]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
ce4811667d369b876e9066a7b92ded05a71cf013
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42         unsigned int i;
43
44         for (i = 0; i < hctx->ctx_map.map_size; i++)
45                 if (hctx->ctx_map.map[i].word)
46                         return true;
47
48         return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52                                               struct blk_mq_ctx *ctx)
53 {
54         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx)   \
58         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64                                      struct blk_mq_ctx *ctx)
65 {
66         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73                                       struct blk_mq_ctx *ctx)
74 {
75         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82         while (true) {
83                 int ret;
84
85                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86                         return 0;
87
88                 ret = wait_event_interruptible(q->mq_freeze_wq,
89                                 !q->mq_freeze_depth || blk_queue_dying(q));
90                 if (blk_queue_dying(q))
91                         return -ENODEV;
92                 if (ret)
93                         return ret;
94         }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99         percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104         struct request_queue *q =
105                 container_of(ref, struct request_queue, mq_usage_counter);
106
107         wake_up_all(&q->mq_freeze_wq);
108 }
109
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112         bool freeze;
113
114         spin_lock_irq(q->queue_lock);
115         freeze = !q->mq_freeze_depth++;
116         spin_unlock_irq(q->queue_lock);
117
118         if (freeze) {
119                 percpu_ref_kill(&q->mq_usage_counter);
120                 blk_mq_run_queues(q, false);
121         }
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129
130 /*
131  * Guarantee no request is in use, so we can change any data structure of
132  * the queue afterward.
133  */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         blk_mq_freeze_queue_start(q);
137         blk_mq_freeze_queue_wait(q);
138 }
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142         bool wake;
143
144         spin_lock_irq(q->queue_lock);
145         wake = !--q->mq_freeze_depth;
146         WARN_ON_ONCE(q->mq_freeze_depth < 0);
147         spin_unlock_irq(q->queue_lock);
148         if (wake) {
149                 percpu_ref_reinit(&q->mq_usage_counter);
150                 wake_up_all(&q->mq_freeze_wq);
151         }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157         struct blk_mq_hw_ctx *hctx;
158         unsigned int i;
159
160         queue_for_each_hw_ctx(q, hctx, i)
161                 if (blk_mq_hw_queue_mapped(hctx))
162                         blk_mq_tag_wakeup_all(hctx->tags, true);
163
164         /*
165          * If we are called because the queue has now been marked as
166          * dying, we need to ensure that processes currently waiting on
167          * the queue are notified as well.
168          */
169         wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174         return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179                                struct request *rq, unsigned int rw_flags)
180 {
181         if (blk_queue_io_stat(q))
182                 rw_flags |= REQ_IO_STAT;
183
184         INIT_LIST_HEAD(&rq->queuelist);
185         /* csd/requeue_work/fifo_time is initialized before use */
186         rq->q = q;
187         rq->mq_ctx = ctx;
188         rq->cmd_flags |= rw_flags;
189         /* do not touch atomic flags, it needs atomic ops against the timer */
190         rq->cpu = -1;
191         INIT_HLIST_NODE(&rq->hash);
192         RB_CLEAR_NODE(&rq->rb_node);
193         rq->rq_disk = NULL;
194         rq->part = NULL;
195         rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197         rq->rl = NULL;
198         set_start_time_ns(rq);
199         rq->io_start_time_ns = 0;
200 #endif
201         rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203         rq->nr_integrity_segments = 0;
204 #endif
205         rq->special = NULL;
206         /* tag was already set */
207         rq->errors = 0;
208
209         rq->cmd = rq->__cmd;
210
211         rq->extra_len = 0;
212         rq->sense_len = 0;
213         rq->resid_len = 0;
214         rq->sense = NULL;
215
216         INIT_LIST_HEAD(&rq->timeout_list);
217         rq->timeout = 0;
218
219         rq->end_io = NULL;
220         rq->end_io_data = NULL;
221         rq->next_rq = NULL;
222
223         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229         struct request *rq;
230         unsigned int tag;
231
232         tag = blk_mq_get_tag(data);
233         if (tag != BLK_MQ_TAG_FAIL) {
234                 rq = data->hctx->tags->rqs[tag];
235
236                 if (blk_mq_tag_busy(data->hctx)) {
237                         rq->cmd_flags = REQ_MQ_INFLIGHT;
238                         atomic_inc(&data->hctx->nr_active);
239                 }
240
241                 rq->tag = tag;
242                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243                 return rq;
244         }
245
246         return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250                 bool reserved)
251 {
252         struct blk_mq_ctx *ctx;
253         struct blk_mq_hw_ctx *hctx;
254         struct request *rq;
255         struct blk_mq_alloc_data alloc_data;
256         int ret;
257
258         ret = blk_mq_queue_enter(q);
259         if (ret)
260                 return ERR_PTR(ret);
261
262         ctx = blk_mq_get_ctx(q);
263         hctx = q->mq_ops->map_queue(q, ctx->cpu);
264         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265                         reserved, ctx, hctx);
266
267         rq = __blk_mq_alloc_request(&alloc_data, rw);
268         if (!rq && (gfp & __GFP_WAIT)) {
269                 __blk_mq_run_hw_queue(hctx);
270                 blk_mq_put_ctx(ctx);
271
272                 ctx = blk_mq_get_ctx(q);
273                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275                                 hctx);
276                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
277                 ctx = alloc_data.ctx;
278         }
279         blk_mq_put_ctx(ctx);
280         if (!rq) {
281                 blk_mq_queue_exit(q);
282                 return ERR_PTR(-EWOULDBLOCK);
283         }
284         return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289                                   struct blk_mq_ctx *ctx, struct request *rq)
290 {
291         const int tag = rq->tag;
292         struct request_queue *q = rq->q;
293
294         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295                 atomic_dec(&hctx->nr_active);
296         rq->cmd_flags = 0;
297
298         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300         blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305         struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307         ctx->rq_completed[rq_is_sync(rq)]++;
308         __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         struct request_queue *q = rq->q;
317
318         hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319         blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325         blk_account_io_done(rq);
326
327         if (rq->end_io) {
328                 rq->end_io(rq, error);
329         } else {
330                 if (unlikely(blk_bidi_rq(rq)))
331                         blk_mq_free_request(rq->next_rq);
332                 blk_mq_free_request(rq);
333         }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340                 BUG();
341         __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347         struct request *rq = data;
348
349         rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354         struct blk_mq_ctx *ctx = rq->mq_ctx;
355         bool shared = false;
356         int cpu;
357
358         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359                 rq->q->softirq_done_fn(rq);
360                 return;
361         }
362
363         cpu = get_cpu();
364         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365                 shared = cpus_share_cache(cpu, ctx->cpu);
366
367         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368                 rq->csd.func = __blk_mq_complete_request_remote;
369                 rq->csd.info = rq;
370                 rq->csd.flags = 0;
371                 smp_call_function_single_async(ctx->cpu, &rq->csd);
372         } else {
373                 rq->q->softirq_done_fn(rq);
374         }
375         put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380         struct request_queue *q = rq->q;
381
382         if (!q->softirq_done_fn)
383                 blk_mq_end_request(rq, rq->errors);
384         else
385                 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:         the request being processed
391  *
392  * Description:
393  *      Ends all I/O on a request. It does not handle partial completions.
394  *      The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398         struct request_queue *q = rq->q;
399
400         if (unlikely(blk_should_fake_timeout(q)))
401                 return;
402         if (!blk_mark_rq_complete(rq))
403                 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 int blk_mq_request_started(struct request *rq)
408 {
409         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
413 void blk_mq_start_request(struct request *rq)
414 {
415         struct request_queue *q = rq->q;
416
417         trace_block_rq_issue(q, rq);
418
419         rq->resid_len = blk_rq_bytes(rq);
420         if (unlikely(blk_bidi_rq(rq)))
421                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422
423         blk_add_timer(rq);
424
425         /*
426          * Ensure that ->deadline is visible before set the started
427          * flag and clear the completed flag.
428          */
429         smp_mb__before_atomic();
430
431         /*
432          * Mark us as started and clear complete. Complete might have been
433          * set if requeue raced with timeout, which then marked it as
434          * complete. So be sure to clear complete again when we start
435          * the request, otherwise we'll ignore the completion event.
436          */
437         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441
442         if (q->dma_drain_size && blk_rq_bytes(rq)) {
443                 /*
444                  * Make sure space for the drain appears.  We know we can do
445                  * this because max_hw_segments has been adjusted to be one
446                  * fewer than the device can handle.
447                  */
448                 rq->nr_phys_segments++;
449         }
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455         struct request_queue *q = rq->q;
456
457         trace_block_rq_requeue(q, rq);
458
459         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460                 if (q->dma_drain_size && blk_rq_bytes(rq))
461                         rq->nr_phys_segments--;
462         }
463 }
464
465 void blk_mq_requeue_request(struct request *rq)
466 {
467         __blk_mq_requeue_request(rq);
468
469         BUG_ON(blk_queued_rq(rq));
470         blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476         struct request_queue *q =
477                 container_of(work, struct request_queue, requeue_work);
478         LIST_HEAD(rq_list);
479         struct request *rq, *next;
480         unsigned long flags;
481
482         spin_lock_irqsave(&q->requeue_lock, flags);
483         list_splice_init(&q->requeue_list, &rq_list);
484         spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488                         continue;
489
490                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491                 list_del_init(&rq->queuelist);
492                 blk_mq_insert_request(rq, true, false, false);
493         }
494
495         while (!list_empty(&rq_list)) {
496                 rq = list_entry(rq_list.next, struct request, queuelist);
497                 list_del_init(&rq->queuelist);
498                 blk_mq_insert_request(rq, false, false, false);
499         }
500
501         /*
502          * Use the start variant of queue running here, so that running
503          * the requeue work will kick stopped queues.
504          */
505         blk_mq_start_hw_queues(q);
506 }
507
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510         struct request_queue *q = rq->q;
511         unsigned long flags;
512
513         /*
514          * We abuse this flag that is otherwise used by the I/O scheduler to
515          * request head insertation from the workqueue.
516          */
517         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519         spin_lock_irqsave(&q->requeue_lock, flags);
520         if (at_head) {
521                 rq->cmd_flags |= REQ_SOFTBARRIER;
522                 list_add(&rq->queuelist, &q->requeue_list);
523         } else {
524                 list_add_tail(&rq->queuelist, &q->requeue_list);
525         }
526         spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530 void blk_mq_kick_requeue_list(struct request_queue *q)
531 {
532         kblockd_schedule_work(&q->requeue_work);
533 }
534 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
535
536 static inline bool is_flush_request(struct request *rq,
537                 struct blk_flush_queue *fq, unsigned int tag)
538 {
539         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
540                         fq->flush_rq->tag == tag);
541 }
542
543 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
544 {
545         struct request *rq = tags->rqs[tag];
546         /* mq_ctx of flush rq is always cloned from the corresponding req */
547         struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
548
549         if (!is_flush_request(rq, fq, tag))
550                 return rq;
551
552         return fq->flush_rq;
553 }
554 EXPORT_SYMBOL(blk_mq_tag_to_rq);
555
556 struct blk_mq_timeout_data {
557         unsigned long next;
558         unsigned int next_set;
559 };
560
561 void blk_mq_rq_timed_out(struct request *req, bool reserved)
562 {
563         struct blk_mq_ops *ops = req->q->mq_ops;
564         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
565
566         /*
567          * We know that complete is set at this point. If STARTED isn't set
568          * anymore, then the request isn't active and the "timeout" should
569          * just be ignored. This can happen due to the bitflag ordering.
570          * Timeout first checks if STARTED is set, and if it is, assumes
571          * the request is active. But if we race with completion, then
572          * we both flags will get cleared. So check here again, and ignore
573          * a timeout event with a request that isn't active.
574          */
575         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
576                 return;
577
578         if (ops->timeout)
579                 ret = ops->timeout(req, reserved);
580
581         switch (ret) {
582         case BLK_EH_HANDLED:
583                 __blk_mq_complete_request(req);
584                 break;
585         case BLK_EH_RESET_TIMER:
586                 blk_add_timer(req);
587                 blk_clear_rq_complete(req);
588                 break;
589         case BLK_EH_NOT_HANDLED:
590                 break;
591         default:
592                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
593                 break;
594         }
595 }
596                 
597 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
598                 struct request *rq, void *priv, bool reserved)
599 {
600         struct blk_mq_timeout_data *data = priv;
601
602         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
603                 return;
604
605         if (time_after_eq(jiffies, rq->deadline)) {
606                 if (!blk_mark_rq_complete(rq))
607                         blk_mq_rq_timed_out(rq, reserved);
608         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
609                 data->next = rq->deadline;
610                 data->next_set = 1;
611         }
612 }
613
614 static void blk_mq_rq_timer(unsigned long priv)
615 {
616         struct request_queue *q = (struct request_queue *)priv;
617         struct blk_mq_timeout_data data = {
618                 .next           = 0,
619                 .next_set       = 0,
620         };
621         struct blk_mq_hw_ctx *hctx;
622         int i;
623
624         queue_for_each_hw_ctx(q, hctx, i) {
625                 /*
626                  * If not software queues are currently mapped to this
627                  * hardware queue, there's nothing to check
628                  */
629                 if (!blk_mq_hw_queue_mapped(hctx))
630                         continue;
631
632                 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
633         }
634
635         if (data.next_set) {
636                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
637                 mod_timer(&q->timeout, data.next);
638         } else {
639                 queue_for_each_hw_ctx(q, hctx, i)
640                         blk_mq_tag_idle(hctx);
641         }
642 }
643
644 /*
645  * Reverse check our software queue for entries that we could potentially
646  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
647  * too much time checking for merges.
648  */
649 static bool blk_mq_attempt_merge(struct request_queue *q,
650                                  struct blk_mq_ctx *ctx, struct bio *bio)
651 {
652         struct request *rq;
653         int checked = 8;
654
655         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
656                 int el_ret;
657
658                 if (!checked--)
659                         break;
660
661                 if (!blk_rq_merge_ok(rq, bio))
662                         continue;
663
664                 el_ret = blk_try_merge(rq, bio);
665                 if (el_ret == ELEVATOR_BACK_MERGE) {
666                         if (bio_attempt_back_merge(q, rq, bio)) {
667                                 ctx->rq_merged++;
668                                 return true;
669                         }
670                         break;
671                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
672                         if (bio_attempt_front_merge(q, rq, bio)) {
673                                 ctx->rq_merged++;
674                                 return true;
675                         }
676                         break;
677                 }
678         }
679
680         return false;
681 }
682
683 /*
684  * Process software queues that have been marked busy, splicing them
685  * to the for-dispatch
686  */
687 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
688 {
689         struct blk_mq_ctx *ctx;
690         int i;
691
692         for (i = 0; i < hctx->ctx_map.map_size; i++) {
693                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
694                 unsigned int off, bit;
695
696                 if (!bm->word)
697                         continue;
698
699                 bit = 0;
700                 off = i * hctx->ctx_map.bits_per_word;
701                 do {
702                         bit = find_next_bit(&bm->word, bm->depth, bit);
703                         if (bit >= bm->depth)
704                                 break;
705
706                         ctx = hctx->ctxs[bit + off];
707                         clear_bit(bit, &bm->word);
708                         spin_lock(&ctx->lock);
709                         list_splice_tail_init(&ctx->rq_list, list);
710                         spin_unlock(&ctx->lock);
711
712                         bit++;
713                 } while (1);
714         }
715 }
716
717 /*
718  * Run this hardware queue, pulling any software queues mapped to it in.
719  * Note that this function currently has various problems around ordering
720  * of IO. In particular, we'd like FIFO behaviour on handling existing
721  * items on the hctx->dispatch list. Ignore that for now.
722  */
723 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
724 {
725         struct request_queue *q = hctx->queue;
726         struct request *rq;
727         LIST_HEAD(rq_list);
728         LIST_HEAD(driver_list);
729         struct list_head *dptr;
730         int queued;
731
732         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
733
734         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
735                 return;
736
737         hctx->run++;
738
739         /*
740          * Touch any software queue that has pending entries.
741          */
742         flush_busy_ctxs(hctx, &rq_list);
743
744         /*
745          * If we have previous entries on our dispatch list, grab them
746          * and stuff them at the front for more fair dispatch.
747          */
748         if (!list_empty_careful(&hctx->dispatch)) {
749                 spin_lock(&hctx->lock);
750                 if (!list_empty(&hctx->dispatch))
751                         list_splice_init(&hctx->dispatch, &rq_list);
752                 spin_unlock(&hctx->lock);
753         }
754
755         /*
756          * Start off with dptr being NULL, so we start the first request
757          * immediately, even if we have more pending.
758          */
759         dptr = NULL;
760
761         /*
762          * Now process all the entries, sending them to the driver.
763          */
764         queued = 0;
765         while (!list_empty(&rq_list)) {
766                 struct blk_mq_queue_data bd;
767                 int ret;
768
769                 rq = list_first_entry(&rq_list, struct request, queuelist);
770                 list_del_init(&rq->queuelist);
771
772                 bd.rq = rq;
773                 bd.list = dptr;
774                 bd.last = list_empty(&rq_list);
775
776                 ret = q->mq_ops->queue_rq(hctx, &bd);
777                 switch (ret) {
778                 case BLK_MQ_RQ_QUEUE_OK:
779                         queued++;
780                         continue;
781                 case BLK_MQ_RQ_QUEUE_BUSY:
782                         list_add(&rq->queuelist, &rq_list);
783                         __blk_mq_requeue_request(rq);
784                         break;
785                 default:
786                         pr_err("blk-mq: bad return on queue: %d\n", ret);
787                 case BLK_MQ_RQ_QUEUE_ERROR:
788                         rq->errors = -EIO;
789                         blk_mq_end_request(rq, rq->errors);
790                         break;
791                 }
792
793                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
794                         break;
795
796                 /*
797                  * We've done the first request. If we have more than 1
798                  * left in the list, set dptr to defer issue.
799                  */
800                 if (!dptr && rq_list.next != rq_list.prev)
801                         dptr = &driver_list;
802         }
803
804         if (!queued)
805                 hctx->dispatched[0]++;
806         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
807                 hctx->dispatched[ilog2(queued) + 1]++;
808
809         /*
810          * Any items that need requeuing? Stuff them into hctx->dispatch,
811          * that is where we will continue on next queue run.
812          */
813         if (!list_empty(&rq_list)) {
814                 spin_lock(&hctx->lock);
815                 list_splice(&rq_list, &hctx->dispatch);
816                 spin_unlock(&hctx->lock);
817         }
818 }
819
820 /*
821  * It'd be great if the workqueue API had a way to pass
822  * in a mask and had some smarts for more clever placement.
823  * For now we just round-robin here, switching for every
824  * BLK_MQ_CPU_WORK_BATCH queued items.
825  */
826 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
827 {
828         if (hctx->queue->nr_hw_queues == 1)
829                 return WORK_CPU_UNBOUND;
830
831         if (--hctx->next_cpu_batch <= 0) {
832                 int cpu = hctx->next_cpu, next_cpu;
833
834                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
835                 if (next_cpu >= nr_cpu_ids)
836                         next_cpu = cpumask_first(hctx->cpumask);
837
838                 hctx->next_cpu = next_cpu;
839                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
840
841                 return cpu;
842         }
843
844         return hctx->next_cpu;
845 }
846
847 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
848 {
849         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
850             !blk_mq_hw_queue_mapped(hctx)))
851                 return;
852
853         if (!async) {
854                 int cpu = get_cpu();
855                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
856                         __blk_mq_run_hw_queue(hctx);
857                         put_cpu();
858                         return;
859                 }
860
861                 put_cpu();
862         }
863
864         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
865                         &hctx->run_work, 0);
866 }
867
868 void blk_mq_run_queues(struct request_queue *q, bool async)
869 {
870         struct blk_mq_hw_ctx *hctx;
871         int i;
872
873         queue_for_each_hw_ctx(q, hctx, i) {
874                 if ((!blk_mq_hctx_has_pending(hctx) &&
875                     list_empty_careful(&hctx->dispatch)) ||
876                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
877                         continue;
878
879                 blk_mq_run_hw_queue(hctx, async);
880         }
881 }
882 EXPORT_SYMBOL(blk_mq_run_queues);
883
884 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
885 {
886         cancel_delayed_work(&hctx->run_work);
887         cancel_delayed_work(&hctx->delay_work);
888         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
889 }
890 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
891
892 void blk_mq_stop_hw_queues(struct request_queue *q)
893 {
894         struct blk_mq_hw_ctx *hctx;
895         int i;
896
897         queue_for_each_hw_ctx(q, hctx, i)
898                 blk_mq_stop_hw_queue(hctx);
899 }
900 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
901
902 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
903 {
904         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
905
906         blk_mq_run_hw_queue(hctx, false);
907 }
908 EXPORT_SYMBOL(blk_mq_start_hw_queue);
909
910 void blk_mq_start_hw_queues(struct request_queue *q)
911 {
912         struct blk_mq_hw_ctx *hctx;
913         int i;
914
915         queue_for_each_hw_ctx(q, hctx, i)
916                 blk_mq_start_hw_queue(hctx);
917 }
918 EXPORT_SYMBOL(blk_mq_start_hw_queues);
919
920
921 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
922 {
923         struct blk_mq_hw_ctx *hctx;
924         int i;
925
926         queue_for_each_hw_ctx(q, hctx, i) {
927                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
928                         continue;
929
930                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
931                 blk_mq_run_hw_queue(hctx, async);
932         }
933 }
934 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
935
936 static void blk_mq_run_work_fn(struct work_struct *work)
937 {
938         struct blk_mq_hw_ctx *hctx;
939
940         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
941
942         __blk_mq_run_hw_queue(hctx);
943 }
944
945 static void blk_mq_delay_work_fn(struct work_struct *work)
946 {
947         struct blk_mq_hw_ctx *hctx;
948
949         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
950
951         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
952                 __blk_mq_run_hw_queue(hctx);
953 }
954
955 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
956 {
957         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
958                 return;
959
960         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
961                         &hctx->delay_work, msecs_to_jiffies(msecs));
962 }
963 EXPORT_SYMBOL(blk_mq_delay_queue);
964
965 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
966                                     struct request *rq, bool at_head)
967 {
968         struct blk_mq_ctx *ctx = rq->mq_ctx;
969
970         trace_block_rq_insert(hctx->queue, rq);
971
972         if (at_head)
973                 list_add(&rq->queuelist, &ctx->rq_list);
974         else
975                 list_add_tail(&rq->queuelist, &ctx->rq_list);
976
977         blk_mq_hctx_mark_pending(hctx, ctx);
978 }
979
980 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
981                 bool async)
982 {
983         struct request_queue *q = rq->q;
984         struct blk_mq_hw_ctx *hctx;
985         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
986
987         current_ctx = blk_mq_get_ctx(q);
988         if (!cpu_online(ctx->cpu))
989                 rq->mq_ctx = ctx = current_ctx;
990
991         hctx = q->mq_ops->map_queue(q, ctx->cpu);
992
993         spin_lock(&ctx->lock);
994         __blk_mq_insert_request(hctx, rq, at_head);
995         spin_unlock(&ctx->lock);
996
997         if (run_queue)
998                 blk_mq_run_hw_queue(hctx, async);
999
1000         blk_mq_put_ctx(current_ctx);
1001 }
1002
1003 static void blk_mq_insert_requests(struct request_queue *q,
1004                                      struct blk_mq_ctx *ctx,
1005                                      struct list_head *list,
1006                                      int depth,
1007                                      bool from_schedule)
1008
1009 {
1010         struct blk_mq_hw_ctx *hctx;
1011         struct blk_mq_ctx *current_ctx;
1012
1013         trace_block_unplug(q, depth, !from_schedule);
1014
1015         current_ctx = blk_mq_get_ctx(q);
1016
1017         if (!cpu_online(ctx->cpu))
1018                 ctx = current_ctx;
1019         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1020
1021         /*
1022          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1023          * offline now
1024          */
1025         spin_lock(&ctx->lock);
1026         while (!list_empty(list)) {
1027                 struct request *rq;
1028
1029                 rq = list_first_entry(list, struct request, queuelist);
1030                 list_del_init(&rq->queuelist);
1031                 rq->mq_ctx = ctx;
1032                 __blk_mq_insert_request(hctx, rq, false);
1033         }
1034         spin_unlock(&ctx->lock);
1035
1036         blk_mq_run_hw_queue(hctx, from_schedule);
1037         blk_mq_put_ctx(current_ctx);
1038 }
1039
1040 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1041 {
1042         struct request *rqa = container_of(a, struct request, queuelist);
1043         struct request *rqb = container_of(b, struct request, queuelist);
1044
1045         return !(rqa->mq_ctx < rqb->mq_ctx ||
1046                  (rqa->mq_ctx == rqb->mq_ctx &&
1047                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1048 }
1049
1050 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1051 {
1052         struct blk_mq_ctx *this_ctx;
1053         struct request_queue *this_q;
1054         struct request *rq;
1055         LIST_HEAD(list);
1056         LIST_HEAD(ctx_list);
1057         unsigned int depth;
1058
1059         list_splice_init(&plug->mq_list, &list);
1060
1061         list_sort(NULL, &list, plug_ctx_cmp);
1062
1063         this_q = NULL;
1064         this_ctx = NULL;
1065         depth = 0;
1066
1067         while (!list_empty(&list)) {
1068                 rq = list_entry_rq(list.next);
1069                 list_del_init(&rq->queuelist);
1070                 BUG_ON(!rq->q);
1071                 if (rq->mq_ctx != this_ctx) {
1072                         if (this_ctx) {
1073                                 blk_mq_insert_requests(this_q, this_ctx,
1074                                                         &ctx_list, depth,
1075                                                         from_schedule);
1076                         }
1077
1078                         this_ctx = rq->mq_ctx;
1079                         this_q = rq->q;
1080                         depth = 0;
1081                 }
1082
1083                 depth++;
1084                 list_add_tail(&rq->queuelist, &ctx_list);
1085         }
1086
1087         /*
1088          * If 'this_ctx' is set, we know we have entries to complete
1089          * on 'ctx_list'. Do those.
1090          */
1091         if (this_ctx) {
1092                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1093                                        from_schedule);
1094         }
1095 }
1096
1097 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1098 {
1099         init_request_from_bio(rq, bio);
1100
1101         if (blk_do_io_stat(rq))
1102                 blk_account_io_start(rq, 1);
1103 }
1104
1105 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1106 {
1107         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1108                 !blk_queue_nomerges(hctx->queue);
1109 }
1110
1111 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1112                                          struct blk_mq_ctx *ctx,
1113                                          struct request *rq, struct bio *bio)
1114 {
1115         if (!hctx_allow_merges(hctx)) {
1116                 blk_mq_bio_to_request(rq, bio);
1117                 spin_lock(&ctx->lock);
1118 insert_rq:
1119                 __blk_mq_insert_request(hctx, rq, false);
1120                 spin_unlock(&ctx->lock);
1121                 return false;
1122         } else {
1123                 struct request_queue *q = hctx->queue;
1124
1125                 spin_lock(&ctx->lock);
1126                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1127                         blk_mq_bio_to_request(rq, bio);
1128                         goto insert_rq;
1129                 }
1130
1131                 spin_unlock(&ctx->lock);
1132                 __blk_mq_free_request(hctx, ctx, rq);
1133                 return true;
1134         }
1135 }
1136
1137 struct blk_map_ctx {
1138         struct blk_mq_hw_ctx *hctx;
1139         struct blk_mq_ctx *ctx;
1140 };
1141
1142 static struct request *blk_mq_map_request(struct request_queue *q,
1143                                           struct bio *bio,
1144                                           struct blk_map_ctx *data)
1145 {
1146         struct blk_mq_hw_ctx *hctx;
1147         struct blk_mq_ctx *ctx;
1148         struct request *rq;
1149         int rw = bio_data_dir(bio);
1150         struct blk_mq_alloc_data alloc_data;
1151
1152         if (unlikely(blk_mq_queue_enter(q))) {
1153                 bio_endio(bio, -EIO);
1154                 return NULL;
1155         }
1156
1157         ctx = blk_mq_get_ctx(q);
1158         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1159
1160         if (rw_is_sync(bio->bi_rw))
1161                 rw |= REQ_SYNC;
1162
1163         trace_block_getrq(q, bio, rw);
1164         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1165                         hctx);
1166         rq = __blk_mq_alloc_request(&alloc_data, rw);
1167         if (unlikely(!rq)) {
1168                 __blk_mq_run_hw_queue(hctx);
1169                 blk_mq_put_ctx(ctx);
1170                 trace_block_sleeprq(q, bio, rw);
1171
1172                 ctx = blk_mq_get_ctx(q);
1173                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1174                 blk_mq_set_alloc_data(&alloc_data, q,
1175                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1176                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1177                 ctx = alloc_data.ctx;
1178                 hctx = alloc_data.hctx;
1179         }
1180
1181         hctx->queued++;
1182         data->hctx = hctx;
1183         data->ctx = ctx;
1184         return rq;
1185 }
1186
1187 /*
1188  * Multiple hardware queue variant. This will not use per-process plugs,
1189  * but will attempt to bypass the hctx queueing if we can go straight to
1190  * hardware for SYNC IO.
1191  */
1192 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1193 {
1194         const int is_sync = rw_is_sync(bio->bi_rw);
1195         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1196         struct blk_map_ctx data;
1197         struct request *rq;
1198
1199         blk_queue_bounce(q, &bio);
1200
1201         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1202                 bio_endio(bio, -EIO);
1203                 return;
1204         }
1205
1206         rq = blk_mq_map_request(q, bio, &data);
1207         if (unlikely(!rq))
1208                 return;
1209
1210         if (unlikely(is_flush_fua)) {
1211                 blk_mq_bio_to_request(rq, bio);
1212                 blk_insert_flush(rq);
1213                 goto run_queue;
1214         }
1215
1216         /*
1217          * If the driver supports defer issued based on 'last', then
1218          * queue it up like normal since we can potentially save some
1219          * CPU this way.
1220          */
1221         if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1222                 struct blk_mq_queue_data bd = {
1223                         .rq = rq,
1224                         .list = NULL,
1225                         .last = 1
1226                 };
1227                 int ret;
1228
1229                 blk_mq_bio_to_request(rq, bio);
1230
1231                 /*
1232                  * For OK queue, we are done. For error, kill it. Any other
1233                  * error (busy), just add it to our list as we previously
1234                  * would have done
1235                  */
1236                 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1237                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1238                         goto done;
1239                 else {
1240                         __blk_mq_requeue_request(rq);
1241
1242                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1243                                 rq->errors = -EIO;
1244                                 blk_mq_end_request(rq, rq->errors);
1245                                 goto done;
1246                         }
1247                 }
1248         }
1249
1250         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1251                 /*
1252                  * For a SYNC request, send it to the hardware immediately. For
1253                  * an ASYNC request, just ensure that we run it later on. The
1254                  * latter allows for merging opportunities and more efficient
1255                  * dispatching.
1256                  */
1257 run_queue:
1258                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1259         }
1260 done:
1261         blk_mq_put_ctx(data.ctx);
1262 }
1263
1264 /*
1265  * Single hardware queue variant. This will attempt to use any per-process
1266  * plug for merging and IO deferral.
1267  */
1268 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1269 {
1270         const int is_sync = rw_is_sync(bio->bi_rw);
1271         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1272         unsigned int use_plug, request_count = 0;
1273         struct blk_map_ctx data;
1274         struct request *rq;
1275
1276         /*
1277          * If we have multiple hardware queues, just go directly to
1278          * one of those for sync IO.
1279          */
1280         use_plug = !is_flush_fua && !is_sync;
1281
1282         blk_queue_bounce(q, &bio);
1283
1284         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1285                 bio_endio(bio, -EIO);
1286                 return;
1287         }
1288
1289         if (use_plug && !blk_queue_nomerges(q) &&
1290             blk_attempt_plug_merge(q, bio, &request_count))
1291                 return;
1292
1293         rq = blk_mq_map_request(q, bio, &data);
1294         if (unlikely(!rq))
1295                 return;
1296
1297         if (unlikely(is_flush_fua)) {
1298                 blk_mq_bio_to_request(rq, bio);
1299                 blk_insert_flush(rq);
1300                 goto run_queue;
1301         }
1302
1303         /*
1304          * A task plug currently exists. Since this is completely lockless,
1305          * utilize that to temporarily store requests until the task is
1306          * either done or scheduled away.
1307          */
1308         if (use_plug) {
1309                 struct blk_plug *plug = current->plug;
1310
1311                 if (plug) {
1312                         blk_mq_bio_to_request(rq, bio);
1313                         if (list_empty(&plug->mq_list))
1314                                 trace_block_plug(q);
1315                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1316                                 blk_flush_plug_list(plug, false);
1317                                 trace_block_plug(q);
1318                         }
1319                         list_add_tail(&rq->queuelist, &plug->mq_list);
1320                         blk_mq_put_ctx(data.ctx);
1321                         return;
1322                 }
1323         }
1324
1325         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1326                 /*
1327                  * For a SYNC request, send it to the hardware immediately. For
1328                  * an ASYNC request, just ensure that we run it later on. The
1329                  * latter allows for merging opportunities and more efficient
1330                  * dispatching.
1331                  */
1332 run_queue:
1333                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1334         }
1335
1336         blk_mq_put_ctx(data.ctx);
1337 }
1338
1339 /*
1340  * Default mapping to a software queue, since we use one per CPU.
1341  */
1342 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1343 {
1344         return q->queue_hw_ctx[q->mq_map[cpu]];
1345 }
1346 EXPORT_SYMBOL(blk_mq_map_queue);
1347
1348 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1349                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1350 {
1351         struct page *page;
1352
1353         if (tags->rqs && set->ops->exit_request) {
1354                 int i;
1355
1356                 for (i = 0; i < tags->nr_tags; i++) {
1357                         if (!tags->rqs[i])
1358                                 continue;
1359                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1360                                                 hctx_idx, i);
1361                         tags->rqs[i] = NULL;
1362                 }
1363         }
1364
1365         while (!list_empty(&tags->page_list)) {
1366                 page = list_first_entry(&tags->page_list, struct page, lru);
1367                 list_del_init(&page->lru);
1368                 __free_pages(page, page->private);
1369         }
1370
1371         kfree(tags->rqs);
1372
1373         blk_mq_free_tags(tags);
1374 }
1375
1376 static size_t order_to_size(unsigned int order)
1377 {
1378         return (size_t)PAGE_SIZE << order;
1379 }
1380
1381 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1382                 unsigned int hctx_idx)
1383 {
1384         struct blk_mq_tags *tags;
1385         unsigned int i, j, entries_per_page, max_order = 4;
1386         size_t rq_size, left;
1387
1388         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1389                                 set->numa_node);
1390         if (!tags)
1391                 return NULL;
1392
1393         INIT_LIST_HEAD(&tags->page_list);
1394
1395         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1396                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1397                                  set->numa_node);
1398         if (!tags->rqs) {
1399                 blk_mq_free_tags(tags);
1400                 return NULL;
1401         }
1402
1403         /*
1404          * rq_size is the size of the request plus driver payload, rounded
1405          * to the cacheline size
1406          */
1407         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1408                                 cache_line_size());
1409         left = rq_size * set->queue_depth;
1410
1411         for (i = 0; i < set->queue_depth; ) {
1412                 int this_order = max_order;
1413                 struct page *page;
1414                 int to_do;
1415                 void *p;
1416
1417                 while (left < order_to_size(this_order - 1) && this_order)
1418                         this_order--;
1419
1420                 do {
1421                         page = alloc_pages_node(set->numa_node,
1422                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1423                                 this_order);
1424                         if (page)
1425                                 break;
1426                         if (!this_order--)
1427                                 break;
1428                         if (order_to_size(this_order) < rq_size)
1429                                 break;
1430                 } while (1);
1431
1432                 if (!page)
1433                         goto fail;
1434
1435                 page->private = this_order;
1436                 list_add_tail(&page->lru, &tags->page_list);
1437
1438                 p = page_address(page);
1439                 entries_per_page = order_to_size(this_order) / rq_size;
1440                 to_do = min(entries_per_page, set->queue_depth - i);
1441                 left -= to_do * rq_size;
1442                 for (j = 0; j < to_do; j++) {
1443                         tags->rqs[i] = p;
1444                         tags->rqs[i]->atomic_flags = 0;
1445                         tags->rqs[i]->cmd_flags = 0;
1446                         if (set->ops->init_request) {
1447                                 if (set->ops->init_request(set->driver_data,
1448                                                 tags->rqs[i], hctx_idx, i,
1449                                                 set->numa_node)) {
1450                                         tags->rqs[i] = NULL;
1451                                         goto fail;
1452                                 }
1453                         }
1454
1455                         p += rq_size;
1456                         i++;
1457                 }
1458         }
1459
1460         return tags;
1461
1462 fail:
1463         blk_mq_free_rq_map(set, tags, hctx_idx);
1464         return NULL;
1465 }
1466
1467 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1468 {
1469         kfree(bitmap->map);
1470 }
1471
1472 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1473 {
1474         unsigned int bpw = 8, total, num_maps, i;
1475
1476         bitmap->bits_per_word = bpw;
1477
1478         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1479         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1480                                         GFP_KERNEL, node);
1481         if (!bitmap->map)
1482                 return -ENOMEM;
1483
1484         bitmap->map_size = num_maps;
1485
1486         total = nr_cpu_ids;
1487         for (i = 0; i < num_maps; i++) {
1488                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1489                 total -= bitmap->map[i].depth;
1490         }
1491
1492         return 0;
1493 }
1494
1495 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1496 {
1497         struct request_queue *q = hctx->queue;
1498         struct blk_mq_ctx *ctx;
1499         LIST_HEAD(tmp);
1500
1501         /*
1502          * Move ctx entries to new CPU, if this one is going away.
1503          */
1504         ctx = __blk_mq_get_ctx(q, cpu);
1505
1506         spin_lock(&ctx->lock);
1507         if (!list_empty(&ctx->rq_list)) {
1508                 list_splice_init(&ctx->rq_list, &tmp);
1509                 blk_mq_hctx_clear_pending(hctx, ctx);
1510         }
1511         spin_unlock(&ctx->lock);
1512
1513         if (list_empty(&tmp))
1514                 return NOTIFY_OK;
1515
1516         ctx = blk_mq_get_ctx(q);
1517         spin_lock(&ctx->lock);
1518
1519         while (!list_empty(&tmp)) {
1520                 struct request *rq;
1521
1522                 rq = list_first_entry(&tmp, struct request, queuelist);
1523                 rq->mq_ctx = ctx;
1524                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1525         }
1526
1527         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1528         blk_mq_hctx_mark_pending(hctx, ctx);
1529
1530         spin_unlock(&ctx->lock);
1531
1532         blk_mq_run_hw_queue(hctx, true);
1533         blk_mq_put_ctx(ctx);
1534         return NOTIFY_OK;
1535 }
1536
1537 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1538 {
1539         struct request_queue *q = hctx->queue;
1540         struct blk_mq_tag_set *set = q->tag_set;
1541
1542         if (set->tags[hctx->queue_num])
1543                 return NOTIFY_OK;
1544
1545         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1546         if (!set->tags[hctx->queue_num])
1547                 return NOTIFY_STOP;
1548
1549         hctx->tags = set->tags[hctx->queue_num];
1550         return NOTIFY_OK;
1551 }
1552
1553 static int blk_mq_hctx_notify(void *data, unsigned long action,
1554                               unsigned int cpu)
1555 {
1556         struct blk_mq_hw_ctx *hctx = data;
1557
1558         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1559                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1560         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1561                 return blk_mq_hctx_cpu_online(hctx, cpu);
1562
1563         return NOTIFY_OK;
1564 }
1565
1566 static void blk_mq_exit_hctx(struct request_queue *q,
1567                 struct blk_mq_tag_set *set,
1568                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1569 {
1570         unsigned flush_start_tag = set->queue_depth;
1571
1572         blk_mq_tag_idle(hctx);
1573
1574         if (set->ops->exit_request)
1575                 set->ops->exit_request(set->driver_data,
1576                                        hctx->fq->flush_rq, hctx_idx,
1577                                        flush_start_tag + hctx_idx);
1578
1579         if (set->ops->exit_hctx)
1580                 set->ops->exit_hctx(hctx, hctx_idx);
1581
1582         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1583         blk_free_flush_queue(hctx->fq);
1584         kfree(hctx->ctxs);
1585         blk_mq_free_bitmap(&hctx->ctx_map);
1586 }
1587
1588 static void blk_mq_exit_hw_queues(struct request_queue *q,
1589                 struct blk_mq_tag_set *set, int nr_queue)
1590 {
1591         struct blk_mq_hw_ctx *hctx;
1592         unsigned int i;
1593
1594         queue_for_each_hw_ctx(q, hctx, i) {
1595                 if (i == nr_queue)
1596                         break;
1597                 blk_mq_exit_hctx(q, set, hctx, i);
1598         }
1599 }
1600
1601 static void blk_mq_free_hw_queues(struct request_queue *q,
1602                 struct blk_mq_tag_set *set)
1603 {
1604         struct blk_mq_hw_ctx *hctx;
1605         unsigned int i;
1606
1607         queue_for_each_hw_ctx(q, hctx, i) {
1608                 free_cpumask_var(hctx->cpumask);
1609                 kfree(hctx);
1610         }
1611 }
1612
1613 static int blk_mq_init_hctx(struct request_queue *q,
1614                 struct blk_mq_tag_set *set,
1615                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1616 {
1617         int node;
1618         unsigned flush_start_tag = set->queue_depth;
1619
1620         node = hctx->numa_node;
1621         if (node == NUMA_NO_NODE)
1622                 node = hctx->numa_node = set->numa_node;
1623
1624         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1625         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1626         spin_lock_init(&hctx->lock);
1627         INIT_LIST_HEAD(&hctx->dispatch);
1628         hctx->queue = q;
1629         hctx->queue_num = hctx_idx;
1630         hctx->flags = set->flags;
1631
1632         blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1633                                         blk_mq_hctx_notify, hctx);
1634         blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1635
1636         hctx->tags = set->tags[hctx_idx];
1637
1638         /*
1639          * Allocate space for all possible cpus to avoid allocation at
1640          * runtime
1641          */
1642         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1643                                         GFP_KERNEL, node);
1644         if (!hctx->ctxs)
1645                 goto unregister_cpu_notifier;
1646
1647         if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1648                 goto free_ctxs;
1649
1650         hctx->nr_ctx = 0;
1651
1652         if (set->ops->init_hctx &&
1653             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1654                 goto free_bitmap;
1655
1656         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1657         if (!hctx->fq)
1658                 goto exit_hctx;
1659
1660         if (set->ops->init_request &&
1661             set->ops->init_request(set->driver_data,
1662                                    hctx->fq->flush_rq, hctx_idx,
1663                                    flush_start_tag + hctx_idx, node))
1664                 goto free_fq;
1665
1666         return 0;
1667
1668  free_fq:
1669         kfree(hctx->fq);
1670  exit_hctx:
1671         if (set->ops->exit_hctx)
1672                 set->ops->exit_hctx(hctx, hctx_idx);
1673  free_bitmap:
1674         blk_mq_free_bitmap(&hctx->ctx_map);
1675  free_ctxs:
1676         kfree(hctx->ctxs);
1677  unregister_cpu_notifier:
1678         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1679
1680         return -1;
1681 }
1682
1683 static int blk_mq_init_hw_queues(struct request_queue *q,
1684                 struct blk_mq_tag_set *set)
1685 {
1686         struct blk_mq_hw_ctx *hctx;
1687         unsigned int i;
1688
1689         /*
1690          * Initialize hardware queues
1691          */
1692         queue_for_each_hw_ctx(q, hctx, i) {
1693                 if (blk_mq_init_hctx(q, set, hctx, i))
1694                         break;
1695         }
1696
1697         if (i == q->nr_hw_queues)
1698                 return 0;
1699
1700         /*
1701          * Init failed
1702          */
1703         blk_mq_exit_hw_queues(q, set, i);
1704
1705         return 1;
1706 }
1707
1708 static void blk_mq_init_cpu_queues(struct request_queue *q,
1709                                    unsigned int nr_hw_queues)
1710 {
1711         unsigned int i;
1712
1713         for_each_possible_cpu(i) {
1714                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1715                 struct blk_mq_hw_ctx *hctx;
1716
1717                 memset(__ctx, 0, sizeof(*__ctx));
1718                 __ctx->cpu = i;
1719                 spin_lock_init(&__ctx->lock);
1720                 INIT_LIST_HEAD(&__ctx->rq_list);
1721                 __ctx->queue = q;
1722
1723                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1724                 if (!cpu_online(i))
1725                         continue;
1726
1727                 hctx = q->mq_ops->map_queue(q, i);
1728                 cpumask_set_cpu(i, hctx->cpumask);
1729                 hctx->nr_ctx++;
1730
1731                 /*
1732                  * Set local node, IFF we have more than one hw queue. If
1733                  * not, we remain on the home node of the device
1734                  */
1735                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1736                         hctx->numa_node = cpu_to_node(i);
1737         }
1738 }
1739
1740 static void blk_mq_map_swqueue(struct request_queue *q)
1741 {
1742         unsigned int i;
1743         struct blk_mq_hw_ctx *hctx;
1744         struct blk_mq_ctx *ctx;
1745
1746         queue_for_each_hw_ctx(q, hctx, i) {
1747                 cpumask_clear(hctx->cpumask);
1748                 hctx->nr_ctx = 0;
1749         }
1750
1751         /*
1752          * Map software to hardware queues
1753          */
1754         queue_for_each_ctx(q, ctx, i) {
1755                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1756                 if (!cpu_online(i))
1757                         continue;
1758
1759                 hctx = q->mq_ops->map_queue(q, i);
1760                 cpumask_set_cpu(i, hctx->cpumask);
1761                 ctx->index_hw = hctx->nr_ctx;
1762                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1763         }
1764
1765         queue_for_each_hw_ctx(q, hctx, i) {
1766                 /*
1767                  * If no software queues are mapped to this hardware queue,
1768                  * disable it and free the request entries.
1769                  */
1770                 if (!hctx->nr_ctx) {
1771                         struct blk_mq_tag_set *set = q->tag_set;
1772
1773                         if (set->tags[i]) {
1774                                 blk_mq_free_rq_map(set, set->tags[i], i);
1775                                 set->tags[i] = NULL;
1776                                 hctx->tags = NULL;
1777                         }
1778                         continue;
1779                 }
1780
1781                 /*
1782                  * Initialize batch roundrobin counts
1783                  */
1784                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1785                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1786         }
1787 }
1788
1789 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1790 {
1791         struct blk_mq_hw_ctx *hctx;
1792         struct request_queue *q;
1793         bool shared;
1794         int i;
1795
1796         if (set->tag_list.next == set->tag_list.prev)
1797                 shared = false;
1798         else
1799                 shared = true;
1800
1801         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1802                 blk_mq_freeze_queue(q);
1803
1804                 queue_for_each_hw_ctx(q, hctx, i) {
1805                         if (shared)
1806                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1807                         else
1808                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1809                 }
1810                 blk_mq_unfreeze_queue(q);
1811         }
1812 }
1813
1814 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1815 {
1816         struct blk_mq_tag_set *set = q->tag_set;
1817
1818         mutex_lock(&set->tag_list_lock);
1819         list_del_init(&q->tag_set_list);
1820         blk_mq_update_tag_set_depth(set);
1821         mutex_unlock(&set->tag_list_lock);
1822 }
1823
1824 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1825                                      struct request_queue *q)
1826 {
1827         q->tag_set = set;
1828
1829         mutex_lock(&set->tag_list_lock);
1830         list_add_tail(&q->tag_set_list, &set->tag_list);
1831         blk_mq_update_tag_set_depth(set);
1832         mutex_unlock(&set->tag_list_lock);
1833 }
1834
1835 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1836 {
1837         struct blk_mq_hw_ctx **hctxs;
1838         struct blk_mq_ctx __percpu *ctx;
1839         struct request_queue *q;
1840         unsigned int *map;
1841         int i;
1842
1843         ctx = alloc_percpu(struct blk_mq_ctx);
1844         if (!ctx)
1845                 return ERR_PTR(-ENOMEM);
1846
1847         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1848                         set->numa_node);
1849
1850         if (!hctxs)
1851                 goto err_percpu;
1852
1853         map = blk_mq_make_queue_map(set);
1854         if (!map)
1855                 goto err_map;
1856
1857         for (i = 0; i < set->nr_hw_queues; i++) {
1858                 int node = blk_mq_hw_queue_to_node(map, i);
1859
1860                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1861                                         GFP_KERNEL, node);
1862                 if (!hctxs[i])
1863                         goto err_hctxs;
1864
1865                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1866                                                 node))
1867                         goto err_hctxs;
1868
1869                 atomic_set(&hctxs[i]->nr_active, 0);
1870                 hctxs[i]->numa_node = node;
1871                 hctxs[i]->queue_num = i;
1872         }
1873
1874         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1875         if (!q)
1876                 goto err_hctxs;
1877
1878         /*
1879          * Init percpu_ref in atomic mode so that it's faster to shutdown.
1880          * See blk_register_queue() for details.
1881          */
1882         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1883                             PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1884                 goto err_map;
1885
1886         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1887         blk_queue_rq_timeout(q, 30000);
1888
1889         q->nr_queues = nr_cpu_ids;
1890         q->nr_hw_queues = set->nr_hw_queues;
1891         q->mq_map = map;
1892
1893         q->queue_ctx = ctx;
1894         q->queue_hw_ctx = hctxs;
1895
1896         q->mq_ops = set->ops;
1897         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1898
1899         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1900                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1901
1902         q->sg_reserved_size = INT_MAX;
1903
1904         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1905         INIT_LIST_HEAD(&q->requeue_list);
1906         spin_lock_init(&q->requeue_lock);
1907
1908         if (q->nr_hw_queues > 1)
1909                 blk_queue_make_request(q, blk_mq_make_request);
1910         else
1911                 blk_queue_make_request(q, blk_sq_make_request);
1912
1913         if (set->timeout)
1914                 blk_queue_rq_timeout(q, set->timeout);
1915
1916         /*
1917          * Do this after blk_queue_make_request() overrides it...
1918          */
1919         q->nr_requests = set->queue_depth;
1920
1921         if (set->ops->complete)
1922                 blk_queue_softirq_done(q, set->ops->complete);
1923
1924         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1925
1926         if (blk_mq_init_hw_queues(q, set))
1927                 goto err_hw;
1928
1929         mutex_lock(&all_q_mutex);
1930         list_add_tail(&q->all_q_node, &all_q_list);
1931         mutex_unlock(&all_q_mutex);
1932
1933         blk_mq_add_queue_tag_set(set, q);
1934
1935         blk_mq_map_swqueue(q);
1936
1937         return q;
1938
1939 err_hw:
1940         blk_cleanup_queue(q);
1941 err_hctxs:
1942         kfree(map);
1943         for (i = 0; i < set->nr_hw_queues; i++) {
1944                 if (!hctxs[i])
1945                         break;
1946                 free_cpumask_var(hctxs[i]->cpumask);
1947                 kfree(hctxs[i]);
1948         }
1949 err_map:
1950         kfree(hctxs);
1951 err_percpu:
1952         free_percpu(ctx);
1953         return ERR_PTR(-ENOMEM);
1954 }
1955 EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957 void blk_mq_free_queue(struct request_queue *q)
1958 {
1959         struct blk_mq_tag_set   *set = q->tag_set;
1960
1961         blk_mq_del_queue_tag_set(q);
1962
1963         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1964         blk_mq_free_hw_queues(q, set);
1965
1966         percpu_ref_exit(&q->mq_usage_counter);
1967
1968         free_percpu(q->queue_ctx);
1969         kfree(q->queue_hw_ctx);
1970         kfree(q->mq_map);
1971
1972         q->queue_ctx = NULL;
1973         q->queue_hw_ctx = NULL;
1974         q->mq_map = NULL;
1975
1976         mutex_lock(&all_q_mutex);
1977         list_del_init(&q->all_q_node);
1978         mutex_unlock(&all_q_mutex);
1979 }
1980
1981 /* Basically redo blk_mq_init_queue with queue frozen */
1982 static void blk_mq_queue_reinit(struct request_queue *q)
1983 {
1984         WARN_ON_ONCE(!q->mq_freeze_depth);
1985
1986         blk_mq_sysfs_unregister(q);
1987
1988         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1989
1990         /*
1991          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1992          * we should change hctx numa_node according to new topology (this
1993          * involves free and re-allocate memory, worthy doing?)
1994          */
1995
1996         blk_mq_map_swqueue(q);
1997
1998         blk_mq_sysfs_register(q);
1999 }
2000
2001 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2002                                       unsigned long action, void *hcpu)
2003 {
2004         struct request_queue *q;
2005
2006         /*
2007          * Before new mappings are established, hotadded cpu might already
2008          * start handling requests. This doesn't break anything as we map
2009          * offline CPUs to first hardware queue. We will re-init the queue
2010          * below to get optimal settings.
2011          */
2012         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2013             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2014                 return NOTIFY_OK;
2015
2016         mutex_lock(&all_q_mutex);
2017
2018         /*
2019          * We need to freeze and reinit all existing queues.  Freezing
2020          * involves synchronous wait for an RCU grace period and doing it
2021          * one by one may take a long time.  Start freezing all queues in
2022          * one swoop and then wait for the completions so that freezing can
2023          * take place in parallel.
2024          */
2025         list_for_each_entry(q, &all_q_list, all_q_node)
2026                 blk_mq_freeze_queue_start(q);
2027         list_for_each_entry(q, &all_q_list, all_q_node)
2028                 blk_mq_freeze_queue_wait(q);
2029
2030         list_for_each_entry(q, &all_q_list, all_q_node)
2031                 blk_mq_queue_reinit(q);
2032
2033         list_for_each_entry(q, &all_q_list, all_q_node)
2034                 blk_mq_unfreeze_queue(q);
2035
2036         mutex_unlock(&all_q_mutex);
2037         return NOTIFY_OK;
2038 }
2039
2040 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2041 {
2042         int i;
2043
2044         for (i = 0; i < set->nr_hw_queues; i++) {
2045                 set->tags[i] = blk_mq_init_rq_map(set, i);
2046                 if (!set->tags[i])
2047                         goto out_unwind;
2048         }
2049
2050         return 0;
2051
2052 out_unwind:
2053         while (--i >= 0)
2054                 blk_mq_free_rq_map(set, set->tags[i], i);
2055
2056         return -ENOMEM;
2057 }
2058
2059 /*
2060  * Allocate the request maps associated with this tag_set. Note that this
2061  * may reduce the depth asked for, if memory is tight. set->queue_depth
2062  * will be updated to reflect the allocated depth.
2063  */
2064 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2065 {
2066         unsigned int depth;
2067         int err;
2068
2069         depth = set->queue_depth;
2070         do {
2071                 err = __blk_mq_alloc_rq_maps(set);
2072                 if (!err)
2073                         break;
2074
2075                 set->queue_depth >>= 1;
2076                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2077                         err = -ENOMEM;
2078                         break;
2079                 }
2080         } while (set->queue_depth);
2081
2082         if (!set->queue_depth || err) {
2083                 pr_err("blk-mq: failed to allocate request map\n");
2084                 return -ENOMEM;
2085         }
2086
2087         if (depth != set->queue_depth)
2088                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2089                                                 depth, set->queue_depth);
2090
2091         return 0;
2092 }
2093
2094 /*
2095  * Alloc a tag set to be associated with one or more request queues.
2096  * May fail with EINVAL for various error conditions. May adjust the
2097  * requested depth down, if if it too large. In that case, the set
2098  * value will be stored in set->queue_depth.
2099  */
2100 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2101 {
2102         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2103
2104         if (!set->nr_hw_queues)
2105                 return -EINVAL;
2106         if (!set->queue_depth)
2107                 return -EINVAL;
2108         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2109                 return -EINVAL;
2110
2111         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2112                 return -EINVAL;
2113
2114         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2115                 pr_info("blk-mq: reduced tag depth to %u\n",
2116                         BLK_MQ_MAX_DEPTH);
2117                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2118         }
2119
2120         /*
2121          * If a crashdump is active, then we are potentially in a very
2122          * memory constrained environment. Limit us to 1 queue and
2123          * 64 tags to prevent using too much memory.
2124          */
2125         if (is_kdump_kernel()) {
2126                 set->nr_hw_queues = 1;
2127                 set->queue_depth = min(64U, set->queue_depth);
2128         }
2129
2130         set->tags = kmalloc_node(set->nr_hw_queues *
2131                                  sizeof(struct blk_mq_tags *),
2132                                  GFP_KERNEL, set->numa_node);
2133         if (!set->tags)
2134                 return -ENOMEM;
2135
2136         if (blk_mq_alloc_rq_maps(set))
2137                 goto enomem;
2138
2139         mutex_init(&set->tag_list_lock);
2140         INIT_LIST_HEAD(&set->tag_list);
2141
2142         return 0;
2143 enomem:
2144         kfree(set->tags);
2145         set->tags = NULL;
2146         return -ENOMEM;
2147 }
2148 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2149
2150 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2151 {
2152         int i;
2153
2154         for (i = 0; i < set->nr_hw_queues; i++) {
2155                 if (set->tags[i])
2156                         blk_mq_free_rq_map(set, set->tags[i], i);
2157         }
2158
2159         kfree(set->tags);
2160         set->tags = NULL;
2161 }
2162 EXPORT_SYMBOL(blk_mq_free_tag_set);
2163
2164 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2165 {
2166         struct blk_mq_tag_set *set = q->tag_set;
2167         struct blk_mq_hw_ctx *hctx;
2168         int i, ret;
2169
2170         if (!set || nr > set->queue_depth)
2171                 return -EINVAL;
2172
2173         ret = 0;
2174         queue_for_each_hw_ctx(q, hctx, i) {
2175                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2176                 if (ret)
2177                         break;
2178         }
2179
2180         if (!ret)
2181                 q->nr_requests = nr;
2182
2183         return ret;
2184 }
2185
2186 void blk_mq_disable_hotplug(void)
2187 {
2188         mutex_lock(&all_q_mutex);
2189 }
2190
2191 void blk_mq_enable_hotplug(void)
2192 {
2193         mutex_unlock(&all_q_mutex);
2194 }
2195
2196 static int __init blk_mq_init(void)
2197 {
2198         blk_mq_cpu_init();
2199
2200         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2201
2202         return 0;
2203 }
2204 subsys_initcall(blk_mq_init);