]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
Merge remote-tracking branches 'asoc/topic/rt5670', 'asoc/topic/rt5677', 'asoc/topic...
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS             (1U << MINORBITS)
46 #define NVME_Q_DEPTH            1024
47 #define NVME_AQ_DEPTH           64
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86         struct kthread_work work;
87         struct kthread_worker *worker;
88         struct request *req;
89         u32 result;
90         int status;
91         void *ctx;
92 };
93
94 /*
95  * An NVM Express queue.  Each device has at least two (one for admin
96  * commands and one for I/O commands).
97  */
98 struct nvme_queue {
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         dma_addr_t sq_dma_addr;
106         dma_addr_t cq_dma_addr;
107         u32 __iomem *q_db;
108         u16 q_depth;
109         s16 cq_vector;
110         u16 sq_head;
111         u16 sq_tail;
112         u16 cq_head;
113         u16 qid;
114         u8 cq_phase;
115         u8 cqe_seen;
116         struct async_cmd_info cmdinfo;
117         struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         int aborted;
146         struct nvme_queue *nvmeq;
147         struct nvme_iod iod[0];
148 };
149
150 /*
151  * Max size of iod being embedded in the request payload
152  */
153 #define NVME_INT_PAGES          2
154 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157  * Will slightly overestimate the number of pages needed.  This is OK
158  * as it only leads to a small amount of wasted memory for the lifetime of
159  * the I/O.
160  */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169         unsigned int ret = sizeof(struct nvme_cmd_info);
170
171         ret += sizeof(struct nvme_iod);
172         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175         return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179                                 unsigned int hctx_idx)
180 {
181         struct nvme_dev *dev = data;
182         struct nvme_queue *nvmeq = dev->queues[0];
183
184         WARN_ON(nvmeq->hctx);
185         nvmeq->hctx = hctx;
186         hctx->driver_data = nvmeq;
187         return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191                                 unsigned int hctx_idx, unsigned int rq_idx,
192                                 unsigned int numa_node)
193 {
194         struct nvme_dev *dev = data;
195         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196         struct nvme_queue *nvmeq = dev->queues[0];
197
198         BUG_ON(!nvmeq);
199         cmd->nvmeq = nvmeq;
200         return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205         struct nvme_queue *nvmeq = hctx->driver_data;
206
207         nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211                           unsigned int hctx_idx)
212 {
213         struct nvme_dev *dev = data;
214         struct nvme_queue *nvmeq = dev->queues[
215                                         (hctx_idx % dev->queue_count) + 1];
216
217         if (!nvmeq->hctx)
218                 nvmeq->hctx = hctx;
219
220         /* nvmeq queues are shared between namespaces. We assume here that
221          * blk-mq map the tags so they match up with the nvme queue tags. */
222         WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224         hctx->driver_data = nvmeq;
225         return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229                                 unsigned int hctx_idx, unsigned int rq_idx,
230                                 unsigned int numa_node)
231 {
232         struct nvme_dev *dev = data;
233         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236         BUG_ON(!nvmeq);
237         cmd->nvmeq = nvmeq;
238         return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242                                 nvme_completion_fn handler)
243 {
244         cmd->fn = handler;
245         cmd->ctx = ctx;
246         cmd->aborted = 0;
247         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252         return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256  * If bit 0 is set, the iod is embedded in the request payload.
257  */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260         return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270                                                 struct nvme_completion *cqe)
271 {
272         if (ctx == CMD_CTX_CANCELLED)
273                 return;
274         if (ctx == CMD_CTX_COMPLETED) {
275                 dev_warn(nvmeq->q_dmadev,
276                                 "completed id %d twice on queue %d\n",
277                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278                 return;
279         }
280         if (ctx == CMD_CTX_INVALID) {
281                 dev_warn(nvmeq->q_dmadev,
282                                 "invalid id %d completed on queue %d\n",
283                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284                 return;
285         }
286         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291         void *ctx;
292
293         if (fn)
294                 *fn = cmd->fn;
295         ctx = cmd->ctx;
296         cmd->fn = special_completion;
297         cmd->ctx = CMD_CTX_CANCELLED;
298         return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct request *req = ctx;
305
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status == NVME_SC_SUCCESS)
312                 dev_warn(nvmeq->q_dmadev,
313                         "async event result %08x\n", result);
314
315         blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319                                                 struct nvme_completion *cqe)
320 {
321         struct request *req = ctx;
322
323         u16 status = le16_to_cpup(&cqe->status) >> 1;
324         u32 result = le32_to_cpup(&cqe->result);
325
326         blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329         ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333                                                 struct nvme_completion *cqe)
334 {
335         struct async_cmd_info *cmdinfo = ctx;
336         cmdinfo->result = le32_to_cpup(&cqe->result);
337         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343                                   unsigned int tag)
344 {
345         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348         return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352  * Called with local interrupts disabled and the q_lock held.  May not sleep.
353  */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355                                                 nvme_completion_fn *fn)
356 {
357         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358         void *ctx;
359         if (tag >= nvmeq->q_depth) {
360                 *fn = special_completion;
361                 return CMD_CTX_INVALID;
362         }
363         if (fn)
364                 *fn = cmd->fn;
365         ctx = cmd->ctx;
366         cmd->fn = special_completion;
367         cmd->ctx = CMD_CTX_COMPLETED;
368         return ctx;
369 }
370
371 /**
372  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373  * @nvmeq: The queue to use
374  * @cmd: The command to send
375  *
376  * Safe to use from interrupt context
377  */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380         u16 tail = nvmeq->sq_tail;
381
382         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383         if (++tail == nvmeq->q_depth)
384                 tail = 0;
385         writel(tail, nvmeq->q_db);
386         nvmeq->sq_tail = tail;
387
388         return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393         unsigned long flags;
394         int ret;
395         spin_lock_irqsave(&nvmeq->q_lock, flags);
396         ret = __nvme_submit_cmd(nvmeq, cmd);
397         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398         return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403         return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407                             unsigned nseg, unsigned long private)
408 {
409         iod->private = private;
410         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411         iod->npages = -1;
412         iod->length = nbytes;
413         iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418                  unsigned long priv, gfp_t gfp)
419 {
420         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422                                 sizeof(struct scatterlist) * nseg, gfp);
423
424         if (iod)
425                 iod_init(iod, bytes, nseg, priv);
426
427         return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431                                        gfp_t gfp)
432 {
433         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434                                                 sizeof(struct nvme_dsm_range);
435         unsigned long mask = 0;
436         struct nvme_iod *iod;
437
438         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439             size <= NVME_INT_BYTES(dev)) {
440                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442                 iod = cmd->iod;
443                 mask = 0x01;
444                 iod_init(iod, size, rq->nr_phys_segments,
445                                 (unsigned long) rq | 0x01);
446                 return iod;
447         }
448
449         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450                                 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455         const int last_prp = dev->page_size / 8 - 1;
456         int i;
457         __le64 **list = iod_list(iod);
458         dma_addr_t prp_dma = iod->first_dma;
459
460         if (iod->npages == 0)
461                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462         for (i = 0; i < iod->npages; i++) {
463                 __le64 *prp_list = list[i];
464                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466                 prp_dma = next_prp_dma;
467         }
468
469         if (iod_should_kfree(iod))
470                 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475         switch (status & 0x7ff) {
476         case NVME_SC_SUCCESS:
477                 return 0;
478         case NVME_SC_CAP_EXCEEDED:
479                 return -ENOSPC;
480         default:
481                 return -EIO;
482         }
483 }
484
485 #ifdef CONFIG_BLK_DEV_INTEGRITY
486 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488         if (be32_to_cpu(pi->ref_tag) == v)
489                 pi->ref_tag = cpu_to_be32(p);
490 }
491
492 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494         if (be32_to_cpu(pi->ref_tag) == p)
495                 pi->ref_tag = cpu_to_be32(v);
496 }
497
498 /**
499  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
500  *
501  * The virtual start sector is the one that was originally submitted by the
502  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503  * start sector may be different. Remap protection information to match the
504  * physical LBA on writes, and back to the original seed on reads.
505  *
506  * Type 0 and 3 do not have a ref tag, so no remapping required.
507  */
508 static void nvme_dif_remap(struct request *req,
509                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
510 {
511         struct nvme_ns *ns = req->rq_disk->private_data;
512         struct bio_integrity_payload *bip;
513         struct t10_pi_tuple *pi;
514         void *p, *pmap;
515         u32 i, nlb, ts, phys, virt;
516
517         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
518                 return;
519
520         bip = bio_integrity(req->bio);
521         if (!bip)
522                 return;
523
524         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
525         if (!pmap)
526                 return;
527
528         p = pmap;
529         virt = bip_get_seed(bip);
530         phys = nvme_block_nr(ns, blk_rq_pos(req));
531         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532         ts = ns->disk->integrity->tuple_size;
533
534         for (i = 0; i < nlb; i++, virt++, phys++) {
535                 pi = (struct t10_pi_tuple *)p;
536                 dif_swap(phys, virt, pi);
537                 p += ts;
538         }
539         kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544         return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549         return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553         .name                   = "NVME_META_NOOP",
554         .generate_fn            = nvme_noop_generate,
555         .verify_fn              = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560         struct blk_integrity integrity;
561
562         switch (ns->pi_type) {
563         case NVME_NS_DPS_PI_TYPE3:
564                 integrity = t10_pi_type3_crc;
565                 break;
566         case NVME_NS_DPS_PI_TYPE1:
567         case NVME_NS_DPS_PI_TYPE2:
568                 integrity = t10_pi_type1_crc;
569                 break;
570         default:
571                 integrity = nvme_meta_noop;
572                 break;
573         }
574         integrity.tuple_size = ns->ms;
575         blk_integrity_register(ns->disk, &integrity);
576         blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595                                                 struct nvme_completion *cqe)
596 {
597         struct nvme_iod *iod = ctx;
598         struct request *req = iod_get_private(iod);
599         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601         u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603         if (unlikely(status)) {
604                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605                     && (jiffies - req->start_time) < req->timeout) {
606                         unsigned long flags;
607
608                         blk_mq_requeue_request(req);
609                         spin_lock_irqsave(req->q->queue_lock, flags);
610                         if (!blk_queue_stopped(req->q))
611                                 blk_mq_kick_requeue_list(req->q);
612                         spin_unlock_irqrestore(req->q->queue_lock, flags);
613                         return;
614                 }
615                 req->errors = nvme_error_status(status);
616         } else
617                 req->errors = 0;
618
619         if (cmd_rq->aborted)
620                 dev_warn(&nvmeq->dev->pci_dev->dev,
621                         "completing aborted command with status:%04x\n",
622                         status);
623
624         if (iod->nents) {
625                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
626                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
627                 if (blk_integrity_rq(req)) {
628                         if (!rq_data_dir(req))
629                                 nvme_dif_remap(req, nvme_dif_complete);
630                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
631                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
632                 }
633         }
634         nvme_free_iod(nvmeq->dev, iod);
635
636         blk_mq_complete_request(req);
637 }
638
639 /* length is in bytes.  gfp flags indicates whether we may sleep. */
640 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
641                                                                 gfp_t gfp)
642 {
643         struct dma_pool *pool;
644         int length = total_len;
645         struct scatterlist *sg = iod->sg;
646         int dma_len = sg_dma_len(sg);
647         u64 dma_addr = sg_dma_address(sg);
648         int offset = offset_in_page(dma_addr);
649         __le64 *prp_list;
650         __le64 **list = iod_list(iod);
651         dma_addr_t prp_dma;
652         int nprps, i;
653         u32 page_size = dev->page_size;
654
655         length -= (page_size - offset);
656         if (length <= 0)
657                 return total_len;
658
659         dma_len -= (page_size - offset);
660         if (dma_len) {
661                 dma_addr += (page_size - offset);
662         } else {
663                 sg = sg_next(sg);
664                 dma_addr = sg_dma_address(sg);
665                 dma_len = sg_dma_len(sg);
666         }
667
668         if (length <= page_size) {
669                 iod->first_dma = dma_addr;
670                 return total_len;
671         }
672
673         nprps = DIV_ROUND_UP(length, page_size);
674         if (nprps <= (256 / 8)) {
675                 pool = dev->prp_small_pool;
676                 iod->npages = 0;
677         } else {
678                 pool = dev->prp_page_pool;
679                 iod->npages = 1;
680         }
681
682         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
683         if (!prp_list) {
684                 iod->first_dma = dma_addr;
685                 iod->npages = -1;
686                 return (total_len - length) + page_size;
687         }
688         list[0] = prp_list;
689         iod->first_dma = prp_dma;
690         i = 0;
691         for (;;) {
692                 if (i == page_size >> 3) {
693                         __le64 *old_prp_list = prp_list;
694                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
695                         if (!prp_list)
696                                 return total_len - length;
697                         list[iod->npages++] = prp_list;
698                         prp_list[0] = old_prp_list[i - 1];
699                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
700                         i = 1;
701                 }
702                 prp_list[i++] = cpu_to_le64(dma_addr);
703                 dma_len -= page_size;
704                 dma_addr += page_size;
705                 length -= page_size;
706                 if (length <= 0)
707                         break;
708                 if (dma_len > 0)
709                         continue;
710                 BUG_ON(dma_len < 0);
711                 sg = sg_next(sg);
712                 dma_addr = sg_dma_address(sg);
713                 dma_len = sg_dma_len(sg);
714         }
715
716         return total_len;
717 }
718
719 /*
720  * We reuse the small pool to allocate the 16-byte range here as it is not
721  * worth having a special pool for these or additional cases to handle freeing
722  * the iod.
723  */
724 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
725                 struct request *req, struct nvme_iod *iod)
726 {
727         struct nvme_dsm_range *range =
728                                 (struct nvme_dsm_range *)iod_list(iod)[0];
729         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
730
731         range->cattr = cpu_to_le32(0);
732         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
733         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
734
735         memset(cmnd, 0, sizeof(*cmnd));
736         cmnd->dsm.opcode = nvme_cmd_dsm;
737         cmnd->dsm.command_id = req->tag;
738         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
739         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
740         cmnd->dsm.nr = 0;
741         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
742
743         if (++nvmeq->sq_tail == nvmeq->q_depth)
744                 nvmeq->sq_tail = 0;
745         writel(nvmeq->sq_tail, nvmeq->q_db);
746 }
747
748 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
749                                                                 int cmdid)
750 {
751         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
752
753         memset(cmnd, 0, sizeof(*cmnd));
754         cmnd->common.opcode = nvme_cmd_flush;
755         cmnd->common.command_id = cmdid;
756         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
757
758         if (++nvmeq->sq_tail == nvmeq->q_depth)
759                 nvmeq->sq_tail = 0;
760         writel(nvmeq->sq_tail, nvmeq->q_db);
761 }
762
763 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
764                                                         struct nvme_ns *ns)
765 {
766         struct request *req = iod_get_private(iod);
767         struct nvme_command *cmnd;
768         u16 control = 0;
769         u32 dsmgmt = 0;
770
771         if (req->cmd_flags & REQ_FUA)
772                 control |= NVME_RW_FUA;
773         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
774                 control |= NVME_RW_LR;
775
776         if (req->cmd_flags & REQ_RAHEAD)
777                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
778
779         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780         memset(cmnd, 0, sizeof(*cmnd));
781
782         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
783         cmnd->rw.command_id = req->tag;
784         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
785         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
786         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
787         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
788         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
789
790         if (blk_integrity_rq(req)) {
791                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
792                 switch (ns->pi_type) {
793                 case NVME_NS_DPS_PI_TYPE3:
794                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
795                         break;
796                 case NVME_NS_DPS_PI_TYPE1:
797                 case NVME_NS_DPS_PI_TYPE2:
798                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
799                                         NVME_RW_PRINFO_PRCHK_REF;
800                         cmnd->rw.reftag = cpu_to_le32(
801                                         nvme_block_nr(ns, blk_rq_pos(req)));
802                         break;
803                 }
804         } else if (ns->ms)
805                 control |= NVME_RW_PRINFO_PRACT;
806
807         cmnd->rw.control = cpu_to_le16(control);
808         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
809
810         if (++nvmeq->sq_tail == nvmeq->q_depth)
811                 nvmeq->sq_tail = 0;
812         writel(nvmeq->sq_tail, nvmeq->q_db);
813
814         return 0;
815 }
816
817 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
818                          const struct blk_mq_queue_data *bd)
819 {
820         struct nvme_ns *ns = hctx->queue->queuedata;
821         struct nvme_queue *nvmeq = hctx->driver_data;
822         struct request *req = bd->rq;
823         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
824         struct nvme_iod *iod;
825         enum dma_data_direction dma_dir;
826
827         /*
828          * If formated with metadata, require the block layer provide a buffer
829          * unless this namespace is formated such that the metadata can be
830          * stripped/generated by the controller with PRACT=1.
831          */
832         if (ns->ms && !blk_integrity_rq(req)) {
833                 if (!(ns->pi_type && ns->ms == 8)) {
834                         req->errors = -EFAULT;
835                         blk_mq_complete_request(req);
836                         return BLK_MQ_RQ_QUEUE_OK;
837                 }
838         }
839
840         iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
841         if (!iod)
842                 return BLK_MQ_RQ_QUEUE_BUSY;
843
844         if (req->cmd_flags & REQ_DISCARD) {
845                 void *range;
846                 /*
847                  * We reuse the small pool to allocate the 16-byte range here
848                  * as it is not worth having a special pool for these or
849                  * additional cases to handle freeing the iod.
850                  */
851                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
852                                                 GFP_ATOMIC,
853                                                 &iod->first_dma);
854                 if (!range)
855                         goto retry_cmd;
856                 iod_list(iod)[0] = (__le64 *)range;
857                 iod->npages = 0;
858         } else if (req->nr_phys_segments) {
859                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
860
861                 sg_init_table(iod->sg, req->nr_phys_segments);
862                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
863                 if (!iod->nents)
864                         goto error_cmd;
865
866                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
867                         goto retry_cmd;
868
869                 if (blk_rq_bytes(req) !=
870                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
871                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
872                                         iod->nents, dma_dir);
873                         goto retry_cmd;
874                 }
875                 if (blk_integrity_rq(req)) {
876                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
877                                 goto error_cmd;
878
879                         sg_init_table(iod->meta_sg, 1);
880                         if (blk_rq_map_integrity_sg(
881                                         req->q, req->bio, iod->meta_sg) != 1)
882                                 goto error_cmd;
883
884                         if (rq_data_dir(req))
885                                 nvme_dif_remap(req, nvme_dif_prep);
886
887                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
888                                 goto error_cmd;
889                 }
890         }
891
892         nvme_set_info(cmd, iod, req_completion);
893         spin_lock_irq(&nvmeq->q_lock);
894         if (req->cmd_flags & REQ_DISCARD)
895                 nvme_submit_discard(nvmeq, ns, req, iod);
896         else if (req->cmd_flags & REQ_FLUSH)
897                 nvme_submit_flush(nvmeq, ns, req->tag);
898         else
899                 nvme_submit_iod(nvmeq, iod, ns);
900
901         nvme_process_cq(nvmeq);
902         spin_unlock_irq(&nvmeq->q_lock);
903         return BLK_MQ_RQ_QUEUE_OK;
904
905  error_cmd:
906         nvme_free_iod(nvmeq->dev, iod);
907         return BLK_MQ_RQ_QUEUE_ERROR;
908  retry_cmd:
909         nvme_free_iod(nvmeq->dev, iod);
910         return BLK_MQ_RQ_QUEUE_BUSY;
911 }
912
913 static int nvme_process_cq(struct nvme_queue *nvmeq)
914 {
915         u16 head, phase;
916
917         head = nvmeq->cq_head;
918         phase = nvmeq->cq_phase;
919
920         for (;;) {
921                 void *ctx;
922                 nvme_completion_fn fn;
923                 struct nvme_completion cqe = nvmeq->cqes[head];
924                 if ((le16_to_cpu(cqe.status) & 1) != phase)
925                         break;
926                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
927                 if (++head == nvmeq->q_depth) {
928                         head = 0;
929                         phase = !phase;
930                 }
931                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
932                 fn(nvmeq, ctx, &cqe);
933         }
934
935         /* If the controller ignores the cq head doorbell and continuously
936          * writes to the queue, it is theoretically possible to wrap around
937          * the queue twice and mistakenly return IRQ_NONE.  Linux only
938          * requires that 0.1% of your interrupts are handled, so this isn't
939          * a big problem.
940          */
941         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
942                 return 0;
943
944         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
945         nvmeq->cq_head = head;
946         nvmeq->cq_phase = phase;
947
948         nvmeq->cqe_seen = 1;
949         return 1;
950 }
951
952 /* Admin queue isn't initialized as a request queue. If at some point this
953  * happens anyway, make sure to notify the user */
954 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
955                                const struct blk_mq_queue_data *bd)
956 {
957         WARN_ON_ONCE(1);
958         return BLK_MQ_RQ_QUEUE_ERROR;
959 }
960
961 static irqreturn_t nvme_irq(int irq, void *data)
962 {
963         irqreturn_t result;
964         struct nvme_queue *nvmeq = data;
965         spin_lock(&nvmeq->q_lock);
966         nvme_process_cq(nvmeq);
967         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
968         nvmeq->cqe_seen = 0;
969         spin_unlock(&nvmeq->q_lock);
970         return result;
971 }
972
973 static irqreturn_t nvme_irq_check(int irq, void *data)
974 {
975         struct nvme_queue *nvmeq = data;
976         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
977         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
978                 return IRQ_NONE;
979         return IRQ_WAKE_THREAD;
980 }
981
982 struct sync_cmd_info {
983         struct task_struct *task;
984         u32 result;
985         int status;
986 };
987
988 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
989                                                 struct nvme_completion *cqe)
990 {
991         struct sync_cmd_info *cmdinfo = ctx;
992         cmdinfo->result = le32_to_cpup(&cqe->result);
993         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
994         wake_up_process(cmdinfo->task);
995 }
996
997 /*
998  * Returns 0 on success.  If the result is negative, it's a Linux error code;
999  * if the result is positive, it's an NVM Express status code
1000  */
1001 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
1002                                                 u32 *result, unsigned timeout)
1003 {
1004         struct sync_cmd_info cmdinfo;
1005         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1006         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1007
1008         cmdinfo.task = current;
1009         cmdinfo.status = -EINTR;
1010
1011         cmd->common.command_id = req->tag;
1012
1013         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1014
1015         set_current_state(TASK_UNINTERRUPTIBLE);
1016         nvme_submit_cmd(nvmeq, cmd);
1017         schedule();
1018
1019         if (result)
1020                 *result = cmdinfo.result;
1021         return cmdinfo.status;
1022 }
1023
1024 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1025 {
1026         struct nvme_queue *nvmeq = dev->queues[0];
1027         struct nvme_command c;
1028         struct nvme_cmd_info *cmd_info;
1029         struct request *req;
1030
1031         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1032         if (IS_ERR(req))
1033                 return PTR_ERR(req);
1034
1035         req->cmd_flags |= REQ_NO_TIMEOUT;
1036         cmd_info = blk_mq_rq_to_pdu(req);
1037         nvme_set_info(cmd_info, req, async_req_completion);
1038
1039         memset(&c, 0, sizeof(c));
1040         c.common.opcode = nvme_admin_async_event;
1041         c.common.command_id = req->tag;
1042
1043         return __nvme_submit_cmd(nvmeq, &c);
1044 }
1045
1046 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1047                         struct nvme_command *cmd,
1048                         struct async_cmd_info *cmdinfo, unsigned timeout)
1049 {
1050         struct nvme_queue *nvmeq = dev->queues[0];
1051         struct request *req;
1052         struct nvme_cmd_info *cmd_rq;
1053
1054         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1055         if (IS_ERR(req))
1056                 return PTR_ERR(req);
1057
1058         req->timeout = timeout;
1059         cmd_rq = blk_mq_rq_to_pdu(req);
1060         cmdinfo->req = req;
1061         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1062         cmdinfo->status = -EINTR;
1063
1064         cmd->common.command_id = req->tag;
1065
1066         return nvme_submit_cmd(nvmeq, cmd);
1067 }
1068
1069 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1070                                                 u32 *result, unsigned timeout)
1071 {
1072         int res;
1073         struct request *req;
1074
1075         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1076         if (IS_ERR(req))
1077                 return PTR_ERR(req);
1078         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1079         blk_mq_free_request(req);
1080         return res;
1081 }
1082
1083 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1084                                                                 u32 *result)
1085 {
1086         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1087 }
1088
1089 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1090                                         struct nvme_command *cmd, u32 *result)
1091 {
1092         int res;
1093         struct request *req;
1094
1095         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1096                                                                         false);
1097         if (IS_ERR(req))
1098                 return PTR_ERR(req);
1099         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1100         blk_mq_free_request(req);
1101         return res;
1102 }
1103
1104 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1105 {
1106         struct nvme_command c;
1107
1108         memset(&c, 0, sizeof(c));
1109         c.delete_queue.opcode = opcode;
1110         c.delete_queue.qid = cpu_to_le16(id);
1111
1112         return nvme_submit_admin_cmd(dev, &c, NULL);
1113 }
1114
1115 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1116                                                 struct nvme_queue *nvmeq)
1117 {
1118         struct nvme_command c;
1119         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1120
1121         memset(&c, 0, sizeof(c));
1122         c.create_cq.opcode = nvme_admin_create_cq;
1123         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124         c.create_cq.cqid = cpu_to_le16(qid);
1125         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126         c.create_cq.cq_flags = cpu_to_le16(flags);
1127         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1128
1129         return nvme_submit_admin_cmd(dev, &c, NULL);
1130 }
1131
1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133                                                 struct nvme_queue *nvmeq)
1134 {
1135         struct nvme_command c;
1136         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1137
1138         memset(&c, 0, sizeof(c));
1139         c.create_sq.opcode = nvme_admin_create_sq;
1140         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1141         c.create_sq.sqid = cpu_to_le16(qid);
1142         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1143         c.create_sq.sq_flags = cpu_to_le16(flags);
1144         c.create_sq.cqid = cpu_to_le16(qid);
1145
1146         return nvme_submit_admin_cmd(dev, &c, NULL);
1147 }
1148
1149 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1150 {
1151         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1152 }
1153
1154 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1155 {
1156         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1157 }
1158
1159 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1160                                                         dma_addr_t dma_addr)
1161 {
1162         struct nvme_command c;
1163
1164         memset(&c, 0, sizeof(c));
1165         c.identify.opcode = nvme_admin_identify;
1166         c.identify.nsid = cpu_to_le32(nsid);
1167         c.identify.prp1 = cpu_to_le64(dma_addr);
1168         c.identify.cns = cpu_to_le32(cns);
1169
1170         return nvme_submit_admin_cmd(dev, &c, NULL);
1171 }
1172
1173 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1174                                         dma_addr_t dma_addr, u32 *result)
1175 {
1176         struct nvme_command c;
1177
1178         memset(&c, 0, sizeof(c));
1179         c.features.opcode = nvme_admin_get_features;
1180         c.features.nsid = cpu_to_le32(nsid);
1181         c.features.prp1 = cpu_to_le64(dma_addr);
1182         c.features.fid = cpu_to_le32(fid);
1183
1184         return nvme_submit_admin_cmd(dev, &c, result);
1185 }
1186
1187 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1188                                         dma_addr_t dma_addr, u32 *result)
1189 {
1190         struct nvme_command c;
1191
1192         memset(&c, 0, sizeof(c));
1193         c.features.opcode = nvme_admin_set_features;
1194         c.features.prp1 = cpu_to_le64(dma_addr);
1195         c.features.fid = cpu_to_le32(fid);
1196         c.features.dword11 = cpu_to_le32(dword11);
1197
1198         return nvme_submit_admin_cmd(dev, &c, result);
1199 }
1200
1201 /**
1202  * nvme_abort_req - Attempt aborting a request
1203  *
1204  * Schedule controller reset if the command was already aborted once before and
1205  * still hasn't been returned to the driver, or if this is the admin queue.
1206  */
1207 static void nvme_abort_req(struct request *req)
1208 {
1209         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1210         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1211         struct nvme_dev *dev = nvmeq->dev;
1212         struct request *abort_req;
1213         struct nvme_cmd_info *abort_cmd;
1214         struct nvme_command cmd;
1215
1216         if (!nvmeq->qid || cmd_rq->aborted) {
1217                 unsigned long flags;
1218
1219                 spin_lock_irqsave(&dev_list_lock, flags);
1220                 if (work_busy(&dev->reset_work))
1221                         goto out;
1222                 list_del_init(&dev->node);
1223                 dev_warn(&dev->pci_dev->dev,
1224                         "I/O %d QID %d timeout, reset controller\n",
1225                                                         req->tag, nvmeq->qid);
1226                 dev->reset_workfn = nvme_reset_failed_dev;
1227                 queue_work(nvme_workq, &dev->reset_work);
1228  out:
1229                 spin_unlock_irqrestore(&dev_list_lock, flags);
1230                 return;
1231         }
1232
1233         if (!dev->abort_limit)
1234                 return;
1235
1236         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1237                                                                         false);
1238         if (IS_ERR(abort_req))
1239                 return;
1240
1241         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1242         nvme_set_info(abort_cmd, abort_req, abort_completion);
1243
1244         memset(&cmd, 0, sizeof(cmd));
1245         cmd.abort.opcode = nvme_admin_abort_cmd;
1246         cmd.abort.cid = req->tag;
1247         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1248         cmd.abort.command_id = abort_req->tag;
1249
1250         --dev->abort_limit;
1251         cmd_rq->aborted = 1;
1252
1253         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1254                                                         nvmeq->qid);
1255         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1256                 dev_warn(nvmeq->q_dmadev,
1257                                 "Could not abort I/O %d QID %d",
1258                                 req->tag, nvmeq->qid);
1259                 blk_mq_free_request(abort_req);
1260         }
1261 }
1262
1263 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1264                                 struct request *req, void *data, bool reserved)
1265 {
1266         struct nvme_queue *nvmeq = data;
1267         void *ctx;
1268         nvme_completion_fn fn;
1269         struct nvme_cmd_info *cmd;
1270         struct nvme_completion cqe;
1271
1272         if (!blk_mq_request_started(req))
1273                 return;
1274
1275         cmd = blk_mq_rq_to_pdu(req);
1276
1277         if (cmd->ctx == CMD_CTX_CANCELLED)
1278                 return;
1279
1280         if (blk_queue_dying(req->q))
1281                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1282         else
1283                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1284
1285
1286         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1287                                                 req->tag, nvmeq->qid);
1288         ctx = cancel_cmd_info(cmd, &fn);
1289         fn(nvmeq, ctx, &cqe);
1290 }
1291
1292 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1293 {
1294         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1295         struct nvme_queue *nvmeq = cmd->nvmeq;
1296
1297         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1298                                                         nvmeq->qid);
1299         spin_lock_irq(&nvmeq->q_lock);
1300         nvme_abort_req(req);
1301         spin_unlock_irq(&nvmeq->q_lock);
1302
1303         /*
1304          * The aborted req will be completed on receiving the abort req.
1305          * We enable the timer again. If hit twice, it'll cause a device reset,
1306          * as the device then is in a faulty state.
1307          */
1308         return BLK_EH_RESET_TIMER;
1309 }
1310
1311 static void nvme_free_queue(struct nvme_queue *nvmeq)
1312 {
1313         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1314                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1315         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1316                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1317         kfree(nvmeq);
1318 }
1319
1320 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1321 {
1322         int i;
1323
1324         for (i = dev->queue_count - 1; i >= lowest; i--) {
1325                 struct nvme_queue *nvmeq = dev->queues[i];
1326                 dev->queue_count--;
1327                 dev->queues[i] = NULL;
1328                 nvme_free_queue(nvmeq);
1329         }
1330 }
1331
1332 /**
1333  * nvme_suspend_queue - put queue into suspended state
1334  * @nvmeq - queue to suspend
1335  */
1336 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1337 {
1338         int vector;
1339
1340         spin_lock_irq(&nvmeq->q_lock);
1341         if (nvmeq->cq_vector == -1) {
1342                 spin_unlock_irq(&nvmeq->q_lock);
1343                 return 1;
1344         }
1345         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1346         nvmeq->dev->online_queues--;
1347         nvmeq->cq_vector = -1;
1348         spin_unlock_irq(&nvmeq->q_lock);
1349
1350         irq_set_affinity_hint(vector, NULL);
1351         free_irq(vector, nvmeq);
1352
1353         return 0;
1354 }
1355
1356 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1357 {
1358         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1359
1360         spin_lock_irq(&nvmeq->q_lock);
1361         if (hctx && hctx->tags)
1362                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1363         spin_unlock_irq(&nvmeq->q_lock);
1364 }
1365
1366 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1367 {
1368         struct nvme_queue *nvmeq = dev->queues[qid];
1369
1370         if (!nvmeq)
1371                 return;
1372         if (nvme_suspend_queue(nvmeq))
1373                 return;
1374
1375         /* Don't tell the adapter to delete the admin queue.
1376          * Don't tell a removed adapter to delete IO queues. */
1377         if (qid && readl(&dev->bar->csts) != -1) {
1378                 adapter_delete_sq(dev, qid);
1379                 adapter_delete_cq(dev, qid);
1380         }
1381         if (!qid && dev->admin_q)
1382                 blk_mq_freeze_queue_start(dev->admin_q);
1383
1384         spin_lock_irq(&nvmeq->q_lock);
1385         nvme_process_cq(nvmeq);
1386         spin_unlock_irq(&nvmeq->q_lock);
1387 }
1388
1389 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1390                                                         int depth)
1391 {
1392         struct device *dmadev = &dev->pci_dev->dev;
1393         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1394         if (!nvmeq)
1395                 return NULL;
1396
1397         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1398                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1399         if (!nvmeq->cqes)
1400                 goto free_nvmeq;
1401
1402         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1403                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1404         if (!nvmeq->sq_cmds)
1405                 goto free_cqdma;
1406
1407         nvmeq->q_dmadev = dmadev;
1408         nvmeq->dev = dev;
1409         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1410                         dev->instance, qid);
1411         spin_lock_init(&nvmeq->q_lock);
1412         nvmeq->cq_head = 0;
1413         nvmeq->cq_phase = 1;
1414         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1415         nvmeq->q_depth = depth;
1416         nvmeq->qid = qid;
1417         dev->queue_count++;
1418         dev->queues[qid] = nvmeq;
1419
1420         return nvmeq;
1421
1422  free_cqdma:
1423         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1424                                                         nvmeq->cq_dma_addr);
1425  free_nvmeq:
1426         kfree(nvmeq);
1427         return NULL;
1428 }
1429
1430 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1431                                                         const char *name)
1432 {
1433         if (use_threaded_interrupts)
1434                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1435                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1436                                         name, nvmeq);
1437         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1438                                 IRQF_SHARED, name, nvmeq);
1439 }
1440
1441 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1442 {
1443         struct nvme_dev *dev = nvmeq->dev;
1444
1445         spin_lock_irq(&nvmeq->q_lock);
1446         nvmeq->sq_tail = 0;
1447         nvmeq->cq_head = 0;
1448         nvmeq->cq_phase = 1;
1449         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1450         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1451         dev->online_queues++;
1452         spin_unlock_irq(&nvmeq->q_lock);
1453 }
1454
1455 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1456 {
1457         struct nvme_dev *dev = nvmeq->dev;
1458         int result;
1459
1460         nvmeq->cq_vector = qid - 1;
1461         result = adapter_alloc_cq(dev, qid, nvmeq);
1462         if (result < 0)
1463                 return result;
1464
1465         result = adapter_alloc_sq(dev, qid, nvmeq);
1466         if (result < 0)
1467                 goto release_cq;
1468
1469         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1470         if (result < 0)
1471                 goto release_sq;
1472
1473         nvme_init_queue(nvmeq, qid);
1474         return result;
1475
1476  release_sq:
1477         adapter_delete_sq(dev, qid);
1478  release_cq:
1479         adapter_delete_cq(dev, qid);
1480         return result;
1481 }
1482
1483 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1484 {
1485         unsigned long timeout;
1486         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1487
1488         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1489
1490         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1491                 msleep(100);
1492                 if (fatal_signal_pending(current))
1493                         return -EINTR;
1494                 if (time_after(jiffies, timeout)) {
1495                         dev_err(&dev->pci_dev->dev,
1496                                 "Device not ready; aborting %s\n", enabled ?
1497                                                 "initialisation" : "reset");
1498                         return -ENODEV;
1499                 }
1500         }
1501
1502         return 0;
1503 }
1504
1505 /*
1506  * If the device has been passed off to us in an enabled state, just clear
1507  * the enabled bit.  The spec says we should set the 'shutdown notification
1508  * bits', but doing so may cause the device to complete commands to the
1509  * admin queue ... and we don't know what memory that might be pointing at!
1510  */
1511 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1512 {
1513         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1514         dev->ctrl_config &= ~NVME_CC_ENABLE;
1515         writel(dev->ctrl_config, &dev->bar->cc);
1516
1517         return nvme_wait_ready(dev, cap, false);
1518 }
1519
1520 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1521 {
1522         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1523         dev->ctrl_config |= NVME_CC_ENABLE;
1524         writel(dev->ctrl_config, &dev->bar->cc);
1525
1526         return nvme_wait_ready(dev, cap, true);
1527 }
1528
1529 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1530 {
1531         unsigned long timeout;
1532
1533         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1534         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1535
1536         writel(dev->ctrl_config, &dev->bar->cc);
1537
1538         timeout = SHUTDOWN_TIMEOUT + jiffies;
1539         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1540                                                         NVME_CSTS_SHST_CMPLT) {
1541                 msleep(100);
1542                 if (fatal_signal_pending(current))
1543                         return -EINTR;
1544                 if (time_after(jiffies, timeout)) {
1545                         dev_err(&dev->pci_dev->dev,
1546                                 "Device shutdown incomplete; abort shutdown\n");
1547                         return -ENODEV;
1548                 }
1549         }
1550
1551         return 0;
1552 }
1553
1554 static struct blk_mq_ops nvme_mq_admin_ops = {
1555         .queue_rq       = nvme_admin_queue_rq,
1556         .map_queue      = blk_mq_map_queue,
1557         .init_hctx      = nvme_admin_init_hctx,
1558         .exit_hctx      = nvme_exit_hctx,
1559         .init_request   = nvme_admin_init_request,
1560         .timeout        = nvme_timeout,
1561 };
1562
1563 static struct blk_mq_ops nvme_mq_ops = {
1564         .queue_rq       = nvme_queue_rq,
1565         .map_queue      = blk_mq_map_queue,
1566         .init_hctx      = nvme_init_hctx,
1567         .exit_hctx      = nvme_exit_hctx,
1568         .init_request   = nvme_init_request,
1569         .timeout        = nvme_timeout,
1570 };
1571
1572 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1573 {
1574         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1575                 blk_cleanup_queue(dev->admin_q);
1576                 blk_mq_free_tag_set(&dev->admin_tagset);
1577         }
1578 }
1579
1580 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1581 {
1582         if (!dev->admin_q) {
1583                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1584                 dev->admin_tagset.nr_hw_queues = 1;
1585                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1586                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1587                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1588                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1589                 dev->admin_tagset.driver_data = dev;
1590
1591                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1592                         return -ENOMEM;
1593
1594                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1595                 if (IS_ERR(dev->admin_q)) {
1596                         blk_mq_free_tag_set(&dev->admin_tagset);
1597                         return -ENOMEM;
1598                 }
1599                 if (!blk_get_queue(dev->admin_q)) {
1600                         nvme_dev_remove_admin(dev);
1601                         return -ENODEV;
1602                 }
1603         } else
1604                 blk_mq_unfreeze_queue(dev->admin_q);
1605
1606         return 0;
1607 }
1608
1609 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1610 {
1611         int result;
1612         u32 aqa;
1613         u64 cap = readq(&dev->bar->cap);
1614         struct nvme_queue *nvmeq;
1615         unsigned page_shift = PAGE_SHIFT;
1616         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1617         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1618
1619         if (page_shift < dev_page_min) {
1620                 dev_err(&dev->pci_dev->dev,
1621                                 "Minimum device page size (%u) too large for "
1622                                 "host (%u)\n", 1 << dev_page_min,
1623                                 1 << page_shift);
1624                 return -ENODEV;
1625         }
1626         if (page_shift > dev_page_max) {
1627                 dev_info(&dev->pci_dev->dev,
1628                                 "Device maximum page size (%u) smaller than "
1629                                 "host (%u); enabling work-around\n",
1630                                 1 << dev_page_max, 1 << page_shift);
1631                 page_shift = dev_page_max;
1632         }
1633
1634         result = nvme_disable_ctrl(dev, cap);
1635         if (result < 0)
1636                 return result;
1637
1638         nvmeq = dev->queues[0];
1639         if (!nvmeq) {
1640                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1641                 if (!nvmeq)
1642                         return -ENOMEM;
1643         }
1644
1645         aqa = nvmeq->q_depth - 1;
1646         aqa |= aqa << 16;
1647
1648         dev->page_size = 1 << page_shift;
1649
1650         dev->ctrl_config = NVME_CC_CSS_NVM;
1651         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1652         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1653         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1654
1655         writel(aqa, &dev->bar->aqa);
1656         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1657         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1658
1659         result = nvme_enable_ctrl(dev, cap);
1660         if (result)
1661                 goto free_nvmeq;
1662
1663         nvmeq->cq_vector = 0;
1664         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1665         if (result)
1666                 goto free_nvmeq;
1667
1668         return result;
1669
1670  free_nvmeq:
1671         nvme_free_queues(dev, 0);
1672         return result;
1673 }
1674
1675 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1676                                 unsigned long addr, unsigned length)
1677 {
1678         int i, err, count, nents, offset;
1679         struct scatterlist *sg;
1680         struct page **pages;
1681         struct nvme_iod *iod;
1682
1683         if (addr & 3)
1684                 return ERR_PTR(-EINVAL);
1685         if (!length || length > INT_MAX - PAGE_SIZE)
1686                 return ERR_PTR(-EINVAL);
1687
1688         offset = offset_in_page(addr);
1689         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1690         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1691         if (!pages)
1692                 return ERR_PTR(-ENOMEM);
1693
1694         err = get_user_pages_fast(addr, count, 1, pages);
1695         if (err < count) {
1696                 count = err;
1697                 err = -EFAULT;
1698                 goto put_pages;
1699         }
1700
1701         err = -ENOMEM;
1702         iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1703         if (!iod)
1704                 goto put_pages;
1705
1706         sg = iod->sg;
1707         sg_init_table(sg, count);
1708         for (i = 0; i < count; i++) {
1709                 sg_set_page(&sg[i], pages[i],
1710                             min_t(unsigned, length, PAGE_SIZE - offset),
1711                             offset);
1712                 length -= (PAGE_SIZE - offset);
1713                 offset = 0;
1714         }
1715         sg_mark_end(&sg[i - 1]);
1716         iod->nents = count;
1717
1718         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1719                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1720         if (!nents)
1721                 goto free_iod;
1722
1723         kfree(pages);
1724         return iod;
1725
1726  free_iod:
1727         kfree(iod);
1728  put_pages:
1729         for (i = 0; i < count; i++)
1730                 put_page(pages[i]);
1731         kfree(pages);
1732         return ERR_PTR(err);
1733 }
1734
1735 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1736                         struct nvme_iod *iod)
1737 {
1738         int i;
1739
1740         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1741                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1742
1743         for (i = 0; i < iod->nents; i++)
1744                 put_page(sg_page(&iod->sg[i]));
1745 }
1746
1747 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1748 {
1749         struct nvme_dev *dev = ns->dev;
1750         struct nvme_user_io io;
1751         struct nvme_command c;
1752         unsigned length, meta_len;
1753         int status, i;
1754         struct nvme_iod *iod, *meta_iod = NULL;
1755         dma_addr_t meta_dma_addr;
1756         void *meta, *uninitialized_var(meta_mem);
1757
1758         if (copy_from_user(&io, uio, sizeof(io)))
1759                 return -EFAULT;
1760         length = (io.nblocks + 1) << ns->lba_shift;
1761         meta_len = (io.nblocks + 1) * ns->ms;
1762
1763         if (meta_len && ((io.metadata & 3) || !io.metadata))
1764                 return -EINVAL;
1765
1766         switch (io.opcode) {
1767         case nvme_cmd_write:
1768         case nvme_cmd_read:
1769         case nvme_cmd_compare:
1770                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1771                 break;
1772         default:
1773                 return -EINVAL;
1774         }
1775
1776         if (IS_ERR(iod))
1777                 return PTR_ERR(iod);
1778
1779         memset(&c, 0, sizeof(c));
1780         c.rw.opcode = io.opcode;
1781         c.rw.flags = io.flags;
1782         c.rw.nsid = cpu_to_le32(ns->ns_id);
1783         c.rw.slba = cpu_to_le64(io.slba);
1784         c.rw.length = cpu_to_le16(io.nblocks);
1785         c.rw.control = cpu_to_le16(io.control);
1786         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1787         c.rw.reftag = cpu_to_le32(io.reftag);
1788         c.rw.apptag = cpu_to_le16(io.apptag);
1789         c.rw.appmask = cpu_to_le16(io.appmask);
1790
1791         if (meta_len) {
1792                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1793                                                                 meta_len);
1794                 if (IS_ERR(meta_iod)) {
1795                         status = PTR_ERR(meta_iod);
1796                         meta_iod = NULL;
1797                         goto unmap;
1798                 }
1799
1800                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1801                                                 &meta_dma_addr, GFP_KERNEL);
1802                 if (!meta_mem) {
1803                         status = -ENOMEM;
1804                         goto unmap;
1805                 }
1806
1807                 if (io.opcode & 1) {
1808                         int meta_offset = 0;
1809
1810                         for (i = 0; i < meta_iod->nents; i++) {
1811                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1812                                                 meta_iod->sg[i].offset;
1813                                 memcpy(meta_mem + meta_offset, meta,
1814                                                 meta_iod->sg[i].length);
1815                                 kunmap_atomic(meta);
1816                                 meta_offset += meta_iod->sg[i].length;
1817                         }
1818                 }
1819
1820                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1821         }
1822
1823         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1824         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1825         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1826
1827         if (length != (io.nblocks + 1) << ns->lba_shift)
1828                 status = -ENOMEM;
1829         else
1830                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1831
1832         if (meta_len) {
1833                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1834                         int meta_offset = 0;
1835
1836                         for (i = 0; i < meta_iod->nents; i++) {
1837                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1838                                                 meta_iod->sg[i].offset;
1839                                 memcpy(meta, meta_mem + meta_offset,
1840                                                 meta_iod->sg[i].length);
1841                                 kunmap_atomic(meta);
1842                                 meta_offset += meta_iod->sg[i].length;
1843                         }
1844                 }
1845
1846                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1847                                                                 meta_dma_addr);
1848         }
1849
1850  unmap:
1851         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1852         nvme_free_iod(dev, iod);
1853
1854         if (meta_iod) {
1855                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1856                 nvme_free_iod(dev, meta_iod);
1857         }
1858
1859         return status;
1860 }
1861
1862 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1863                         struct nvme_passthru_cmd __user *ucmd)
1864 {
1865         struct nvme_passthru_cmd cmd;
1866         struct nvme_command c;
1867         int status, length;
1868         struct nvme_iod *uninitialized_var(iod);
1869         unsigned timeout;
1870
1871         if (!capable(CAP_SYS_ADMIN))
1872                 return -EACCES;
1873         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1874                 return -EFAULT;
1875
1876         memset(&c, 0, sizeof(c));
1877         c.common.opcode = cmd.opcode;
1878         c.common.flags = cmd.flags;
1879         c.common.nsid = cpu_to_le32(cmd.nsid);
1880         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1881         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1882         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1883         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1884         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1885         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1886         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1887         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1888
1889         length = cmd.data_len;
1890         if (cmd.data_len) {
1891                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1892                                                                 length);
1893                 if (IS_ERR(iod))
1894                         return PTR_ERR(iod);
1895                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1896                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1897                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1898         }
1899
1900         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1901                                                                 ADMIN_TIMEOUT;
1902
1903         if (length != cmd.data_len)
1904                 status = -ENOMEM;
1905         else if (ns) {
1906                 struct request *req;
1907
1908                 req = blk_mq_alloc_request(ns->queue, WRITE,
1909                                                 (GFP_KERNEL|__GFP_WAIT), false);
1910                 if (IS_ERR(req))
1911                         status = PTR_ERR(req);
1912                 else {
1913                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1914                                                                 timeout);
1915                         blk_mq_free_request(req);
1916                 }
1917         } else
1918                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1919
1920         if (cmd.data_len) {
1921                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1922                 nvme_free_iod(dev, iod);
1923         }
1924
1925         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1926                                                         sizeof(cmd.result)))
1927                 status = -EFAULT;
1928
1929         return status;
1930 }
1931
1932 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1933                                                         unsigned long arg)
1934 {
1935         struct nvme_ns *ns = bdev->bd_disk->private_data;
1936
1937         switch (cmd) {
1938         case NVME_IOCTL_ID:
1939                 force_successful_syscall_return();
1940                 return ns->ns_id;
1941         case NVME_IOCTL_ADMIN_CMD:
1942                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1943         case NVME_IOCTL_IO_CMD:
1944                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1945         case NVME_IOCTL_SUBMIT_IO:
1946                 return nvme_submit_io(ns, (void __user *)arg);
1947         case SG_GET_VERSION_NUM:
1948                 return nvme_sg_get_version_num((void __user *)arg);
1949         case SG_IO:
1950                 return nvme_sg_io(ns, (void __user *)arg);
1951         default:
1952                 return -ENOTTY;
1953         }
1954 }
1955
1956 #ifdef CONFIG_COMPAT
1957 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1958                                         unsigned int cmd, unsigned long arg)
1959 {
1960         switch (cmd) {
1961         case SG_IO:
1962                 return -ENOIOCTLCMD;
1963         }
1964         return nvme_ioctl(bdev, mode, cmd, arg);
1965 }
1966 #else
1967 #define nvme_compat_ioctl       NULL
1968 #endif
1969
1970 static int nvme_open(struct block_device *bdev, fmode_t mode)
1971 {
1972         int ret = 0;
1973         struct nvme_ns *ns;
1974
1975         spin_lock(&dev_list_lock);
1976         ns = bdev->bd_disk->private_data;
1977         if (!ns)
1978                 ret = -ENXIO;
1979         else if (!kref_get_unless_zero(&ns->dev->kref))
1980                 ret = -ENXIO;
1981         spin_unlock(&dev_list_lock);
1982
1983         return ret;
1984 }
1985
1986 static void nvme_free_dev(struct kref *kref);
1987
1988 static void nvme_release(struct gendisk *disk, fmode_t mode)
1989 {
1990         struct nvme_ns *ns = disk->private_data;
1991         struct nvme_dev *dev = ns->dev;
1992
1993         kref_put(&dev->kref, nvme_free_dev);
1994 }
1995
1996 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1997 {
1998         /* some standard values */
1999         geo->heads = 1 << 6;
2000         geo->sectors = 1 << 5;
2001         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2002         return 0;
2003 }
2004
2005 static void nvme_config_discard(struct nvme_ns *ns)
2006 {
2007         u32 logical_block_size = queue_logical_block_size(ns->queue);
2008         ns->queue->limits.discard_zeroes_data = 0;
2009         ns->queue->limits.discard_alignment = logical_block_size;
2010         ns->queue->limits.discard_granularity = logical_block_size;
2011         ns->queue->limits.max_discard_sectors = 0xffffffff;
2012         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2013 }
2014
2015 static int nvme_revalidate_disk(struct gendisk *disk)
2016 {
2017         struct nvme_ns *ns = disk->private_data;
2018         struct nvme_dev *dev = ns->dev;
2019         struct nvme_id_ns *id;
2020         dma_addr_t dma_addr;
2021         int lbaf, pi_type, old_ms;
2022         unsigned short bs;
2023
2024         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2025                                                                 GFP_KERNEL);
2026         if (!id) {
2027                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2028                                                                 __func__);
2029                 return 0;
2030         }
2031         if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2032                 dev_warn(&dev->pci_dev->dev,
2033                         "identify failed ns:%d, setting capacity to 0\n",
2034                         ns->ns_id);
2035                 memset(id, 0, sizeof(*id));
2036         }
2037
2038         old_ms = ns->ms;
2039         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2040         ns->lba_shift = id->lbaf[lbaf].ds;
2041         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2042
2043         /*
2044          * If identify namespace failed, use default 512 byte block size so
2045          * block layer can use before failing read/write for 0 capacity.
2046          */
2047         if (ns->lba_shift == 0)
2048                 ns->lba_shift = 9;
2049         bs = 1 << ns->lba_shift;
2050
2051         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2052         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2053                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2054
2055         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2056                                 ns->ms != old_ms ||
2057                                 bs != queue_logical_block_size(disk->queue) ||
2058                                 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2059                 blk_integrity_unregister(disk);
2060
2061         ns->pi_type = pi_type;
2062         blk_queue_logical_block_size(ns->queue, bs);
2063
2064         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2065                                 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2066                 nvme_init_integrity(ns);
2067
2068         if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2069                 set_capacity(disk, 0);
2070         else
2071                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2072
2073         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2074                 nvme_config_discard(ns);
2075
2076         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2077         return 0;
2078 }
2079
2080 static const struct block_device_operations nvme_fops = {
2081         .owner          = THIS_MODULE,
2082         .ioctl          = nvme_ioctl,
2083         .compat_ioctl   = nvme_compat_ioctl,
2084         .open           = nvme_open,
2085         .release        = nvme_release,
2086         .getgeo         = nvme_getgeo,
2087         .revalidate_disk= nvme_revalidate_disk,
2088 };
2089
2090 static int nvme_kthread(void *data)
2091 {
2092         struct nvme_dev *dev, *next;
2093
2094         while (!kthread_should_stop()) {
2095                 set_current_state(TASK_INTERRUPTIBLE);
2096                 spin_lock(&dev_list_lock);
2097                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2098                         int i;
2099                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2100                                 if (work_busy(&dev->reset_work))
2101                                         continue;
2102                                 list_del_init(&dev->node);
2103                                 dev_warn(&dev->pci_dev->dev,
2104                                         "Failed status: %x, reset controller\n",
2105                                         readl(&dev->bar->csts));
2106                                 dev->reset_workfn = nvme_reset_failed_dev;
2107                                 queue_work(nvme_workq, &dev->reset_work);
2108                                 continue;
2109                         }
2110                         for (i = 0; i < dev->queue_count; i++) {
2111                                 struct nvme_queue *nvmeq = dev->queues[i];
2112                                 if (!nvmeq)
2113                                         continue;
2114                                 spin_lock_irq(&nvmeq->q_lock);
2115                                 nvme_process_cq(nvmeq);
2116
2117                                 while ((i == 0) && (dev->event_limit > 0)) {
2118                                         if (nvme_submit_async_admin_req(dev))
2119                                                 break;
2120                                         dev->event_limit--;
2121                                 }
2122                                 spin_unlock_irq(&nvmeq->q_lock);
2123                         }
2124                 }
2125                 spin_unlock(&dev_list_lock);
2126                 schedule_timeout(round_jiffies_relative(HZ));
2127         }
2128         return 0;
2129 }
2130
2131 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2132 {
2133         struct nvme_ns *ns;
2134         struct gendisk *disk;
2135         int node = dev_to_node(&dev->pci_dev->dev);
2136
2137         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2138         if (!ns)
2139                 return;
2140
2141         ns->queue = blk_mq_init_queue(&dev->tagset);
2142         if (IS_ERR(ns->queue))
2143                 goto out_free_ns;
2144         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2145         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2146         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2147         ns->dev = dev;
2148         ns->queue->queuedata = ns;
2149
2150         disk = alloc_disk_node(0, node);
2151         if (!disk)
2152                 goto out_free_queue;
2153
2154         ns->ns_id = nsid;
2155         ns->disk = disk;
2156         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2157         list_add_tail(&ns->list, &dev->namespaces);
2158
2159         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2160         if (dev->max_hw_sectors)
2161                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2162         if (dev->stripe_size)
2163                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2164         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2165                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2166
2167         disk->major = nvme_major;
2168         disk->first_minor = 0;
2169         disk->fops = &nvme_fops;
2170         disk->private_data = ns;
2171         disk->queue = ns->queue;
2172         disk->driverfs_dev = dev->device;
2173         disk->flags = GENHD_FL_EXT_DEVT;
2174         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2175
2176         /*
2177          * Initialize capacity to 0 until we establish the namespace format and
2178          * setup integrity extentions if necessary. The revalidate_disk after
2179          * add_disk allows the driver to register with integrity if the format
2180          * requires it.
2181          */
2182         set_capacity(disk, 0);
2183         nvme_revalidate_disk(ns->disk);
2184         add_disk(ns->disk);
2185         if (ns->ms)
2186                 revalidate_disk(ns->disk);
2187         return;
2188  out_free_queue:
2189         blk_cleanup_queue(ns->queue);
2190  out_free_ns:
2191         kfree(ns);
2192 }
2193
2194 static void nvme_create_io_queues(struct nvme_dev *dev)
2195 {
2196         unsigned i;
2197
2198         for (i = dev->queue_count; i <= dev->max_qid; i++)
2199                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2200                         break;
2201
2202         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2203                 if (nvme_create_queue(dev->queues[i], i))
2204                         break;
2205 }
2206
2207 static int set_queue_count(struct nvme_dev *dev, int count)
2208 {
2209         int status;
2210         u32 result;
2211         u32 q_count = (count - 1) | ((count - 1) << 16);
2212
2213         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2214                                                                 &result);
2215         if (status < 0)
2216                 return status;
2217         if (status > 0) {
2218                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2219                                                                         status);
2220                 return 0;
2221         }
2222         return min(result & 0xffff, result >> 16) + 1;
2223 }
2224
2225 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2226 {
2227         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2228 }
2229
2230 static int nvme_setup_io_queues(struct nvme_dev *dev)
2231 {
2232         struct nvme_queue *adminq = dev->queues[0];
2233         struct pci_dev *pdev = dev->pci_dev;
2234         int result, i, vecs, nr_io_queues, size;
2235
2236         nr_io_queues = num_possible_cpus();
2237         result = set_queue_count(dev, nr_io_queues);
2238         if (result <= 0)
2239                 return result;
2240         if (result < nr_io_queues)
2241                 nr_io_queues = result;
2242
2243         size = db_bar_size(dev, nr_io_queues);
2244         if (size > 8192) {
2245                 iounmap(dev->bar);
2246                 do {
2247                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2248                         if (dev->bar)
2249                                 break;
2250                         if (!--nr_io_queues)
2251                                 return -ENOMEM;
2252                         size = db_bar_size(dev, nr_io_queues);
2253                 } while (1);
2254                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2255                 adminq->q_db = dev->dbs;
2256         }
2257
2258         /* Deregister the admin queue's interrupt */
2259         free_irq(dev->entry[0].vector, adminq);
2260
2261         /*
2262          * If we enable msix early due to not intx, disable it again before
2263          * setting up the full range we need.
2264          */
2265         if (!pdev->irq)
2266                 pci_disable_msix(pdev);
2267
2268         for (i = 0; i < nr_io_queues; i++)
2269                 dev->entry[i].entry = i;
2270         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2271         if (vecs < 0) {
2272                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2273                 if (vecs < 0) {
2274                         vecs = 1;
2275                 } else {
2276                         for (i = 0; i < vecs; i++)
2277                                 dev->entry[i].vector = i + pdev->irq;
2278                 }
2279         }
2280
2281         /*
2282          * Should investigate if there's a performance win from allocating
2283          * more queues than interrupt vectors; it might allow the submission
2284          * path to scale better, even if the receive path is limited by the
2285          * number of interrupts.
2286          */
2287         nr_io_queues = vecs;
2288         dev->max_qid = nr_io_queues;
2289
2290         result = queue_request_irq(dev, adminq, adminq->irqname);
2291         if (result)
2292                 goto free_queues;
2293
2294         /* Free previously allocated queues that are no longer usable */
2295         nvme_free_queues(dev, nr_io_queues + 1);
2296         nvme_create_io_queues(dev);
2297
2298         return 0;
2299
2300  free_queues:
2301         nvme_free_queues(dev, 1);
2302         return result;
2303 }
2304
2305 /*
2306  * Return: error value if an error occurred setting up the queues or calling
2307  * Identify Device.  0 if these succeeded, even if adding some of the
2308  * namespaces failed.  At the moment, these failures are silent.  TBD which
2309  * failures should be reported.
2310  */
2311 static int nvme_dev_add(struct nvme_dev *dev)
2312 {
2313         struct pci_dev *pdev = dev->pci_dev;
2314         int res;
2315         unsigned nn, i;
2316         struct nvme_id_ctrl *ctrl;
2317         void *mem;
2318         dma_addr_t dma_addr;
2319         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2320
2321         mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2322         if (!mem)
2323                 return -ENOMEM;
2324
2325         res = nvme_identify(dev, 0, 1, dma_addr);
2326         if (res) {
2327                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2328                 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2329                 return -EIO;
2330         }
2331
2332         ctrl = mem;
2333         nn = le32_to_cpup(&ctrl->nn);
2334         dev->oncs = le16_to_cpup(&ctrl->oncs);
2335         dev->abort_limit = ctrl->acl + 1;
2336         dev->vwc = ctrl->vwc;
2337         dev->event_limit = min(ctrl->aerl + 1, 8);
2338         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2339         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2340         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2341         if (ctrl->mdts)
2342                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2343         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2344                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2345                 unsigned int max_hw_sectors;
2346
2347                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2348                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2349                 if (dev->max_hw_sectors) {
2350                         dev->max_hw_sectors = min(max_hw_sectors,
2351                                                         dev->max_hw_sectors);
2352                 } else
2353                         dev->max_hw_sectors = max_hw_sectors;
2354         }
2355         dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2356
2357         dev->tagset.ops = &nvme_mq_ops;
2358         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2359         dev->tagset.timeout = NVME_IO_TIMEOUT;
2360         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2361         dev->tagset.queue_depth =
2362                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2363         dev->tagset.cmd_size = nvme_cmd_size(dev);
2364         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2365         dev->tagset.driver_data = dev;
2366
2367         if (blk_mq_alloc_tag_set(&dev->tagset))
2368                 return 0;
2369
2370         for (i = 1; i <= nn; i++)
2371                 nvme_alloc_ns(dev, i);
2372
2373         return 0;
2374 }
2375
2376 static int nvme_dev_map(struct nvme_dev *dev)
2377 {
2378         u64 cap;
2379         int bars, result = -ENOMEM;
2380         struct pci_dev *pdev = dev->pci_dev;
2381
2382         if (pci_enable_device_mem(pdev))
2383                 return result;
2384
2385         dev->entry[0].vector = pdev->irq;
2386         pci_set_master(pdev);
2387         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2388         if (!bars)
2389                 goto disable_pci;
2390
2391         if (pci_request_selected_regions(pdev, bars, "nvme"))
2392                 goto disable_pci;
2393
2394         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2395             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2396                 goto disable;
2397
2398         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2399         if (!dev->bar)
2400                 goto disable;
2401
2402         if (readl(&dev->bar->csts) == -1) {
2403                 result = -ENODEV;
2404                 goto unmap;
2405         }
2406
2407         /*
2408          * Some devices don't advertse INTx interrupts, pre-enable a single
2409          * MSIX vec for setup. We'll adjust this later.
2410          */
2411         if (!pdev->irq) {
2412                 result = pci_enable_msix(pdev, dev->entry, 1);
2413                 if (result < 0)
2414                         goto unmap;
2415         }
2416
2417         cap = readq(&dev->bar->cap);
2418         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2419         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2420         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2421
2422         return 0;
2423
2424  unmap:
2425         iounmap(dev->bar);
2426         dev->bar = NULL;
2427  disable:
2428         pci_release_regions(pdev);
2429  disable_pci:
2430         pci_disable_device(pdev);
2431         return result;
2432 }
2433
2434 static void nvme_dev_unmap(struct nvme_dev *dev)
2435 {
2436         if (dev->pci_dev->msi_enabled)
2437                 pci_disable_msi(dev->pci_dev);
2438         else if (dev->pci_dev->msix_enabled)
2439                 pci_disable_msix(dev->pci_dev);
2440
2441         if (dev->bar) {
2442                 iounmap(dev->bar);
2443                 dev->bar = NULL;
2444                 pci_release_regions(dev->pci_dev);
2445         }
2446
2447         if (pci_is_enabled(dev->pci_dev))
2448                 pci_disable_device(dev->pci_dev);
2449 }
2450
2451 struct nvme_delq_ctx {
2452         struct task_struct *waiter;
2453         struct kthread_worker *worker;
2454         atomic_t refcount;
2455 };
2456
2457 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2458 {
2459         dq->waiter = current;
2460         mb();
2461
2462         for (;;) {
2463                 set_current_state(TASK_KILLABLE);
2464                 if (!atomic_read(&dq->refcount))
2465                         break;
2466                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2467                                         fatal_signal_pending(current)) {
2468                         /*
2469                          * Disable the controller first since we can't trust it
2470                          * at this point, but leave the admin queue enabled
2471                          * until all queue deletion requests are flushed.
2472                          * FIXME: This may take a while if there are more h/w
2473                          * queues than admin tags.
2474                          */
2475                         set_current_state(TASK_RUNNING);
2476                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2477                         nvme_clear_queue(dev->queues[0]);
2478                         flush_kthread_worker(dq->worker);
2479                         nvme_disable_queue(dev, 0);
2480                         return;
2481                 }
2482         }
2483         set_current_state(TASK_RUNNING);
2484 }
2485
2486 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2487 {
2488         atomic_dec(&dq->refcount);
2489         if (dq->waiter)
2490                 wake_up_process(dq->waiter);
2491 }
2492
2493 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2494 {
2495         atomic_inc(&dq->refcount);
2496         return dq;
2497 }
2498
2499 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2500 {
2501         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2502         nvme_put_dq(dq);
2503 }
2504
2505 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2506                                                 kthread_work_func_t fn)
2507 {
2508         struct nvme_command c;
2509
2510         memset(&c, 0, sizeof(c));
2511         c.delete_queue.opcode = opcode;
2512         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2513
2514         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2515         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2516                                                                 ADMIN_TIMEOUT);
2517 }
2518
2519 static void nvme_del_cq_work_handler(struct kthread_work *work)
2520 {
2521         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2522                                                         cmdinfo.work);
2523         nvme_del_queue_end(nvmeq);
2524 }
2525
2526 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2527 {
2528         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2529                                                 nvme_del_cq_work_handler);
2530 }
2531
2532 static void nvme_del_sq_work_handler(struct kthread_work *work)
2533 {
2534         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2535                                                         cmdinfo.work);
2536         int status = nvmeq->cmdinfo.status;
2537
2538         if (!status)
2539                 status = nvme_delete_cq(nvmeq);
2540         if (status)
2541                 nvme_del_queue_end(nvmeq);
2542 }
2543
2544 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2545 {
2546         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2547                                                 nvme_del_sq_work_handler);
2548 }
2549
2550 static void nvme_del_queue_start(struct kthread_work *work)
2551 {
2552         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2553                                                         cmdinfo.work);
2554         if (nvme_delete_sq(nvmeq))
2555                 nvme_del_queue_end(nvmeq);
2556 }
2557
2558 static void nvme_disable_io_queues(struct nvme_dev *dev)
2559 {
2560         int i;
2561         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2562         struct nvme_delq_ctx dq;
2563         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2564                                         &worker, "nvme%d", dev->instance);
2565
2566         if (IS_ERR(kworker_task)) {
2567                 dev_err(&dev->pci_dev->dev,
2568                         "Failed to create queue del task\n");
2569                 for (i = dev->queue_count - 1; i > 0; i--)
2570                         nvme_disable_queue(dev, i);
2571                 return;
2572         }
2573
2574         dq.waiter = NULL;
2575         atomic_set(&dq.refcount, 0);
2576         dq.worker = &worker;
2577         for (i = dev->queue_count - 1; i > 0; i--) {
2578                 struct nvme_queue *nvmeq = dev->queues[i];
2579
2580                 if (nvme_suspend_queue(nvmeq))
2581                         continue;
2582                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2583                 nvmeq->cmdinfo.worker = dq.worker;
2584                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2585                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2586         }
2587         nvme_wait_dq(&dq, dev);
2588         kthread_stop(kworker_task);
2589 }
2590
2591 /*
2592 * Remove the node from the device list and check
2593 * for whether or not we need to stop the nvme_thread.
2594 */
2595 static void nvme_dev_list_remove(struct nvme_dev *dev)
2596 {
2597         struct task_struct *tmp = NULL;
2598
2599         spin_lock(&dev_list_lock);
2600         list_del_init(&dev->node);
2601         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2602                 tmp = nvme_thread;
2603                 nvme_thread = NULL;
2604         }
2605         spin_unlock(&dev_list_lock);
2606
2607         if (tmp)
2608                 kthread_stop(tmp);
2609 }
2610
2611 static void nvme_freeze_queues(struct nvme_dev *dev)
2612 {
2613         struct nvme_ns *ns;
2614
2615         list_for_each_entry(ns, &dev->namespaces, list) {
2616                 blk_mq_freeze_queue_start(ns->queue);
2617
2618                 spin_lock(ns->queue->queue_lock);
2619                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2620                 spin_unlock(ns->queue->queue_lock);
2621
2622                 blk_mq_cancel_requeue_work(ns->queue);
2623                 blk_mq_stop_hw_queues(ns->queue);
2624         }
2625 }
2626
2627 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2628 {
2629         struct nvme_ns *ns;
2630
2631         list_for_each_entry(ns, &dev->namespaces, list) {
2632                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2633                 blk_mq_unfreeze_queue(ns->queue);
2634                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2635                 blk_mq_kick_requeue_list(ns->queue);
2636         }
2637 }
2638
2639 static void nvme_dev_shutdown(struct nvme_dev *dev)
2640 {
2641         int i;
2642         u32 csts = -1;
2643
2644         nvme_dev_list_remove(dev);
2645
2646         if (dev->bar) {
2647                 nvme_freeze_queues(dev);
2648                 csts = readl(&dev->bar->csts);
2649         }
2650         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2651                 for (i = dev->queue_count - 1; i >= 0; i--) {
2652                         struct nvme_queue *nvmeq = dev->queues[i];
2653                         nvme_suspend_queue(nvmeq);
2654                 }
2655         } else {
2656                 nvme_disable_io_queues(dev);
2657                 nvme_shutdown_ctrl(dev);
2658                 nvme_disable_queue(dev, 0);
2659         }
2660         nvme_dev_unmap(dev);
2661
2662         for (i = dev->queue_count - 1; i >= 0; i--)
2663                 nvme_clear_queue(dev->queues[i]);
2664 }
2665
2666 static void nvme_dev_remove(struct nvme_dev *dev)
2667 {
2668         struct nvme_ns *ns;
2669
2670         list_for_each_entry(ns, &dev->namespaces, list) {
2671                 if (ns->disk->flags & GENHD_FL_UP) {
2672                         if (blk_get_integrity(ns->disk))
2673                                 blk_integrity_unregister(ns->disk);
2674                         del_gendisk(ns->disk);
2675                 }
2676                 if (!blk_queue_dying(ns->queue)) {
2677                         blk_mq_abort_requeue_list(ns->queue);
2678                         blk_cleanup_queue(ns->queue);
2679                 }
2680         }
2681 }
2682
2683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2684 {
2685         struct device *dmadev = &dev->pci_dev->dev;
2686         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2687                                                 PAGE_SIZE, PAGE_SIZE, 0);
2688         if (!dev->prp_page_pool)
2689                 return -ENOMEM;
2690
2691         /* Optimisation for I/Os between 4k and 128k */
2692         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2693                                                 256, 256, 0);
2694         if (!dev->prp_small_pool) {
2695                 dma_pool_destroy(dev->prp_page_pool);
2696                 return -ENOMEM;
2697         }
2698         return 0;
2699 }
2700
2701 static void nvme_release_prp_pools(struct nvme_dev *dev)
2702 {
2703         dma_pool_destroy(dev->prp_page_pool);
2704         dma_pool_destroy(dev->prp_small_pool);
2705 }
2706
2707 static DEFINE_IDA(nvme_instance_ida);
2708
2709 static int nvme_set_instance(struct nvme_dev *dev)
2710 {
2711         int instance, error;
2712
2713         do {
2714                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2715                         return -ENODEV;
2716
2717                 spin_lock(&dev_list_lock);
2718                 error = ida_get_new(&nvme_instance_ida, &instance);
2719                 spin_unlock(&dev_list_lock);
2720         } while (error == -EAGAIN);
2721
2722         if (error)
2723                 return -ENODEV;
2724
2725         dev->instance = instance;
2726         return 0;
2727 }
2728
2729 static void nvme_release_instance(struct nvme_dev *dev)
2730 {
2731         spin_lock(&dev_list_lock);
2732         ida_remove(&nvme_instance_ida, dev->instance);
2733         spin_unlock(&dev_list_lock);
2734 }
2735
2736 static void nvme_free_namespaces(struct nvme_dev *dev)
2737 {
2738         struct nvme_ns *ns, *next;
2739
2740         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2741                 list_del(&ns->list);
2742
2743                 spin_lock(&dev_list_lock);
2744                 ns->disk->private_data = NULL;
2745                 spin_unlock(&dev_list_lock);
2746
2747                 put_disk(ns->disk);
2748                 kfree(ns);
2749         }
2750 }
2751
2752 static void nvme_free_dev(struct kref *kref)
2753 {
2754         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2755
2756         pci_dev_put(dev->pci_dev);
2757         put_device(dev->device);
2758         nvme_free_namespaces(dev);
2759         nvme_release_instance(dev);
2760         blk_mq_free_tag_set(&dev->tagset);
2761         blk_put_queue(dev->admin_q);
2762         kfree(dev->queues);
2763         kfree(dev->entry);
2764         kfree(dev);
2765 }
2766
2767 static int nvme_dev_open(struct inode *inode, struct file *f)
2768 {
2769         struct nvme_dev *dev;
2770         int instance = iminor(inode);
2771         int ret = -ENODEV;
2772
2773         spin_lock(&dev_list_lock);
2774         list_for_each_entry(dev, &dev_list, node) {
2775                 if (dev->instance == instance) {
2776                         if (!dev->admin_q) {
2777                                 ret = -EWOULDBLOCK;
2778                                 break;
2779                         }
2780                         if (!kref_get_unless_zero(&dev->kref))
2781                                 break;
2782                         f->private_data = dev;
2783                         ret = 0;
2784                         break;
2785                 }
2786         }
2787         spin_unlock(&dev_list_lock);
2788
2789         return ret;
2790 }
2791
2792 static int nvme_dev_release(struct inode *inode, struct file *f)
2793 {
2794         struct nvme_dev *dev = f->private_data;
2795         kref_put(&dev->kref, nvme_free_dev);
2796         return 0;
2797 }
2798
2799 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2800 {
2801         struct nvme_dev *dev = f->private_data;
2802         struct nvme_ns *ns;
2803
2804         switch (cmd) {
2805         case NVME_IOCTL_ADMIN_CMD:
2806                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2807         case NVME_IOCTL_IO_CMD:
2808                 if (list_empty(&dev->namespaces))
2809                         return -ENOTTY;
2810                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2811                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2812         default:
2813                 return -ENOTTY;
2814         }
2815 }
2816
2817 static const struct file_operations nvme_dev_fops = {
2818         .owner          = THIS_MODULE,
2819         .open           = nvme_dev_open,
2820         .release        = nvme_dev_release,
2821         .unlocked_ioctl = nvme_dev_ioctl,
2822         .compat_ioctl   = nvme_dev_ioctl,
2823 };
2824
2825 static void nvme_set_irq_hints(struct nvme_dev *dev)
2826 {
2827         struct nvme_queue *nvmeq;
2828         int i;
2829
2830         for (i = 0; i < dev->online_queues; i++) {
2831                 nvmeq = dev->queues[i];
2832
2833                 if (!nvmeq->hctx)
2834                         continue;
2835
2836                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2837                                                         nvmeq->hctx->cpumask);
2838         }
2839 }
2840
2841 static int nvme_dev_start(struct nvme_dev *dev)
2842 {
2843         int result;
2844         bool start_thread = false;
2845
2846         result = nvme_dev_map(dev);
2847         if (result)
2848                 return result;
2849
2850         result = nvme_configure_admin_queue(dev);
2851         if (result)
2852                 goto unmap;
2853
2854         spin_lock(&dev_list_lock);
2855         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2856                 start_thread = true;
2857                 nvme_thread = NULL;
2858         }
2859         list_add(&dev->node, &dev_list);
2860         spin_unlock(&dev_list_lock);
2861
2862         if (start_thread) {
2863                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2864                 wake_up_all(&nvme_kthread_wait);
2865         } else
2866                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2867
2868         if (IS_ERR_OR_NULL(nvme_thread)) {
2869                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2870                 goto disable;
2871         }
2872
2873         nvme_init_queue(dev->queues[0], 0);
2874         result = nvme_alloc_admin_tags(dev);
2875         if (result)
2876                 goto disable;
2877
2878         result = nvme_setup_io_queues(dev);
2879         if (result)
2880                 goto free_tags;
2881
2882         nvme_set_irq_hints(dev);
2883
2884         return result;
2885
2886  free_tags:
2887         nvme_dev_remove_admin(dev);
2888  disable:
2889         nvme_disable_queue(dev, 0);
2890         nvme_dev_list_remove(dev);
2891  unmap:
2892         nvme_dev_unmap(dev);
2893         return result;
2894 }
2895
2896 static int nvme_remove_dead_ctrl(void *arg)
2897 {
2898         struct nvme_dev *dev = (struct nvme_dev *)arg;
2899         struct pci_dev *pdev = dev->pci_dev;
2900
2901         if (pci_get_drvdata(pdev))
2902                 pci_stop_and_remove_bus_device_locked(pdev);
2903         kref_put(&dev->kref, nvme_free_dev);
2904         return 0;
2905 }
2906
2907 static void nvme_remove_disks(struct work_struct *ws)
2908 {
2909         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2910
2911         nvme_free_queues(dev, 1);
2912         nvme_dev_remove(dev);
2913 }
2914
2915 static int nvme_dev_resume(struct nvme_dev *dev)
2916 {
2917         int ret;
2918
2919         ret = nvme_dev_start(dev);
2920         if (ret)
2921                 return ret;
2922         if (dev->online_queues < 2) {
2923                 spin_lock(&dev_list_lock);
2924                 dev->reset_workfn = nvme_remove_disks;
2925                 queue_work(nvme_workq, &dev->reset_work);
2926                 spin_unlock(&dev_list_lock);
2927         } else {
2928                 nvme_unfreeze_queues(dev);
2929                 nvme_set_irq_hints(dev);
2930         }
2931         return 0;
2932 }
2933
2934 static void nvme_dev_reset(struct nvme_dev *dev)
2935 {
2936         nvme_dev_shutdown(dev);
2937         if (nvme_dev_resume(dev)) {
2938                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2939                 kref_get(&dev->kref);
2940                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2941                                                         dev->instance))) {
2942                         dev_err(&dev->pci_dev->dev,
2943                                 "Failed to start controller remove task\n");
2944                         kref_put(&dev->kref, nvme_free_dev);
2945                 }
2946         }
2947 }
2948
2949 static void nvme_reset_failed_dev(struct work_struct *ws)
2950 {
2951         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2952         nvme_dev_reset(dev);
2953 }
2954
2955 static void nvme_reset_workfn(struct work_struct *work)
2956 {
2957         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2958         dev->reset_workfn(work);
2959 }
2960
2961 static void nvme_async_probe(struct work_struct *work);
2962 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2963 {
2964         int node, result = -ENOMEM;
2965         struct nvme_dev *dev;
2966
2967         node = dev_to_node(&pdev->dev);
2968         if (node == NUMA_NO_NODE)
2969                 set_dev_node(&pdev->dev, 0);
2970
2971         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2972         if (!dev)
2973                 return -ENOMEM;
2974         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2975                                                         GFP_KERNEL, node);
2976         if (!dev->entry)
2977                 goto free;
2978         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2979                                                         GFP_KERNEL, node);
2980         if (!dev->queues)
2981                 goto free;
2982
2983         INIT_LIST_HEAD(&dev->namespaces);
2984         dev->reset_workfn = nvme_reset_failed_dev;
2985         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2986         dev->pci_dev = pci_dev_get(pdev);
2987         pci_set_drvdata(pdev, dev);
2988         result = nvme_set_instance(dev);
2989         if (result)
2990                 goto put_pci;
2991
2992         result = nvme_setup_prp_pools(dev);
2993         if (result)
2994                 goto release;
2995
2996         kref_init(&dev->kref);
2997         dev->device = device_create(nvme_class, &pdev->dev,
2998                                 MKDEV(nvme_char_major, dev->instance),
2999                                 dev, "nvme%d", dev->instance);
3000         if (IS_ERR(dev->device)) {
3001                 result = PTR_ERR(dev->device);
3002                 goto release_pools;
3003         }
3004         get_device(dev->device);
3005
3006         INIT_WORK(&dev->probe_work, nvme_async_probe);
3007         schedule_work(&dev->probe_work);
3008         return 0;
3009
3010  release_pools:
3011         nvme_release_prp_pools(dev);
3012  release:
3013         nvme_release_instance(dev);
3014  put_pci:
3015         pci_dev_put(dev->pci_dev);
3016  free:
3017         kfree(dev->queues);
3018         kfree(dev->entry);
3019         kfree(dev);
3020         return result;
3021 }
3022
3023 static void nvme_async_probe(struct work_struct *work)
3024 {
3025         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3026         int result;
3027
3028         result = nvme_dev_start(dev);
3029         if (result)
3030                 goto reset;
3031
3032         if (dev->online_queues > 1)
3033                 result = nvme_dev_add(dev);
3034         if (result)
3035                 goto reset;
3036
3037         nvme_set_irq_hints(dev);
3038         return;
3039  reset:
3040         if (!work_busy(&dev->reset_work)) {
3041                 dev->reset_workfn = nvme_reset_failed_dev;
3042                 queue_work(nvme_workq, &dev->reset_work);
3043         }
3044 }
3045
3046 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3047 {
3048         struct nvme_dev *dev = pci_get_drvdata(pdev);
3049
3050         if (prepare)
3051                 nvme_dev_shutdown(dev);
3052         else
3053                 nvme_dev_resume(dev);
3054 }
3055
3056 static void nvme_shutdown(struct pci_dev *pdev)
3057 {
3058         struct nvme_dev *dev = pci_get_drvdata(pdev);
3059         nvme_dev_shutdown(dev);
3060 }
3061
3062 static void nvme_remove(struct pci_dev *pdev)
3063 {
3064         struct nvme_dev *dev = pci_get_drvdata(pdev);
3065
3066         spin_lock(&dev_list_lock);
3067         list_del_init(&dev->node);
3068         spin_unlock(&dev_list_lock);
3069
3070         pci_set_drvdata(pdev, NULL);
3071         flush_work(&dev->probe_work);
3072         flush_work(&dev->reset_work);
3073         nvme_dev_shutdown(dev);
3074         nvme_dev_remove(dev);
3075         nvme_dev_remove_admin(dev);
3076         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3077         nvme_free_queues(dev, 0);
3078         nvme_release_prp_pools(dev);
3079         kref_put(&dev->kref, nvme_free_dev);
3080 }
3081
3082 /* These functions are yet to be implemented */
3083 #define nvme_error_detected NULL
3084 #define nvme_dump_registers NULL
3085 #define nvme_link_reset NULL
3086 #define nvme_slot_reset NULL
3087 #define nvme_error_resume NULL
3088
3089 #ifdef CONFIG_PM_SLEEP
3090 static int nvme_suspend(struct device *dev)
3091 {
3092         struct pci_dev *pdev = to_pci_dev(dev);
3093         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3094
3095         nvme_dev_shutdown(ndev);
3096         return 0;
3097 }
3098
3099 static int nvme_resume(struct device *dev)
3100 {
3101         struct pci_dev *pdev = to_pci_dev(dev);
3102         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3103
3104         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3105                 ndev->reset_workfn = nvme_reset_failed_dev;
3106                 queue_work(nvme_workq, &ndev->reset_work);
3107         }
3108         return 0;
3109 }
3110 #endif
3111
3112 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3113
3114 static const struct pci_error_handlers nvme_err_handler = {
3115         .error_detected = nvme_error_detected,
3116         .mmio_enabled   = nvme_dump_registers,
3117         .link_reset     = nvme_link_reset,
3118         .slot_reset     = nvme_slot_reset,
3119         .resume         = nvme_error_resume,
3120         .reset_notify   = nvme_reset_notify,
3121 };
3122
3123 /* Move to pci_ids.h later */
3124 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3125
3126 static const struct pci_device_id nvme_id_table[] = {
3127         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3128         { 0, }
3129 };
3130 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3131
3132 static struct pci_driver nvme_driver = {
3133         .name           = "nvme",
3134         .id_table       = nvme_id_table,
3135         .probe          = nvme_probe,
3136         .remove         = nvme_remove,
3137         .shutdown       = nvme_shutdown,
3138         .driver         = {
3139                 .pm     = &nvme_dev_pm_ops,
3140         },
3141         .err_handler    = &nvme_err_handler,
3142 };
3143
3144 static int __init nvme_init(void)
3145 {
3146         int result;
3147
3148         init_waitqueue_head(&nvme_kthread_wait);
3149
3150         nvme_workq = create_singlethread_workqueue("nvme");
3151         if (!nvme_workq)
3152                 return -ENOMEM;
3153
3154         result = register_blkdev(nvme_major, "nvme");
3155         if (result < 0)
3156                 goto kill_workq;
3157         else if (result > 0)
3158                 nvme_major = result;
3159
3160         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3161                                                         &nvme_dev_fops);
3162         if (result < 0)
3163                 goto unregister_blkdev;
3164         else if (result > 0)
3165                 nvme_char_major = result;
3166
3167         nvme_class = class_create(THIS_MODULE, "nvme");
3168         if (!nvme_class)
3169                 goto unregister_chrdev;
3170
3171         result = pci_register_driver(&nvme_driver);
3172         if (result)
3173                 goto destroy_class;
3174         return 0;
3175
3176  destroy_class:
3177         class_destroy(nvme_class);
3178  unregister_chrdev:
3179         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3180  unregister_blkdev:
3181         unregister_blkdev(nvme_major, "nvme");
3182  kill_workq:
3183         destroy_workqueue(nvme_workq);
3184         return result;
3185 }
3186
3187 static void __exit nvme_exit(void)
3188 {
3189         pci_unregister_driver(&nvme_driver);
3190         unregister_blkdev(nvme_major, "nvme");
3191         destroy_workqueue(nvme_workq);
3192         class_destroy(nvme_class);
3193         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3194         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3195         _nvme_check_size();
3196 }
3197
3198 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3199 MODULE_LICENSE("GPL");
3200 MODULE_VERSION("1.0");
3201 module_init(nvme_init);
3202 module_exit(nvme_exit);