respect to loads.  The various CPU manuals are unclear
1260          * as to whether rdtsc can be reordered with later loads,
1261          * but no one has ever seen it happen.
1262          */
1263         rdtsc_barrier();
1264         ret = (cycle_t)vget_cycles();
1265
1266         last = pvclock_gtod_data.clock.cycle_last;
1267
1268         if (likely(ret >= last))
1269                 return ret;
1270
1271         /*
1272          * GCC likes to generate cmov here, but this branch is extremely
1273          * predictable (it's just a funciton of time and the likely is
1274          * very likely) and there's a data dependence, so force GCC
1275          * to generate a branch instead.  I don't barrier() because
1276          * we don't actually need a barrier, and if this function
1277          * ever gets inlined it will generate worse code.
1278          */
1279         asm volatile ("");
1280         return last;
1281 }
1282
1283 static inline u64 vgettsc(cycle_t *cycle_now)
1284 {
1285         long v;
1286         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288         *cycle_now = read_tsc();
1289
1290         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1291         return v * gtod->clock.mult;
1292 }
1293
1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1295 {
1296         unsigned long seq;
1297         u64 ns;
1298         int mode;
1299         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1300
1301         ts->tv_nsec = 0;
1302         do {
1303                 seq = read_seqcount_begin(&gtod->seq);
1304                 mode = gtod->clock.vclock_mode;
1305                 ts->tv_sec = gtod->monotonic_time_sec;
1306                 ns = gtod->monotonic_time_snsec;
1307                 ns += vgettsc(cycle_now);
1308                 ns >>= gtod->clock.shift;
1309         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1310         timespec_add_ns(ts, ns);
1311
1312         return mode;
1313 }
1314
1315 /* returns true if host is using tsc clocksource */
1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1317 {
1318         struct timespec ts;
1319
1320         /* checked again under seqlock below */
1321         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1322                 return false;
1323
1324         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1325                 return false;
1326
1327         monotonic_to_bootbased(&ts);
1328         *kernel_ns = timespec_to_ns(&ts);
1329
1330         return true;
1331 }
1332 #endif
1333
1334 /*
1335  *
1336  * Assuming a stable TSC across physical CPUS, and a stable TSC
1337  * across virtual CPUs, the following condition is possible.
1338  * Each numbered line represents an event visible to both
1339  * CPUs at the next numbered event.
1340  *
1341  * "timespecX" represents host monotonic time. "tscX" represents
1342  * RDTSC value.
1343  *
1344  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1345  *
1346  * 1.  read timespec0,tsc0
1347  * 2.                                   | timespec1 = timespec0 + N
1348  *                                      | tsc1 = tsc0 + M
1349  * 3. transition to guest               | transition to guest
1350  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1351  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1352  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1353  *
1354  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1355  *
1356  *      - ret0 < ret1
1357  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1358  *              ...
1359  *      - 0 < N - M => M < N
1360  *
1361  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1362  * always the case (the difference between two distinct xtime instances
1363  * might be smaller then the difference between corresponding TSC reads,
1364  * when updating guest vcpus pvclock areas).
1365  *
1366  * To avoid that problem, do not allow visibility of distinct
1367  * system_timestamp/tsc_timestamp values simultaneously: use a master
1368  * copy of host monotonic time values. Update that master copy
1369  * in lockstep.
1370  *
1371  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1372  *
1373  */
1374
1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1376 {
1377 #ifdef CONFIG_X86_64
1378         struct kvm_arch *ka = &kvm->arch;
1379         int vclock_mode;
1380         bool host_tsc_clocksource, vcpus_matched;
1381
1382         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1383                         atomic_read(&kvm->online_vcpus));
1384
1385         /*
1386          * If the host uses TSC clock, then passthrough TSC as stable
1387          * to the guest.
1388          */
1389         host_tsc_clocksource = kvm_get_time_and_clockread(
1390                                         &ka->master_kernel_ns,
1391                                         &ka->master_cycle_now);
1392
1393         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1394
1395         if (ka->use_master_clock)
1396                 atomic_set(&kvm_guest_has_master_clock, 1);
1397
1398         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1399         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1400                                         vcpus_matched);
1401 #endif
1402 }
1403
1404 static int kvm_guest_time_update(struct kvm_vcpu *v)
1405 {
1406         unsigned long flags, this_tsc_khz;
1407         struct kvm_vcpu_arch *vcpu = &v->arch;
1408         struct kvm_arch *ka = &v->kvm->arch;
1409         void *shared_kaddr;
1410         s64 kernel_ns, max_kernel_ns;
1411         u64 tsc_timestamp, host_tsc;
1412         struct pvclock_vcpu_time_info *guest_hv_clock;
1413         u8 pvclock_flags;
1414         bool use_master_clock;
1415
1416         kernel_ns = 0;
1417         host_tsc = 0;
1418
1419         /* Keep irq disabled to prevent changes to the clock */
1420         local_irq_save(flags);
1421         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1422         if (unlikely(this_tsc_khz == 0)) {
1423                 local_irq_restore(flags);
1424                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1425                 return 1;
1426         }
1427
1428         /*
1429          * If the host uses TSC clock, then passthrough TSC as stable
1430          * to the guest.
1431          */
1432         spin_lock(&ka->pvclock_gtod_sync_lock);
1433         use_master_clock = ka->use_master_clock;
1434         if (use_master_clock) {
1435                 host_tsc = ka->master_cycle_now;
1436                 kernel_ns = ka->master_kernel_ns;
1437         }
1438         spin_unlock(&ka->pvclock_gtod_sync_lock);
1439         if (!use_master_clock) {
1440                 host_tsc = native_read_tsc();
1441                 kernel_ns = get_kernel_ns();
1442         }
1443
1444         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1445
1446         /*
1447          * We may have to catch up the TSC to match elapsed wall clock
1448          * time for two reasons, even if kvmclock is used.
1449          *   1) CPU could have been running below the maximum TSC rate
1450          *   2) Broken TSC compensation resets the base at each VCPU
1451          *      entry to avoid unknown leaps of TSC even when running
1452          *      again on the same CPU.  This may cause apparent elapsed
1453          *      time to disappear, and the guest to stand still or run
1454          *      very slowly.
1455          */
1456         if (vcpu->tsc_catchup) {
1457                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1458                 if (tsc > tsc_timestamp) {
1459                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1460                         tsc_timestamp = tsc;
1461                 }
1462         }
1463
1464         local_irq_restore(flags);
1465
1466         if (!vcpu->time_page)
1467                 return 0;
1468
1469         /*
1470          * Time as measured by the TSC may go backwards when resetting the base
1471          * tsc_timestamp.  The reason for this is that the TSC resolution is
1472          * higher than the resolution of the other clock scales.  Thus, many
1473          * possible measurments of the TSC correspond to one measurement of any
1474          * other clock, and so a spread of values is possible.  This is not a
1475          * problem for the computation of the nanosecond clock; with TSC rates
1476          * around 1GHZ, there can only be a few cycles which correspond to one
1477          * nanosecond value, and any path through this code will inevitably
1478          * take longer than that.  However, with the kernel_ns value itself,
1479          * the precision may be much lower, down to HZ granularity.  If the
1480          * first sampling of TSC against kernel_ns ends in the low part of the
1481          * range, and the second in the high end of the range, we can get:
1482          *
1483          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1484          *
1485          * As the sampling errors potentially range in the thousands of cycles,
1486          * it is possible such a time value has already been observed by the
1487          * guest.  To protect against this, we must compute the system time as
1488          * observed by the guest and ensure the new system time is greater.
1489          */
1490         max_kernel_ns = 0;
1491         if (vcpu->hv_clock.tsc_timestamp) {
1492                 max_kernel_ns = vcpu->last_guest_tsc -
1493                                 vcpu->hv_clock.tsc_timestamp;
1494                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1495                                     vcpu->hv_clock.tsc_to_system_mul,
1496                                     vcpu->hv_clock.tsc_shift);
1497                 max_kernel_ns += vcpu->last_kernel_ns;
1498         }
1499
1500         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1501                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1502                                    &vcpu->hv_clock.tsc_shift,
1503                                    &vcpu->hv_clock.tsc_to_system_mul);
1504                 vcpu->hw_tsc_khz = this_tsc_khz;
1505         }
1506
1507         /* with a master <monotonic time, tsc value> tuple,
1508          * pvclock clock reads always increase at the (scaled) rate
1509          * of guest TSC - no need to deal with sampling errors.
1510          */
1511         if (!use_master_clock) {
1512                 if (max_kernel_ns > kernel_ns)
1513                         kernel_ns = max_kernel_ns;
1514         }
1515         /* With all the info we got, fill in the values */
1516         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1517         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1518         vcpu->last_kernel_ns = kernel_ns;
1519         vcpu->last_guest_tsc = tsc_timestamp;
1520
1521         /*
1522          * The interface expects us to write an even number signaling that the
1523          * update is finished. Since the guest won't see the intermediate
1524          * state, we just increase by 2 at the end.
1525          */
1526         vcpu->hv_clock.version += 2;
1527
1528         shared_kaddr = kmap_atomic(vcpu->time_page);
1529
1530         guest_hv_clock = shared_kaddr + vcpu->time_offset;
1531
1532         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1533         pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1534
1535         if (vcpu->pvclock_set_guest_stopped_request) {
1536                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1537                 vcpu->pvclock_set_guest_stopped_request = false;
1538         }
1539
1540         /* If the host uses TSC clocksource, then it is stable */
1541         if (use_master_clock)
1542                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1543
1544         vcpu->hv_clock.flags = pvclock_flags;
1545
1546         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1547                sizeof(vcpu->hv_clock));
1548
1549         kunmap_atomic(shared_kaddr);
1550
1551         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1552         return 0;
1553 }
1554
1555 static bool msr_mtrr_valid(unsigned msr)
1556 {
1557         switch (msr) {
1558         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1559         case MSR_MTRRfix64K_00000:
1560         case MSR_MTRRfix16K_80000:
1561         case MSR_MTRRfix16K_A0000:
1562         case MSR_MTRRfix4K_C0000:
1563         case MSR_MTRRfix4K_C8000:
1564         case MSR_MTRRfix4K_D0000:
1565         case MSR_MTRRfix4K_D8000:
1566         case MSR_MTRRfix4K_E0000:
1567         case MSR_MTRRfix4K_E8000:
1568         case MSR_MTRRfix4K_F0000:
1569         case MSR_MTRRfix4K_F8000:
1570         case MSR_MTRRdefType:
1571         case MSR_IA32_CR_PAT:
1572                 return true;
1573         case 0x2f8:
1574                 return true;
1575         }
1576         return false;
1577 }
1578
1579 static bool valid_pat_type(unsigned t)
1580 {
1581         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1582 }
1583
1584 static bool valid_mtrr_type(unsigned t)
1585 {
1586         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1587 }
1588
1589 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1590 {
1591         int i;
1592
1593         if (!msr_mtrr_valid(msr))
1594                 return false;
1595
1596         if (msr == MSR_IA32_CR_PAT) {
1597                 for (i = 0; i < 8; i++)
1598                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1599                                 return false;
1600                 return true;
1601         } else if (msr == MSR_MTRRdefType) {
1602                 if (data & ~0xcff)
1603                         return false;
1604                 return valid_mtrr_type(data & 0xff);
1605         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1606                 for (i = 0; i < 8 ; i++)
1607                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1608                                 return false;
1609                 return true;
1610         }
1611
1612         /* variable MTRRs */
1613         return valid_mtrr_type(data & 0xff);
1614 }
1615
1616 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1617 {
1618         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1619
1620         if (!mtrr_valid(vcpu, msr, data))
1621                 return 1;
1622
1623         if (msr == MSR_MTRRdefType) {
1624                 vcpu->arch.mtrr_state.def_type = data;
1625                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1626         } else if (msr == MSR_MTRRfix64K_00000)
1627                 p[0] = data;
1628         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1629                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1630         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1631                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1632         else if (msr == MSR_IA32_CR_PAT)
1633                 vcpu->arch.pat = data;
1634         else {  /* Variable MTRRs */
1635                 int idx, is_mtrr_mask;
1636                 u64 *pt;
1637
1638                 idx = (msr - 0x200) / 2;
1639                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1640                 if (!is_mtrr_mask)
1641                         pt =
1642                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1643                 else
1644                         pt =
1645                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1646                 *pt = data;
1647         }
1648
1649         kvm_mmu_reset_context(vcpu);
1650         return 0;
1651 }
1652
1653 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1654 {
1655         u64 mcg_cap = vcpu->arch.mcg_cap;
1656         unsigned bank_num = mcg_cap & 0xff;
1657
1658         switch (msr) {
1659         case MSR_IA32_MCG_STATUS:
1660                 vcpu->arch.mcg_status = data;
1661                 break;
1662         case MSR_IA32_MCG_CTL:
1663                 if (!(mcg_cap & MCG_CTL_P))
1664                         return 1;
1665                 if (data != 0 && data != ~(u64)0)
1666                         return -1;
1667                 vcpu->arch.mcg_ctl = data;
1668                 break;
1669         default:
1670                 if (msr >= MSR_IA32_MC0_CTL &&
1671                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1672                         u32 offset = msr - MSR_IA32_MC0_CTL;
1673                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1674                          * some Linux kernels though clear bit 10 in bank 4 to
1675                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1676                          * this to avoid an uncatched #GP in the guest
1677                          */
1678                         if ((offset & 0x3) == 0 &&
1679                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1680                                 return -1;
1681                         vcpu->arch.mce_banks[offset] = data;
1682                         break;
1683                 }
1684                 return 1;
1685         }
1686         return 0;
1687 }
1688
1689 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1690 {
1691         struct kvm *kvm = vcpu->kvm;
1692         int lm = is_long_mode(vcpu);
1693         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1694                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1695         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1696                 : kvm->arch.xen_hvm_config.blob_size_32;
1697         u32 page_num = data & ~PAGE_MASK;
1698         u64 page_addr = data & PAGE_MASK;
1699         u8 *page;
1700         int r;
1701
1702         r = -E2BIG;
1703         if (page_num >= blob_size)
1704                 goto out;
1705         r = -ENOMEM;
1706         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1707         if (IS_ERR(page)) {
1708                 r = PTR_ERR(page);
1709                 goto out;
1710         }
1711         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1712                 goto out_free;
1713         r = 0;
1714 out_free:
1715         kfree(page);
1716 out:
1717         return r;
1718 }
1719
1720 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1721 {
1722         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1723 }
1724
1725 static bool kvm_hv_msr_partition_wide(u32 msr)
1726 {
1727         bool r = false;
1728         switch (msr) {
1729         case HV_X64_MSR_GUEST_OS_ID:
1730         case HV_X64_MSR_HYPERCALL:
1731                 r = true;
1732                 break;
1733         }
1734
1735         return r;
1736 }
1737
1738 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741
1742         switch (msr) {
1743         case HV_X64_MSR_GUEST_OS_ID:
1744                 kvm->arch.hv_guest_os_id = data;
1745                 /* setting guest os id to zero disables hypercall page */
1746                 if (!kvm->arch.hv_guest_os_id)
1747                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1748                 break;
1749         case HV_X64_MSR_HYPERCALL: {
1750                 u64 gfn;
1751                 unsigned long addr;
1752                 u8 instructions[4];
1753
1754                 /* if guest os id is not set hypercall should remain disabled */
1755                 if (!kvm->arch.hv_guest_os_id)
1756                         break;
1757                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1758                         kvm->arch.hv_hypercall = data;
1759                         break;
1760                 }
1761                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1762                 addr = gfn_to_hva(kvm, gfn);
1763                 if (kvm_is_error_hva(addr))
1764                         return 1;
1765                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1766                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1767                 if (__copy_to_user((void __user *)addr, instructions, 4))
1768                         return 1;
1769                 kvm->arch.hv_hypercall = data;
1770                 break;
1771         }
1772         default:
1773                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1774                             "data 0x%llx\n", msr, data);
1775                 return 1;
1776         }
1777         return 0;
1778 }
1779
1780 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1781 {
1782         switch (msr) {
1783         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1784                 unsigned long addr;
1785
1786                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1787                         vcpu->arch.hv_vapic = data;
1788                         break;
1789                 }
1790                 addr = gfn_to_hva(vcpu->kvm, data >>
1791                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1792                 if (kvm_is_error_hva(addr))
1793                         return 1;
1794                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1795                         return 1;
1796                 vcpu->arch.hv_vapic = data;
1797                 break;
1798         }
1799         case HV_X64_MSR_EOI:
1800                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1801         case HV_X64_MSR_ICR:
1802                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1803         case HV_X64_MSR_TPR:
1804                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1805         default:
1806                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1807                             "data 0x%llx\n", msr, data);
1808                 return 1;
1809         }
1810
1811         return 0;
1812 }
1813
1814 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1815 {
1816         gpa_t gpa = data & ~0x3f;
1817
1818         /* Bits 2:5 are reserved, Should be zero */
1819         if (data & 0x3c)
1820                 return 1;
1821
1822         vcpu->arch.apf.msr_val = data;
1823
1824         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1825                 kvm_clear_async_pf_completion_queue(vcpu);
1826                 kvm_async_pf_hash_reset(vcpu);
1827                 return 0;
1828         }
1829
1830         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1831                 return 1;
1832
1833         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1834         kvm_async_pf_wakeup_all(vcpu);
1835         return 0;
1836 }
1837
1838 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1839 {
1840         if (vcpu->arch.time_page) {
1841                 kvm_release_page_dirty(vcpu->arch.time_page);
1842                 vcpu->arch.time_page = NULL;
1843         }
1844 }
1845
1846 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1847 {
1848         u64 delta;
1849
1850         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1851                 return;
1852
1853         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1854         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1855         vcpu->arch.st.accum_steal = delta;
1856 }
1857
1858 static void record_steal_time(struct kvm_vcpu *vcpu)
1859 {
1860         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1861                 return;
1862
1863         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1864                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1865                 return;
1866
1867         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1868         vcpu->arch.st.steal.version += 2;
1869         vcpu->arch.st.accum_steal = 0;
1870
1871         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1872                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1873 }
1874
1875 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1876 {
1877         bool pr = false;
1878         u32 msr = msr_info->index;
1879         u64 data = msr_info->data;
1880
1881         switch (msr) {
1882         case MSR_AMD64_NB_CFG:
1883         case MSR_IA32_UCODE_REV:
1884         case MSR_IA32_UCODE_WRITE:
1885         case MSR_VM_HSAVE_PA:
1886         case MSR_AMD64_PATCH_LOADER:
1887         case MSR_AMD64_BU_CFG2:
1888                 break;
1889
1890         case MSR_EFER:
1891                 return set_efer(vcpu, data);
1892         case MSR_K7_HWCR:
1893                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1894                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1895                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1896                 if (data != 0) {
1897                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1898                                     data);
1899                         return 1;
1900                 }
1901                 break;
1902         case MSR_FAM10H_MMIO_CONF_BASE:
1903                 if (data != 0) {
1904                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1905                                     "0x%llx\n", data);
1906                         return 1;
1907                 }
1908                 break;
1909         case MSR_IA32_DEBUGCTLMSR:
1910                 if (!data) {
1911                         /* We support the non-activated case already */
1912                         break;
1913                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1914                         /* Values other than LBR and BTF are vendor-specific,
1915                            thus reserved and should throw a #GP */
1916                         return 1;
1917                 }
1918                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1919                             __func__, data);
1920                 break;
1921         case 0x200 ... 0x2ff:
1922                 return set_msr_mtrr(vcpu, msr, data);
1923         case MSR_IA32_APICBASE:
1924                 kvm_set_apic_base(vcpu, data);
1925                 break;
1926         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1927                 return kvm_x2apic_msr_write(vcpu, msr, data);
1928         case MSR_IA32_TSCDEADLINE:
1929                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1930                 break;
1931         case MSR_IA32_TSC_ADJUST:
1932                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1933                         if (!msr_info->host_initiated) {
1934                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1935                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1936                         }
1937                         vcpu->arch.ia32_tsc_adjust_msr = data;
1938                 }
1939                 break;
1940         case MSR_IA32_MISC_ENABLE:
1941                 vcpu->arch.ia32_misc_enable_msr = data;
1942                 break;
1943         case MSR_KVM_WALL_CLOCK_NEW:
1944         case MSR_KVM_WALL_CLOCK:
1945                 vcpu->kvm->arch.wall_clock = data;
1946                 kvm_write_wall_clock(vcpu->kvm, data);
1947                 break;
1948         case MSR_KVM_SYSTEM_TIME_NEW:
1949         case MSR_KVM_SYSTEM_TIME: {
1950                 kvmclock_reset(vcpu);
1951
1952                 vcpu->arch.time = data;
1953                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1954
1955                 /* we verify if the enable bit is set... */
1956                 if (!(data & 1))
1957                         break;
1958
1959                 /* ...but clean it before doing the actual write */
1960                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1961
1962                 vcpu->arch.time_page =
1963                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1964
1965                 if (is_error_page(vcpu->arch.time_page))
1966                         vcpu->arch.time_page = NULL;
1967
1968                 break;
1969         }
1970         case MSR_KVM_ASYNC_PF_EN:
1971                 if (kvm_pv_enable_async_pf(vcpu, data))
1972                         return 1;
1973                 break;
1974         case MSR_KVM_STEAL_TIME:
1975
1976                 if (unlikely(!sched_info_on()))
1977                         return 1;
1978
1979                 if (data & KVM_STEAL_RESERVED_MASK)
1980                         return 1;
1981
1982                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1983                                                         data & KVM_STEAL_VALID_BITS))
1984                         return 1;
1985
1986                 vcpu->arch.st.msr_val = data;
1987
1988                 if (!(data & KVM_MSR_ENABLED))
1989                         break;
1990
1991                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1992
1993                 preempt_disable();
1994                 accumulate_steal_time(vcpu);
1995                 preempt_enable();
1996
1997                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1998
1999                 break;
2000         case MSR_KVM_PV_EOI_EN:
2001                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2002                         return 1;
2003                 break;
2004
2005         case MSR_IA32_MCG_CTL:
2006         case MSR_IA32_MCG_STATUS:
2007         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2008                 return set_msr_mce(vcpu, msr, data);
2009
2010         /* Performance counters are not protected by a CPUID bit,
2011          * so we should check all of them in the generic path for the sake of
2012          * cross vendor migration.
2013          * Writing a zero into the event select MSRs disables them,
2014          * which we perfectly emulate ;-). Any other value should be at least
2015          * reported, some guests depend on them.
2016          */
2017         case MSR_K7_EVNTSEL0:
2018         case MSR_K7_EVNTSEL1:
2019         case MSR_K7_EVNTSEL2:
2020         case MSR_K7_EVNTSEL3:
2021                 if (data != 0)
2022                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2023                                     "0x%x data 0x%llx\n", msr, data);
2024                 break;
2025         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2026          * so we ignore writes to make it happy.
2027          */
2028         case MSR_K7_PERFCTR0:
2029         case MSR_K7_PERFCTR1:
2030         case MSR_K7_PERFCTR2:
2031         case MSR_K7_PERFCTR3:
2032                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2033                             "0x%x data 0x%llx\n", msr, data);
2034                 break;
2035         case MSR_P6_PERFCTR0:
2036         case MSR_P6_PERFCTR1:
2037                 pr = true;
2038         case MSR_P6_EVNTSEL0:
2039         case MSR_P6_EVNTSEL1:
2040                 if (kvm_pmu_msr(vcpu, msr))
2041                         return kvm_pmu_set_msr(vcpu, msr, data);
2042
2043                 if (pr || data != 0)
2044                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2045                                     "0x%x data 0x%llx\n", msr, data);
2046                 break;
2047         case MSR_K7_CLK_CTL:
2048                 /*
2049                  * Ignore all writes to this no longer documented MSR.
2050                  * Writes are only relevant for old K7 processors,
2051                  * all pre-dating SVM, but a recommended workaround from
2052                  * AMD for these chips. It is possible to specify the
2053                  * affected processor models on the command line, hence
2054                  * the need to ignore the workaround.
2055                  */
2056                 break;
2057         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2058                 if (kvm_hv_msr_partition_wide(msr)) {
2059                         int r;
2060                         mutex_lock(&vcpu->kvm->lock);
2061                         r = set_msr_hyperv_pw(vcpu, msr, data);
2062                         mutex_unlock(&vcpu->kvm->lock);
2063                         return r;
2064                 } else
2065                         return set_msr_hyperv(vcpu, msr, data);
2066                 break;
2067         case MSR_IA32_BBL_CR_CTL3:
2068                 /* Drop writes to this legacy MSR -- see rdmsr
2069                  * counterpart for further detail.
2070                  */
2071                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2072                 break;
2073         case MSR_AMD64_OSVW_ID_LENGTH:
2074                 if (!guest_cpuid_has_osvw(vcpu))
2075                         return 1;
2076                 vcpu->arch.osvw.length = data;
2077                 break;
2078         case MSR_AMD64_OSVW_STATUS:
2079                 if (!guest_cpuid_has_osvw(vcpu))
2080                         return 1;
2081                 vcpu->arch.osvw.status = data;
2082                 break;
2083         default:
2084                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2085                         return xen_hvm_config(vcpu, data);
2086                 if (kvm_pmu_msr(vcpu, msr))
2087                         return kvm_pmu_set_msr(vcpu, msr, data);
2088                 if (!ignore_msrs) {
2089                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2090                                     msr, data);
2091                         return 1;
2092                 } else {
2093                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2094                                     msr, data);
2095                         break;
2096                 }
2097         }
2098         return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2101
2102
2103 /*
2104  * Reads an msr value (of 'msr_index') into 'pdata'.
2105  * Returns 0 on success, non-0 otherwise.
2106  * Assumes vcpu_load() was already called.
2107  */
2108 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2109 {
2110         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2111 }
2112
2113 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2114 {
2115         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2116
2117         if (!msr_mtrr_valid(msr))
2118                 return 1;
2119
2120         if (msr == MSR_MTRRdefType)
2121                 *pdata = vcpu->arch.mtrr_state.def_type +
2122                          (vcpu->arch.mtrr_state.enabled << 10);
2123         else if (msr == MSR_MTRRfix64K_00000)
2124                 *pdata = p[0];
2125         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2126                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2127         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2128                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2129         else if (msr == MSR_IA32_CR_PAT)
2130                 *pdata = vcpu->arch.pat;
2131         else {  /* Variable MTRRs */
2132                 int idx, is_mtrr_mask;
2133                 u64 *pt;
2134
2135                 idx = (msr - 0x200) / 2;
2136                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2137                 if (!is_mtrr_mask)
2138                         pt =
2139                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2140                 else
2141                         pt =
2142                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2143                 *pdata = *pt;
2144         }
2145
2146         return 0;
2147 }
2148
2149 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2150 {
2151         u64 data;
2152         u64 mcg_cap = vcpu->arch.mcg_cap;
2153         unsigned bank_num = mcg_cap & 0xff;
2154
2155         switch (msr) {
2156         case MSR_IA32_P5_MC_ADDR:
2157         case MSR_IA32_P5_MC_TYPE:
2158                 data = 0;
2159                 break;
2160         case MSR_IA32_MCG_CAP:
2161                 data = vcpu->arch.mcg_cap;
2162                 break;
2163         case MSR_IA32_MCG_CTL:
2164                 if (!(mcg_cap & MCG_CTL_P))
2165                         return 1;
2166                 data = vcpu->arch.mcg_ctl;
2167                 break;
2168         case MSR_IA32_MCG_STATUS:
2169                 data = vcpu->arch.mcg_status;
2170                 break;
2171         default:
2172                 if (msr >= MSR_IA32_MC0_CTL &&
2173                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2174                         u32 offset = msr - MSR_IA32_MC0_CTL;
2175                         data = vcpu->arch.mce_banks[offset];
2176                         break;
2177                 }
2178                 return 1;
2179         }
2180         *pdata = data;
2181         return 0;
2182 }
2183
2184 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186         u64 data = 0;
2187         struct kvm *kvm = vcpu->kvm;
2188
2189         switch (msr) {
2190         case HV_X64_MSR_GUEST_OS_ID:
2191                 data = kvm->arch.hv_guest_os_id;
2192                 break;
2193         case HV_X64_MSR_HYPERCALL:
2194                 data = kvm->arch.hv_hypercall;
2195                 break;
2196         default:
2197                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2198                 return 1;
2199         }
2200
2201         *pdata = data;
2202         return 0;
2203 }
2204
2205 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2206 {
2207         u64 data = 0;
2208
2209         switch (msr) {
2210         case HV_X64_MSR_VP_INDEX: {
2211                 int r;
2212                 struct kvm_vcpu *v;
2213                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2214                         if (v == vcpu)
2215                                 data = r;
2216                 break;
2217         }
2218         case HV_X64_MSR_EOI:
2219                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2220         case HV_X64_MSR_ICR:
2221                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2222         case HV_X64_MSR_TPR:
2223                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2224         case HV_X64_MSR_APIC_ASSIST_PAGE:
2225                 data = vcpu->arch.hv_vapic;
2226                 break;
2227         default:
2228                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2229                 return 1;
2230         }
2231         *pdata = data;
2232         return 0;
2233 }
2234
2235 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2236 {
2237         u64 data;
2238
2239         switch (msr) {
2240         case MSR_IA32_PLATFORM_ID:
2241         case MSR_IA32_EBL_CR_POWERON:
2242         case MSR_IA32_DEBUGCTLMSR:
2243         case MSR_IA32_LASTBRANCHFROMIP:
2244         case MSR_IA32_LASTBRANCHTOIP:
2245         case MSR_IA32_LASTINTFROMIP:
2246         case MSR_IA32_LASTINTTOIP:
2247         case MSR_K8_SYSCFG:
2248         case MSR_K7_HWCR:
2249         case MSR_VM_HSAVE_PA:
2250         case MSR_K7_EVNTSEL0:
2251         case MSR_K7_PERFCTR0:
2252         case MSR_K8_INT_PENDING_MSG:
2253         case MSR_AMD64_NB_CFG:
2254         case MSR_FAM10H_MMIO_CONF_BASE:
2255         case MSR_AMD64_BU_CFG2:
2256                 data = 0;
2257                 break;
2258         case MSR_P6_PERFCTR0:
2259         case MSR_P6_PERFCTR1:
2260         case MSR_P6_EVNTSEL0:
2261         case MSR_P6_EVNTSEL1:
2262                 if (kvm_pmu_msr(vcpu, msr))
2263                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2264                 data = 0;
2265                 break;
2266         case MSR_IA32_UCODE_REV:
2267                 data = 0x100000000ULL;
2268                 break;
2269         case MSR_MTRRcap:
2270                 data = 0x500 | KVM_NR_VAR_MTRR;
2271                 break;
2272         case 0x200 ... 0x2ff:
2273                 return get_msr_mtrr(vcpu, msr, pdata);
2274         case 0xcd: /* fsb frequency */
2275                 data = 3;
2276                 break;
2277                 /*
2278                  * MSR_EBC_FREQUENCY_ID
2279                  * Conservative value valid for even the basic CPU models.
2280                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282                  * and 266MHz for model 3, or 4. Set Core Clock
2283                  * Frequency to System Bus Frequency Ratio to 1 (bits
2284                  * 31:24) even though these are only valid for CPU
2285                  * models > 2, however guests may end up dividing or
2286                  * multiplying by zero otherwise.
2287                  */
2288         case MSR_EBC_FREQUENCY_ID:
2289                 data = 1 << 24;
2290                 break;
2291         case MSR_IA32_APICBASE:
2292                 data = kvm_get_apic_base(vcpu);
2293                 break;
2294         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296                 break;
2297         case MSR_IA32_TSCDEADLINE:
2298                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299                 break;
2300         case MSR_IA32_TSC_ADJUST:
2301                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302                 break;
2303         case MSR_IA32_MISC_ENABLE:
2304                 data = vcpu->arch.ia32_misc_enable_msr;
2305                 break;
2306         case MSR_IA32_PERF_STATUS:
2307                 /* TSC increment by tick */
2308                 data = 1000ULL;
2309                 /* CPU multiplier */
2310                 data |= (((uint64_t)4ULL) << 40);
2311                 break;
2312         case MSR_EFER:
2313                 data = vcpu->arch.efer;
2314                 break;
2315         case MSR_KVM_WALL_CLOCK:
2316         case MSR_KVM_WALL_CLOCK_NEW:
2317                 data = vcpu->kvm->arch.wall_clock;
2318                 break;
2319         case MSR_KVM_SYSTEM_TIME:
2320         case MSR_KVM_SYSTEM_TIME_NEW:
2321                 data = vcpu->arch.time;
2322                 break;
2323         case MSR_KVM_ASYNC_PF_EN:
2324                 data = vcpu->arch.apf.msr_val;
2325                 break;
2326         case MSR_KVM_STEAL_TIME:
2327                 data = vcpu->arch.st.msr_val;
2328                 break;
2329         case MSR_KVM_PV_EOI_EN:
2330                 data = vcpu->arch.pv_eoi.msr_val;
2331                 break;
2332         case MSR_IA32_P5_MC_ADDR:
2333         case MSR_IA32_P5_MC_TYPE:
2334         case MSR_IA32_MCG_CAP:
2335         case MSR_IA32_MCG_CTL:
2336         case MSR_IA32_MCG_STATUS:
2337         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338                 return get_msr_mce(vcpu, msr, pdata);
2339         case MSR_K7_CLK_CTL:
2340                 /*
2341                  * Provide expected ramp-up count for K7. All other
2342                  * are set to zero, indicating minimum divisors for
2343                  * every field.
2344                  *
2345                  * This prevents guest kernels on AMD host with CPU
2346                  * type 6, model 8 and higher from exploding due to
2347                  * the rdmsr failing.
2348                  */
2349                 data = 0x20000000;
2350                 break;
2351         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352                 if (kvm_hv_msr_partition_wide(msr)) {
2353                         int r;
2354                         mutex_lock(&vcpu->kvm->lock);
2355                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356                         mutex_unlock(&vcpu->kvm->lock);
2357                         return r;
2358                 } else
2359                         return get_msr_hyperv(vcpu, msr, pdata);
2360                 break;
2361         case MSR_IA32_BBL_CR_CTL3:
2362                 /* This legacy MSR exists but isn't fully documented in current
2363                  * silicon.  It is however accessed by winxp in very narrow
2364                  * scenarios where it sets bit #19, itself documented as
2365                  * a "reserved" bit.  Best effort attempt to source coherent
2366                  * read data here should the balance of the register be
2367                  * interpreted by the guest:
2368                  *
2369                  * L2 cache control register 3: 64GB range, 256KB size,
2370                  * enabled, latency 0x1, configured
2371                  */
2372                 data = 0xbe702111;
2373                 break;
2374         case MSR_AMD64_OSVW_ID_LENGTH:
2375                 if (!guest_cpuid_has_osvw(vcpu))
2376                         return 1;
2377                 data = vcpu->arch.osvw.length;
2378                 break;
2379         case MSR_AMD64_OSVW_STATUS:
2380                 if (!guest_cpuid_has_osvw(vcpu))
2381                         return 1;
2382                 data = vcpu->arch.osvw.status;
2383                 break;
2384         default:
2385                 if (kvm_pmu_msr(vcpu, msr))
2386                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2387                 if (!ignore_msrs) {
2388                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389                         return 1;
2390                 } else {
2391                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392                         data = 0;
2393                 }
2394                 break;
2395         }
2396         *pdata = data;
2397         return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2400
2401 /*
2402  * Read or write a bunch of msrs. All parameters are kernel addresses.
2403  *
2404  * @return number of msrs set successfully.
2405  */
2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407                     struct kvm_msr_entry *entries,
2408                     int (*do_msr)(struct kvm_vcpu *vcpu,
2409                                   unsigned index, u64 *data))
2410 {
2411         int i, idx;
2412
2413         idx = srcu_read_lock(&vcpu->kvm->srcu);
2414         for (i = 0; i < msrs->nmsrs; ++i)
2415                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416                         break;
2417         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2418
2419         return i;
2420 }
2421
2422 /*
2423  * Read or write a bunch of msrs. Parameters are user addresses.
2424  *
2425  * @return number of msrs set successfully.
2426  */
2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428                   int (*do_msr)(struct kvm_vcpu *vcpu,
2429                                 unsigned index, u64 *data),
2430                   int writeback)
2431 {
2432         struct kvm_msrs msrs;
2433         struct kvm_msr_entry *entries;
2434         int r, n;
2435         unsigned size;
2436
2437         r = -EFAULT;
2438         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439                 goto out;
2440
2441         r = -E2BIG;
2442         if (msrs.nmsrs >= MAX_IO_MSRS)
2443                 goto out;
2444
2445         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446         entries = memdup_user(user_msrs->entries, size);
2447         if (IS_ERR(entries)) {
2448                 r = PTR_ERR(entries);
2449                 goto out;
2450         }
2451
2452         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453         if (r < 0)
2454                 goto out_free;
2455
2456         r = -EFAULT;
2457         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458                 goto out_free;
2459
2460         r = n;
2461
2462 out_free:
2463         kfree(entries);
2464 out:
2465         return r;
2466 }
2467
2468 int kvm_dev_ioctl_check_extension(long ext)
2469 {
2470         int r;
2471
2472         switch (ext) {
2473         case KVM_CAP_IRQCHIP:
2474         case KVM_CAP_HLT:
2475         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476         case KVM_CAP_SET_TSS_ADDR:
2477         case KVM_CAP_EXT_CPUID:
2478         case KVM_CAP_CLOCKSOURCE:
2479         case KVM_CAP_PIT:
2480         case KVM_CAP_NOP_IO_DELAY:
2481         case KVM_CAP_MP_STATE:
2482         case KVM_CAP_SYNC_MMU:
2483         case KVM_CAP_USER_NMI:
2484         case KVM_CAP_REINJECT_CONTROL:
2485         case KVM_CAP_IRQ_INJECT_STATUS:
2486         case KVM_CAP_ASSIGN_DEV_IRQ:
2487         case KVM_CAP_IRQFD:
2488         case KVM_CAP_IOEVENTFD:
2489         case KVM_CAP_PIT2:
2490         case KVM_CAP_PIT_STATE2:
2491         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492         case KVM_CAP_XEN_HVM:
2493         case KVM_CAP_ADJUST_CLOCK:
2494         case KVM_CAP_VCPU_EVENTS:
2495         case KVM_CAP_HYPERV:
2496         case KVM_CAP_HYPERV_VAPIC:
2497         case KVM_CAP_HYPERV_SPIN:
2498         case KVM_CAP_PCI_SEGMENT:
2499         case KVM_CAP_DEBUGREGS:
2500         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501         case KVM_CAP_XSAVE:
2502         case KVM_CAP_ASYNC_PF:
2503         case KVM_CAP_GET_TSC_KHZ:
2504         case KVM_CAP_PCI_2_3:
2505         case KVM_CAP_KVMCLOCK_CTRL:
2506         case KVM_CAP_READONLY_MEM:
2507         case KVM_CAP_IRQFD_RESAMPLE:
2508                 r = 1;
2509                 break;
2510         case KVM_CAP_COALESCED_MMIO:
2511                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512                 break;
2513         case KVM_CAP_VAPIC:
2514                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515                 break;
2516         case KVM_CAP_NR_VCPUS:
2517                 r = KVM_SOFT_MAX_VCPUS;
2518                 break;
2519         case KVM_CAP_MAX_VCPUS:
2520                 r = KVM_MAX_VCPUS;
2521                 break;
2522         case KVM_CAP_NR_MEMSLOTS:
2523                 r = KVM_USER_MEM_SLOTS;
2524                 break;
2525         case KVM_CAP_PV_MMU:    /* obsolete */
2526                 r = 0;
2527                 break;
2528         case KVM_CAP_IOMMU:
2529                 r = iommu_present(&pci_bus_type);
2530                 break;
2531         case KVM_CAP_MCE:
2532                 r = KVM_MAX_MCE_BANKS;
2533                 break;
2534         case KVM_CAP_XCRS:
2535                 r = cpu_has_xsave;
2536                 break;
2537         case KVM_CAP_TSC_CONTROL:
2538                 r = kvm_has_tsc_control;
2539                 break;
2540         case KVM_CAP_TSC_DEADLINE_TIMER:
2541                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542                 break;
2543         default:
2544                 r = 0;
2545                 break;
2546         }
2547         return r;
2548
2549 }
2550
2551 long kvm_arch_dev_ioctl(struct file *filp,
2552                         unsigned int ioctl, unsigned long arg)
2553 {
2554         void __user *argp = (void __user *)arg;
2555         long r;
2556
2557         switch (ioctl) {
2558         case KVM_GET_MSR_INDEX_LIST: {
2559                 struct kvm_msr_list __user *user_msr_list = argp;
2560                 struct kvm_msr_list msr_list;
2561                 unsigned n;
2562
2563                 r = -EFAULT;
2564                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565                         goto out;
2566                 n = msr_list.nmsrs;
2567                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569                         goto out;
2570                 r = -E2BIG;
2571                 if (n < msr_list.nmsrs)
2572                         goto out;
2573                 r = -EFAULT;
2574                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575                                  num_msrs_to_save * sizeof(u32)))
2576                         goto out;
2577                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578                                  &emulated_msrs,
2579                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580                         goto out;
2581                 r = 0;
2582                 break;
2583         }
2584         case KVM_GET_SUPPORTED_CPUID: {
2585                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2586                 struct kvm_cpuid2 cpuid;
2587
2588                 r = -EFAULT;
2589                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590                         goto out;
2591                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592                                                       cpuid_arg->entries);
2593                 if (r)
2594                         goto out;
2595
2596                 r = -EFAULT;
2597                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598                         goto out;
2599                 r = 0;
2600                 break;
2601         }
2602         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603                 u64 mce_cap;
2604
2605                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2606                 r = -EFAULT;
2607                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608                         goto out;
2609                 r = 0;
2610                 break;
2611         }
2612         default:
2613                 r = -EINVAL;
2614         }
2615 out:
2616         return r;
2617 }
2618
2619 static void wbinvd_ipi(void *garbage)
2620 {
2621         wbinvd();
2622 }
2623
2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2625 {
2626         return vcpu->kvm->arch.iommu_domain &&
2627                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2628 }
2629
2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2631 {
2632         /* Address WBINVD may be executed by guest */
2633         if (need_emulate_wbinvd(vcpu)) {
2634                 if (kvm_x86_ops->has_wbinvd_exit())
2635                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637                         smp_call_function_single(vcpu->cpu,
2638                                         wbinvd_ipi, NULL, 1);
2639         }
2640
2641         kvm_x86_ops->vcpu_load(vcpu, cpu);
2642
2643         /* Apply any externally detected TSC adjustments (due to suspend) */
2644         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646                 vcpu->arch.tsc_offset_adjustment = 0;
2647                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2648         }
2649
2650         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2653                 if (tsc_delta < 0)
2654                         mark_tsc_unstable("KVM discovered backwards TSC");
2655                 if (check_tsc_unstable()) {
2656                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657                                                 vcpu->arch.last_guest_tsc);
2658                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659                         vcpu->arch.tsc_catchup = 1;
2660                 }
2661                 /*
2662                  * On a host with synchronized TSC, there is no need to update
2663                  * kvmclock on vcpu->cpu migration
2664                  */
2665                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667                 if (vcpu->cpu != cpu)
2668                         kvm_migrate_timers(vcpu);
2669                 vcpu->cpu = cpu;
2670         }
2671
2672         accumulate_steal_time(vcpu);
2673         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2674 }
2675
2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2677 {
2678         kvm_x86_ops->vcpu_put(vcpu);
2679         kvm_put_guest_fpu(vcpu);
2680         vcpu->arch.last_host_tsc = native_read_tsc();
2681 }
2682
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684                                     struct kvm_lapic_state *s)
2685 {
2686         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2687
2688         return 0;
2689 }
2690
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692                                     struct kvm_lapic_state *s)
2693 {
2694         kvm_apic_post_state_restore(vcpu, s);
2695         update_cr8_intercept(vcpu);
2696
2697         return 0;
2698 }
2699
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701                                     struct kvm_interrupt *irq)
2702 {
2703         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704                 return -EINVAL;
2705         if (irqchip_in_kernel(vcpu->kvm))
2706                 return -ENXIO;
2707
2708         kvm_queue_interrupt(vcpu, irq->irq, false);
2709         kvm_make_request(KVM_REQ_EVENT, vcpu);
2710
2711         return 0;
2712 }
2713
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2715 {
2716         kvm_inject_nmi(vcpu);
2717
2718         return 0;
2719 }
2720
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722                                            struct kvm_tpr_access_ctl *tac)
2723 {
2724         if (tac->flags)
2725                 return -EINVAL;
2726         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727         return 0;
2728 }
2729
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731                                         u64 mcg_cap)
2732 {
2733         int r;
2734         unsigned bank_num = mcg_cap & 0xff, bank;
2735
2736         r = -EINVAL;
2737         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738                 goto out;
2739         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740                 goto out;
2741         r = 0;
2742         vcpu->arch.mcg_cap = mcg_cap;
2743         /* Init IA32_MCG_CTL to all 1s */
2744         if (mcg_cap & MCG_CTL_P)
2745                 vcpu->arch.mcg_ctl = ~(u64)0;
2746         /* Init IA32_MCi_CTL to all 1s */
2747         for (bank = 0; bank < bank_num; bank++)
2748                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749 out:
2750         return r;
2751 }
2752
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754                                       struct kvm_x86_mce *mce)
2755 {
2756         u64 mcg_cap = vcpu->arch.mcg_cap;
2757         unsigned bank_num = mcg_cap & 0xff;
2758         u64 *banks = vcpu->arch.mce_banks;
2759
2760         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761                 return -EINVAL;
2762         /*
2763          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764          * reporting is disabled
2765          */
2766         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767             vcpu->arch.mcg_ctl != ~(u64)0)
2768                 return 0;
2769         banks += 4 * mce->bank;
2770         /*
2771          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772          * reporting is disabled for the bank
2773          */
2774         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775                 return 0;
2776         if (mce->status & MCI_STATUS_UC) {
2777                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780                         return 0;
2781                 }
2782                 if (banks[1] & MCI_STATUS_VAL)
2783                         mce->status |= MCI_STATUS_OVER;
2784                 banks[2] = mce->addr;
2785                 banks[3] = mce->misc;
2786                 vcpu->arch.mcg_status = mce->mcg_status;
2787                 banks[1] = mce->status;
2788                 kvm_queue_exception(vcpu, MC_VECTOR);
2789         } else if (!(banks[1] & MCI_STATUS_VAL)
2790                    || !(banks[1] & MCI_STATUS_UC)) {
2791                 if (banks[1] & MCI_STATUS_VAL)
2792                         mce->status |= MCI_STATUS_OVER;
2793                 banks[2] = mce->addr;
2794                 banks[3] = mce->misc;
2795                 banks[1] = mce->status;
2796         } else
2797                 banks[1] |= MCI_STATUS_OVER;
2798         return 0;
2799 }
2800
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802                                                struct kvm_vcpu_events *events)
2803 {
2804         process_nmi(vcpu);
2805         events->exception.injected =
2806                 vcpu->arch.exception.pending &&
2807                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2808         events->exception.nr = vcpu->arch.exception.nr;
2809         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810         events->exception.pad = 0;
2811         events->exception.error_code = vcpu->arch.exception.error_code;
2812
2813         events->interrupt.injected =
2814                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815         events->interrupt.nr = vcpu->arch.interrupt.nr;
2816         events->interrupt.soft = 0;
2817         events->interrupt.shadow =
2818                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2819                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2820
2821         events->nmi.injected = vcpu->arch.nmi_injected;
2822         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824         events->nmi.pad = 0;
2825
2826         events->sipi_vector = vcpu->arch.sipi_vector;
2827
2828         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830                          | KVM_VCPUEVENT_VALID_SHADOW);
2831         memset(&events->reserved, 0, sizeof(events->reserved));
2832 }
2833
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835                                               struct kvm_vcpu_events *events)
2836 {
2837         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839                               | KVM_VCPUEVENT_VALID_SHADOW))
2840                 return -EINVAL;
2841
2842         process_nmi(vcpu);
2843         vcpu->arch.exception.pending = events->exception.injected;
2844         vcpu->arch.exception.nr = events->exception.nr;
2845         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846         vcpu->arch.exception.error_code = events->exception.error_code;
2847
2848         vcpu->arch.interrupt.pending = events->interrupt.injected;
2849         vcpu->arch.interrupt.nr = events->interrupt.nr;
2850         vcpu->arch.interrupt.soft = events->interrupt.soft;
2851         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2853                                                   events->interrupt.shadow);
2854
2855         vcpu->arch.nmi_injected = events->nmi.injected;
2856         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857                 vcpu->arch.nmi_pending = events->nmi.pending;
2858         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2859
2860         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861                 vcpu->arch.sipi_vector = events->sipi_vector;
2862
2863         kvm_make_request(KVM_REQ_EVENT, vcpu);
2864
2865         return 0;
2866 }
2867
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869                                              struct kvm_debugregs *dbgregs)
2870 {
2871         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872         dbgregs->dr6 = vcpu->arch.dr6;
2873         dbgregs->dr7 = vcpu->arch.dr7;
2874         dbgregs->flags = 0;
2875         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2876 }
2877
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879                                             struct kvm_debugregs *dbgregs)
2880 {
2881         if (dbgregs->flags)
2882                 return -EINVAL;
2883
2884         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885         vcpu->arch.dr6 = dbgregs->dr6;
2886         vcpu->arch.dr7 = dbgregs->dr7;
2887
2888         return 0;
2889 }
2890
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892                                          struct kvm_xsave *guest_xsave)
2893 {
2894         if (cpu_has_xsave)
2895                 memcpy(guest_xsave->region,
2896                         &vcpu->arch.guest_fpu.state->xsave,
2897                         xstate_size);
2898         else {
2899                 memcpy(guest_xsave->region,
2900                         &vcpu->arch.guest_fpu.state->fxsave,
2901                         sizeof(struct i387_fxsave_struct));
2902                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903                         XSTATE_FPSSE;
2904         }
2905 }
2906
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908                                         struct kvm_xsave *guest_xsave)
2909 {
2910         u64 xstate_bv =
2911                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2912
2913         if (cpu_has_xsave)
2914                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915                         guest_xsave->region, xstate_size);
2916         else {
2917                 if (xstate_bv & ~XSTATE_FPSSE)
2918                         return -EINVAL;
2919                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2921         }
2922         return 0;
2923 }
2924
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926                                         struct kvm_xcrs *guest_xcrs)
2927 {
2928         if (!cpu_has_xsave) {
2929                 guest_xcrs->nr_xcrs = 0;
2930                 return;
2931         }
2932
2933         guest_xcrs->nr_xcrs = 1;
2934         guest_xcrs->flags = 0;
2935         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940                                        struct kvm_xcrs *guest_xcrs)
2941 {
2942         int i, r = 0;
2943
2944         if (!cpu_has_xsave)
2945                 return -EINVAL;
2946
2947         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948                 return -EINVAL;
2949
2950         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951                 /* Only support XCR0 currently */
2952                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954                                 guest_xcrs->xcrs[0].value);
2955                         break;
2956                 }
2957         if (r)
2958                 r = -EINVAL;
2959         return r;
2960 }
2961
2962 /*
2963  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964  * stopped by the hypervisor.  This function will be called from the host only.
2965  * EINVAL is returned when the host attempts to set the flag for a guest that
2966  * does not support pv clocks.
2967  */
2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2969 {
2970         if (!vcpu->arch.time_page)
2971                 return -EINVAL;
2972         vcpu->arch.pvclock_set_guest_stopped_request = true;
2973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974         return 0;
2975 }
2976
2977 long kvm_arch_vcpu_ioctl(struct file *filp,
2978                          unsigned int ioctl, unsigned long arg)
2979 {
2980         struct kvm_vcpu *vcpu = filp->private_data;
2981         void __user *argp = (void __user *)arg;
2982         int r;
2983         union {
2984                 struct kvm_lapic_state *lapic;
2985                 struct kvm_xsave *xsave;
2986                 struct kvm_xcrs *xcrs;
2987                 void *buffer;
2988         } u;
2989
2990         u.buffer = NULL;
2991         switch (ioctl) {
2992         case KVM_GET_LAPIC: {
2993                 r = -EINVAL;
2994                 if (!vcpu->arch.apic)
2995                         goto out;
2996                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2997
2998                 r = -ENOMEM;
2999                 if (!u.lapic)
3000                         goto out;
3001                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002                 if (r)
3003                         goto out;
3004                 r = -EFAULT;
3005                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006                         goto out;
3007                 r = 0;
3008                 break;
3009         }
3010         case KVM_SET_LAPIC: {
3011                 r = -EINVAL;
3012                 if (!vcpu->arch.apic)
3013                         goto out;
3014                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015                 if (IS_ERR(u.lapic))
3016                         return PTR_ERR(u.lapic);
3017
3018                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019                 break;
3020         }
3021         case KVM_INTERRUPT: {
3022                 struct kvm_interrupt irq;
3023
3024                 r = -EFAULT;
3025                 if (copy_from_user(&irq, argp, sizeof irq))
3026                         goto out;
3027                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028                 break;
3029         }
3030         case KVM_NMI: {
3031                 r = kvm_vcpu_ioctl_nmi(vcpu);
3032                 break;
3033         }
3034         case KVM_SET_CPUID: {
3035                 struct kvm_cpuid __user *cpuid_arg = argp;
3036                 struct kvm_cpuid cpuid;
3037
3038                 r = -EFAULT;
3039                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040                         goto out;
3041                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042                 break;
3043         }
3044         case KVM_SET_CPUID2: {
3045                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3046                 struct kvm_cpuid2 cpuid;
3047
3048                 r = -EFAULT;
3049                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050                         goto out;
3051                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052                                               cpuid_arg->entries);
3053                 break;
3054         }
3055         case KVM_GET_CPUID2: {
3056                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3057                 struct kvm_cpuid2 cpuid;
3058
3059                 r = -EFAULT;
3060                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061                         goto out;
3062                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063                                               cpuid_arg->entries);
3064                 if (r)
3065                         goto out;
3066                 r = -EFAULT;
3067                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068                         goto out;
3069                 r = 0;
3070                 break;
3071         }
3072         case KVM_GET_MSRS:
3073                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074                 break;
3075         case KVM_SET_MSRS:
3076                 r = msr_io(vcpu, argp, do_set_msr, 0);
3077                 break;
3078         case KVM_TPR_ACCESS_REPORTING: {
3079                 struct kvm_tpr_access_ctl tac;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&tac, argp, sizeof tac))
3083                         goto out;
3084                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085                 if (r)
3086                         goto out;
3087                 r = -EFAULT;
3088                 if (copy_to_user(argp, &tac, sizeof tac))
3089                         goto out;
3090                 r = 0;
3091                 break;
3092         };
3093         case KVM_SET_VAPIC_ADDR: {
3094                 struct kvm_vapic_addr va;
3095
3096                 r = -EINVAL;
3097                 if (!irqchip_in_kernel(vcpu->kvm))
3098                         goto out;
3099                 r = -EFAULT;
3100                 if (copy_from_user(&va, argp, sizeof va))
3101                         goto out;
3102                 r = 0;
3103                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104                 break;
3105         }
3106         case KVM_X86_SETUP_MCE: {
3107                 u64 mcg_cap;
3108
3109                 r = -EFAULT;
3110                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111                         goto out;
3112                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113                 break;
3114         }
3115         case KVM_X86_SET_MCE: {
3116                 struct kvm_x86_mce mce;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&mce, argp, sizeof mce))
3120                         goto out;
3121                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122                 break;
3123         }
3124         case KVM_GET_VCPU_EVENTS: {
3125                 struct kvm_vcpu_events events;
3126
3127                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3128
3129                 r = -EFAULT;
3130                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131                         break;
3132                 r = 0;
3133                 break;
3134         }
3135         case KVM_SET_VCPU_EVENTS: {
3136                 struct kvm_vcpu_events events;
3137
3138                 r = -EFAULT;
3139                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140                         break;
3141
3142                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143                 break;
3144         }
3145         case KVM_GET_DEBUGREGS: {
3146                 struct kvm_debugregs dbgregs;
3147
3148                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3149
3150                 r = -EFAULT;
3151                 if (copy_to_user(argp, &dbgregs,
3152                                  sizeof(struct kvm_debugregs)))
3153                         break;
3154                 r = 0;
3155                 break;
3156         }
3157         case KVM_SET_DEBUGREGS: {
3158                 struct kvm_debugregs dbgregs;
3159
3160                 r = -EFAULT;
3161                 if (copy_from_user(&dbgregs, argp,
3162                                    sizeof(struct kvm_debugregs)))
3163                         break;
3164
3165                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166                 break;
3167         }
3168         case KVM_GET_XSAVE: {
3169                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170                 r = -ENOMEM;
3171                 if (!u.xsave)
3172                         break;
3173
3174                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3175
3176                 r = -EFAULT;
3177                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178                         break;
3179                 r = 0;
3180                 break;
3181         }
3182         case KVM_SET_XSAVE: {
3183                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184                 if (IS_ERR(u.xsave))
3185                         return PTR_ERR(u.xsave);
3186
3187                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188                 break;
3189         }
3190         case KVM_GET_XCRS: {
3191                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192                 r = -ENOMEM;
3193                 if (!u.xcrs)
3194                         break;
3195
3196                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(argp, u.xcrs,
3200                                  sizeof(struct kvm_xcrs)))
3201                         break;
3202                 r = 0;
3203                 break;
3204         }
3205         case KVM_SET_XCRS: {
3206                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207                 if (IS_ERR(u.xcrs))
3208                         return PTR_ERR(u.xcrs);
3209
3210                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211                 break;
3212         }
3213         case KVM_SET_TSC_KHZ: {
3214                 u32 user_tsc_khz;
3215
3216                 r = -EINVAL;
3217                 user_tsc_khz = (u32)arg;
3218
3219                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220                         goto out;
3221
3222                 if (user_tsc_khz == 0)
3223                         user_tsc_khz = tsc_khz;
3224
3225                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3226
3227                 r = 0;
3228                 goto out;
3229         }
3230         case KVM_GET_TSC_KHZ: {
3231                 r = vcpu->arch.virtual_tsc_khz;
3232                 goto out;
3233         }
3234         case KVM_KVMCLOCK_CTRL: {
3235                 r = kvm_set_guest_paused(vcpu);
3236                 goto out;
3237         }
3238         default:
3239                 r = -EINVAL;
3240         }
3241 out:
3242         kfree(u.buffer);
3243         return r;
3244 }
3245
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3247 {
3248         return VM_FAULT_SIGBUS;
3249 }
3250
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3252 {
3253         int ret;
3254
3255         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256                 return -EINVAL;
3257         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258         return ret;
3259 }
3260
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262                                               u64 ident_addr)
3263 {
3264         kvm->arch.ept_identity_map_addr = ident_addr;
3265         return 0;
3266 }
3267
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269                                           u32 kvm_nr_mmu_pages)
3270 {
3271         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272                 return -EINVAL;
3273
3274         mutex_lock(&kvm->slots_lock);
3275
3276         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3277         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3278
3279         mutex_unlock(&kvm->slots_lock);
3280         return 0;
3281 }
3282
3283 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3284 {
3285         return kvm->arch.n_max_mmu_pages;
3286 }
3287
3288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3289 {
3290         int r;
3291
3292         r = 0;
3293         switch (chip->chip_id) {
3294         case KVM_IRQCHIP_PIC_MASTER:
3295                 memcpy(&chip->chip.pic,
3296                         &pic_irqchip(kvm)->pics[0],
3297                         sizeof(struct kvm_pic_state));
3298                 break;
3299         case KVM_IRQCHIP_PIC_SLAVE:
3300                 memcpy(&chip->chip.pic,
3301                         &pic_irqchip(kvm)->pics[1],
3302                         sizeof(struct kvm_pic_state));
3303                 break;
3304         case KVM_IRQCHIP_IOAPIC:
3305                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3306                 break;
3307         default:
3308                 r = -EINVAL;
3309                 break;
3310         }
3311         return r;
3312 }
3313
3314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3315 {
3316         int r;
3317
3318         r = 0;
3319         switch (chip->chip_id) {
3320         case KVM_IRQCHIP_PIC_MASTER:
3321                 spin_lock(&pic_irqchip(kvm)->lock);
3322                 memcpy(&pic_irqchip(kvm)->pics[0],
3323                         &chip->chip.pic,
3324                         sizeof(struct kvm_pic_state));
3325                 spin_unlock(&pic_irqchip(kvm)->lock);
3326                 break;
3327         case KVM_IRQCHIP_PIC_SLAVE:
3328                 spin_lock(&pic_irqchip(kvm)->lock);
3329                 memcpy(&pic_irqchip(kvm)->pics[1],
3330                         &chip->chip.pic,
3331                         sizeof(struct kvm_pic_state));
3332                 spin_unlock(&pic_irqchip(kvm)->lock);
3333                 break;
3334         case KVM_IRQCHIP_IOAPIC:
3335                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3336                 break;
3337         default:
3338                 r = -EINVAL;
3339                 break;
3340         }
3341         kvm_pic_update_irq(pic_irqchip(kvm));
3342         return r;
3343 }
3344
3345 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3346 {
3347         int r = 0;
3348
3349         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3350         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3351         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3352         return r;
3353 }
3354
3355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3356 {
3357         int r = 0;
3358
3359         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3360         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3361         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3362         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3363         return r;
3364 }
3365
3366 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3367 {
3368         int r = 0;
3369
3370         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3371         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3372                 sizeof(ps->channels));
3373         ps->flags = kvm->arch.vpit->pit_state.flags;
3374         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3375         memset(&ps->reserved, 0, sizeof(ps->reserved));
3376         return r;
3377 }
3378
3379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3380 {
3381         int r = 0, start = 0;
3382         u32 prev_legacy, cur_legacy;
3383         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3384         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3385         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3386         if (!prev_legacy && cur_legacy)
3387                 start = 1;
3388         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3389                sizeof(kvm->arch.vpit->pit_state.channels));
3390         kvm->arch.vpit->pit_state.flags = ps->flags;
3391         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3392         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3393         return r;
3394 }
3395
3396 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3397                                  struct kvm_reinject_control *control)
3398 {
3399         if (!kvm->arch.vpit)
3400                 return -ENXIO;
3401         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3402         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3403         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3404         return 0;
3405 }
3406
3407 /**
3408  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3409  * @kvm: kvm instance
3410  * @log: slot id and address to which we copy the log
3411  *
3412  * We need to keep it in mind that VCPU threads can write to the bitmap
3413  * concurrently.  So, to avoid losing data, we keep the following order for
3414  * each bit:
3415  *
3416  *   1. Take a snapshot of the bit and clear it if needed.
3417  *   2. Write protect the corresponding page.
3418  *   3. Flush TLB's if needed.
3419  *   4. Copy the snapshot to the userspace.
3420  *
3421  * Between 2 and 3, the guest may write to the page using the remaining TLB
3422  * entry.  This is not a problem because the page will be reported dirty at
3423  * step 4 using the snapshot taken before and step 3 ensures that successive
3424  * writes will be logged for the next call.
3425  */
3426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3427 {
3428         int r;
3429         struct kvm_memory_slot *memslot;
3430         unsigned long n, i;
3431         unsigned long *dirty_bitmap;
3432         unsigned long *dirty_bitmap_buffer;
3433         bool is_dirty = false;
3434
3435         mutex_lock(&kvm->slots_lock);
3436
3437         r = -EINVAL;
3438         if (log->slot >= KVM_USER_MEM_SLOTS)
3439                 goto out;
3440
3441         memslot = id_to_memslot(kvm->memslots, log->slot);
3442
3443         dirty_bitmap = memslot->dirty_bitmap;
3444         r = -ENOENT;
3445         if (!dirty_bitmap)
3446                 goto out;
3447
3448         n = kvm_dirty_bitmap_bytes(memslot);
3449
3450         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3451         memset(dirty_bitmap_buffer, 0, n);
3452
3453         spin_lock(&kvm->mmu_lock);
3454
3455         for (i = 0; i < n / sizeof(long); i++) {
3456                 unsigned long mask;
3457                 gfn_t offset;
3458
3459                 if (!dirty_bitmap[i])
3460                         continue;
3461
3462                 is_dirty = true;
3463
3464                 mask = xchg(&dirty_bitmap[i], 0);
3465                 dirty_bitmap_buffer[i] = mask;
3466
3467                 offset = i * BITS_PER_LONG;
3468                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3469         }
3470         if (is_dirty)
3471                 kvm_flush_remote_tlbs(kvm);
3472
3473         spin_unlock(&kvm->mmu_lock);
3474
3475         r = -EFAULT;
3476         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3477                 goto out;
3478
3479         r = 0;
3480 out:
3481         mutex_unlock(&kvm->slots_lock);
3482         return r;
3483 }
3484
3485 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3486 {
3487         if (!irqchip_in_kernel(kvm))
3488                 return -ENXIO;
3489
3490         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3491                                         irq_event->irq, irq_event->level);
3492         return 0;
3493 }
3494
3495 long kvm_arch_vm_ioctl(struct file *filp,
3496                        unsigned int ioctl, unsigned long arg)
3497 {
3498         struct kvm *kvm = filp->private_data;
3499         void __user *argp = (void __user *)arg;
3500         int r = -ENOTTY;
3501         /*
3502          * This union makes it completely explicit to gcc-3.x
3503          * that these two variables' stack usage should be
3504          * combined, not added together.
3505          */
3506         union {
3507                 struct kvm_pit_state ps;
3508                 struct kvm_pit_state2 ps2;
3509                 struct kvm_pit_config pit_config;
3510         } u;
3511
3512         switch (ioctl) {
3513         case KVM_SET_TSS_ADDR:
3514                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3515                 break;
3516         case KVM_SET_IDENTITY_MAP_ADDR: {
3517                 u64 ident_addr;
3518
3519                 r = -EFAULT;
3520                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3521                         goto out;
3522                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3523                 break;
3524         }
3525         case KVM_SET_NR_MMU_PAGES:
3526                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3527                 break;
3528         case KVM_GET_NR_MMU_PAGES:
3529                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3530                 break;
3531         case KVM_CREATE_IRQCHIP: {
3532                 struct kvm_pic *vpic;
3533
3534                 mutex_lock(&kvm->lock);
3535                 r = -EEXIST;
3536                 if (kvm->arch.vpic)
3537                         goto create_irqchip_unlock;
3538                 r = -EINVAL;
3539                 if (atomic_read(&kvm->online_vcpus))
3540                         goto create_irqchip_unlock;
3541                 r = -ENOMEM;
3542                 vpic = kvm_create_pic(kvm);
3543                 if (vpic) {
3544                         r = kvm_ioapic_init(kvm);
3545                         if (r) {
3546                                 mutex_lock(&kvm->slots_lock);
3547                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3548                                                           &vpic->dev_master);
3549                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550                                                           &vpic->dev_slave);
3551                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552                                                           &vpic->dev_eclr);
3553                                 mutex_unlock(&kvm->slots_lock);
3554                                 kfree(vpic);
3555                                 goto create_irqchip_unlock;
3556                         }
3557                 } else
3558                         goto create_irqchip_unlock;
3559                 smp_wmb();
3560                 kvm->arch.vpic = vpic;
3561                 smp_wmb();
3562                 r = kvm_setup_default_irq_routing(kvm);
3563                 if (r) {
3564                         mutex_lock(&kvm->slots_lock);
3565                         mutex_lock(&kvm->irq_lock);
3566                         kvm_ioapic_destroy(kvm);
3567                         kvm_destroy_pic(kvm);
3568                         mutex_unlock(&kvm->irq_lock);
3569                         mutex_unlock(&kvm->slots_lock);
3570                 }
3571         create_irqchip_unlock:
3572                 mutex_unlock(&kvm->lock);
3573                 break;
3574         }
3575         case KVM_CREATE_PIT:
3576                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3577                 goto create_pit;
3578         case KVM_CREATE_PIT2:
3579                 r = -EFAULT;
3580                 if (copy_from_user(&u.pit_config, argp,
3581                                    sizeof(struct kvm_pit_config)))
3582                         goto out;
3583         create_pit:
3584                 mutex_lock(&kvm->slots_lock);
3585                 r = -EEXIST;
3586                 if (kvm->arch.vpit)
3587                         goto create_pit_unlock;
3588                 r = -ENOMEM;
3589                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3590                 if (kvm->arch.vpit)
3591                         r = 0;
3592         create_pit_unlock:
3593                 mutex_unlock(&kvm->slots_lock);
3594                 break;
3595         case KVM_GET_IRQCHIP: {
3596                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3597                 struct kvm_irqchip *chip;
3598
3599                 chip = memdup_user(argp, sizeof(*chip));
3600                 if (IS_ERR(chip)) {
3601                         r = PTR_ERR(chip);
3602                         goto out;
3603                 }
3604
3605                 r = -ENXIO;
3606                 if (!irqchip_in_kernel(kvm))
3607                         goto get_irqchip_out;
3608                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3609                 if (r)
3610                         goto get_irqchip_out;
3611                 r = -EFAULT;
3612                 if (copy_to_user(argp, chip, sizeof *chip))
3613                         goto get_irqchip_out;
3614                 r = 0;
3615         get_irqchip_out:
3616                 kfree(chip);
3617                 break;
3618         }
3619         case KVM_SET_IRQCHIP: {
3620                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3621                 struct kvm_irqchip *chip;
3622
3623                 chip = memdup_user(argp, sizeof(*chip));
3624                 if (IS_ERR(chip)) {
3625                         r = PTR_ERR(chip);
3626                         goto out;
3627                 }
3628
3629                 r = -ENXIO;
3630                 if (!irqchip_in_kernel(kvm))
3631                         goto set_irqchip_out;
3632                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3633                 if (r)
3634                         goto set_irqchip_out;
3635                 r = 0;
3636         set_irqchip_out:
3637                 kfree(chip);
3638                 break;
3639         }
3640         case KVM_GET_PIT: {
3641                 r = -EFAULT;
3642                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3643                         goto out;
3644                 r = -ENXIO;
3645                 if (!kvm->arch.vpit)
3646                         goto out;
3647                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3648                 if (r)
3649                         goto out;
3650                 r = -EFAULT;
3651                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3652                         goto out;
3653                 r = 0;
3654                 break;
3655         }
3656         case KVM_SET_PIT: {
3657                 r = -EFAULT;
3658                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3659                         goto out;
3660                 r = -ENXIO;
3661                 if (!kvm->arch.vpit)
3662                         goto out;
3663                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3664                 break;
3665         }
3666         case KVM_GET_PIT2: {
3667                 r = -ENXIO;
3668                 if (!kvm->arch.vpit)
3669                         goto out;
3670                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3671                 if (r)
3672                         goto out;
3673                 r = -EFAULT;
3674                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3675                         goto out;
3676                 r = 0;
3677                 break;
3678         }
3679         case KVM_SET_PIT2: {
3680                 r = -EFAULT;
3681                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3682                         goto out;
3683                 r = -ENXIO;
3684                 if (!kvm->arch.vpit)
3685                         goto out;
3686                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3687                 break;
3688         }
3689         case KVM_REINJECT_CONTROL: {
3690                 struct kvm_reinject_control control;
3691                 r =  -EFAULT;
3692                 if (copy_from_user(&control, argp, sizeof(control)))
3693                         goto out;
3694                 r = kvm_vm_ioctl_reinject(kvm, &control);
3695                 break;
3696         }
3697         case KVM_XEN_HVM_CONFIG: {
3698                 r = -EFAULT;
3699                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3700                                    sizeof(struct kvm_xen_hvm_config)))
3701                         goto out;
3702                 r = -EINVAL;
3703                 if (kvm->arch.xen_hvm_config.flags)
3704                         goto out;
3705                 r = 0;
3706                 break;
3707         }
3708         case KVM_SET_CLOCK: {
3709                 struct kvm_clock_data user_ns;
3710                 u64 now_ns;
3711                 s64 delta;
3712
3713                 r = -EFAULT;
3714                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3715                         goto out;
3716
3717                 r = -EINVAL;
3718                 if (user_ns.flags)
3719                         goto out;
3720
3721                 r = 0;
3722                 local_irq_disable();
3723                 now_ns = get_kernel_ns();
3724                 delta = user_ns.clock - now_ns;
3725                 local_irq_enable();
3726                 kvm->arch.kvmclock_offset = delta;
3727                 break;
3728         }
3729         case KVM_GET_CLOCK: {
3730                 struct kvm_clock_data user_ns;
3731                 u64 now_ns;
3732
3733                 local_irq_disable();
3734                 now_ns = get_kernel_ns();
3735                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3736                 local_irq_enable();
3737                 user_ns.flags = 0;
3738                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3739
3740                 r = -EFAULT;
3741                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3742                         goto out;
3743                 r = 0;
3744                 break;
3745         }
3746
3747         default:
3748                 ;
3749         }
3750 out:
3751         return r;
3752 }
3753
3754 static void kvm_init_msr_list(void)
3755 {
3756         u32 dummy[2];
3757         unsigned i, j;
3758
3759         /* skip the first msrs in the list. KVM-specific */
3760         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3761                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3762                         continue;
3763                 if (j < i)
3764                         msrs_to_save[j] = msrs_to_save[i];
3765                 j++;
3766         }
3767         num_msrs_to_save = j;
3768 }
3769
3770 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3771                            const void *v)
3772 {
3773         int handled = 0;
3774         int n;
3775
3776         do {
3777                 n = min(len, 8);
3778                 if (!(vcpu->arch.apic &&
3779                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3780                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3781                         break;
3782                 handled += n;
3783                 addr += n;
3784                 len -= n;
3785                 v += n;
3786         } while (len);
3787
3788         return handled;
3789 }
3790
3791 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3792 {
3793         int handled = 0;
3794         int n;
3795
3796         do {
3797                 n = min(len, 8);
3798                 if (!(vcpu->arch.apic &&
3799                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3800                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3801                         break;
3802                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3803                 handled += n;
3804                 addr += n;
3805                 len -= n;
3806                 v += n;
3807         } while (len);
3808
3809         return handled;
3810 }
3811
3812 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3813                         struct kvm_segment *var, int seg)
3814 {
3815         kvm_x86_ops->set_segment(vcpu, var, seg);
3816 }
3817
3818 void kvm_get_segment(struct kvm_vcpu *vcpu,
3819                      struct kvm_segment *var, int seg)
3820 {
3821         kvm_x86_ops->get_segment(vcpu, var, seg);
3822 }
3823
3824 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3825 {
3826         gpa_t t_gpa;
3827         struct x86_exception exception;
3828
3829         BUG_ON(!mmu_is_nested(vcpu));
3830
3831         /* NPT walks are always user-walks */
3832         access |= PFERR_USER_MASK;
3833         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3834
3835         return t_gpa;
3836 }
3837
3838 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3839                               struct x86_exception *exception)
3840 {
3841         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3842         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3843 }
3844
3845  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3846                                 struct x86_exception *exception)
3847 {
3848         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3849         access |= PFERR_FETCH_MASK;
3850         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3851 }
3852
3853 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3854                                struct x86_exception *exception)
3855 {
3856         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3857         access |= PFERR_WRITE_MASK;
3858         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3859 }
3860
3861 /* uses this to access any guest's mapped memory without checking CPL */
3862 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3863                                 struct x86_exception *exception)
3864 {
3865         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3866 }
3867
3868 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3869                                       struct kvm_vcpu *vcpu, u32 access,
3870                                       struct x86_exception *exception)
3871 {
3872         void *data = val;
3873         int r = X86EMUL_CONTINUE;
3874
3875         while (bytes) {
3876                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3877                                                             exception);
3878                 unsigned offset = addr & (PAGE_SIZE-1);
3879                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3880                 int ret;
3881
3882                 if (gpa == UNMAPPED_GVA)
3883                         return X86EMUL_PROPAGATE_FAULT;
3884                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3885                 if (ret < 0) {
3886                         r = X86EMUL_IO_NEEDED;
3887                         goto out;
3888                 }
3889
3890                 bytes -= toread;
3891                 data += toread;
3892                 addr += toread;
3893         }
3894 out:
3895         return r;
3896 }
3897
3898 /* used for instruction fetching */
3899 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3900                                 gva_t addr, void *val, unsigned int bytes,
3901                                 struct x86_exception *exception)
3902 {
3903         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3904         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3905
3906         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3907                                           access | PFERR_FETCH_MASK,
3908                                           exception);
3909 }
3910
3911 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3912                                gva_t addr, void *val, unsigned int bytes,
3913                                struct x86_exception *exception)
3914 {
3915         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3916         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3917
3918         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3919                                           exception);
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3922
3923 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3924                                       gva_t addr, void *val, unsigned int bytes,
3925                                       struct x86_exception *exception)
3926 {
3927         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3928         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3929 }
3930
3931 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3932                                        gva_t addr, void *val,
3933                                        unsigned int bytes,
3934                                        struct x86_exception *exception)
3935 {
3936         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3937         void *data = val;
3938         int r = X86EMUL_CONTINUE;
3939
3940         while (bytes) {
3941                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3942                                                              PFERR_WRITE_MASK,
3943                                                              exception);
3944                 unsigned offset = addr & (PAGE_SIZE-1);
3945                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3946                 int ret;
3947
3948                 if (gpa == UNMAPPED_GVA)
3949                         return X86EMUL_PROPAGATE_FAULT;
3950                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3951                 if (ret < 0) {
3952                         r = X86EMUL_IO_NEEDED;
3953                         goto out;
3954                 }
3955
3956                 bytes -= towrite;
3957                 data += towrite;
3958                 addr += towrite;
3959         }
3960 out:
3961         return r;
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3964
3965 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3966                                 gpa_t *gpa, struct x86_exception *exception,
3967                                 bool write)
3968 {
3969         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3970                 | (write ? PFERR_WRITE_MASK : 0);
3971
3972         if (vcpu_match_mmio_gva(vcpu, gva)
3973             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3974                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3975                                         (gva & (PAGE_SIZE - 1));
3976                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3977                 return 1;
3978         }
3979
3980         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3981
3982         if (*gpa == UNMAPPED_GVA)
3983                 return -1;
3984
3985         /* For APIC access vmexit */
3986         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3987                 return 1;
3988
3989         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3990                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3991                 return 1;
3992         }
3993
3994         return 0;
3995 }
3996
3997 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3998                         const void *val, int bytes)
3999 {
4000         int ret;
4001
4002         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4003         if (ret < 0)
4004                 return 0;
4005         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4006         return 1;
4007 }
4008
4009 struct read_write_emulator_ops {
4010         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4011                                   int bytes);
4012         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4013                                   void *val, int bytes);
4014         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015                                int bytes, void *val);
4016         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017                                     void *val, int bytes);
4018         bool write;
4019 };
4020
4021 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4022 {
4023         if (vcpu->mmio_read_completed) {
4024                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4025                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4026                 vcpu->mmio_read_completed = 0;
4027                 return 1;
4028         }
4029
4030         return 0;
4031 }
4032
4033 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4034                         void *val, int bytes)
4035 {
4036         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4037 }
4038
4039 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4040                          void *val, int bytes)
4041 {
4042         return emulator_write_phys(vcpu, gpa, val, bytes);
4043 }
4044
4045 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4046 {
4047         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4048         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4049 }
4050
4051 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4052                           void *val, int bytes)
4053 {
4054         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4055         return X86EMUL_IO_NEEDED;
4056 }
4057
4058 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4059                            void *val, int bytes)
4060 {
4061         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4062
4063         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4064         return X86EMUL_CONTINUE;
4065 }
4066
4067 static const struct read_write_emulator_ops read_emultor = {
4068         .read_write_prepare = read_prepare,
4069         .read_write_emulate = read_emulate,
4070         .read_write_mmio = vcpu_mmio_read,
4071         .read_write_exit_mmio = read_exit_mmio,
4072 };
4073
4074 static const struct read_write_emulator_ops write_emultor = {
4075         .read_write_emulate = write_emulate,
4076         .read_write_mmio = write_mmio,
4077         .read_write_exit_mmio = write_exit_mmio,
4078         .write = true,
4079 };
4080
4081 static int emulator_read_write_onepage(unsigned long addr, void *val,
4082                                        unsigned int bytes,
4083                                        struct x86_exception *exception,
4084                                        struct kvm_vcpu *vcpu,
4085                                        const struct read_write_emulator_ops *ops)
4086 {
4087         gpa_t gpa;
4088         int handled, ret;
4089         bool write = ops->write;
4090         struct kvm_mmio_fragment *frag;
4091
4092         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4093
4094         if (ret < 0)
4095                 return X86EMUL_PROPAGATE_FAULT;
4096
4097         /* For APIC access vmexit */
4098         if (ret)
4099                 goto mmio;
4100
4101         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4102                 return X86EMUL_CONTINUE;
4103
4104 mmio:
4105         /*
4106          * Is this MMIO handled locally?
4107          */
4108         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4109         if (handled == bytes)
4110                 return X86EMUL_CONTINUE;
4111
4112         gpa += handled;
4113         bytes -= handled;
4114         val += handled;
4115
4116         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4117         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4118         frag->gpa = gpa;
4119         frag->data = val;
4120         frag->len = bytes;
4121         return X86EMUL_CONTINUE;
4122 }
4123
4124 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4125                         void *val, unsigned int bytes,
4126                         struct x86_exception *exception,
4127                         const struct read_write_emulator_ops *ops)
4128 {
4129         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4130         gpa_t gpa;
4131         int rc;
4132
4133         if (ops->read_write_prepare &&
4134                   ops->read_write_prepare(vcpu, val, bytes))
4135                 return X86EMUL_CONTINUE;
4136
4137         vcpu->mmio_nr_fragments = 0;
4138
4139         /* Crossing a page boundary? */
4140         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4141                 int now;
4142
4143                 now = -addr & ~PAGE_MASK;
4144                 rc = emulator_read_write_onepage(addr, val, now, exception,
4145                                                  vcpu, ops);
4146
4147                 if (rc != X86EMUL_CONTINUE)
4148                         return rc;
4149                 addr += now;
4150                 val += now;
4151                 bytes -= now;
4152         }
4153
4154         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4155                                          vcpu, ops);
4156         if (rc != X86EMUL_CONTINUE)
4157                 return rc;
4158
4159         if (!vcpu->mmio_nr_fragments)
4160                 return rc;
4161
4162         gpa = vcpu->mmio_fragments[0].gpa;
4163
4164         vcpu->mmio_needed = 1;
4165         vcpu->mmio_cur_fragment = 0;
4166
4167         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4168         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4169         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4170         vcpu->run->mmio.phys_addr = gpa;
4171
4172         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4173 }
4174
4175 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4176                                   unsigned long addr,
4177                                   void *val,
4178                                   unsigned int bytes,
4179                                   struct x86_exception *exception)
4180 {
4181         return emulator_read_write(ctxt, addr, val, bytes,
4182                                    exception, &read_emultor);
4183 }
4184
4185 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4186                             unsigned long addr,
4187                             const void *val,
4188                             unsigned int bytes,
4189                             struct x86_exception *exception)
4190 {
4191         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4192                                    exception, &write_emultor);
4193 }
4194
4195 #define CMPXCHG_TYPE(t, ptr, old, new) \
4196         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4197
4198 #ifdef CONFIG_X86_64
4199 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4200 #else
4201 #  define CMPXCHG64(ptr, old, new) \
4202         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4203 #endif
4204
4205 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4206                                      unsigned long addr,
4207                                      const void *old,
4208                                      const void *new,
4209                                      unsigned int bytes,
4210                                      struct x86_exception *exception)
4211 {
4212         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4213         gpa_t gpa;
4214         struct page *page;
4215         char *kaddr;
4216         bool exchanged;
4217
4218         /* guests cmpxchg8b have to be emulated atomically */
4219         if (bytes > 8 || (bytes & (bytes - 1)))
4220                 goto emul_write;
4221
4222         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4223
4224         if (gpa == UNMAPPED_GVA ||
4225             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4226                 goto emul_write;
4227
4228         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4229                 goto emul_write;
4230
4231         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4232         if (is_error_page(page))
4233                 goto emul_write;
4234
4235         kaddr = kmap_atomic(page);
4236         kaddr += offset_in_page(gpa);
4237         switch (bytes) {
4238         case 1:
4239                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4240                 break;
4241         case 2:
4242                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4243                 break;
4244         case 4:
4245                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4246                 break;
4247         case 8:
4248                 exchanged = CMPXCHG64(kaddr, old, new);
4249                 break;
4250         default:
4251                 BUG();
4252         }
4253         kunmap_atomic(kaddr);
4254         kvm_release_page_dirty(page);
4255
4256         if (!exchanged)
4257                 return X86EMUL_CMPXCHG_FAILED;
4258
4259         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4260
4261         return X86EMUL_CONTINUE;
4262
4263 emul_write:
4264         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4265
4266         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4267 }
4268
4269 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4270 {
4271         /* TODO: String I/O for in kernel device */
4272         int r;
4273
4274         if (vcpu->arch.pio.in)
4275                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4276                                     vcpu->arch.pio.size, pd);
4277         else
4278                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4279                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4280                                      pd);
4281         return r;
4282 }
4283
4284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4285                                unsigned short port, void *val,
4286                                unsigned int count, bool in)
4287 {
4288         trace_kvm_pio(!in, port, size, count);
4289
4290         vcpu->arch.pio.port = port;
4291         vcpu->arch.pio.in = in;
4292         vcpu->arch.pio.count  = count;
4293         vcpu->arch.pio.size = size;
4294
4295         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4296                 vcpu->arch.pio.count = 0;
4297                 return 1;
4298         }
4299
4300         vcpu->run->exit_reason = KVM_EXIT_IO;
4301         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4302         vcpu->run->io.size = size;
4303         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4304         vcpu->run->io.count = count;
4305         vcpu->run->io.port = port;
4306
4307         return 0;
4308 }
4309
4310 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4311                                     int size, unsigned short port, void *val,
4312                                     unsigned int count)
4313 {
4314         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4315         int ret;
4316
4317         if (vcpu->arch.pio.count)
4318                 goto data_avail;
4319
4320         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4321         if (ret) {
4322 data_avail:
4323                 memcpy(val, vcpu->arch.pio_data, size * count);
4324                 vcpu->arch.pio.count = 0;
4325                 return 1;
4326         }
4327
4328         return 0;
4329 }
4330
4331 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4332                                      int size, unsigned short port,
4333                                      const void *val, unsigned int count)
4334 {
4335         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4336
4337         memcpy(vcpu->arch.pio_data, val, size * count);
4338         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4339 }
4340
4341 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4342 {
4343         return kvm_x86_ops->get_segment_base(vcpu, seg);
4344 }
4345
4346 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4347 {
4348         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4349 }
4350
4351 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4352 {
4353         if (!need_emulate_wbinvd(vcpu))
4354                 return X86EMUL_CONTINUE;
4355
4356         if (kvm_x86_ops->has_wbinvd_exit()) {
4357                 int cpu = get_cpu();
4358
4359                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4360                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4361                                 wbinvd_ipi, NULL, 1);
4362                 put_cpu();
4363                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4364         } else
4365                 wbinvd();
4366         return X86EMUL_CONTINUE;
4367 }
4368 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4369
4370 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4371 {
4372         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4373 }
4374
4375 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4376 {
4377         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4378 }
4379
4380 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4381 {
4382
4383         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4384 }
4385
4386 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4387 {
4388         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4389 }
4390
4391 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4392 {
4393         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394         unsigned long value;
4395
4396         switch (cr) {
4397         case 0:
4398                 value = kvm_read_cr0(vcpu);
4399                 break;
4400         case 2:
4401                 value = vcpu->arch.cr2;
4402                 break;
4403         case 3:
4404                 value = kvm_read_cr3(vcpu);
4405                 break;
4406         case 4:
4407                 value = kvm_read_cr4(vcpu);
4408                 break;
4409         case 8:
4410                 value = kvm_get_cr8(vcpu);
4411                 break;
4412         default:
4413                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4414                 return 0;
4415         }
4416
4417         return value;
4418 }
4419
4420 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4421 {
4422         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423         int res = 0;
4424
4425         switch (cr) {
4426         case 0:
4427                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4428                 break;
4429         case 2:
4430                 vcpu->arch.cr2 = val;
4431                 break;
4432         case 3:
4433                 res = kvm_set_cr3(vcpu, val);
4434                 break;
4435         case 4:
4436                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4437                 break;
4438         case 8:
4439                 res = kvm_set_cr8(vcpu, val);
4440                 break;
4441         default:
4442                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4443                 res = -1;
4444         }
4445
4446         return res;
4447 }
4448
4449 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4450 {
4451         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4452 }
4453
4454 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4455 {
4456         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4457 }
4458
4459 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4460 {
4461         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4462 }
4463
4464 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4465 {
4466         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4467 }
4468
4469 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4470 {
4471         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4472 }
4473
4474 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4475 {
4476         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4477 }
4478
4479 static unsigned long emulator_get_cached_segment_base(
4480         struct x86_emulate_ctxt *ctxt, int seg)
4481 {
4482         return get_segment_base(emul_to_vcpu(ctxt), seg);
4483 }
4484
4485 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4486                                  struct desc_struct *desc, u32 *base3,
4487                                  int seg)
4488 {
4489         struct kvm_segment var;
4490
4491         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4492         *selector = var.selector;
4493
4494         if (var.unusable) {
4495                 memset(desc, 0, sizeof(*desc));
4496                 return false;
4497         }
4498
4499         if (var.g)
4500                 var.limit >>= 12;
4501         set_desc_limit(desc, var.limit);
4502         set_desc_base(desc, (unsigned long)var.base);
4503 #ifdef CONFIG_X86_64
4504         if (base3)
4505                 *base3 = var.base >> 32;
4506 #endif
4507         desc->type = var.type;
4508         desc->s = var.s;
4509         desc->dpl = var.dpl;
4510         desc->p = var.present;
4511         desc->avl = var.avl;
4512         desc->l = var.l;
4513         desc->d = var.db;
4514         desc->g = var.g;
4515
4516         return true;
4517 }
4518
4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520                                  struct desc_struct *desc, u32 base3,
4521                                  int seg)
4522 {
4523         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524         struct kvm_segment var;
4525
4526         var.selector = selector;
4527         var.base = get_desc_base(desc);
4528 #ifdef CONFIG_X86_64
4529         var.base |= ((u64)base3) << 32;
4530 #endif
4531         var.limit = get_desc_limit(desc);
4532         if (desc->g)
4533                 var.limit = (var.limit << 12) | 0xfff;
4534         var.type = desc->type;
4535         var.present = desc->p;
4536         var.dpl = desc->dpl;
4537         var.db = desc->d;
4538         var.s = desc->s;
4539         var.l = desc->l;
4540         var.g = desc->g;
4541         var.avl = desc->avl;
4542         var.present = desc->p;
4543         var.unusable = !var.present;
4544         var.padding = 0;
4545
4546         kvm_set_segment(vcpu, &var, seg);
4547         return;
4548 }
4549
4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551                             u32 msr_index, u64 *pdata)
4552 {
4553         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4554 }
4555
4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557                             u32 msr_index, u64 data)
4558 {
4559         struct msr_data msr;
4560
4561         msr.data = data;
4562         msr.index = msr_index;
4563         msr.host_initiated = false;
4564         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4565 }
4566
4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568                              u32 pmc, u64 *pdata)
4569 {
4570         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4571 }
4572
4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4574 {
4575         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4576 }
4577
4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4579 {
4580         preempt_disable();
4581         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4582         /*
4583          * CR0.TS may reference the host fpu state, not the guest fpu state,
4584          * so it may be clear at this point.
4585          */
4586         clts();
4587 }
4588
4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4590 {
4591         preempt_enable();
4592 }
4593
4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595                               struct x86_instruction_info *info,
4596                               enum x86_intercept_stage stage)
4597 {
4598         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4599 }
4600
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4603 {
4604         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4605 }
4606
4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4608 {
4609         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4610 }
4611
4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4613 {
4614         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4615 }
4616
4617 static const struct x86_emulate_ops emulate_ops = {
4618         .read_gpr            = emulator_read_gpr,
4619         .write_gpr           = emulator_write_gpr,
4620         .read_std            = kvm_read_guest_virt_system,
4621         .write_std           = kvm_write_guest_virt_system,
4622         .fetch               = kvm_fetch_guest_virt,
4623         .read_emulated       = emulator_read_emulated,
4624         .write_emulated      = emulator_write_emulated,
4625         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4626         .invlpg              = emulator_invlpg,
4627         .pio_in_emulated     = emulator_pio_in_emulated,
4628         .pio_out_emulated    = emulator_pio_out_emulated,
4629         .get_segment         = emulator_get_segment,
4630         .set_segment         = emulator_set_segment,
4631         .get_cached_segment_base = emulator_get_cached_segment_base,
4632         .get_gdt             = emulator_get_gdt,
4633         .get_idt             = emulator_get_idt,
4634         .set_gdt             = emulator_set_gdt,
4635         .set_idt             = emulator_set_idt,
4636         .get_cr              = emulator_get_cr,
4637         .set_cr              = emulator_set_cr,
4638         .set_rflags          = emulator_set_rflags,
4639         .cpl                 = emulator_get_cpl,
4640         .get_dr              = emulator_get_dr,
4641         .set_dr              = emulator_set_dr,
4642         .set_msr             = emulator_set_msr,
4643         .get_msr             = emulator_get_msr,
4644         .read_pmc            = emulator_read_pmc,
4645         .halt                = emulator_halt,
4646         .wbinvd              = emulator_wbinvd,
4647         .fix_hypercall       = emulator_fix_hypercall,
4648         .get_fpu             = emulator_get_fpu,
4649         .put_fpu             = emulator_put_fpu,
4650         .intercept           = emulator_intercept,
4651         .get_cpuid           = emulator_get_cpuid,
4652 };
4653
4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4655 {
4656         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4657         /*
4658          * an sti; sti; sequence only disable interrupts for the first
4659          * instruction. So, if the last instruction, be it emulated or
4660          * not, left the system with the INT_STI flag enabled, it
4661          * means that the last instruction is an sti. We should not
4662          * leave the flag on in this case. The same goes for mov ss
4663          */
4664         if (!(int_shadow & mask))
4665                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4666 }
4667
4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4669 {
4670         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671         if (ctxt->exception.vector == PF_VECTOR)
4672                 kvm_propagate_fault(vcpu, &ctxt->exception);
4673         else if (ctxt->exception.error_code_valid)
4674                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675                                       ctxt->exception.error_code);
4676         else
4677                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4678 }
4679
4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4681 {
4682         memset(&ctxt->twobyte, 0,
4683                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4684
4685         ctxt->fetch.start = 0;
4686         ctxt->fetch.end = 0;
4687         ctxt->io_read.pos = 0;
4688         ctxt->io_read.end = 0;
4689         ctxt->mem_read.pos = 0;
4690         ctxt->mem_read.end = 0;
4691 }
4692
4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4694 {
4695         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696         int cs_db, cs_l;
4697
4698         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4699
4700         ctxt->eflags = kvm_get_rflags(vcpu);
4701         ctxt->eip = kvm_rip_read(vcpu);
4702         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4703                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4704                      cs_l                               ? X86EMUL_MODE_PROT64 :
4705                      cs_db                              ? X86EMUL_MODE_PROT32 :
4706                                                           X86EMUL_MODE_PROT16;
4707         ctxt->guest_mode = is_guest_mode(vcpu);
4708
4709         init_decode_cache(ctxt);
4710         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4711 }
4712
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4714 {
4715         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716         int ret;
4717
4718         init_emulate_ctxt(vcpu);
4719
4720         ctxt->op_bytes = 2;
4721         ctxt->ad_bytes = 2;
4722         ctxt->_eip = ctxt->eip + inc_eip;
4723         ret = emulate_int_real(ctxt, irq);
4724
4725         if (ret != X86EMUL_CONTINUE)
4726                 return EMULATE_FAIL;
4727
4728         ctxt->eip = ctxt->_eip;
4729         kvm_rip_write(vcpu, ctxt->eip);
4730         kvm_set_rflags(vcpu, ctxt->eflags);
4731
4732         if (irq == NMI_VECTOR)
4733                 vcpu->arch.nmi_pending = 0;
4734         else
4735                 vcpu->arch.interrupt.pending = false;
4736
4737         return EMULATE_DONE;
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4740
4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4742 {
4743         int r = EMULATE_DONE;
4744
4745         ++vcpu->stat.insn_emulation_fail;
4746         trace_kvm_emulate_insn_failed(vcpu);
4747         if (!is_guest_mode(vcpu)) {
4748                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750                 vcpu->run->internal.ndata = 0;
4751                 r = EMULATE_FAIL;
4752         }
4753         kvm_queue_exception(vcpu, UD_VECTOR);
4754
4755         return r;
4756 }
4757
4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4759                                   bool write_fault_to_shadow_pgtable)
4760 {
4761         gpa_t gpa = cr2;
4762         pfn_t pfn;
4763
4764         if (!vcpu->arch.mmu.direct_map) {
4765                 /*
4766                  * Write permission should be allowed since only
4767                  * write access need to be emulated.
4768                  */
4769                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4770
4771                 /*
4772                  * If the mapping is invalid in guest, let cpu retry
4773                  * it to generate fault.
4774                  */
4775                 if (gpa == UNMAPPED_GVA)
4776                         return true;
4777         }
4778
4779         /*
4780          * Do not retry the unhandleable instruction if it faults on the
4781          * readonly host memory, otherwise it will goto a infinite loop:
4782          * retry instruction -> write #PF -> emulation fail -> retry
4783          * instruction -> ...
4784          */
4785         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786
4787         /*
4788          * If the instruction failed on the error pfn, it can not be fixed,
4789          * report the error to userspace.
4790          */
4791         if (is_error_noslot_pfn(pfn))
4792                 return false;
4793
4794         kvm_release_pfn_clean(pfn);
4795
4796         /* The instructions are well-emulated on direct mmu. */
4797         if (vcpu->arch.mmu.direct_map) {
4798                 unsigned int indirect_shadow_pages;
4799
4800                 spin_lock(&vcpu->kvm->mmu_lock);
4801                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4802                 spin_unlock(&vcpu->kvm->mmu_lock);
4803
4804                 if (indirect_shadow_pages)
4805                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4806
4807                 return true;
4808         }
4809
4810         /*
4811          * if emulation was due to access to shadowed page table
4812          * and it failed try to unshadow page and re-enter the
4813          * guest to let CPU execute the instruction.
4814          */
4815         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4816
4817         /*
4818          * If the access faults on its page table, it can not
4819          * be fixed by unprotecting shadow page and it should
4820          * be reported to userspace.
4821          */
4822         return !write_fault_to_shadow_pgtable;
4823 }
4824
4825 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4826                               unsigned long cr2,  int emulation_type)
4827 {
4828         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4829         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4830
4831         last_retry_eip = vcpu->arch.last_retry_eip;
4832         last_retry_addr = vcpu->arch.last_retry_addr;
4833
4834         /*
4835          * If the emulation is caused by #PF and it is non-page_table
4836          * writing instruction, it means the VM-EXIT is caused by shadow
4837          * page protected, we can zap the shadow page and retry this
4838          * instruction directly.
4839          *
4840          * Note: if the guest uses a non-page-table modifying instruction
4841          * on the PDE that points to the instruction, then we will unmap
4842          * the instruction and go to an infinite loop. So, we cache the
4843          * last retried eip and the last fault address, if we meet the eip
4844          * and the address again, we can break out of the potential infinite
4845          * loop.
4846          */
4847         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4848
4849         if (!(emulation_type & EMULTYPE_RETRY))
4850                 return false;
4851
4852         if (x86_page_table_writing_insn(ctxt))
4853                 return false;
4854
4855         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4856                 return false;
4857
4858         vcpu->arch.last_retry_eip = ctxt->eip;
4859         vcpu->arch.last_retry_addr = cr2;
4860
4861         if (!vcpu->arch.mmu.direct_map)
4862                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4863
4864         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4865
4866         return true;
4867 }
4868
4869 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4870 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4871
4872 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4873                             unsigned long cr2,
4874                             int emulation_type,
4875                             void *insn,
4876                             int insn_len)
4877 {
4878         int r;
4879         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4880         bool writeback = true;
4881         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4882
4883         /*
4884          * Clear write_fault_to_shadow_pgtable here to ensure it is
4885          * never reused.
4886          */
4887         vcpu->arch.write_fault_to_shadow_pgtable = false;
4888         kvm_clear_exception_queue(vcpu);
4889
4890         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4891                 init_emulate_ctxt(vcpu);
4892                 ctxt->interruptibility = 0;
4893                 ctxt->have_exception = false;
4894                 ctxt->perm_ok = false;
4895
4896                 ctxt->only_vendor_specific_insn
4897                         = emulation_type & EMULTYPE_TRAP_UD;
4898
4899                 r = x86_decode_insn(ctxt, insn, insn_len);
4900
4901                 trace_kvm_emulate_insn_start(vcpu);
4902                 ++vcpu->stat.insn_emulation;
4903                 if (r != EMULATION_OK)  {
4904                         if (emulation_type & EMULTYPE_TRAP_UD)
4905                                 return EMULATE_FAIL;
4906                         if (reexecute_instruction(vcpu, cr2,
4907                                                   write_fault_to_spt))
4908                                 return EMULATE_DONE;
4909                         if (emulation_type & EMULTYPE_SKIP)
4910                                 return EMULATE_FAIL;
4911                         return handle_emulation_failure(vcpu);
4912                 }
4913         }
4914
4915         if (emulation_type & EMULTYPE_SKIP) {
4916                 kvm_rip_write(vcpu, ctxt->_eip);
4917                 return EMULATE_DONE;
4918         }
4919
4920         if (retry_instruction(ctxt, cr2, emulation_type))
4921                 return EMULATE_DONE;
4922
4923         /* this is needed for vmware backdoor interface to work since it
4924            changes registers values  during IO operation */
4925         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4926                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4927                 emulator_invalidate_register_cache(ctxt);
4928         }
4929
4930 restart:
4931         r = x86_emulate_insn(ctxt);
4932
4933         if (r == EMULATION_INTERCEPTED)
4934                 return EMULATE_DONE;
4935
4936         if (r == EMULATION_FAILED) {
4937                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt))
4938                         return EMULATE_DONE;
4939
4940                 return handle_emulation_failure(vcpu);
4941         }
4942
4943         if (ctxt->have_exception) {
4944                 inject_emulated_exception(vcpu);
4945                 r = EMULATE_DONE;
4946         } else if (vcpu->arch.pio.count) {
4947                 if (!vcpu->arch.pio.in)
4948                         vcpu->arch.pio.count = 0;
4949                 else {
4950                         writeback = false;
4951                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4952                 }
4953                 r = EMULATE_DO_MMIO;
4954         } else if (vcpu->mmio_needed) {
4955                 if (!vcpu->mmio_is_write)
4956                         writeback = false;
4957                 r = EMULATE_DO_MMIO;
4958                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4959         } else if (r == EMULATION_RESTART)
4960                 goto restart;
4961         else
4962                 r = EMULATE_DONE;
4963
4964         if (writeback) {
4965                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4966                 kvm_set_rflags(vcpu, ctxt->eflags);
4967                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4968                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4969                 kvm_rip_write(vcpu, ctxt->eip);
4970         } else
4971                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4972
4973         return r;
4974 }
4975 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4976
4977 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4978 {
4979         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4980         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4981                                             size, port, &val, 1);
4982         /* do not return to emulator after return from userspace */
4983         vcpu->arch.pio.count = 0;
4984         return ret;
4985 }
4986 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4987
4988 static void tsc_bad(void *info)
4989 {
4990         __this_cpu_write(cpu_tsc_khz, 0);
4991 }
4992
4993 static void tsc_khz_changed(void *data)
4994 {
4995         struct cpufreq_freqs *freq = data;
4996         unsigned long khz = 0;
4997
4998         if (data)
4999                 khz = freq->new;
5000         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5001                 khz = cpufreq_quick_get(raw_smp_processor_id());
5002         if (!khz)
5003                 khz = tsc_khz;
5004         __this_cpu_write(cpu_tsc_khz, khz);
5005 }
5006
5007 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5008                                      void *data)
5009 {
5010         struct cpufreq_freqs *freq = data;
5011         struct kvm *kvm;
5012         struct kvm_vcpu *vcpu;
5013         int i, send_ipi = 0;
5014
5015         /*
5016          * We allow guests to temporarily run on slowing clocks,
5017          * provided we notify them after, or to run on accelerating
5018          * clocks, provided we notify them before.  Thus time never
5019          * goes backwards.
5020          *
5021          * However, we have a problem.  We can't atomically update
5022          * the frequency of a given CPU from this function; it is
5023          * merely a notifier, which can be called from any CPU.
5024          * Changing the TSC frequency at arbitrary points in time
5025          * requires a recomputation of local variables related to
5026          * the TSC for each VCPU.  We must flag these local variables
5027          * to be updated and be sure the update takes place with the
5028          * new frequency before any guests proceed.
5029          *
5030          * Unfortunately, the combination of hotplug CPU and frequency
5031          * change creates an intractable locking scenario; the order
5032          * of when these callouts happen is undefined with respect to
5033          * CPU hotplug, and they can race with each other.  As such,
5034          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5035          * undefined; you can actually have a CPU frequency change take
5036          * place in between the computation of X and the setting of the
5037          * variable.  To protect against this problem, all updates of
5038          * the per_cpu tsc_khz variable are done in an interrupt
5039          * protected IPI, and all callers wishing to update the value
5040          * must wait for a synchronous IPI to complete (which is trivial
5041          * if the caller is on the CPU already).  This establishes the
5042          * necessary total order on variable updates.
5043          *
5044          * Note that because a guest time update may take place
5045          * anytime after the setting of the VCPU's request bit, the
5046          * correct TSC value must be set before the request.  However,
5047          * to ensure the update actually makes it to any guest which
5048          * starts running in hardware virtualization between the set
5049          * and the acquisition of the spinlock, we must also ping the
5050          * CPU after setting the request bit.
5051          *
5052          */
5053
5054         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5055                 return 0;
5056         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5057                 return 0;
5058
5059         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5060
5061         raw_spin_lock(&kvm_lock);
5062         list_for_each_entry(kvm, &vm_list, vm_list) {
5063                 kvm_for_each_vcpu(i, vcpu, kvm) {
5064                         if (vcpu->cpu != freq->cpu)
5065                                 continue;
5066                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5067                         if (vcpu->cpu != smp_processor_id())
5068                                 send_ipi = 1;
5069                 }
5070         }
5071         raw_spin_unlock(&kvm_lock);
5072
5073         if (freq->old < freq->new && send_ipi) {
5074                 /*
5075                  * We upscale the frequency.  Must make the guest
5076                  * doesn't see old kvmclock values while running with
5077                  * the new frequency, otherwise we risk the guest sees
5078                  * time go backwards.
5079                  *
5080                  * In case we update the frequency for another cpu
5081                  * (which might be in guest context) send an interrupt
5082                  * to kick the cpu out of guest context.  Next time
5083                  * guest context is entered kvmclock will be updated,
5084                  * so the guest will not see stale values.
5085                  */
5086                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5087         }
5088         return 0;
5089 }
5090
5091 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5092         .notifier_call  = kvmclock_cpufreq_notifier
5093 };
5094
5095 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5096                                         unsigned long action, void *hcpu)
5097 {
5098         unsigned int cpu = (unsigned long)hcpu;
5099
5100         switch (action) {
5101                 case CPU_ONLINE:
5102                 case CPU_DOWN_FAILED:
5103                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5104                         break;
5105                 case CPU_DOWN_PREPARE:
5106                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5107                         break;
5108         }
5109         return NOTIFY_OK;
5110 }
5111
5112 static struct notifier_block kvmclock_cpu_notifier_block = {
5113         .notifier_call  = kvmclock_cpu_notifier,
5114         .priority = -INT_MAX
5115 };
5116
5117 static void kvm_timer_init(void)
5118 {
5119         int cpu;
5120
5121         max_tsc_khz = tsc_khz;
5122         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5123         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5124 #ifdef CONFIG_CPU_FREQ
5125                 struct cpufreq_policy policy;
5126                 memset(&policy, 0, sizeof(policy));
5127                 cpu = get_cpu();
5128                 cpufreq_get_policy(&policy, cpu);
5129                 if (policy.cpuinfo.max_freq)
5130                         max_tsc_khz = policy.cpuinfo.max_freq;
5131                 put_cpu();
5132 #endif
5133                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5134                                           CPUFREQ_TRANSITION_NOTIFIER);
5135         }
5136         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5137         for_each_online_cpu(cpu)
5138                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5139 }
5140
5141 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5142
5143 int kvm_is_in_guest(void)
5144 {
5145         return __this_cpu_read(current_vcpu) != NULL;
5146 }
5147
5148 static int kvm_is_user_mode(void)
5149 {
5150         int user_mode = 3;
5151
5152         if (__this_cpu_read(current_vcpu))
5153                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5154
5155         return user_mode != 0;
5156 }
5157
5158 static unsigned long kvm_get_guest_ip(void)
5159 {
5160         unsigned long ip = 0;
5161
5162         if (__this_cpu_read(current_vcpu))
5163                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5164
5165         return ip;
5166 }
5167
5168 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5169         .is_in_guest            = kvm_is_in_guest,
5170         .is_user_mode           = kvm_is_user_mode,
5171         .get_guest_ip           = kvm_get_guest_ip,
5172 };
5173
5174 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5175 {
5176         __this_cpu_write(current_vcpu, vcpu);
5177 }
5178 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5179
5180 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5181 {
5182         __this_cpu_write(current_vcpu, NULL);
5183 }
5184 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5185
5186 static void kvm_set_mmio_spte_mask(void)
5187 {
5188         u64 mask;
5189         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5190
5191         /*
5192          * Set the reserved bits and the present bit of an paging-structure
5193          * entry to generate page fault with PFER.RSV = 1.
5194          */
5195         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5196         mask |= 1ull;
5197
5198 #ifdef CONFIG_X86_64
5199         /*
5200          * If reserved bit is not supported, clear the present bit to disable
5201          * mmio page fault.
5202          */
5203         if (maxphyaddr == 52)
5204                 mask &= ~1ull;
5205 #endif
5206
5207         kvm_mmu_set_mmio_spte_mask(mask);
5208 }
5209
5210 #ifdef CONFIG_X86_64
5211 static void pvclock_gtod_update_fn(struct work_struct *work)
5212 {
5213         struct kvm *kvm;
5214
5215         struct kvm_vcpu *vcpu;
5216         int i;
5217
5218         raw_spin_lock(&kvm_lock);
5219         list_for_each_entry(kvm, &vm_list, vm_list)
5220                 kvm_for_each_vcpu(i, vcpu, kvm)
5221                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5222         atomic_set(&kvm_guest_has_master_clock, 0);
5223         raw_spin_unlock(&kvm_lock);
5224 }
5225
5226 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5227
5228 /*
5229  * Notification about pvclock gtod data update.
5230  */
5231 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5232                                void *priv)
5233 {
5234         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5235         struct timekeeper *tk = priv;
5236
5237         update_pvclock_gtod(tk);
5238
5239         /* disable master clock if host does not trust, or does not
5240          * use, TSC clocksource
5241          */
5242         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5243             atomic_read(&kvm_guest_has_master_clock) != 0)
5244                 queue_work(system_long_wq, &pvclock_gtod_work);
5245
5246         return 0;
5247 }
5248
5249 static struct notifier_block pvclock_gtod_notifier = {
5250         .notifier_call = pvclock_gtod_notify,
5251 };
5252 #endif
5253
5254 int kvm_arch_init(void *opaque)
5255 {
5256         int r;
5257         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5258
5259         if (kvm_x86_ops) {
5260                 printk(KERN_ERR "kvm: already loaded the other module\n");
5261                 r = -EEXIST;
5262                 goto out;
5263         }
5264
5265         if (!ops->cpu_has_kvm_support()) {
5266                 printk(KERN_ERR "kvm: no hardware support\n");
5267                 r = -EOPNOTSUPP;
5268                 goto out;
5269         }
5270         if (ops->disabled_by_bios()) {
5271                 printk(KERN_ERR "kvm: disabled by bios\n");
5272                 r = -EOPNOTSUPP;
5273                 goto out;
5274         }
5275
5276         r = -ENOMEM;
5277         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5278         if (!shared_msrs) {
5279                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5280                 goto out;
5281         }
5282
5283         r = kvm_mmu_module_init();
5284         if (r)
5285                 goto out_free_percpu;
5286
5287         kvm_set_mmio_spte_mask();
5288         kvm_init_msr_list();
5289
5290         kvm_x86_ops = ops;
5291         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5292                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5293
5294         kvm_timer_init();
5295
5296         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5297
5298         if (cpu_has_xsave)
5299                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5300
5301         kvm_lapic_init();
5302 #ifdef CONFIG_X86_64
5303         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5304 #endif
5305
5306         return 0;
5307
5308 out_free_percpu:
5309         free_percpu(shared_msrs);
5310 out:
5311         return r;
5312 }
5313
5314 void kvm_arch_exit(void)
5315 {
5316         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5317
5318         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5319                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5320                                             CPUFREQ_TRANSITION_NOTIFIER);
5321         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5322 #ifdef CONFIG_X86_64
5323         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5324 #endif
5325         kvm_x86_ops = NULL;
5326         kvm_mmu_module_exit();
5327         free_percpu(shared_msrs);
5328 }
5329
5330 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5331 {
5332         ++vcpu->stat.halt_exits;
5333         if (irqchip_in_kernel(vcpu->kvm)) {
5334                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5335                 return 1;
5336         } else {
5337                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5338                 return 0;
5339         }
5340 }
5341 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5342
5343 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5344 {
5345         u64 param, ingpa, outgpa, ret;
5346         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5347         bool fast, longmode;
5348         int cs_db, cs_l;
5349
5350         /*
5351          * hypercall generates UD from non zero cpl and real mode
5352          * per HYPER-V spec
5353          */
5354         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5355                 kvm_queue_exception(vcpu, UD_VECTOR);
5356                 return 0;
5357         }
5358
5359         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5360         longmode = is_long_mode(vcpu) && cs_l == 1;
5361
5362         if (!longmode) {
5363                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5364                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5365                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5366                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5367                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5368                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5369         }
5370 #ifdef CONFIG_X86_64
5371         else {
5372                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5373                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5374                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5375         }
5376 #endif
5377
5378         code = param & 0xffff;
5379         fast = (param >> 16) & 0x1;
5380         rep_cnt = (param >> 32) & 0xfff;
5381         rep_idx = (param >> 48) & 0xfff;
5382
5383         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5384
5385         switch (code) {
5386         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5387                 kvm_vcpu_on_spin(vcpu);
5388                 break;
5389         default:
5390                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5391                 break;
5392         }
5393
5394         ret = res | (((u64)rep_done & 0xfff) << 32);
5395         if (longmode) {
5396                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5397         } else {
5398                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5399                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5400         }
5401
5402         return 1;
5403 }
5404
5405 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5406 {
5407         unsigned long nr, a0, a1, a2, a3, ret;
5408         int r = 1;
5409
5410         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5411                 return kvm_hv_hypercall(vcpu);
5412
5413         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5414         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5415         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5416         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5417         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5418
5419         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5420
5421         if (!is_long_mode(vcpu)) {
5422                 nr &= 0xFFFFFFFF;
5423                 a0 &= 0xFFFFFFFF;
5424                 a1 &= 0xFFFFFFFF;
5425                 a2 &= 0xFFFFFFFF;
5426                 a3 &= 0xFFFFFFFF;
5427         }
5428
5429         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5430                 ret = -KVM_EPERM;
5431                 goto out;
5432         }
5433
5434         switch (nr) {
5435         case KVM_HC_VAPIC_POLL_IRQ:
5436                 ret = 0;
5437                 break;
5438         default:
5439                 ret = -KVM_ENOSYS;
5440                 break;
5441         }
5442 out:
5443         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5444         ++vcpu->stat.hypercalls;
5445         return r;
5446 }
5447 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5448
5449 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5450 {
5451         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5452         char instruction[3];
5453         unsigned long rip = kvm_rip_read(vcpu);
5454
5455         /*
5456          * Blow out the MMU to ensure that no other VCPU has an active mapping
5457          * to ensure that the updated hypercall appears atomically across all
5458          * VCPUs.
5459          */
5460         kvm_mmu_zap_all(vcpu->kvm);
5461
5462         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5463
5464         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5465 }
5466
5467 /*
5468  * Check if userspace requested an interrupt window, and that the
5469  * interrupt window is open.
5470  *
5471  * No need to exit to userspace if we already have an interrupt queued.
5472  */
5473 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5474 {
5475         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5476                 vcpu->run->request_interrupt_window &&
5477                 kvm_arch_interrupt_allowed(vcpu));
5478 }
5479
5480 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5481 {
5482         struct kvm_run *kvm_run = vcpu->run;
5483
5484         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5485         kvm_run->cr8 = kvm_get_cr8(vcpu);
5486         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5487         if (irqchip_in_kernel(vcpu->kvm))
5488                 kvm_run->ready_for_interrupt_injection = 1;
5489         else
5490                 kvm_run->ready_for_interrupt_injection =
5491                         kvm_arch_interrupt_allowed(vcpu) &&
5492                         !kvm_cpu_has_interrupt(vcpu) &&
5493                         !kvm_event_needs_reinjection(vcpu);
5494 }
5495
5496 static int vapic_enter(struct kvm_vcpu *vcpu)
5497 {
5498         struct kvm_lapic *apic = vcpu->arch.apic;
5499         struct page *page;
5500
5501         if (!apic || !apic->vapic_addr)
5502                 return 0;
5503
5504         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5505         if (is_error_page(page))
5506                 return -EFAULT;
5507
5508         vcpu->arch.apic->vapic_page = page;
5509         return 0;
5510 }
5511
5512 static void vapic_exit(struct kvm_vcpu *vcpu)
5513 {
5514         struct kvm_lapic *apic = vcpu->arch.apic;
5515         int idx;
5516
5517         if (!apic || !apic->vapic_addr)
5518                 return;
5519
5520         idx = srcu_read_lock(&vcpu->kvm->srcu);
5521         kvm_release_page_dirty(apic->vapic_page);
5522         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5523         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5524 }
5525
5526 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5527 {
5528         int max_irr, tpr;
5529
5530         if (!kvm_x86_ops->update_cr8_intercept)
5531                 return;
5532
5533         if (!vcpu->arch.apic)
5534                 return;
5535
5536         if (!vcpu->arch.apic->vapic_addr)
5537                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5538         else
5539                 max_irr = -1;
5540
5541         if (max_irr != -1)
5542                 max_irr >>= 4;
5543
5544         tpr = kvm_lapic_get_cr8(vcpu);
5545
5546         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5547 }
5548
5549 static void inject_pending_event(struct kvm_vcpu *vcpu)
5550 {
5551         /* try to reinject previous events if any */
5552         if (vcpu->arch.exception.pending) {
5553                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5554                                         vcpu->arch.exception.has_error_code,
5555                                         vcpu->arch.exception.error_code);
5556                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5557                                           vcpu->arch.exception.has_error_code,
5558                                           vcpu->arch.exception.error_code,
5559                                           vcpu->arch.exception.reinject);
5560                 return;
5561         }
5562
5563         if (vcpu->arch.nmi_injected) {
5564                 kvm_x86_ops->set_nmi(vcpu);
5565                 return;
5566         }
5567
5568         if (vcpu->arch.interrupt.pending) {
5569                 kvm_x86_ops->set_irq(vcpu);
5570                 return;
5571         }
5572
5573         /* try to inject new event if pending */
5574         if (vcpu->arch.nmi_pending) {
5575                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5576                         --vcpu->arch.nmi_pending;
5577                         vcpu->arch.nmi_injected = true;
5578                         kvm_x86_ops->set_nmi(vcpu);
5579                 }
5580         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5581                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5582                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5583                                             false);
5584                         kvm_x86_ops->set_irq(vcpu);
5585                 }
5586         }
5587 }
5588
5589 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5590 {
5591         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5592                         !vcpu->guest_xcr0_loaded) {
5593                 /* kvm_set_xcr() also depends on this */
5594                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5595                 vcpu->guest_xcr0_loaded = 1;
5596         }
5597 }
5598
5599 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5600 {
5601         if (vcpu->guest_xcr0_loaded) {
5602                 if (vcpu->arch.xcr0 != host_xcr0)
5603                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5604                 vcpu->guest_xcr0_loaded = 0;
5605         }
5606 }
5607
5608 static void process_nmi(struct kvm_vcpu *vcpu)
5609 {
5610         unsigned limit = 2;
5611
5612         /*
5613          * x86 is limited to one NMI running, and one NMI pending after it.
5614          * If an NMI is already in progress, limit further NMIs to just one.
5615          * Otherwise, allow two (and we'll inject the first one immediately).
5616          */
5617         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5618                 limit = 1;
5619
5620         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5621         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5622         kvm_make_request(KVM_REQ_EVENT, vcpu);
5623 }
5624
5625 static void kvm_gen_update_masterclock(struct kvm *kvm)
5626 {
5627 #ifdef CONFIG_X86_64
5628         int i;
5629         struct kvm_vcpu *vcpu;
5630         struct kvm_arch *ka = &kvm->arch;
5631
5632         spin_lock(&ka->pvclock_gtod_sync_lock);
5633         kvm_make_mclock_inprogress_request(kvm);
5634         /* no guest entries from this point */
5635         pvclock_update_vm_gtod_copy(kvm);
5636
5637         kvm_for_each_vcpu(i, vcpu, kvm)
5638                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5639
5640         /* guest entries allowed */
5641         kvm_for_each_vcpu(i, vcpu, kvm)
5642                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5643
5644         spin_unlock(&ka->pvclock_gtod_sync_lock);
5645 #endif
5646 }
5647
5648 static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
5649 {
5650         u64 eoi_exit_bitmap[4];
5651
5652         memset(eoi_exit_bitmap, 0, 32);
5653
5654         kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
5655         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5656 }
5657
5658 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5659 {
5660         int r;
5661         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5662                 vcpu->run->request_interrupt_window;
5663         bool req_immediate_exit = 0;
5664
5665         if (vcpu->requests) {
5666                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5667                         kvm_mmu_unload(vcpu);
5668                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5669                         __kvm_migrate_timers(vcpu);
5670                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5671                         kvm_gen_update_masterclock(vcpu->kvm);
5672                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5673                         r = kvm_guest_time_update(vcpu);
5674                         if (unlikely(r))
5675                                 goto out;
5676                 }
5677                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5678                         kvm_mmu_sync_roots(vcpu);
5679                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5680                         kvm_x86_ops->tlb_flush(vcpu);
5681                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5682                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5683                         r = 0;
5684                         goto out;
5685                 }
5686                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5687                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5688                         r = 0;
5689                         goto out;
5690                 }
5691                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5692                         vcpu->fpu_active = 0;
5693                         kvm_x86_ops->fpu_deactivate(vcpu);
5694                 }
5695                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5696                         /* Page is swapped out. Do synthetic halt */
5697                         vcpu->arch.apf.halted = true;
5698                         r = 1;
5699                         goto out;
5700                 }
5701                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5702                         record_steal_time(vcpu);
5703                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5704                         process_nmi(vcpu);
5705                 req_immediate_exit =
5706                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5707                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5708                         kvm_handle_pmu_event(vcpu);
5709                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5710                         kvm_deliver_pmi(vcpu);
5711                 if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
5712                         update_eoi_exitmap(vcpu);
5713         }
5714
5715         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5716                 inject_pending_event(vcpu);
5717
5718                 /* enable NMI/IRQ window open exits if needed */
5719                 if (vcpu->arch.nmi_pending)
5720                         kvm_x86_ops->enable_nmi_window(vcpu);
5721                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5722                         kvm_x86_ops->enable_irq_window(vcpu);
5723
5724                 if (kvm_lapic_enabled(vcpu)) {
5725                         /*
5726                          * Update architecture specific hints for APIC
5727                          * virtual interrupt delivery.
5728                          */
5729                         if (kvm_x86_ops->hwapic_irr_update)
5730                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5731                                         kvm_lapic_find_highest_irr(vcpu));
5732                         update_cr8_intercept(vcpu);
5733                         kvm_lapic_sync_to_vapic(vcpu);
5734                 }
5735         }
5736
5737         r = kvm_mmu_reload(vcpu);
5738         if (unlikely(r)) {
5739                 goto cancel_injection;
5740         }
5741
5742         preempt_disable();
5743
5744         kvm_x86_ops->prepare_guest_switch(vcpu);
5745         if (vcpu->fpu_active)
5746                 kvm_load_guest_fpu(vcpu);
5747         kvm_load_guest_xcr0(vcpu);
5748
5749         vcpu->mode = IN_GUEST_MODE;
5750
5751         /* We should set ->mode before check ->requests,
5752          * see the comment in make_all_cpus_request.
5753          */
5754         smp_mb();
5755
5756         local_irq_disable();
5757
5758         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5759             || need_resched() || signal_pending(current)) {
5760                 vcpu->mode = OUTSIDE_GUEST_MODE;
5761                 smp_wmb();
5762                 local_irq_enable();
5763                 preempt_enable();
5764                 r = 1;
5765                 goto cancel_injection;
5766         }
5767
5768         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5769
5770         if (req_immediate_exit)
5771                 smp_send_reschedule(vcpu->cpu);
5772
5773         kvm_guest_enter();
5774
5775         if (unlikely(vcpu->arch.switch_db_regs)) {
5776                 set_debugreg(0, 7);
5777                 set_debugreg(vcpu->arch.eff_db[0], 0);
5778                 set_debugreg(vcpu->arch.eff_db[1], 1);
5779                 set_debugreg(vcpu->arch.eff_db[2], 2);
5780                 set_debugreg(vcpu->arch.eff_db[3], 3);
5781         }
5782
5783         trace_kvm_entry(vcpu->vcpu_id);
5784         kvm_x86_ops->run(vcpu);
5785
5786         /*
5787          * If the guest has used debug registers, at least dr7
5788          * will be disabled while returning to the host.
5789          * If we don't have active breakpoints in the host, we don't
5790          * care about the messed up debug address registers. But if
5791          * we have some of them active, restore the old state.
5792          */
5793         if (hw_breakpoint_active())
5794                 hw_breakpoint_restore();
5795
5796         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5797                                                            native_read_tsc());
5798
5799         vcpu->mode = OUTSIDE_GUEST_MODE;
5800         smp_wmb();
5801         local_irq_enable();
5802
5803         ++vcpu->stat.exits;
5804
5805         /*
5806          * We must have an instruction between local_irq_enable() and
5807          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5808          * the interrupt shadow.  The stat.exits increment will do nicely.
5809          * But we need to prevent reordering, hence this barrier():
5810          */
5811         barrier();
5812
5813         kvm_guest_exit();
5814
5815         preempt_enable();
5816
5817         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5818
5819         /*
5820          * Profile KVM exit RIPs:
5821          */
5822         if (unlikely(prof_on == KVM_PROFILING)) {
5823                 unsigned long rip = kvm_rip_read(vcpu);
5824                 profile_hit(KVM_PROFILING, (void *)rip);
5825         }
5826
5827         if (unlikely(vcpu->arch.tsc_always_catchup))
5828                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5829
5830         if (vcpu->arch.apic_attention)
5831                 kvm_lapic_sync_from_vapic(vcpu);
5832
5833         r = kvm_x86_ops->handle_exit(vcpu);
5834         return r;
5835
5836 cancel_injection:
5837         kvm_x86_ops->cancel_injection(vcpu);
5838         if (unlikely(vcpu->arch.apic_attention))
5839                 kvm_lapic_sync_from_vapic(vcpu);
5840 out:
5841         return r;
5842 }
5843
5844
5845 static int __vcpu_run(struct kvm_vcpu *vcpu)
5846 {
5847         int r;
5848         struct kvm *kvm = vcpu->kvm;
5849
5850         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5851                 pr_debug("vcpu %d received sipi with vector # %x\n",
5852                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5853                 kvm_lapic_reset(vcpu);
5854                 r = kvm_vcpu_reset(vcpu);
5855                 if (r)
5856                         return r;
5857                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5858         }
5859
5860         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5861         r = vapic_enter(vcpu);
5862         if (r) {
5863                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5864                 return r;
5865         }
5866
5867         r = 1;
5868         while (r > 0) {
5869                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5870                     !vcpu->arch.apf.halted)
5871                         r = vcpu_enter_guest(vcpu);
5872                 else {
5873                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5874                         kvm_vcpu_block(vcpu);
5875                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5876                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5877                         {
5878                                 switch(vcpu->arch.mp_state) {
5879                                 case KVM_MP_STATE_HALTED:
5880                                         vcpu->arch.mp_state =
5881                                                 KVM_MP_STATE_RUNNABLE;
5882                                 case KVM_MP_STATE_RUNNABLE:
5883                                         vcpu->arch.apf.halted = false;
5884                                         break;
5885                                 case KVM_MP_STATE_SIPI_RECEIVED:
5886                                 default:
5887                                         r = -EINTR;
5888                                         break;
5889                                 }
5890                         }
5891                 }
5892
5893                 if (r <= 0)
5894                         break;
5895
5896                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5897                 if (kvm_cpu_has_pending_timer(vcpu))
5898                         kvm_inject_pending_timer_irqs(vcpu);
5899
5900                 if (dm_request_for_irq_injection(vcpu)) {
5901                         r = -EINTR;
5902                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5903                         ++vcpu->stat.request_irq_exits;
5904                 }
5905
5906                 kvm_check_async_pf_completion(vcpu);
5907
5908                 if (signal_pending(current)) {
5909                         r = -EINTR;
5910                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5911                         ++vcpu->stat.signal_exits;
5912                 }
5913                 if (need_resched()) {
5914                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5915                         kvm_resched(vcpu);
5916                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5917                 }
5918         }
5919
5920         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5921
5922         vapic_exit(vcpu);
5923
5924         return r;
5925 }
5926
5927 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5928 {
5929         int r;
5930         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5931         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5932         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5933         if (r != EMULATE_DONE)
5934                 return 0;
5935         return 1;
5936 }
5937
5938 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5939 {
5940         BUG_ON(!vcpu->arch.pio.count);
5941
5942         return complete_emulated_io(vcpu);
5943 }
5944
5945 /*
5946  * Implements the following, as a state machine:
5947  *
5948  * read:
5949  *   for each fragment
5950  *     for each mmio piece in the fragment
5951  *       write gpa, len
5952  *       exit
5953  *       copy data
5954  *   execute insn
5955  *
5956  * write:
5957  *   for each fragment
5958  *     for each mmio piece in the fragment
5959  *       write gpa, len
5960  *       copy data
5961  *       exit
5962  */
5963 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5964 {
5965         struct kvm_run *run = vcpu->run;
5966         struct kvm_mmio_fragment *frag;
5967         unsigned len;
5968
5969         BUG_ON(!vcpu->mmio_needed);
5970
5971         /* Complete previous fragment */
5972         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5973         len = min(8u, frag->len);
5974         if (!vcpu->mmio_is_write)
5975                 memcpy(frag->data, run->mmio.data, len);
5976
5977         if (frag->len <= 8) {
5978                 /* Switch to the next fragment. */
5979                 frag++;
5980                 vcpu->mmio_cur_fragment++;
5981         } else {
5982                 /* Go forward to the next mmio piece. */
5983                 frag->data += len;
5984                 frag->gpa += len;
5985                 frag->len -= len;
5986         }
5987
5988         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5989                 vcpu->mmio_needed = 0;
5990                 if (vcpu->mmio_is_write)
5991                         return 1;
5992                 vcpu->mmio_read_completed = 1;
5993                 return complete_emulated_io(vcpu);
5994         }
5995
5996         run->exit_reason = KVM_EXIT_MMIO;
5997         run->mmio.phys_addr = frag->gpa;
5998         if (vcpu->mmio_is_write)
5999                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6000         run->mmio.len = min(8u, frag->len);
6001         run->mmio.is_write = vcpu->mmio_is_write;
6002         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6003         return 0;
6004 }
6005
6006
6007 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6008 {
6009         int r;
6010         sigset_t sigsaved;
6011
6012         if (!tsk_used_math(current) && init_fpu(current))
6013                 return -ENOMEM;
6014
6015         if (vcpu->sigset_active)
6016                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6017
6018         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6019                 kvm_vcpu_block(vcpu);
6020                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6021                 r = -EAGAIN;
6022                 goto out;
6023         }
6024
6025         /* re-sync apic's tpr */
6026         if (!irqchip_in_kernel(vcpu->kvm)) {
6027                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6028                         r = -EINVAL;
6029                         goto out;
6030                 }
6031         }
6032
6033         if (unlikely(vcpu->arch.complete_userspace_io)) {
6034                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6035                 vcpu->arch.complete_userspace_io = NULL;
6036                 r = cui(vcpu);
6037                 if (r <= 0)
6038                         goto out;
6039         } else
6040                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6041
6042         r = __vcpu_run(vcpu);
6043
6044 out:
6045         post_kvm_run_save(vcpu);
6046         if (vcpu->sigset_active)
6047                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6048
6049         return r;
6050 }
6051
6052 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6053 {
6054         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6055                 /*
6056                  * We are here if userspace calls get_regs() in the middle of
6057                  * instruction emulation. Registers state needs to be copied
6058                  * back from emulation context to vcpu. Userspace shouldn't do
6059                  * that usually, but some bad designed PV devices (vmware
6060                  * backdoor interface) need this to work
6061                  */
6062                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6063                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6064         }
6065         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6066         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6067         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6068         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6069         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6070         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6071         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6072         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6073 #ifdef CONFIG_X86_64
6074         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6075         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6076         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6077         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6078         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6079         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6080         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6081         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6082 #endif
6083
6084         regs->rip = kvm_rip_read(vcpu);
6085         regs->rflags = kvm_get_rflags(vcpu);
6086
6087         return 0;
6088 }
6089
6090 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6091 {
6092         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6093         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6094
6095         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6096         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6097         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6098         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6099         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6100         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6101         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6102         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6103 #ifdef CONFIG_X86_64
6104         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6105         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6106         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6107         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6108         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6109         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6110         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6111         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6112 #endif
6113
6114         kvm_rip_write(vcpu, regs->rip);
6115         kvm_set_rflags(vcpu, regs->rflags);
6116
6117         vcpu->arch.exception.pending = false;
6118
6119         kvm_make_request(KVM_REQ_EVENT, vcpu);
6120
6121         return 0;
6122 }
6123
6124 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6125 {
6126         struct kvm_segment cs;
6127
6128         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6129         *db = cs.db;
6130         *l = cs.l;
6131 }
6132 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6133
6134 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6135                                   struct kvm_sregs *sregs)
6136 {
6137         struct desc_ptr dt;
6138
6139         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6140         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6141         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6142         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6143         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6144         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6145
6146         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6147         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6148
6149         kvm_x86_ops->get_idt(vcpu, &dt);
6150         sregs->idt.limit = dt.size;
6151         sregs->idt.base = dt.address;
6152         kvm_x86_ops->get_gdt(vcpu, &dt);
6153         sregs->gdt.limit = dt.size;
6154         sregs->gdt.base = dt.address;
6155
6156         sregs->cr0 = kvm_read_cr0(vcpu);
6157         sregs->cr2 = vcpu->arch.cr2;
6158         sregs->cr3 = kvm_read_cr3(vcpu);
6159         sregs->cr4 = kvm_read_cr4(vcpu);
6160         sregs->cr8 = kvm_get_cr8(vcpu);
6161         sregs->efer = vcpu->arch.efer;
6162         sregs->apic_base = kvm_get_apic_base(vcpu);
6163
6164         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6165
6166         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6167                 set_bit(vcpu->arch.interrupt.nr,
6168                         (unsigned long *)sregs->interrupt_bitmap);
6169
6170         return 0;
6171 }
6172
6173 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6174                                     struct kvm_mp_state *mp_state)
6175 {
6176         mp_state->mp_state = vcpu->arch.mp_state;
6177         return 0;
6178 }
6179
6180 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6181                                     struct kvm_mp_state *mp_state)
6182 {
6183         vcpu->arch.mp_state = mp_state->mp_state;
6184         kvm_make_request(KVM_REQ_EVENT, vcpu);
6185         return 0;
6186 }
6187
6188 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6189                     int reason, bool has_error_code, u32 error_code)
6190 {
6191         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6192         int ret;
6193
6194         init_emulate_ctxt(vcpu);
6195
6196         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6197                                    has_error_code, error_code);
6198
6199         if (ret)
6200                 return EMULATE_FAIL;
6201
6202         kvm_rip_write(vcpu, ctxt->eip);
6203         kvm_set_rflags(vcpu, ctxt->eflags);
6204         kvm_make_request(KVM_REQ_EVENT, vcpu);
6205         return EMULATE_DONE;
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_task_switch);
6208
6209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6210                                   struct kvm_sregs *sregs)
6211 {
6212         int mmu_reset_needed = 0;
6213         int pending_vec, max_bits, idx;
6214         struct desc_ptr dt;
6215
6216         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6217                 return -EINVAL;
6218
6219         dt.size = sregs->idt.limit;
6220         dt.address = sregs->idt.base;
6221         kvm_x86_ops->set_idt(vcpu, &dt);
6222         dt.size = sregs->gdt.limit;
6223         dt.address = sregs->gdt.base;
6224         kvm_x86_ops->set_gdt(vcpu, &dt);
6225
6226         vcpu->arch.cr2 = sregs->cr2;
6227         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6228         vcpu->arch.cr3 = sregs->cr3;
6229         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6230
6231         kvm_set_cr8(vcpu, sregs->cr8);
6232
6233         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6234         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6235         kvm_set_apic_base(vcpu, sregs->apic_base);
6236
6237         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6238         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6239         vcpu->arch.cr0 = sregs->cr0;
6240
6241         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6242         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6243         if (sregs->cr4 & X86_CR4_OSXSAVE)
6244                 kvm_update_cpuid(vcpu);
6245
6246         idx = srcu_read_lock(&vcpu->kvm->srcu);
6247         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6248                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6249                 mmu_reset_needed = 1;
6250         }
6251         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6252
6253         if (mmu_reset_needed)
6254                 kvm_mmu_reset_context(vcpu);
6255
6256         max_bits = KVM_NR_INTERRUPTS;
6257         pending_vec = find_first_bit(
6258                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6259         if (pending_vec < max_bits) {
6260                 kvm_queue_interrupt(vcpu, pending_vec, false);
6261                 pr_debug("Set back pending irq %d\n", pending_vec);
6262         }
6263
6264         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6265         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6266         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6267         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6268         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6269         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6270
6271         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6272         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6273
6274         update_cr8_intercept(vcpu);
6275
6276         /* Older userspace won't unhalt the vcpu on reset. */
6277         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6278             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6279             !is_protmode(vcpu))
6280                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6281
6282         kvm_make_request(KVM_REQ_EVENT, vcpu);
6283
6284         return 0;
6285 }
6286
6287 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6288                                         struct kvm_guest_debug *dbg)
6289 {
6290         unsigned long rflags;
6291         int i, r;
6292
6293         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6294                 r = -EBUSY;
6295                 if (vcpu->arch.exception.pending)
6296                         goto out;
6297                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6298                         kvm_queue_exception(vcpu, DB_VECTOR);
6299                 else
6300                         kvm_queue_exception(vcpu, BP_VECTOR);
6301         }
6302
6303         /*
6304          * Read rflags as long as potentially injected trace flags are still
6305          * filtered out.
6306          */
6307         rflags = kvm_get_rflags(vcpu);
6308
6309         vcpu->guest_debug = dbg->control;
6310         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6311                 vcpu->guest_debug = 0;
6312
6313         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6314                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6315                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6316                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6317         } else {
6318                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6319                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6320         }
6321         kvm_update_dr7(vcpu);
6322
6323         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6324                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6325                         get_segment_base(vcpu, VCPU_SREG_CS);
6326
6327         /*
6328          * Trigger an rflags update that will inject or remove the trace
6329          * flags.
6330          */
6331         kvm_set_rflags(vcpu, rflags);
6332
6333         kvm_x86_ops->update_db_bp_intercept(vcpu);
6334
6335         r = 0;
6336
6337 out:
6338
6339         return r;
6340 }
6341
6342 /*
6343  * Translate a guest virtual address to a guest physical address.
6344  */
6345 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6346                                     struct kvm_translation *tr)
6347 {
6348         unsigned long vaddr = tr->linear_address;
6349         gpa_t gpa;
6350         int idx;
6351
6352         idx = srcu_read_lock(&vcpu->kvm->srcu);
6353         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6354         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6355         tr->physical_address = gpa;
6356         tr->valid = gpa != UNMAPPED_GVA;
6357         tr->writeable = 1;
6358         tr->usermode = 0;
6359
6360         return 0;
6361 }
6362
6363 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6364 {
6365         struct i387_fxsave_struct *fxsave =
6366                         &vcpu->arch.guest_fpu.state->fxsave;
6367
6368         memcpy(fpu->fpr, fxsave->st_space, 128);
6369         fpu->fcw = fxsave->cwd;
6370         fpu->fsw = fxsave->swd;
6371         fpu->ftwx = fxsave->twd;
6372         fpu->last_opcode = fxsave->fop;
6373         fpu->last_ip = fxsave->rip;
6374         fpu->last_dp = fxsave->rdp;
6375         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6376
6377         return 0;
6378 }
6379
6380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6381 {
6382         struct i387_fxsave_struct *fxsave =
6383                         &vcpu->arch.guest_fpu.state->fxsave;
6384
6385         memcpy(fxsave->st_space, fpu->fpr, 128);
6386         fxsave->cwd = fpu->fcw;
6387         fxsave->swd = fpu->fsw;
6388         fxsave->twd = fpu->ftwx;
6389         fxsave->fop = fpu->last_opcode;
6390         fxsave->rip = fpu->last_ip;
6391         fxsave->rdp = fpu->last_dp;
6392         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6393
6394         return 0;
6395 }
6396
6397 int fx_init(struct kvm_vcpu *vcpu)
6398 {
6399         int err;
6400
6401         err = fpu_alloc(&vcpu->arch.guest_fpu);
6402         if (err)
6403                 return err;
6404
6405         fpu_finit(&vcpu->arch.guest_fpu);
6406
6407         /*
6408          * Ensure guest xcr0 is valid for loading
6409          */
6410         vcpu->arch.xcr0 = XSTATE_FP;
6411
6412         vcpu->arch.cr0 |= X86_CR0_ET;
6413
6414         return 0;
6415 }
6416 EXPORT_SYMBOL_GPL(fx_init);
6417
6418 static void fx_free(struct kvm_vcpu *vcpu)
6419 {
6420         fpu_free(&vcpu->arch.guest_fpu);
6421 }
6422
6423 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6424 {
6425         if (vcpu->guest_fpu_loaded)
6426                 return;
6427
6428         /*
6429          * Restore all possible states in the guest,
6430          * and assume host would use all available bits.
6431          * Guest xcr0 would be loaded later.
6432          */
6433         kvm_put_guest_xcr0(vcpu);
6434         vcpu->guest_fpu_loaded = 1;
6435         __kernel_fpu_begin();
6436         fpu_restore_checking(&vcpu->arch.guest_fpu);
6437         trace_kvm_fpu(1);
6438 }
6439
6440 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6441 {
6442         kvm_put_guest_xcr0(vcpu);
6443
6444         if (!vcpu->guest_fpu_loaded)
6445                 return;
6446
6447         vcpu->guest_fpu_loaded = 0;
6448         fpu_save_init(&vcpu->arch.guest_fpu);
6449         __kernel_fpu_end();
6450         ++vcpu->stat.fpu_reload;
6451         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6452         trace_kvm_fpu(0);
6453 }
6454
6455 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6456 {
6457         kvmclock_reset(vcpu);
6458
6459         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6460         fx_free(vcpu);
6461         kvm_x86_ops->vcpu_free(vcpu);
6462 }
6463
6464 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6465                                                 unsigned int id)
6466 {
6467         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6468                 printk_once(KERN_WARNING
6469                 "kvm: SMP vm created on host with unstable TSC; "
6470                 "guest TSC will not be reliable\n");
6471         return kvm_x86_ops->vcpu_create(kvm, id);
6472 }
6473
6474 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6475 {
6476         int r;
6477
6478         vcpu->arch.mtrr_state.have_fixed = 1;
6479         r = vcpu_load(vcpu);
6480         if (r)
6481                 return r;
6482         r = kvm_vcpu_reset(vcpu);
6483         if (r == 0)
6484                 r = kvm_mmu_setup(vcpu);
6485         vcpu_put(vcpu);
6486
6487         return r;
6488 }
6489
6490 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6491 {
6492         int r;
6493         struct msr_data msr;
6494
6495         r = vcpu_load(vcpu);
6496         if (r)
6497                 return r;
6498         msr.data = 0x0;
6499         msr.index = MSR_IA32_TSC;
6500         msr.host_initiated = true;
6501         kvm_write_tsc(vcpu, &msr);
6502         vcpu_put(vcpu);
6503
6504         return r;
6505 }
6506
6507 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6508 {
6509         int r;
6510         vcpu->arch.apf.msr_val = 0;
6511
6512         r = vcpu_load(vcpu);
6513         BUG_ON(r);
6514         kvm_mmu_unload(vcpu);
6515         vcpu_put(vcpu);
6516
6517         fx_free(vcpu);
6518         kvm_x86_ops->vcpu_free(vcpu);
6519 }
6520
6521 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6522 {
6523         atomic_set(&vcpu->arch.nmi_queued, 0);
6524         vcpu->arch.nmi_pending = 0;
6525         vcpu->arch.nmi_injected = false;
6526
6527         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6528         vcpu->arch.dr6 = DR6_FIXED_1;
6529         vcpu->arch.dr7 = DR7_FIXED_1;
6530         kvm_update_dr7(vcpu);
6531
6532         kvm_make_request(KVM_REQ_EVENT, vcpu);
6533         vcpu->arch.apf.msr_val = 0;
6534         vcpu->arch.st.msr_val = 0;
6535
6536         kvmclock_reset(vcpu);
6537
6538         kvm_clear_async_pf_completion_queue(vcpu);
6539         kvm_async_pf_hash_reset(vcpu);
6540         vcpu->arch.apf.halted = false;
6541
6542         kvm_pmu_reset(vcpu);
6543
6544         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6545         vcpu->arch.regs_avail = ~0;
6546         vcpu->arch.regs_dirty = ~0;
6547
6548         return kvm_x86_ops->vcpu_reset(vcpu);
6549 }
6550
6551 int kvm_arch_hardware_enable(void *garbage)
6552 {
6553         struct kvm *kvm;
6554         struct kvm_vcpu *vcpu;
6555         int i;
6556         int ret;
6557         u64 local_tsc;
6558         u64 max_tsc = 0;
6559         bool stable, backwards_tsc = false;
6560
6561         kvm_shared_msr_cpu_online();
6562         ret = kvm_x86_ops->hardware_enable(garbage);
6563         if (ret != 0)
6564                 return ret;
6565
6566         local_tsc = native_read_tsc();
6567         stable = !check_tsc_unstable();
6568         list_for_each_entry(kvm, &vm_list, vm_list) {
6569                 kvm_for_each_vcpu(i, vcpu, kvm) {
6570                         if (!stable && vcpu->cpu == smp_processor_id())
6571                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6572                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6573                                 backwards_tsc = true;
6574                                 if (vcpu->arch.last_host_tsc > max_tsc)
6575                                         max_tsc = vcpu->arch.last_host_tsc;
6576                         }
6577                 }
6578         }
6579
6580         /*
6581          * Sometimes, even reliable TSCs go backwards.  This happens on
6582          * platforms that reset TSC during suspend or hibernate actions, but
6583          * maintain synchronization.  We must compensate.  Fortunately, we can
6584          * detect that condition here, which happens early in CPU bringup,
6585          * before any KVM threads can be running.  Unfortunately, we can't
6586          * bring the TSCs fully up to date with real time, as we aren't yet far
6587          * enough into CPU bringup that we know how much real time has actually
6588          * elapsed; our helper function, get_kernel_ns() will be using boot
6589          * variables that haven't been updated yet.
6590          *
6591          * So we simply find the maximum observed TSC above, then record the
6592          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6593          * the adjustment will be applied.  Note that we accumulate
6594          * adjustments, in case multiple suspend cycles happen before some VCPU
6595          * gets a chance to run again.  In the event that no KVM threads get a
6596          * chance to run, we will miss the entire elapsed period, as we'll have
6597          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6598          * loose cycle time.  This isn't too big a deal, since the loss will be
6599          * uniform across all VCPUs (not to mention the scenario is extremely
6600          * unlikely). It is possible that a second hibernate recovery happens
6601          * much faster than a first, causing the observed TSC here to be
6602          * smaller; this would require additional padding adjustment, which is
6603          * why we set last_host_tsc to the local tsc observed here.
6604          *
6605          * N.B. - this code below runs only on platforms with reliable TSC,
6606          * as that is the only way backwards_tsc is set above.  Also note
6607          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6608          * have the same delta_cyc adjustment applied if backwards_tsc
6609          * is detected.  Note further, this adjustment is only done once,
6610          * as we reset last_host_tsc on all VCPUs to stop this from being
6611          * called multiple times (one for each physical CPU bringup).
6612          *
6613          * Platforms with unreliable TSCs don't have to deal with this, they
6614          * will be compensated by the logic in vcpu_load, which sets the TSC to
6615          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6616          * guarantee that they stay in perfect synchronization.
6617          */
6618         if (backwards_tsc) {
6619                 u64 delta_cyc = max_tsc - local_tsc;
6620                 list_for_each_entry(kvm, &vm_list, vm_list) {
6621                         kvm_for_each_vcpu(i, vcpu, kvm) {
6622                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6623                                 vcpu->arch.last_host_tsc = local_tsc;
6624                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6625                                         &vcpu->requests);
6626                         }
6627
6628                         /*
6629                          * We have to disable TSC offset matching.. if you were
6630                          * booting a VM while issuing an S4 host suspend....
6631                          * you may have some problem.  Solving this issue is
6632                          * left as an exercise to the reader.
6633                          */
6634                         kvm->arch.last_tsc_nsec = 0;
6635                         kvm->arch.last_tsc_write = 0;
6636                 }
6637
6638         }
6639         return 0;
6640 }
6641
6642 void kvm_arch_hardware_disable(void *garbage)
6643 {
6644         kvm_x86_ops->hardware_disable(garbage);
6645         drop_user_return_notifiers(garbage);
6646 }
6647
6648 int kvm_arch_hardware_setup(void)
6649 {
6650         return kvm_x86_ops->hardware_setup();
6651 }
6652
6653 void kvm_arch_hardware_unsetup(void)
6654 {
6655         kvm_x86_ops->hardware_unsetup();
6656 }
6657
6658 void kvm_arch_check_processor_compat(void *rtn)
6659 {
6660         kvm_x86_ops->check_processor_compatibility(rtn);
6661 }
6662
6663 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6664 {
6665         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6666 }
6667
6668 struct static_key kvm_no_apic_vcpu __read_mostly;
6669
6670 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6671 {
6672         struct page *page;
6673         struct kvm *kvm;
6674         int r;
6675
6676         BUG_ON(vcpu->kvm == NULL);
6677         kvm = vcpu->kvm;
6678
6679         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6680         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6681                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6682         else
6683                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6684
6685         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6686         if (!page) {
6687                 r = -ENOMEM;
6688                 goto fail;
6689         }
6690         vcpu->arch.pio_data = page_address(page);
6691
6692         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6693
6694         r = kvm_mmu_create(vcpu);
6695         if (r < 0)
6696                 goto fail_free_pio_data;
6697
6698         if (irqchip_in_kernel(kvm)) {
6699                 r = kvm_create_lapic(vcpu);
6700                 if (r < 0)
6701                         goto fail_mmu_destroy;
6702         } else
6703                 static_key_slow_inc(&kvm_no_apic_vcpu);
6704
6705         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6706                                        GFP_KERNEL);
6707         if (!vcpu->arch.mce_banks) {
6708                 r = -ENOMEM;
6709                 goto fail_free_lapic;
6710         }
6711         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6712
6713         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6714                 goto fail_free_mce_banks;
6715
6716         r = fx_init(vcpu);
6717         if (r)
6718                 goto fail_free_wbinvd_dirty_mask;
6719
6720         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6721         kvm_async_pf_hash_reset(vcpu);
6722         kvm_pmu_init(vcpu);
6723
6724         return 0;
6725 fail_free_wbinvd_dirty_mask:
6726         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6727 fail_free_mce_banks:
6728         kfree(vcpu->arch.mce_banks);
6729 fail_free_lapic:
6730         kvm_free_lapic(vcpu);
6731 fail_mmu_destroy:
6732         kvm_mmu_destroy(vcpu);
6733 fail_free_pio_data:
6734         free_page((unsigned long)vcpu->arch.pio_data);
6735 fail:
6736         return r;
6737 }
6738
6739 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6740 {
6741         int idx;
6742
6743         kvm_pmu_destroy(vcpu);
6744         kfree(vcpu->arch.mce_banks);
6745         kvm_free_lapic(vcpu);
6746         idx = srcu_read_lock(&vcpu->kvm->srcu);
6747         kvm_mmu_destroy(vcpu);
6748         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6749         free_page((unsigned long)vcpu->arch.pio_data);
6750         if (!irqchip_in_kernel(vcpu->kvm))
6751                 static_key_slow_dec(&kvm_no_apic_vcpu);
6752 }
6753
6754 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6755 {
6756         if (type)
6757                 return -EINVAL;
6758
6759         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6760         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6761
6762         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6763         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6764         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6765         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6766                 &kvm->arch.irq_sources_bitmap);
6767
6768         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6769         mutex_init(&kvm->arch.apic_map_lock);
6770         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6771
6772         pvclock_update_vm_gtod_copy(kvm);
6773
6774         return 0;
6775 }
6776
6777 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6778 {
6779         int r;
6780         r = vcpu_load(vcpu);
6781         BUG_ON(r);
6782         kvm_mmu_unload(vcpu);
6783         vcpu_put(vcpu);
6784 }
6785
6786 static void kvm_free_vcpus(struct kvm *kvm)
6787 {
6788         unsigned int i;
6789         struct kvm_vcpu *vcpu;
6790
6791         /*
6792          * Unpin any mmu pages first.
6793          */
6794         kvm_for_each_vcpu(i, vcpu, kvm) {
6795                 kvm_clear_async_pf_completion_queue(vcpu);
6796                 kvm_unload_vcpu_mmu(vcpu);
6797         }
6798         kvm_for_each_vcpu(i, vcpu, kvm)
6799                 kvm_arch_vcpu_free(vcpu);
6800
6801         mutex_lock(&kvm->lock);
6802         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6803                 kvm->vcpus[i] = NULL;
6804
6805         atomic_set(&kvm->online_vcpus, 0);
6806         mutex_unlock(&kvm->lock);
6807 }
6808
6809 void kvm_arch_sync_events(struct kvm *kvm)
6810 {
6811         kvm_free_all_assigned_devices(kvm);
6812         kvm_free_pit(kvm);
6813 }
6814
6815 void kvm_arch_destroy_vm(struct kvm *kvm)
6816 {
6817         kvm_iommu_unmap_guest(kvm);
6818         kfree(kvm->arch.vpic);
6819         kfree(kvm->arch.vioapic);
6820         kvm_free_vcpus(kvm);
6821         if (kvm->arch.apic_access_page)
6822                 put_page(kvm->arch.apic_access_page);
6823         if (kvm->arch.ept_identity_pagetable)
6824                 put_page(kvm->arch.ept_identity_pagetable);
6825         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6826 }
6827
6828 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6829                            struct kvm_memory_slot *dont)
6830 {
6831         int i;
6832
6833         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6834                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6835                         kvm_kvfree(free->arch.rmap[i]);
6836                         free->arch.rmap[i] = NULL;
6837                 }
6838                 if (i == 0)
6839                         continue;
6840
6841                 if (!dont || free->arch.lpage_info[i - 1] !=
6842                              dont->arch.lpage_info[i - 1]) {
6843                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6844                         free->arch.lpage_info[i - 1] = NULL;
6845                 }
6846         }
6847 }
6848
6849 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6850 {
6851         int i;
6852
6853         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6854                 unsigned long ugfn;
6855                 int lpages;
6856                 int level = i + 1;
6857
6858                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6859                                       slot->base_gfn, level) + 1;
6860
6861                 slot->arch.rmap[i] =
6862                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6863                 if (!slot->arch.rmap[i])
6864                         goto out_free;
6865                 if (i == 0)
6866                         continue;
6867
6868                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6869                                         sizeof(*slot->arch.lpage_info[i - 1]));
6870                 if (!slot->arch.lpage_info[i - 1])
6871                         goto out_free;
6872
6873                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6874                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6875                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6876                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6877                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6878                 /*
6879                  * If the gfn and userspace address are not aligned wrt each
6880                  * other, or if explicitly asked to, disable large page
6881                  * support for this slot
6882                  */
6883                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6884                     !kvm_largepages_enabled()) {
6885                         unsigned long j;
6886
6887                         for (j = 0; j < lpages; ++j)
6888                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6889                 }
6890         }
6891
6892         return 0;
6893
6894 out_free:
6895         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6896                 kvm_kvfree(slot->arch.rmap[i]);
6897                 slot->arch.rmap[i] = NULL;
6898                 if (i == 0)
6899                         continue;
6900
6901                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6902                 slot->arch.lpage_info[i - 1] = NULL;
6903         }
6904         return -ENOMEM;
6905 }
6906
6907 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6908                                 struct kvm_memory_slot *memslot,
6909                                 struct kvm_memory_slot old,
6910                                 struct kvm_userspace_memory_region *mem,
6911                                 bool user_alloc)
6912 {
6913         int npages = memslot->npages;
6914
6915         /*
6916          * Only private memory slots need to be mapped here since
6917          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6918          */
6919         if ((memslot->id >= KVM_USER_MEM_SLOTS) && npages && !old.npages) {
6920                 unsigned long userspace_addr;
6921
6922                 /*
6923                  * MAP_SHARED to prevent internal slot pages from being moved
6924                  * by fork()/COW.
6925                  */
6926                 userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE,
6927                                          PROT_READ | PROT_WRITE,
6928                                          MAP_SHARED | MAP_ANONYMOUS, 0);
6929
6930                 if (IS_ERR((void *)userspace_addr))
6931                         return PTR_ERR((void *)userspace_addr);
6932
6933                 memslot->userspace_addr = userspace_addr;
6934         }
6935
6936         return 0;
6937 }
6938
6939 void kvm_arch_commit_memory_region(struct kvm *kvm,
6940                                 struct kvm_userspace_memory_region *mem,
6941                                 struct kvm_memory_slot old,
6942                                 bool user_alloc)
6943 {
6944
6945         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6946
6947         if ((mem->slot >= KVM_USER_MEM_SLOTS) && old.npages && !npages) {
6948                 int ret;
6949
6950                 ret = vm_munmap(old.userspace_addr,
6951                                 old.npages * PAGE_SIZE);
6952                 if (ret < 0)
6953                         printk(KERN_WARNING
6954                                "kvm_vm_ioctl_set_memory_region: "
6955                                "failed to munmap memory\n");
6956         }
6957
6958         if (!kvm->arch.n_requested_mmu_pages)
6959                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6960
6961         if (nr_mmu_pages)
6962                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6963         /*
6964          * Write protect all pages for dirty logging.
6965          * Existing largepage mappings are destroyed here and new ones will
6966          * not be created until the end of the logging.
6967          */
6968         if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
6969                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6970         /*
6971          * If memory slot is created, or moved, we need to clear all
6972          * mmio sptes.
6973          */
6974         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6975                 kvm_mmu_zap_all(kvm);
6976                 kvm_reload_remote_mmus(kvm);
6977         }
6978 }
6979
6980 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6981 {
6982         kvm_mmu_zap_all(kvm);
6983         kvm_reload_remote_mmus(kvm);
6984 }
6985
6986 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6987                                    struct kvm_memory_slot *slot)
6988 {
6989         kvm_arch_flush_shadow_all(kvm);
6990 }
6991
6992 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6993 {
6994         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6995                 !vcpu->arch.apf.halted)
6996                 || !list_empty_careful(&vcpu->async_pf.done)
6997                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6998                 || atomic_read(&vcpu->arch.nmi_queued) ||
6999                 (kvm_arch_interrupt_allowed(vcpu) &&
7000                  kvm_cpu_has_interrupt(vcpu));
7001 }
7002
7003 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7004 {
7005         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7006 }
7007
7008 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7009 {
7010         return kvm_x86_ops->interrupt_allowed(vcpu);
7011 }
7012
7013 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7014 {
7015         unsigned long current_rip = kvm_rip_read(vcpu) +
7016                 get_segment_base(vcpu, VCPU_SREG_CS);
7017
7018         return current_rip == linear_rip;
7019 }
7020 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7021
7022 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7023 {
7024         unsigned long rflags;
7025
7026         rflags = kvm_x86_ops->get_rflags(vcpu);
7027         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7028                 rflags &= ~X86_EFLAGS_TF;
7029         return rflags;
7030 }
7031 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7032
7033 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7034 {
7035         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7036             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7037                 rflags |= X86_EFLAGS_TF;
7038         kvm_x86_ops->set_rflags(vcpu, rflags);
7039         kvm_make_request(KVM_REQ_EVENT, vcpu);
7040 }
7041 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7042
7043 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7044 {
7045         int r;
7046
7047         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7048               is_error_page(work->page))
7049                 return;
7050
7051         r = kvm_mmu_reload(vcpu);
7052         if (unlikely(r))
7053                 return;
7054
7055         if (!vcpu->arch.mmu.direct_map &&
7056               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7057                 return;
7058
7059         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7060 }
7061
7062 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7063 {
7064         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7065 }
7066
7067 static inline u32 kvm_async_pf_next_probe(u32 key)
7068 {
7069         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7070 }
7071
7072 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7073 {
7074         u32 key = kvm_async_pf_hash_fn(gfn);
7075
7076         while (vcpu->arch.apf.gfns[key] != ~0)
7077                 key = kvm_async_pf_next_probe(key);
7078
7079         vcpu->arch.apf.gfns[key] = gfn;
7080 }
7081
7082 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7083 {
7084         int i;
7085         u32 key = kvm_async_pf_hash_fn(gfn);
7086
7087         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7088                      (vcpu->arch.apf.gfns[key] != gfn &&
7089                       vcpu->arch.apf.gfns[key] != ~0); i++)
7090                 key = kvm_async_pf_next_probe(key);
7091
7092         return key;
7093 }
7094
7095 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7096 {
7097         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7098 }
7099
7100 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7101 {
7102         u32 i, j, k;
7103
7104         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7105         while (true) {
7106                 vcpu->arch.apf.gfns[i] = ~0;
7107                 do {
7108                         j = kvm_async_pf_next_probe(j);
7109                         if (vcpu->arch.apf.gfns[j] == ~0)
7110                                 return;
7111                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7112                         /*
7113                          * k lies cyclically in ]i,j]
7114                          * |    i.k.j |
7115                          * |....j i.k.| or  |.k..j i...|
7116                          */
7117                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7118                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7119                 i = j;
7120         }
7121 }
7122
7123 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7124 {
7125
7126         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7127                                       sizeof(val));
7128 }
7129
7130 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7131                                      struct kvm_async_pf *work)
7132 {
7133         struct x86_exception fault;
7134
7135         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7136         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7137
7138         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7139             (vcpu->arch.apf.send_user_only &&
7140              kvm_x86_ops->get_cpl(vcpu) == 0))
7141                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7142         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7143                 fault.vector = PF_VECTOR;
7144                 fault.error_code_valid = true;
7145                 fault.error_code = 0;
7146                 fault.nested_page_fault = false;
7147                 fault.address = work->arch.token;
7148                 kvm_inject_page_fault(vcpu, &fault);
7149         }
7150 }
7151
7152 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7153                                  struct kvm_async_pf *work)
7154 {
7155         struct x86_exception fault;
7156
7157         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7158         if (is_error_page(work->page))
7159                 work->arch.token = ~0; /* broadcast wakeup */
7160         else
7161                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7162
7163         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7164             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7165                 fault.vector = PF_VECTOR;
7166                 fault.error_code_valid = true;
7167                 fault.error_code = 0;
7168                 fault.nested_page_fault = false;
7169                 fault.address = work->arch.token;
7170                 kvm_inject_page_fault(vcpu, &fault);
7171         }
7172         vcpu->arch.apf.halted = false;
7173         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7174 }
7175
7176 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7177 {
7178         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7179                 return true;
7180         else
7181                 return !kvm_event_needs_reinjection(vcpu) &&
7182                         kvm_x86_ops->interrupt_allowed(vcpu);
7183 }
7184
7185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7192 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7193 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7194 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7195 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7196 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);