]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi.c
Merge branch 'master' into x86/memblock
[karo-tx-linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/export.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/spinlock.h>
36 #include <linux/uaccess.h>
37 #include <linux/time.h>
38 #include <linux/io.h>
39 #include <linux/reboot.h>
40 #include <linux/bcd.h>
41
42 #include <asm/setup.h>
43 #include <asm/efi.h>
44 #include <asm/time.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlbflush.h>
47 #include <asm/x86_init.h>
48
49 #define EFI_DEBUG       1
50 #define PFX             "EFI: "
51
52 int efi_enabled;
53 EXPORT_SYMBOL(efi_enabled);
54
55 struct efi __read_mostly efi = {
56         .mps        = EFI_INVALID_TABLE_ADDR,
57         .acpi       = EFI_INVALID_TABLE_ADDR,
58         .acpi20     = EFI_INVALID_TABLE_ADDR,
59         .smbios     = EFI_INVALID_TABLE_ADDR,
60         .sal_systab = EFI_INVALID_TABLE_ADDR,
61         .boot_info  = EFI_INVALID_TABLE_ADDR,
62         .hcdp       = EFI_INVALID_TABLE_ADDR,
63         .uga        = EFI_INVALID_TABLE_ADDR,
64         .uv_systab  = EFI_INVALID_TABLE_ADDR,
65 };
66 EXPORT_SYMBOL(efi);
67
68 struct efi_memory_map memmap;
69
70 static struct efi efi_phys __initdata;
71 static efi_system_table_t efi_systab __initdata;
72
73 static int __init setup_noefi(char *arg)
74 {
75         efi_enabled = 0;
76         return 0;
77 }
78 early_param("noefi", setup_noefi);
79
80 int add_efi_memmap;
81 EXPORT_SYMBOL(add_efi_memmap);
82
83 static int __init setup_add_efi_memmap(char *arg)
84 {
85         add_efi_memmap = 1;
86         return 0;
87 }
88 early_param("add_efi_memmap", setup_add_efi_memmap);
89
90
91 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
92 {
93         unsigned long flags;
94         efi_status_t status;
95
96         spin_lock_irqsave(&rtc_lock, flags);
97         status = efi_call_virt2(get_time, tm, tc);
98         spin_unlock_irqrestore(&rtc_lock, flags);
99         return status;
100 }
101
102 static efi_status_t virt_efi_set_time(efi_time_t *tm)
103 {
104         unsigned long flags;
105         efi_status_t status;
106
107         spin_lock_irqsave(&rtc_lock, flags);
108         status = efi_call_virt1(set_time, tm);
109         spin_unlock_irqrestore(&rtc_lock, flags);
110         return status;
111 }
112
113 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
114                                              efi_bool_t *pending,
115                                              efi_time_t *tm)
116 {
117         unsigned long flags;
118         efi_status_t status;
119
120         spin_lock_irqsave(&rtc_lock, flags);
121         status = efi_call_virt3(get_wakeup_time,
122                                 enabled, pending, tm);
123         spin_unlock_irqrestore(&rtc_lock, flags);
124         return status;
125 }
126
127 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
128 {
129         unsigned long flags;
130         efi_status_t status;
131
132         spin_lock_irqsave(&rtc_lock, flags);
133         status = efi_call_virt2(set_wakeup_time,
134                                 enabled, tm);
135         spin_unlock_irqrestore(&rtc_lock, flags);
136         return status;
137 }
138
139 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
140                                           efi_guid_t *vendor,
141                                           u32 *attr,
142                                           unsigned long *data_size,
143                                           void *data)
144 {
145         return efi_call_virt5(get_variable,
146                               name, vendor, attr,
147                               data_size, data);
148 }
149
150 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
151                                                efi_char16_t *name,
152                                                efi_guid_t *vendor)
153 {
154         return efi_call_virt3(get_next_variable,
155                               name_size, name, vendor);
156 }
157
158 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
159                                           efi_guid_t *vendor,
160                                           u32 attr,
161                                           unsigned long data_size,
162                                           void *data)
163 {
164         return efi_call_virt5(set_variable,
165                               name, vendor, attr,
166                               data_size, data);
167 }
168
169 static efi_status_t virt_efi_query_variable_info(u32 attr,
170                                                  u64 *storage_space,
171                                                  u64 *remaining_space,
172                                                  u64 *max_variable_size)
173 {
174         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
175                 return EFI_UNSUPPORTED;
176
177         return efi_call_virt4(query_variable_info, attr, storage_space,
178                               remaining_space, max_variable_size);
179 }
180
181 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
182 {
183         return efi_call_virt1(get_next_high_mono_count, count);
184 }
185
186 static void virt_efi_reset_system(int reset_type,
187                                   efi_status_t status,
188                                   unsigned long data_size,
189                                   efi_char16_t *data)
190 {
191         efi_call_virt4(reset_system, reset_type, status,
192                        data_size, data);
193 }
194
195 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
196                                             unsigned long count,
197                                             unsigned long sg_list)
198 {
199         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
200                 return EFI_UNSUPPORTED;
201
202         return efi_call_virt3(update_capsule, capsules, count, sg_list);
203 }
204
205 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
206                                                 unsigned long count,
207                                                 u64 *max_size,
208                                                 int *reset_type)
209 {
210         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
211                 return EFI_UNSUPPORTED;
212
213         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
214                               reset_type);
215 }
216
217 static efi_status_t __init phys_efi_set_virtual_address_map(
218         unsigned long memory_map_size,
219         unsigned long descriptor_size,
220         u32 descriptor_version,
221         efi_memory_desc_t *virtual_map)
222 {
223         efi_status_t status;
224
225         efi_call_phys_prelog();
226         status = efi_call_phys4(efi_phys.set_virtual_address_map,
227                                 memory_map_size, descriptor_size,
228                                 descriptor_version, virtual_map);
229         efi_call_phys_epilog();
230         return status;
231 }
232
233 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
234                                              efi_time_cap_t *tc)
235 {
236         unsigned long flags;
237         efi_status_t status;
238
239         spin_lock_irqsave(&rtc_lock, flags);
240         efi_call_phys_prelog();
241         status = efi_call_phys2(efi_phys.get_time, tm, tc);
242         efi_call_phys_epilog();
243         spin_unlock_irqrestore(&rtc_lock, flags);
244         return status;
245 }
246
247 int efi_set_rtc_mmss(unsigned long nowtime)
248 {
249         int real_seconds, real_minutes;
250         efi_status_t    status;
251         efi_time_t      eft;
252         efi_time_cap_t  cap;
253
254         status = efi.get_time(&eft, &cap);
255         if (status != EFI_SUCCESS) {
256                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
257                 return -1;
258         }
259
260         real_seconds = nowtime % 60;
261         real_minutes = nowtime / 60;
262         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
263                 real_minutes += 30;
264         real_minutes %= 60;
265         eft.minute = real_minutes;
266         eft.second = real_seconds;
267
268         status = efi.set_time(&eft);
269         if (status != EFI_SUCCESS) {
270                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
271                 return -1;
272         }
273         return 0;
274 }
275
276 unsigned long efi_get_time(void)
277 {
278         efi_status_t status;
279         efi_time_t eft;
280         efi_time_cap_t cap;
281
282         status = efi.get_time(&eft, &cap);
283         if (status != EFI_SUCCESS)
284                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
285
286         return mktime(eft.year, eft.month, eft.day, eft.hour,
287                       eft.minute, eft.second);
288 }
289
290 /*
291  * Tell the kernel about the EFI memory map.  This might include
292  * more than the max 128 entries that can fit in the e820 legacy
293  * (zeropage) memory map.
294  */
295
296 static void __init do_add_efi_memmap(void)
297 {
298         void *p;
299
300         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
301                 efi_memory_desc_t *md = p;
302                 unsigned long long start = md->phys_addr;
303                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
304                 int e820_type;
305
306                 switch (md->type) {
307                 case EFI_LOADER_CODE:
308                 case EFI_LOADER_DATA:
309                 case EFI_BOOT_SERVICES_CODE:
310                 case EFI_BOOT_SERVICES_DATA:
311                 case EFI_CONVENTIONAL_MEMORY:
312                         if (md->attribute & EFI_MEMORY_WB)
313                                 e820_type = E820_RAM;
314                         else
315                                 e820_type = E820_RESERVED;
316                         break;
317                 case EFI_ACPI_RECLAIM_MEMORY:
318                         e820_type = E820_ACPI;
319                         break;
320                 case EFI_ACPI_MEMORY_NVS:
321                         e820_type = E820_NVS;
322                         break;
323                 case EFI_UNUSABLE_MEMORY:
324                         e820_type = E820_UNUSABLE;
325                         break;
326                 default:
327                         /*
328                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
329                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
330                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
331                          */
332                         e820_type = E820_RESERVED;
333                         break;
334                 }
335                 e820_add_region(start, size, e820_type);
336         }
337         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
338 }
339
340 void __init efi_memblock_x86_reserve_range(void)
341 {
342         unsigned long pmap;
343
344 #ifdef CONFIG_X86_32
345         pmap = boot_params.efi_info.efi_memmap;
346 #else
347         pmap = (boot_params.efi_info.efi_memmap |
348                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
349 #endif
350         memmap.phys_map = (void *)pmap;
351         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
352                 boot_params.efi_info.efi_memdesc_size;
353         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
354         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
355         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
356 }
357
358 #if EFI_DEBUG
359 static void __init print_efi_memmap(void)
360 {
361         efi_memory_desc_t *md;
362         void *p;
363         int i;
364
365         for (p = memmap.map, i = 0;
366              p < memmap.map_end;
367              p += memmap.desc_size, i++) {
368                 md = p;
369                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
371                         i, md->type, md->attribute, md->phys_addr,
372                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
374         }
375 }
376 #endif  /*  EFI_DEBUG  */
377
378 void __init efi_reserve_boot_services(void)
379 {
380         void *p;
381
382         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383                 efi_memory_desc_t *md = p;
384                 u64 start = md->phys_addr;
385                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
386
387                 if (md->type != EFI_BOOT_SERVICES_CODE &&
388                     md->type != EFI_BOOT_SERVICES_DATA)
389                         continue;
390                 /* Only reserve where possible:
391                  * - Not within any already allocated areas
392                  * - Not over any memory area (really needed, if above?)
393                  * - Not within any part of the kernel
394                  * - Not the bios reserved area
395                 */
396                 if ((start+size >= virt_to_phys(_text)
397                                 && start <= virt_to_phys(_end)) ||
398                         !e820_all_mapped(start, start+size, E820_RAM) ||
399                         memblock_is_region_reserved(start, size)) {
400                         /* Could not reserve, skip it */
401                         md->num_pages = 0;
402                         memblock_dbg(PFX "Could not reserve boot range "
403                                         "[0x%010llx-0x%010llx]\n",
404                                                 start, start+size-1);
405                 } else
406                         memblock_reserve(start, size);
407         }
408 }
409
410 static void __init efi_free_boot_services(void)
411 {
412         void *p;
413
414         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
415                 efi_memory_desc_t *md = p;
416                 unsigned long long start = md->phys_addr;
417                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
418
419                 if (md->type != EFI_BOOT_SERVICES_CODE &&
420                     md->type != EFI_BOOT_SERVICES_DATA)
421                         continue;
422
423                 /* Could not reserve boot area */
424                 if (!size)
425                         continue;
426
427                 free_bootmem_late(start, size);
428         }
429 }
430
431 void __init efi_init(void)
432 {
433         efi_config_table_t *config_tables;
434         efi_runtime_services_t *runtime;
435         efi_char16_t *c16;
436         char vendor[100] = "unknown";
437         int i = 0;
438         void *tmp;
439
440 #ifdef CONFIG_X86_32
441         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
442 #else
443         efi_phys.systab = (efi_system_table_t *)
444                 (boot_params.efi_info.efi_systab |
445                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
446 #endif
447
448         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
449                                    sizeof(efi_system_table_t));
450         if (efi.systab == NULL)
451                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
452         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
453         early_iounmap(efi.systab, sizeof(efi_system_table_t));
454         efi.systab = &efi_systab;
455
456         /*
457          * Verify the EFI Table
458          */
459         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
460                 printk(KERN_ERR "EFI system table signature incorrect!\n");
461         if ((efi.systab->hdr.revision >> 16) == 0)
462                 printk(KERN_ERR "Warning: EFI system table version "
463                        "%d.%02d, expected 1.00 or greater!\n",
464                        efi.systab->hdr.revision >> 16,
465                        efi.systab->hdr.revision & 0xffff);
466
467         /*
468          * Show what we know for posterity
469          */
470         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
471         if (c16) {
472                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
473                         vendor[i] = *c16++;
474                 vendor[i] = '\0';
475         } else
476                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
477         early_iounmap(tmp, 2);
478
479         printk(KERN_INFO "EFI v%u.%.02u by %s\n",
480                efi.systab->hdr.revision >> 16,
481                efi.systab->hdr.revision & 0xffff, vendor);
482
483         /*
484          * Let's see what config tables the firmware passed to us.
485          */
486         config_tables = early_ioremap(
487                 efi.systab->tables,
488                 efi.systab->nr_tables * sizeof(efi_config_table_t));
489         if (config_tables == NULL)
490                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
491
492         printk(KERN_INFO);
493         for (i = 0; i < efi.systab->nr_tables; i++) {
494                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
495                         efi.mps = config_tables[i].table;
496                         printk(" MPS=0x%lx ", config_tables[i].table);
497                 } else if (!efi_guidcmp(config_tables[i].guid,
498                                         ACPI_20_TABLE_GUID)) {
499                         efi.acpi20 = config_tables[i].table;
500                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
501                 } else if (!efi_guidcmp(config_tables[i].guid,
502                                         ACPI_TABLE_GUID)) {
503                         efi.acpi = config_tables[i].table;
504                         printk(" ACPI=0x%lx ", config_tables[i].table);
505                 } else if (!efi_guidcmp(config_tables[i].guid,
506                                         SMBIOS_TABLE_GUID)) {
507                         efi.smbios = config_tables[i].table;
508                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
509 #ifdef CONFIG_X86_UV
510                 } else if (!efi_guidcmp(config_tables[i].guid,
511                                         UV_SYSTEM_TABLE_GUID)) {
512                         efi.uv_systab = config_tables[i].table;
513                         printk(" UVsystab=0x%lx ", config_tables[i].table);
514 #endif
515                 } else if (!efi_guidcmp(config_tables[i].guid,
516                                         HCDP_TABLE_GUID)) {
517                         efi.hcdp = config_tables[i].table;
518                         printk(" HCDP=0x%lx ", config_tables[i].table);
519                 } else if (!efi_guidcmp(config_tables[i].guid,
520                                         UGA_IO_PROTOCOL_GUID)) {
521                         efi.uga = config_tables[i].table;
522                         printk(" UGA=0x%lx ", config_tables[i].table);
523                 }
524         }
525         printk("\n");
526         early_iounmap(config_tables,
527                           efi.systab->nr_tables * sizeof(efi_config_table_t));
528
529         /*
530          * Check out the runtime services table. We need to map
531          * the runtime services table so that we can grab the physical
532          * address of several of the EFI runtime functions, needed to
533          * set the firmware into virtual mode.
534          */
535         runtime = early_ioremap((unsigned long)efi.systab->runtime,
536                                 sizeof(efi_runtime_services_t));
537         if (runtime != NULL) {
538                 /*
539                  * We will only need *early* access to the following
540                  * two EFI runtime services before set_virtual_address_map
541                  * is invoked.
542                  */
543                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
544                 efi_phys.set_virtual_address_map =
545                         (efi_set_virtual_address_map_t *)
546                         runtime->set_virtual_address_map;
547                 /*
548                  * Make efi_get_time can be called before entering
549                  * virtual mode.
550                  */
551                 efi.get_time = phys_efi_get_time;
552         } else
553                 printk(KERN_ERR "Could not map the EFI runtime service "
554                        "table!\n");
555         early_iounmap(runtime, sizeof(efi_runtime_services_t));
556
557         /* Map the EFI memory map */
558         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
559                                    memmap.nr_map * memmap.desc_size);
560         if (memmap.map == NULL)
561                 printk(KERN_ERR "Could not map the EFI memory map!\n");
562         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
563
564         if (memmap.desc_size != sizeof(efi_memory_desc_t))
565                 printk(KERN_WARNING
566                   "Kernel-defined memdesc doesn't match the one from EFI!\n");
567
568         if (add_efi_memmap)
569                 do_add_efi_memmap();
570
571 #ifdef CONFIG_X86_32
572         x86_platform.get_wallclock = efi_get_time;
573         x86_platform.set_wallclock = efi_set_rtc_mmss;
574 #endif
575
576 #if EFI_DEBUG
577         print_efi_memmap();
578 #endif
579 }
580
581 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
582 {
583         u64 addr, npages;
584
585         addr = md->virt_addr;
586         npages = md->num_pages;
587
588         memrange_efi_to_native(&addr, &npages);
589
590         if (executable)
591                 set_memory_x(addr, npages);
592         else
593                 set_memory_nx(addr, npages);
594 }
595
596 static void __init runtime_code_page_mkexec(void)
597 {
598         efi_memory_desc_t *md;
599         void *p;
600
601         /* Make EFI runtime service code area executable */
602         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
603                 md = p;
604
605                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
606                         continue;
607
608                 efi_set_executable(md, true);
609         }
610 }
611
612 /*
613  * This function will switch the EFI runtime services to virtual mode.
614  * Essentially, look through the EFI memmap and map every region that
615  * has the runtime attribute bit set in its memory descriptor and update
616  * that memory descriptor with the virtual address obtained from ioremap().
617  * This enables the runtime services to be called without having to
618  * thunk back into physical mode for every invocation.
619  */
620 void __init efi_enter_virtual_mode(void)
621 {
622         efi_memory_desc_t *md, *prev_md = NULL;
623         efi_status_t status;
624         unsigned long size;
625         u64 end, systab, addr, npages, end_pfn;
626         void *p, *va, *new_memmap = NULL;
627         int count = 0;
628
629         efi.systab = NULL;
630
631         /* Merge contiguous regions of the same type and attribute */
632         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
633                 u64 prev_size;
634                 md = p;
635
636                 if (!prev_md) {
637                         prev_md = md;
638                         continue;
639                 }
640
641                 if (prev_md->type != md->type ||
642                     prev_md->attribute != md->attribute) {
643                         prev_md = md;
644                         continue;
645                 }
646
647                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
648
649                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
650                         prev_md->num_pages += md->num_pages;
651                         md->type = EFI_RESERVED_TYPE;
652                         md->attribute = 0;
653                         continue;
654                 }
655                 prev_md = md;
656         }
657
658         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
659                 md = p;
660                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
661                     md->type != EFI_BOOT_SERVICES_CODE &&
662                     md->type != EFI_BOOT_SERVICES_DATA)
663                         continue;
664
665                 size = md->num_pages << EFI_PAGE_SHIFT;
666                 end = md->phys_addr + size;
667
668                 end_pfn = PFN_UP(end);
669                 if (end_pfn <= max_low_pfn_mapped
670                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
671                         && end_pfn <= max_pfn_mapped))
672                         va = __va(md->phys_addr);
673                 else
674                         va = efi_ioremap(md->phys_addr, size, md->type);
675
676                 md->virt_addr = (u64) (unsigned long) va;
677
678                 if (!va) {
679                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
680                                (unsigned long long)md->phys_addr);
681                         continue;
682                 }
683
684                 if (!(md->attribute & EFI_MEMORY_WB)) {
685                         addr = md->virt_addr;
686                         npages = md->num_pages;
687                         memrange_efi_to_native(&addr, &npages);
688                         set_memory_uc(addr, npages);
689                 }
690
691                 systab = (u64) (unsigned long) efi_phys.systab;
692                 if (md->phys_addr <= systab && systab < end) {
693                         systab += md->virt_addr - md->phys_addr;
694                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
695                 }
696                 new_memmap = krealloc(new_memmap,
697                                       (count + 1) * memmap.desc_size,
698                                       GFP_KERNEL);
699                 memcpy(new_memmap + (count * memmap.desc_size), md,
700                        memmap.desc_size);
701                 count++;
702         }
703
704         BUG_ON(!efi.systab);
705
706         status = phys_efi_set_virtual_address_map(
707                 memmap.desc_size * count,
708                 memmap.desc_size,
709                 memmap.desc_version,
710                 (efi_memory_desc_t *)__pa(new_memmap));
711
712         if (status != EFI_SUCCESS) {
713                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
714                        "(status=%lx)!\n", status);
715                 panic("EFI call to SetVirtualAddressMap() failed!");
716         }
717
718         /*
719          * Thankfully, it does seem that no runtime services other than
720          * SetVirtualAddressMap() will touch boot services code, so we can
721          * get rid of it all at this point
722          */
723         efi_free_boot_services();
724
725         /*
726          * Now that EFI is in virtual mode, update the function
727          * pointers in the runtime service table to the new virtual addresses.
728          *
729          * Call EFI services through wrapper functions.
730          */
731         efi.get_time = virt_efi_get_time;
732         efi.set_time = virt_efi_set_time;
733         efi.get_wakeup_time = virt_efi_get_wakeup_time;
734         efi.set_wakeup_time = virt_efi_set_wakeup_time;
735         efi.get_variable = virt_efi_get_variable;
736         efi.get_next_variable = virt_efi_get_next_variable;
737         efi.set_variable = virt_efi_set_variable;
738         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
739         efi.reset_system = virt_efi_reset_system;
740         efi.set_virtual_address_map = NULL;
741         efi.query_variable_info = virt_efi_query_variable_info;
742         efi.update_capsule = virt_efi_update_capsule;
743         efi.query_capsule_caps = virt_efi_query_capsule_caps;
744         if (__supported_pte_mask & _PAGE_NX)
745                 runtime_code_page_mkexec();
746         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
747         memmap.map = NULL;
748         kfree(new_memmap);
749 }
750
751 /*
752  * Convenience functions to obtain memory types and attributes
753  */
754 u32 efi_mem_type(unsigned long phys_addr)
755 {
756         efi_memory_desc_t *md;
757         void *p;
758
759         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
760                 md = p;
761                 if ((md->phys_addr <= phys_addr) &&
762                     (phys_addr < (md->phys_addr +
763                                   (md->num_pages << EFI_PAGE_SHIFT))))
764                         return md->type;
765         }
766         return 0;
767 }
768
769 u64 efi_mem_attributes(unsigned long phys_addr)
770 {
771         efi_memory_desc_t *md;
772         void *p;
773
774         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
775                 md = p;
776                 if ((md->phys_addr <= phys_addr) &&
777                     (phys_addr < (md->phys_addr +
778                                   (md->num_pages << EFI_PAGE_SHIFT))))
779                         return md->attribute;
780         }
781         return 0;
782 }