]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-scsi.c
nvme: simplify and cleanup the READ/WRITE SCSI CDB parsing code
[karo-tx-linux.git] / drivers / block / nvme-scsi.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 /*
16  * Refer to the SCSI-NVMe Translation spec for details on how
17  * each command is translated.
18  */
19
20 #include <linux/nvme.h>
21 #include <linux/bio.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/compat.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/genhd.h>
29 #include <linux/idr.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kthread.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/poison.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <asm/unaligned.h>
45 #include <scsi/sg.h>
46 #include <scsi/scsi.h>
47
48
49 static int sg_version_num = 30534;      /* 2 digits for each component */
50
51 /* VPD Page Codes */
52 #define VPD_SUPPORTED_PAGES                             0x00
53 #define VPD_SERIAL_NUMBER                               0x80
54 #define VPD_DEVICE_IDENTIFIERS                          0x83
55 #define VPD_EXTENDED_INQUIRY                            0x86
56 #define VPD_BLOCK_LIMITS                                0xB0
57 #define VPD_BLOCK_DEV_CHARACTERISTICS                   0xB1
58
59 /* format unit paramter list offsets */
60 #define FORMAT_UNIT_SHORT_PARM_LIST_LEN                 4
61 #define FORMAT_UNIT_LONG_PARM_LIST_LEN                  8
62 #define FORMAT_UNIT_PROT_INT_OFFSET                     3
63 #define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET             0
64 #define FORMAT_UNIT_PROT_FIELD_USAGE_MASK               0x07
65
66 /* Misc. defines */
67 #define FIXED_SENSE_DATA                                0x70
68 #define DESC_FORMAT_SENSE_DATA                          0x72
69 #define FIXED_SENSE_DATA_ADD_LENGTH                     10
70 #define LUN_ENTRY_SIZE                                  8
71 #define LUN_DATA_HEADER_SIZE                            8
72 #define ALL_LUNS_RETURNED                               0x02
73 #define ALL_WELL_KNOWN_LUNS_RETURNED                    0x01
74 #define RESTRICTED_LUNS_RETURNED                        0x00
75 #define NVME_POWER_STATE_START_VALID                    0x00
76 #define NVME_POWER_STATE_ACTIVE                         0x01
77 #define NVME_POWER_STATE_IDLE                           0x02
78 #define NVME_POWER_STATE_STANDBY                        0x03
79 #define NVME_POWER_STATE_LU_CONTROL                     0x07
80 #define POWER_STATE_0                                   0
81 #define POWER_STATE_1                                   1
82 #define POWER_STATE_2                                   2
83 #define POWER_STATE_3                                   3
84 #define DOWNLOAD_SAVE_ACTIVATE                          0x05
85 #define DOWNLOAD_SAVE_DEFER_ACTIVATE                    0x0E
86 #define ACTIVATE_DEFERRED_MICROCODE                     0x0F
87 #define FORMAT_UNIT_IMMED_MASK                          0x2
88 #define FORMAT_UNIT_IMMED_OFFSET                        1
89 #define KELVIN_TEMP_FACTOR                              273
90 #define FIXED_FMT_SENSE_DATA_SIZE                       18
91 #define DESC_FMT_SENSE_DATA_SIZE                        8
92
93 /* SCSI/NVMe defines and bit masks */
94 #define INQ_STANDARD_INQUIRY_PAGE                       0x00
95 #define INQ_SUPPORTED_VPD_PAGES_PAGE                    0x00
96 #define INQ_UNIT_SERIAL_NUMBER_PAGE                     0x80
97 #define INQ_DEVICE_IDENTIFICATION_PAGE                  0x83
98 #define INQ_EXTENDED_INQUIRY_DATA_PAGE                  0x86
99 #define INQ_BDEV_LIMITS_PAGE                            0xB0
100 #define INQ_BDEV_CHARACTERISTICS_PAGE                   0xB1
101 #define INQ_SERIAL_NUMBER_LENGTH                        0x14
102 #define INQ_NUM_SUPPORTED_VPD_PAGES                     6
103 #define VERSION_SPC_4                                   0x06
104 #define ACA_UNSUPPORTED                                 0
105 #define STANDARD_INQUIRY_LENGTH                         36
106 #define ADDITIONAL_STD_INQ_LENGTH                       31
107 #define EXTENDED_INQUIRY_DATA_PAGE_LENGTH               0x3C
108 #define RESERVED_FIELD                                  0
109
110 /* Mode Sense/Select defines */
111 #define MODE_PAGE_INFO_EXCEP                            0x1C
112 #define MODE_PAGE_CACHING                               0x08
113 #define MODE_PAGE_CONTROL                               0x0A
114 #define MODE_PAGE_POWER_CONDITION                       0x1A
115 #define MODE_PAGE_RETURN_ALL                            0x3F
116 #define MODE_PAGE_BLK_DES_LEN                           0x08
117 #define MODE_PAGE_LLBAA_BLK_DES_LEN                     0x10
118 #define MODE_PAGE_CACHING_LEN                           0x14
119 #define MODE_PAGE_CONTROL_LEN                           0x0C
120 #define MODE_PAGE_POW_CND_LEN                           0x28
121 #define MODE_PAGE_INF_EXC_LEN                           0x0C
122 #define MODE_PAGE_ALL_LEN                               0x54
123 #define MODE_SENSE6_MPH_SIZE                            4
124 #define MODE_SENSE_PAGE_CONTROL_MASK                    0xC0
125 #define MODE_SENSE_PAGE_CODE_OFFSET                     2
126 #define MODE_SENSE_PAGE_CODE_MASK                       0x3F
127 #define MODE_SENSE_LLBAA_MASK                           0x10
128 #define MODE_SENSE_LLBAA_SHIFT                          4
129 #define MODE_SENSE_DBD_MASK                             8
130 #define MODE_SENSE_DBD_SHIFT                            3
131 #define MODE_SENSE10_MPH_SIZE                           8
132 #define MODE_SELECT_CDB_PAGE_FORMAT_MASK                0x10
133 #define MODE_SELECT_CDB_SAVE_PAGES_MASK                 0x1
134 #define MODE_SELECT_6_BD_OFFSET                         3
135 #define MODE_SELECT_10_BD_OFFSET                        6
136 #define MODE_SELECT_10_LLBAA_OFFSET                     4
137 #define MODE_SELECT_10_LLBAA_MASK                       1
138 #define MODE_SELECT_6_MPH_SIZE                          4
139 #define MODE_SELECT_10_MPH_SIZE                         8
140 #define CACHING_MODE_PAGE_WCE_MASK                      0x04
141 #define MODE_SENSE_BLK_DESC_ENABLED                     0
142 #define MODE_SENSE_BLK_DESC_COUNT                       1
143 #define MODE_SELECT_PAGE_CODE_MASK                      0x3F
144 #define SHORT_DESC_BLOCK                                8
145 #define LONG_DESC_BLOCK                                 16
146 #define MODE_PAGE_POW_CND_LEN_FIELD                     0x26
147 #define MODE_PAGE_INF_EXC_LEN_FIELD                     0x0A
148 #define MODE_PAGE_CACHING_LEN_FIELD                     0x12
149 #define MODE_PAGE_CONTROL_LEN_FIELD                     0x0A
150 #define MODE_SENSE_PC_CURRENT_VALUES                    0
151
152 /* Log Sense defines */
153 #define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE               0x00
154 #define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH             0x07
155 #define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE          0x2F
156 #define LOG_PAGE_TEMPERATURE_PAGE                       0x0D
157 #define LOG_SENSE_CDB_SP_NOT_ENABLED                    0
158 #define LOG_SENSE_CDB_PC_MASK                           0xC0
159 #define LOG_SENSE_CDB_PC_SHIFT                          6
160 #define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES              1
161 #define LOG_SENSE_CDB_PAGE_CODE_MASK                    0x3F
162 #define REMAINING_INFO_EXCP_PAGE_LENGTH                 0x8
163 #define LOG_INFO_EXCP_PAGE_LENGTH                       0xC
164 #define REMAINING_TEMP_PAGE_LENGTH                      0xC
165 #define LOG_TEMP_PAGE_LENGTH                            0x10
166 #define LOG_TEMP_UNKNOWN                                0xFF
167 #define SUPPORTED_LOG_PAGES_PAGE_LENGTH                 0x3
168
169 /* Read Capacity defines */
170 #define READ_CAP_10_RESP_SIZE                           8
171 #define READ_CAP_16_RESP_SIZE                           32
172
173 /* NVMe Namespace and Command Defines */
174 #define BYTES_TO_DWORDS                                 4
175 #define NVME_MAX_FIRMWARE_SLOT                          7
176
177 /* Report LUNs defines */
178 #define REPORT_LUNS_FIRST_LUN_OFFSET                    8
179
180 /* SCSI ADDITIONAL SENSE Codes */
181
182 #define SCSI_ASC_NO_SENSE                               0x00
183 #define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT             0x03
184 #define SCSI_ASC_LUN_NOT_READY                          0x04
185 #define SCSI_ASC_WARNING                                0x0B
186 #define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED           0x10
187 #define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED          0x10
188 #define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED          0x10
189 #define SCSI_ASC_UNRECOVERED_READ_ERROR                 0x11
190 #define SCSI_ASC_MISCOMPARE_DURING_VERIFY               0x1D
191 #define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID           0x20
192 #define SCSI_ASC_ILLEGAL_COMMAND                        0x20
193 #define SCSI_ASC_ILLEGAL_BLOCK                          0x21
194 #define SCSI_ASC_INVALID_CDB                            0x24
195 #define SCSI_ASC_INVALID_LUN                            0x25
196 #define SCSI_ASC_INVALID_PARAMETER                      0x26
197 #define SCSI_ASC_FORMAT_COMMAND_FAILED                  0x31
198 #define SCSI_ASC_INTERNAL_TARGET_FAILURE                0x44
199
200 /* SCSI ADDITIONAL SENSE Code Qualifiers */
201
202 #define SCSI_ASCQ_CAUSE_NOT_REPORTABLE                  0x00
203 #define SCSI_ASCQ_FORMAT_COMMAND_FAILED                 0x01
204 #define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED          0x01
205 #define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED         0x02
206 #define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED         0x03
207 #define SCSI_ASCQ_FORMAT_IN_PROGRESS                    0x04
208 #define SCSI_ASCQ_POWER_LOSS_EXPECTED                   0x08
209 #define SCSI_ASCQ_INVALID_LUN_ID                        0x09
210
211 /* copied from drivers/usb/gadget/function/storage_common.h */
212 static inline u32 get_unaligned_be24(u8 *buf)
213 {
214         return 0xffffff & (u32) get_unaligned_be32(buf - 1);
215 }
216
217 /* Struct to gather data that needs to be extracted from a SCSI CDB.
218    Not conforming to any particular CDB variant, but compatible with all. */
219
220 struct nvme_trans_io_cdb {
221         u8 fua;
222         u8 prot_info;
223         u64 lba;
224         u32 xfer_len;
225 };
226
227
228 /* Internal Helper Functions */
229
230
231 /* Copy data to userspace memory */
232
233 static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
234                                                                 unsigned long n)
235 {
236         int i;
237         void *index = from;
238         size_t remaining = n;
239         size_t xfer_len;
240
241         if (hdr->iovec_count > 0) {
242                 struct sg_iovec sgl;
243
244                 for (i = 0; i < hdr->iovec_count; i++) {
245                         if (copy_from_user(&sgl, hdr->dxferp +
246                                                 i * sizeof(struct sg_iovec),
247                                                 sizeof(struct sg_iovec)))
248                                 return -EFAULT;
249                         xfer_len = min(remaining, sgl.iov_len);
250                         if (copy_to_user(sgl.iov_base, index, xfer_len))
251                                 return -EFAULT;
252
253                         index += xfer_len;
254                         remaining -= xfer_len;
255                         if (remaining == 0)
256                                 break;
257                 }
258                 return 0;
259         }
260
261         if (copy_to_user(hdr->dxferp, from, n))
262                 return -EFAULT;
263         return 0;
264 }
265
266 /* Copy data from userspace memory */
267
268 static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
269                                                                 unsigned long n)
270 {
271         int i;
272         void *index = to;
273         size_t remaining = n;
274         size_t xfer_len;
275
276         if (hdr->iovec_count > 0) {
277                 struct sg_iovec sgl;
278
279                 for (i = 0; i < hdr->iovec_count; i++) {
280                         if (copy_from_user(&sgl, hdr->dxferp +
281                                                 i * sizeof(struct sg_iovec),
282                                                 sizeof(struct sg_iovec)))
283                                 return -EFAULT;
284                         xfer_len = min(remaining, sgl.iov_len);
285                         if (copy_from_user(index, sgl.iov_base, xfer_len))
286                                 return -EFAULT;
287                         index += xfer_len;
288                         remaining -= xfer_len;
289                         if (remaining == 0)
290                                 break;
291                 }
292                 return 0;
293         }
294
295         if (copy_from_user(to, hdr->dxferp, n))
296                 return -EFAULT;
297         return 0;
298 }
299
300 /* Status/Sense Buffer Writeback */
301
302 static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
303                                  u8 asc, u8 ascq)
304 {
305         u8 xfer_len;
306         u8 resp[DESC_FMT_SENSE_DATA_SIZE];
307
308         if (scsi_status_is_good(status)) {
309                 hdr->status = SAM_STAT_GOOD;
310                 hdr->masked_status = GOOD;
311                 hdr->host_status = DID_OK;
312                 hdr->driver_status = DRIVER_OK;
313                 hdr->sb_len_wr = 0;
314         } else {
315                 hdr->status = status;
316                 hdr->masked_status = status >> 1;
317                 hdr->host_status = DID_OK;
318                 hdr->driver_status = DRIVER_OK;
319
320                 memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE);
321                 resp[0] = DESC_FORMAT_SENSE_DATA;
322                 resp[1] = sense_key;
323                 resp[2] = asc;
324                 resp[3] = ascq;
325
326                 xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
327                 hdr->sb_len_wr = xfer_len;
328                 if (copy_to_user(hdr->sbp, resp, xfer_len) > 0)
329                         return -EFAULT;
330         }
331
332         return 0;
333 }
334
335 /*
336  * Take a status code from a lowlevel routine, and if it was a positive NVMe
337  * error code update the sense data based on it.  In either case the passed
338  * in value is returned again, unless an -EFAULT from copy_to_user overrides
339  * it.
340  */
341 static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
342 {
343         u8 status, sense_key, asc, ascq;
344         int res;
345
346         /* For non-nvme (Linux) errors, simply return the error code */
347         if (nvme_sc < 0)
348                 return nvme_sc;
349
350         /* Mask DNR, More, and reserved fields */
351         switch (nvme_sc & 0x7FF) {
352         /* Generic Command Status */
353         case NVME_SC_SUCCESS:
354                 status = SAM_STAT_GOOD;
355                 sense_key = NO_SENSE;
356                 asc = SCSI_ASC_NO_SENSE;
357                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
358                 break;
359         case NVME_SC_INVALID_OPCODE:
360                 status = SAM_STAT_CHECK_CONDITION;
361                 sense_key = ILLEGAL_REQUEST;
362                 asc = SCSI_ASC_ILLEGAL_COMMAND;
363                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
364                 break;
365         case NVME_SC_INVALID_FIELD:
366                 status = SAM_STAT_CHECK_CONDITION;
367                 sense_key = ILLEGAL_REQUEST;
368                 asc = SCSI_ASC_INVALID_CDB;
369                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
370                 break;
371         case NVME_SC_DATA_XFER_ERROR:
372                 status = SAM_STAT_CHECK_CONDITION;
373                 sense_key = MEDIUM_ERROR;
374                 asc = SCSI_ASC_NO_SENSE;
375                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
376                 break;
377         case NVME_SC_POWER_LOSS:
378                 status = SAM_STAT_TASK_ABORTED;
379                 sense_key = ABORTED_COMMAND;
380                 asc = SCSI_ASC_WARNING;
381                 ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
382                 break;
383         case NVME_SC_INTERNAL:
384                 status = SAM_STAT_CHECK_CONDITION;
385                 sense_key = HARDWARE_ERROR;
386                 asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
387                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
388                 break;
389         case NVME_SC_ABORT_REQ:
390                 status = SAM_STAT_TASK_ABORTED;
391                 sense_key = ABORTED_COMMAND;
392                 asc = SCSI_ASC_NO_SENSE;
393                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
394                 break;
395         case NVME_SC_ABORT_QUEUE:
396                 status = SAM_STAT_TASK_ABORTED;
397                 sense_key = ABORTED_COMMAND;
398                 asc = SCSI_ASC_NO_SENSE;
399                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
400                 break;
401         case NVME_SC_FUSED_FAIL:
402                 status = SAM_STAT_TASK_ABORTED;
403                 sense_key = ABORTED_COMMAND;
404                 asc = SCSI_ASC_NO_SENSE;
405                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
406                 break;
407         case NVME_SC_FUSED_MISSING:
408                 status = SAM_STAT_TASK_ABORTED;
409                 sense_key = ABORTED_COMMAND;
410                 asc = SCSI_ASC_NO_SENSE;
411                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
412                 break;
413         case NVME_SC_INVALID_NS:
414                 status = SAM_STAT_CHECK_CONDITION;
415                 sense_key = ILLEGAL_REQUEST;
416                 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
417                 ascq = SCSI_ASCQ_INVALID_LUN_ID;
418                 break;
419         case NVME_SC_LBA_RANGE:
420                 status = SAM_STAT_CHECK_CONDITION;
421                 sense_key = ILLEGAL_REQUEST;
422                 asc = SCSI_ASC_ILLEGAL_BLOCK;
423                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
424                 break;
425         case NVME_SC_CAP_EXCEEDED:
426                 status = SAM_STAT_CHECK_CONDITION;
427                 sense_key = MEDIUM_ERROR;
428                 asc = SCSI_ASC_NO_SENSE;
429                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
430                 break;
431         case NVME_SC_NS_NOT_READY:
432                 status = SAM_STAT_CHECK_CONDITION;
433                 sense_key = NOT_READY;
434                 asc = SCSI_ASC_LUN_NOT_READY;
435                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
436                 break;
437
438         /* Command Specific Status */
439         case NVME_SC_INVALID_FORMAT:
440                 status = SAM_STAT_CHECK_CONDITION;
441                 sense_key = ILLEGAL_REQUEST;
442                 asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
443                 ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
444                 break;
445         case NVME_SC_BAD_ATTRIBUTES:
446                 status = SAM_STAT_CHECK_CONDITION;
447                 sense_key = ILLEGAL_REQUEST;
448                 asc = SCSI_ASC_INVALID_CDB;
449                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
450                 break;
451
452         /* Media Errors */
453         case NVME_SC_WRITE_FAULT:
454                 status = SAM_STAT_CHECK_CONDITION;
455                 sense_key = MEDIUM_ERROR;
456                 asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
457                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
458                 break;
459         case NVME_SC_READ_ERROR:
460                 status = SAM_STAT_CHECK_CONDITION;
461                 sense_key = MEDIUM_ERROR;
462                 asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
463                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
464                 break;
465         case NVME_SC_GUARD_CHECK:
466                 status = SAM_STAT_CHECK_CONDITION;
467                 sense_key = MEDIUM_ERROR;
468                 asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
469                 ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
470                 break;
471         case NVME_SC_APPTAG_CHECK:
472                 status = SAM_STAT_CHECK_CONDITION;
473                 sense_key = MEDIUM_ERROR;
474                 asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
475                 ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
476                 break;
477         case NVME_SC_REFTAG_CHECK:
478                 status = SAM_STAT_CHECK_CONDITION;
479                 sense_key = MEDIUM_ERROR;
480                 asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
481                 ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
482                 break;
483         case NVME_SC_COMPARE_FAILED:
484                 status = SAM_STAT_CHECK_CONDITION;
485                 sense_key = MISCOMPARE;
486                 asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
487                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
488                 break;
489         case NVME_SC_ACCESS_DENIED:
490                 status = SAM_STAT_CHECK_CONDITION;
491                 sense_key = ILLEGAL_REQUEST;
492                 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
493                 ascq = SCSI_ASCQ_INVALID_LUN_ID;
494                 break;
495
496         /* Unspecified/Default */
497         case NVME_SC_CMDID_CONFLICT:
498         case NVME_SC_CMD_SEQ_ERROR:
499         case NVME_SC_CQ_INVALID:
500         case NVME_SC_QID_INVALID:
501         case NVME_SC_QUEUE_SIZE:
502         case NVME_SC_ABORT_LIMIT:
503         case NVME_SC_ABORT_MISSING:
504         case NVME_SC_ASYNC_LIMIT:
505         case NVME_SC_FIRMWARE_SLOT:
506         case NVME_SC_FIRMWARE_IMAGE:
507         case NVME_SC_INVALID_VECTOR:
508         case NVME_SC_INVALID_LOG_PAGE:
509         default:
510                 status = SAM_STAT_CHECK_CONDITION;
511                 sense_key = ILLEGAL_REQUEST;
512                 asc = SCSI_ASC_NO_SENSE;
513                 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
514                 break;
515         }
516
517         res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
518         return res ? res : nvme_sc;
519 }
520
521 /* INQUIRY Helper Functions */
522
523 static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
524                                         struct sg_io_hdr *hdr, u8 *inq_response,
525                                         int alloc_len)
526 {
527         struct nvme_dev *dev = ns->dev;
528         dma_addr_t dma_addr;
529         void *mem;
530         struct nvme_id_ns *id_ns;
531         int res;
532         int nvme_sc;
533         int xfer_len;
534         u8 resp_data_format = 0x02;
535         u8 protect;
536         u8 cmdque = 0x01 << 1;
537         u8 fw_offset = sizeof(dev->firmware_rev);
538
539         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
540                                 &dma_addr, GFP_KERNEL);
541         if (mem == NULL) {
542                 res = -ENOMEM;
543                 goto out_dma;
544         }
545
546         /* nvme ns identify - use DPS value for PROTECT field */
547         nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
548         res = nvme_trans_status_code(hdr, nvme_sc);
549         if (res)
550                 goto out_free;
551
552         id_ns = mem;
553         (id_ns->dps) ? (protect = 0x01) : (protect = 0);
554
555         memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
556         inq_response[2] = VERSION_SPC_4;
557         inq_response[3] = resp_data_format;     /*normaca=0 | hisup=0 */
558         inq_response[4] = ADDITIONAL_STD_INQ_LENGTH;
559         inq_response[5] = protect;      /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
560         inq_response[7] = cmdque;       /* wbus16=0 | sync=0 | vs=0 */
561         strncpy(&inq_response[8], "NVMe    ", 8);
562         strncpy(&inq_response[16], dev->model, 16);
563
564         while (dev->firmware_rev[fw_offset - 1] == ' ' && fw_offset > 4)
565                 fw_offset--;
566         fw_offset -= 4;
567         strncpy(&inq_response[32], dev->firmware_rev + fw_offset, 4);
568
569         xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
570         res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
571
572  out_free:
573         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
574  out_dma:
575         return res;
576 }
577
578 static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
579                                         struct sg_io_hdr *hdr, u8 *inq_response,
580                                         int alloc_len)
581 {
582         int xfer_len;
583
584         memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
585         inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE;   /* Page Code */
586         inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES;    /* Page Length */
587         inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE;
588         inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE;
589         inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE;
590         inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE;
591         inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE;
592         inq_response[9] = INQ_BDEV_LIMITS_PAGE;
593
594         xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
595         return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
596 }
597
598 static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
599                                         struct sg_io_hdr *hdr, u8 *inq_response,
600                                         int alloc_len)
601 {
602         struct nvme_dev *dev = ns->dev;
603         int xfer_len;
604
605         memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
606         inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
607         inq_response[3] = INQ_SERIAL_NUMBER_LENGTH;    /* Page Length */
608         strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
609
610         xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
611         return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
612 }
613
614 static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
615                                         u8 *inq_response, int alloc_len)
616 {
617         struct nvme_dev *dev = ns->dev;
618         dma_addr_t dma_addr;
619         void *mem;
620         int res;
621         int nvme_sc;
622         int xfer_len;
623         __be32 tmp_id = cpu_to_be32(ns->ns_id);
624
625         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
626                                         &dma_addr, GFP_KERNEL);
627         if (mem == NULL) {
628                 res = -ENOMEM;
629                 goto out_dma;
630         }
631
632         memset(inq_response, 0, alloc_len);
633         inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE;    /* Page Code */
634         if (readl(&dev->bar->vs) >= NVME_VS(1, 1)) {
635                 struct nvme_id_ns *id_ns = mem;
636                 void *eui = id_ns->eui64;
637                 int len = sizeof(id_ns->eui64);
638
639                 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
640                 res = nvme_trans_status_code(hdr, nvme_sc);
641                 if (res)
642                         goto out_free;
643
644                 if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) {
645                         if (bitmap_empty(eui, len * 8)) {
646                                 eui = id_ns->nguid;
647                                 len = sizeof(id_ns->nguid);
648                         }
649                 }
650                 if (bitmap_empty(eui, len * 8))
651                         goto scsi_string;
652
653                 inq_response[3] = 4 + len; /* Page Length */
654                 /* Designation Descriptor start */
655                 inq_response[4] = 0x01;    /* Proto ID=0h | Code set=1h */
656                 inq_response[5] = 0x02;    /* PIV=0b | Asso=00b | Designator Type=2h */
657                 inq_response[6] = 0x00;    /* Rsvd */
658                 inq_response[7] = len;     /* Designator Length */
659                 memcpy(&inq_response[8], eui, len);
660         } else {
661  scsi_string:
662                 if (alloc_len < 72) {
663                         res = nvme_trans_completion(hdr,
664                                         SAM_STAT_CHECK_CONDITION,
665                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
666                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
667                         goto out_free;
668                 }
669                 inq_response[3] = 0x48;    /* Page Length */
670                 /* Designation Descriptor start */
671                 inq_response[4] = 0x03;    /* Proto ID=0h | Code set=3h */
672                 inq_response[5] = 0x08;    /* PIV=0b | Asso=00b | Designator Type=8h */
673                 inq_response[6] = 0x00;    /* Rsvd */
674                 inq_response[7] = 0x44;    /* Designator Length */
675
676                 sprintf(&inq_response[8], "%04x", to_pci_dev(dev->dev)->vendor);
677                 memcpy(&inq_response[12], dev->model, sizeof(dev->model));
678                 sprintf(&inq_response[52], "%04x", tmp_id);
679                 memcpy(&inq_response[56], dev->serial, sizeof(dev->serial));
680         }
681         xfer_len = alloc_len;
682         res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
683
684  out_free:
685         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
686  out_dma:
687         return res;
688 }
689
690 static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
691                                         int alloc_len)
692 {
693         u8 *inq_response;
694         int res;
695         int nvme_sc;
696         struct nvme_dev *dev = ns->dev;
697         dma_addr_t dma_addr;
698         void *mem;
699         struct nvme_id_ctrl *id_ctrl;
700         struct nvme_id_ns *id_ns;
701         int xfer_len;
702         u8 microcode = 0x80;
703         u8 spt;
704         u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7};
705         u8 grd_chk, app_chk, ref_chk, protect;
706         u8 uask_sup = 0x20;
707         u8 v_sup;
708         u8 luiclr = 0x01;
709
710         inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
711         if (inq_response == NULL) {
712                 res = -ENOMEM;
713                 goto out_mem;
714         }
715
716         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
717                                                         &dma_addr, GFP_KERNEL);
718         if (mem == NULL) {
719                 res = -ENOMEM;
720                 goto out_dma;
721         }
722
723         /* nvme ns identify */
724         nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
725         res = nvme_trans_status_code(hdr, nvme_sc);
726         if (res)
727                 goto out_free;
728
729         id_ns = mem;
730         spt = spt_lut[(id_ns->dpc) & 0x07] << 3;
731         (id_ns->dps) ? (protect = 0x01) : (protect = 0);
732         grd_chk = protect << 2;
733         app_chk = protect << 1;
734         ref_chk = protect;
735
736         /* nvme controller identify */
737         nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
738         res = nvme_trans_status_code(hdr, nvme_sc);
739         if (res)
740                 goto out_free;
741
742         id_ctrl = mem;
743         v_sup = id_ctrl->vwc;
744
745         memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
746         inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE;    /* Page Code */
747         inq_response[2] = 0x00;    /* Page Length MSB */
748         inq_response[3] = 0x3C;    /* Page Length LSB */
749         inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk;
750         inq_response[5] = uask_sup;
751         inq_response[6] = v_sup;
752         inq_response[7] = luiclr;
753         inq_response[8] = 0;
754         inq_response[9] = 0;
755
756         xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
757         res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
758
759  out_free:
760         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
761  out_dma:
762         kfree(inq_response);
763  out_mem:
764         return res;
765 }
766
767 static int nvme_trans_bdev_limits_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
768                                         u8 *inq_response, int alloc_len)
769 {
770         __be32 max_sectors = cpu_to_be32(queue_max_hw_sectors(ns->queue));
771         __be32 max_discard = cpu_to_be32(ns->queue->limits.max_discard_sectors);
772         __be32 discard_desc_count = cpu_to_be32(0x100);
773
774         memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
775         inq_response[1] = VPD_BLOCK_LIMITS;
776         inq_response[3] = 0x3c; /* Page Length */
777         memcpy(&inq_response[8], &max_sectors, sizeof(u32));
778         memcpy(&inq_response[20], &max_discard, sizeof(u32));
779
780         if (max_discard)
781                 memcpy(&inq_response[24], &discard_desc_count, sizeof(u32));
782
783         return nvme_trans_copy_to_user(hdr, inq_response, 0x3c);
784 }
785
786 static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
787                                         int alloc_len)
788 {
789         u8 *inq_response;
790         int res;
791         int xfer_len;
792
793         inq_response = kzalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
794         if (inq_response == NULL) {
795                 res = -ENOMEM;
796                 goto out_mem;
797         }
798
799         inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE;    /* Page Code */
800         inq_response[2] = 0x00;    /* Page Length MSB */
801         inq_response[3] = 0x3C;    /* Page Length LSB */
802         inq_response[4] = 0x00;    /* Medium Rotation Rate MSB */
803         inq_response[5] = 0x01;    /* Medium Rotation Rate LSB */
804         inq_response[6] = 0x00;    /* Form Factor */
805
806         xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
807         res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
808
809         kfree(inq_response);
810  out_mem:
811         return res;
812 }
813
814 /* LOG SENSE Helper Functions */
815
816 static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
817                                         int alloc_len)
818 {
819         int res;
820         int xfer_len;
821         u8 *log_response;
822
823         log_response = kzalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL);
824         if (log_response == NULL) {
825                 res = -ENOMEM;
826                 goto out_mem;
827         }
828
829         log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
830         /* Subpage=0x00, Page Length MSB=0 */
831         log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH;
832         log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
833         log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
834         log_response[6] = LOG_PAGE_TEMPERATURE_PAGE;
835
836         xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
837         res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
838
839         kfree(log_response);
840  out_mem:
841         return res;
842 }
843
844 static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
845                                         struct sg_io_hdr *hdr, int alloc_len)
846 {
847         int res;
848         int xfer_len;
849         u8 *log_response;
850         struct nvme_command c;
851         struct nvme_dev *dev = ns->dev;
852         struct nvme_smart_log *smart_log;
853         dma_addr_t dma_addr;
854         void *mem;
855         u8 temp_c;
856         u16 temp_k;
857
858         log_response = kzalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
859         if (log_response == NULL) {
860                 res = -ENOMEM;
861                 goto out_mem;
862         }
863
864         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_smart_log),
865                                         &dma_addr, GFP_KERNEL);
866         if (mem == NULL) {
867                 res = -ENOMEM;
868                 goto out_dma;
869         }
870
871         /* Get SMART Log Page */
872         memset(&c, 0, sizeof(c));
873         c.common.opcode = nvme_admin_get_log_page;
874         c.common.nsid = cpu_to_le32(0xFFFFFFFF);
875         c.common.prp1 = cpu_to_le64(dma_addr);
876         c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) /
877                         BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART);
878         res = nvme_submit_sync_cmd(dev->admin_q, &c);
879         if (res != NVME_SC_SUCCESS) {
880                 temp_c = LOG_TEMP_UNKNOWN;
881         } else {
882                 smart_log = mem;
883                 temp_k = (smart_log->temperature[1] << 8) +
884                                 (smart_log->temperature[0]);
885                 temp_c = temp_k - KELVIN_TEMP_FACTOR;
886         }
887
888         log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
889         /* Subpage=0x00, Page Length MSB=0 */
890         log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH;
891         /* Informational Exceptions Log Parameter 1 Start */
892         /* Parameter Code=0x0000 bytes 4,5 */
893         log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */
894         log_response[7] = 0x04; /* PARAMETER LENGTH */
895         /* Add sense Code and qualifier = 0x00 each */
896         /* Use Temperature from NVMe Get Log Page, convert to C from K */
897         log_response[10] = temp_c;
898
899         xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
900         res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
901
902         dma_free_coherent(dev->dev, sizeof(struct nvme_smart_log),
903                           mem, dma_addr);
904  out_dma:
905         kfree(log_response);
906  out_mem:
907         return res;
908 }
909
910 static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
911                                         int alloc_len)
912 {
913         int res;
914         int xfer_len;
915         u8 *log_response;
916         struct nvme_command c;
917         struct nvme_dev *dev = ns->dev;
918         struct nvme_smart_log *smart_log;
919         dma_addr_t dma_addr;
920         void *mem;
921         u32 feature_resp;
922         u8 temp_c_cur, temp_c_thresh;
923         u16 temp_k;
924
925         log_response = kzalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
926         if (log_response == NULL) {
927                 res = -ENOMEM;
928                 goto out_mem;
929         }
930
931         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_smart_log),
932                                         &dma_addr, GFP_KERNEL);
933         if (mem == NULL) {
934                 res = -ENOMEM;
935                 goto out_dma;
936         }
937
938         /* Get SMART Log Page */
939         memset(&c, 0, sizeof(c));
940         c.common.opcode = nvme_admin_get_log_page;
941         c.common.nsid = cpu_to_le32(0xFFFFFFFF);
942         c.common.prp1 = cpu_to_le64(dma_addr);
943         c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) /
944                         BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART);
945         res = nvme_submit_sync_cmd(dev->admin_q, &c);
946         if (res != NVME_SC_SUCCESS) {
947                 temp_c_cur = LOG_TEMP_UNKNOWN;
948         } else {
949                 smart_log = mem;
950                 temp_k = (smart_log->temperature[1] << 8) +
951                                 (smart_log->temperature[0]);
952                 temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
953         }
954
955         /* Get Features for Temp Threshold */
956         res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
957                                                                 &feature_resp);
958         if (res != NVME_SC_SUCCESS)
959                 temp_c_thresh = LOG_TEMP_UNKNOWN;
960         else
961                 temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR;
962
963         log_response[0] = LOG_PAGE_TEMPERATURE_PAGE;
964         /* Subpage=0x00, Page Length MSB=0 */
965         log_response[3] = REMAINING_TEMP_PAGE_LENGTH;
966         /* Temperature Log Parameter 1 (Temperature) Start */
967         /* Parameter Code = 0x0000 */
968         log_response[6] = 0x01;         /* Format and Linking = 01b */
969         log_response[7] = 0x02;         /* Parameter Length */
970         /* Use Temperature from NVMe Get Log Page, convert to C from K */
971         log_response[9] = temp_c_cur;
972         /* Temperature Log Parameter 2 (Reference Temperature) Start */
973         log_response[11] = 0x01;        /* Parameter Code = 0x0001 */
974         log_response[12] = 0x01;        /* Format and Linking = 01b */
975         log_response[13] = 0x02;        /* Parameter Length */
976         /* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */
977         log_response[15] = temp_c_thresh;
978
979         xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
980         res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
981
982         dma_free_coherent(dev->dev, sizeof(struct nvme_smart_log),
983                           mem, dma_addr);
984  out_dma:
985         kfree(log_response);
986  out_mem:
987         return res;
988 }
989
990 /* MODE SENSE Helper Functions */
991
992 static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
993                                         u16 mode_data_length, u16 blk_desc_len)
994 {
995         /* Quick check to make sure I don't stomp on my own memory... */
996         if ((cdb10 && len < 8) || (!cdb10 && len < 4))
997                 return -EINVAL;
998
999         if (cdb10) {
1000                 resp[0] = (mode_data_length & 0xFF00) >> 8;
1001                 resp[1] = (mode_data_length & 0x00FF);
1002                 /* resp[2] and [3] are zero */
1003                 resp[4] = llbaa;
1004                 resp[5] = RESERVED_FIELD;
1005                 resp[6] = (blk_desc_len & 0xFF00) >> 8;
1006                 resp[7] = (blk_desc_len & 0x00FF);
1007         } else {
1008                 resp[0] = (mode_data_length & 0x00FF);
1009                 /* resp[1] and [2] are zero */
1010                 resp[3] = (blk_desc_len & 0x00FF);
1011         }
1012
1013         return 0;
1014 }
1015
1016 static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1017                                     u8 *resp, int len, u8 llbaa)
1018 {
1019         int res;
1020         int nvme_sc;
1021         struct nvme_dev *dev = ns->dev;
1022         dma_addr_t dma_addr;
1023         void *mem;
1024         struct nvme_id_ns *id_ns;
1025         u8 flbas;
1026         u32 lba_length;
1027
1028         if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
1029                 return -EINVAL;
1030         else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
1031                 return -EINVAL;
1032
1033         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
1034                                                         &dma_addr, GFP_KERNEL);
1035         if (mem == NULL) {
1036                 res = -ENOMEM;
1037                 goto out;
1038         }
1039
1040         /* nvme ns identify */
1041         nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1042         res = nvme_trans_status_code(hdr, nvme_sc);
1043         if (res)
1044                 goto out_dma;
1045
1046         id_ns = mem;
1047         flbas = (id_ns->flbas) & 0x0F;
1048         lba_length = (1 << (id_ns->lbaf[flbas].ds));
1049
1050         if (llbaa == 0) {
1051                 __be32 tmp_cap = cpu_to_be32(le64_to_cpu(id_ns->ncap));
1052                 /* Byte 4 is reserved */
1053                 __be32 tmp_len = cpu_to_be32(lba_length & 0x00FFFFFF);
1054
1055                 memcpy(resp, &tmp_cap, sizeof(u32));
1056                 memcpy(&resp[4], &tmp_len, sizeof(u32));
1057         } else {
1058                 __be64 tmp_cap = cpu_to_be64(le64_to_cpu(id_ns->ncap));
1059                 __be32 tmp_len = cpu_to_be32(lba_length);
1060
1061                 memcpy(resp, &tmp_cap, sizeof(u64));
1062                 /* Bytes 8, 9, 10, 11 are reserved */
1063                 memcpy(&resp[12], &tmp_len, sizeof(u32));
1064         }
1065
1066  out_dma:
1067         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
1068  out:
1069         return res;
1070 }
1071
1072 static int nvme_trans_fill_control_page(struct nvme_ns *ns,
1073                                         struct sg_io_hdr *hdr, u8 *resp,
1074                                         int len)
1075 {
1076         if (len < MODE_PAGE_CONTROL_LEN)
1077                 return -EINVAL;
1078
1079         resp[0] = MODE_PAGE_CONTROL;
1080         resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
1081         resp[2] = 0x0E;         /* TST=000b, TMF_ONLY=0, DPICZ=1,
1082                                  * D_SENSE=1, GLTSD=1, RLEC=0 */
1083         resp[3] = 0x12;         /* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */
1084         /* Byte 4:  VS=0, RAC=0, UA_INT=0, SWP=0 */
1085         resp[5] = 0x40;         /* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */
1086         /* resp[6] and [7] are obsolete, thus zero */
1087         resp[8] = 0xFF;         /* Busy timeout period = 0xffff */
1088         resp[9] = 0xFF;
1089         /* Bytes 10,11: Extended selftest completion time = 0x0000 */
1090
1091         return 0;
1092 }
1093
1094 static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
1095                                         struct sg_io_hdr *hdr,
1096                                         u8 *resp, int len)
1097 {
1098         int res = 0;
1099         int nvme_sc;
1100         struct nvme_dev *dev = ns->dev;
1101         u32 feature_resp;
1102         u8 vwc;
1103
1104         if (len < MODE_PAGE_CACHING_LEN)
1105                 return -EINVAL;
1106
1107         nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
1108                                                                 &feature_resp);
1109         res = nvme_trans_status_code(hdr, nvme_sc);
1110         if (res)
1111                 return res;
1112
1113         vwc = feature_resp & 0x00000001;
1114
1115         resp[0] = MODE_PAGE_CACHING;
1116         resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
1117         resp[2] = vwc << 2;
1118         return 0;
1119 }
1120
1121 static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
1122                                         struct sg_io_hdr *hdr, u8 *resp,
1123                                         int len)
1124 {
1125         if (len < MODE_PAGE_POW_CND_LEN)
1126                 return -EINVAL;
1127
1128         resp[0] = MODE_PAGE_POWER_CONDITION;
1129         resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
1130         /* All other bytes are zero */
1131
1132         return 0;
1133 }
1134
1135 static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
1136                                         struct sg_io_hdr *hdr, u8 *resp,
1137                                         int len)
1138 {
1139         if (len < MODE_PAGE_INF_EXC_LEN)
1140                 return -EINVAL;
1141
1142         resp[0] = MODE_PAGE_INFO_EXCEP;
1143         resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
1144         resp[2] = 0x88;
1145         /* All other bytes are zero */
1146
1147         return 0;
1148 }
1149
1150 static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1151                                      u8 *resp, int len)
1152 {
1153         int res;
1154         u16 mode_pages_offset_1 = 0;
1155         u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
1156
1157         mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN;
1158         mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN;
1159         mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN;
1160
1161         res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
1162                                         MODE_PAGE_CACHING_LEN);
1163         if (res)
1164                 return res;
1165         res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
1166                                         MODE_PAGE_CONTROL_LEN);
1167         if (res)
1168                 return res;
1169         res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
1170                                         MODE_PAGE_POW_CND_LEN);
1171         if (res)
1172                 return res;
1173         return nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
1174                                         MODE_PAGE_INF_EXC_LEN);
1175 }
1176
1177 static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
1178 {
1179         if (dbd == MODE_SENSE_BLK_DESC_ENABLED) {
1180                 /* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */
1181                 return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT;
1182         } else {
1183                 return 0;
1184         }
1185 }
1186
1187 static int nvme_trans_mode_page_create(struct nvme_ns *ns,
1188                                         struct sg_io_hdr *hdr, u8 *cmd,
1189                                         u16 alloc_len, u8 cdb10,
1190                                         int (*mode_page_fill_func)
1191                                         (struct nvme_ns *,
1192                                         struct sg_io_hdr *hdr, u8 *, int),
1193                                         u16 mode_pages_tot_len)
1194 {
1195         int res;
1196         int xfer_len;
1197         u8 *response;
1198         u8 dbd, llbaa;
1199         u16 resp_size;
1200         int mph_size;
1201         u16 mode_pages_offset_1;
1202         u16 blk_desc_len, blk_desc_offset, mode_data_length;
1203
1204         dbd = (cmd[1] & MODE_SENSE_DBD_MASK) >> MODE_SENSE_DBD_SHIFT;
1205         llbaa = (cmd[1] & MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT;
1206         mph_size = cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE;
1207
1208         blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
1209
1210         resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
1211         /* Refer spc4r34 Table 440 for calculation of Mode data Length field */
1212         mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len;
1213
1214         blk_desc_offset = mph_size;
1215         mode_pages_offset_1 = blk_desc_offset + blk_desc_len;
1216
1217         response = kzalloc(resp_size, GFP_KERNEL);
1218         if (response == NULL) {
1219                 res = -ENOMEM;
1220                 goto out_mem;
1221         }
1222
1223         res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
1224                                         llbaa, mode_data_length, blk_desc_len);
1225         if (res)
1226                 goto out_free;
1227         if (blk_desc_len > 0) {
1228                 res = nvme_trans_fill_blk_desc(ns, hdr,
1229                                                &response[blk_desc_offset],
1230                                                blk_desc_len, llbaa);
1231                 if (res)
1232                         goto out_free;
1233         }
1234         res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
1235                                         mode_pages_tot_len);
1236         if (res)
1237                 goto out_free;
1238
1239         xfer_len = min(alloc_len, resp_size);
1240         res = nvme_trans_copy_to_user(hdr, response, xfer_len);
1241
1242  out_free:
1243         kfree(response);
1244  out_mem:
1245         return res;
1246 }
1247
1248 /* Read Capacity Helper Functions */
1249
1250 static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
1251                                                                 u8 cdb16)
1252 {
1253         u8 flbas;
1254         u32 lba_length;
1255         u64 rlba;
1256         u8 prot_en;
1257         u8 p_type_lut[4] = {0, 0, 1, 2};
1258         __be64 tmp_rlba;
1259         __be32 tmp_rlba_32;
1260         __be32 tmp_len;
1261
1262         flbas = (id_ns->flbas) & 0x0F;
1263         lba_length = (1 << (id_ns->lbaf[flbas].ds));
1264         rlba = le64_to_cpup(&id_ns->nsze) - 1;
1265         (id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0);
1266
1267         if (!cdb16) {
1268                 if (rlba > 0xFFFFFFFF)
1269                         rlba = 0xFFFFFFFF;
1270                 tmp_rlba_32 = cpu_to_be32(rlba);
1271                 tmp_len = cpu_to_be32(lba_length);
1272                 memcpy(response, &tmp_rlba_32, sizeof(u32));
1273                 memcpy(&response[4], &tmp_len, sizeof(u32));
1274         } else {
1275                 tmp_rlba = cpu_to_be64(rlba);
1276                 tmp_len = cpu_to_be32(lba_length);
1277                 memcpy(response, &tmp_rlba, sizeof(u64));
1278                 memcpy(&response[8], &tmp_len, sizeof(u32));
1279                 response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en;
1280                 /* P_I_Exponent = 0x0 | LBPPBE = 0x0 */
1281                 /* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */
1282                 /* Bytes 16-31 - Reserved */
1283         }
1284 }
1285
1286 /* Start Stop Unit Helper Functions */
1287
1288 static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1289                                                 u8 pc, u8 pcmod, u8 start)
1290 {
1291         int res;
1292         int nvme_sc;
1293         struct nvme_dev *dev = ns->dev;
1294         dma_addr_t dma_addr;
1295         void *mem;
1296         struct nvme_id_ctrl *id_ctrl;
1297         int lowest_pow_st;      /* max npss = lowest power consumption */
1298         unsigned ps_desired = 0;
1299
1300         /* NVMe Controller Identify */
1301         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ctrl),
1302                                 &dma_addr, GFP_KERNEL);
1303         if (mem == NULL) {
1304                 res = -ENOMEM;
1305                 goto out;
1306         }
1307         nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
1308         res = nvme_trans_status_code(hdr, nvme_sc);
1309         if (res)
1310                 goto out_dma;
1311
1312         id_ctrl = mem;
1313         lowest_pow_st = max(POWER_STATE_0, (int)(id_ctrl->npss - 1));
1314
1315         switch (pc) {
1316         case NVME_POWER_STATE_START_VALID:
1317                 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1318                 if (pcmod == 0 && start == 0x1)
1319                         ps_desired = POWER_STATE_0;
1320                 if (pcmod == 0 && start == 0x0)
1321                         ps_desired = lowest_pow_st;
1322                 break;
1323         case NVME_POWER_STATE_ACTIVE:
1324                 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1325                 if (pcmod == 0)
1326                         ps_desired = POWER_STATE_0;
1327                 break;
1328         case NVME_POWER_STATE_IDLE:
1329                 /* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */
1330                 if (pcmod == 0x0)
1331                         ps_desired = POWER_STATE_1;
1332                 else if (pcmod == 0x1)
1333                         ps_desired = POWER_STATE_2;
1334                 else if (pcmod == 0x2)
1335                         ps_desired = POWER_STATE_3;
1336                 break;
1337         case NVME_POWER_STATE_STANDBY:
1338                 /* Action unspecified if POWER CONDITION MODIFIER != [0,1] */
1339                 if (pcmod == 0x0)
1340                         ps_desired = max(POWER_STATE_0, (lowest_pow_st - 2));
1341                 else if (pcmod == 0x1)
1342                         ps_desired = max(POWER_STATE_0, (lowest_pow_st - 1));
1343                 break;
1344         case NVME_POWER_STATE_LU_CONTROL:
1345         default:
1346                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1347                                 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1348                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1349                 break;
1350         }
1351         nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
1352                                     NULL);
1353         res = nvme_trans_status_code(hdr, nvme_sc);
1354
1355  out_dma:
1356         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ctrl), mem, dma_addr);
1357  out:
1358         return res;
1359 }
1360
1361 static int nvme_trans_send_activate_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1362                                         u8 buffer_id)
1363 {
1364         struct nvme_command c;
1365         int nvme_sc;
1366
1367         memset(&c, 0, sizeof(c));
1368         c.common.opcode = nvme_admin_activate_fw;
1369         c.common.cdw10[0] = cpu_to_le32(buffer_id | NVME_FWACT_REPL_ACTV);
1370
1371         nvme_sc = nvme_submit_sync_cmd(ns->queue, &c);
1372         return nvme_trans_status_code(hdr, nvme_sc);
1373 }
1374
1375 static int nvme_trans_send_download_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1376                                         u8 opcode, u32 tot_len, u32 offset,
1377                                         u8 buffer_id)
1378 {
1379         int res;
1380         int nvme_sc;
1381         struct nvme_dev *dev = ns->dev;
1382         struct nvme_command c;
1383         struct nvme_iod *iod = NULL;
1384         unsigned length;
1385
1386         memset(&c, 0, sizeof(c));
1387         c.common.opcode = nvme_admin_download_fw;
1388
1389         if (hdr->iovec_count > 0) {
1390                 /* Assuming SGL is not allowed for this command */
1391                 return nvme_trans_completion(hdr,
1392                                         SAM_STAT_CHECK_CONDITION,
1393                                         ILLEGAL_REQUEST,
1394                                         SCSI_ASC_INVALID_CDB,
1395                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1396         }
1397         iod = nvme_map_user_pages(dev, DMA_TO_DEVICE,
1398                         (unsigned long)hdr->dxferp, tot_len);
1399         if (IS_ERR(iod))
1400                 return PTR_ERR(iod);
1401         length = nvme_setup_prps(dev, iod, tot_len, GFP_KERNEL);
1402         if (length != tot_len) {
1403                 res = -ENOMEM;
1404                 goto out_unmap;
1405         }
1406
1407         c.dlfw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1408         c.dlfw.prp2 = cpu_to_le64(iod->first_dma);
1409         c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
1410         c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
1411
1412         nvme_sc = nvme_submit_sync_cmd(dev->admin_q, &c);
1413         res = nvme_trans_status_code(hdr, nvme_sc);
1414
1415  out_unmap:
1416         nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod);
1417         nvme_free_iod(dev, iod);
1418         return res;
1419 }
1420
1421 /* Mode Select Helper Functions */
1422
1423 static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10,
1424                                                 u16 *bd_len, u8 *llbaa)
1425 {
1426         if (cdb10) {
1427                 /* 10 Byte CDB */
1428                 *bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) +
1429                         parm_list[MODE_SELECT_10_BD_OFFSET + 1];
1430                 *llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] &
1431                                 MODE_SELECT_10_LLBAA_MASK;
1432         } else {
1433                 /* 6 Byte CDB */
1434                 *bd_len = parm_list[MODE_SELECT_6_BD_OFFSET];
1435         }
1436 }
1437
1438 static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
1439                                         u16 idx, u16 bd_len, u8 llbaa)
1440 {
1441         u16 bd_num;
1442
1443         bd_num = bd_len / ((llbaa == 0) ?
1444                         SHORT_DESC_BLOCK : LONG_DESC_BLOCK);
1445         /* Store block descriptor info if a FORMAT UNIT comes later */
1446         /* TODO Saving 1st BD info; what to do if multiple BD received? */
1447         if (llbaa == 0) {
1448                 /* Standard Block Descriptor - spc4r34 7.5.5.1 */
1449                 ns->mode_select_num_blocks =
1450                                 (parm_list[idx + 1] << 16) +
1451                                 (parm_list[idx + 2] << 8) +
1452                                 (parm_list[idx + 3]);
1453
1454                 ns->mode_select_block_len =
1455                                 (parm_list[idx + 5] << 16) +
1456                                 (parm_list[idx + 6] << 8) +
1457                                 (parm_list[idx + 7]);
1458         } else {
1459                 /* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */
1460                 ns->mode_select_num_blocks =
1461                                 (((u64)parm_list[idx + 0]) << 56) +
1462                                 (((u64)parm_list[idx + 1]) << 48) +
1463                                 (((u64)parm_list[idx + 2]) << 40) +
1464                                 (((u64)parm_list[idx + 3]) << 32) +
1465                                 (((u64)parm_list[idx + 4]) << 24) +
1466                                 (((u64)parm_list[idx + 5]) << 16) +
1467                                 (((u64)parm_list[idx + 6]) << 8) +
1468                                 ((u64)parm_list[idx + 7]);
1469
1470                 ns->mode_select_block_len =
1471                                 (parm_list[idx + 12] << 24) +
1472                                 (parm_list[idx + 13] << 16) +
1473                                 (parm_list[idx + 14] << 8) +
1474                                 (parm_list[idx + 15]);
1475         }
1476 }
1477
1478 static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1479                                         u8 *mode_page, u8 page_code)
1480 {
1481         int res = 0;
1482         int nvme_sc;
1483         struct nvme_dev *dev = ns->dev;
1484         unsigned dword11;
1485
1486         switch (page_code) {
1487         case MODE_PAGE_CACHING:
1488                 dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
1489                 nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
1490                                             0, NULL);
1491                 res = nvme_trans_status_code(hdr, nvme_sc);
1492                 break;
1493         case MODE_PAGE_CONTROL:
1494                 break;
1495         case MODE_PAGE_POWER_CONDITION:
1496                 /* Verify the OS is not trying to set timers */
1497                 if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) {
1498                         res = nvme_trans_completion(hdr,
1499                                                 SAM_STAT_CHECK_CONDITION,
1500                                                 ILLEGAL_REQUEST,
1501                                                 SCSI_ASC_INVALID_PARAMETER,
1502                                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1503                         break;
1504                 }
1505                 break;
1506         default:
1507                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1508                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1509                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1510                 break;
1511         }
1512
1513         return res;
1514 }
1515
1516 static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1517                                         u8 *cmd, u16 parm_list_len, u8 pf,
1518                                         u8 sp, u8 cdb10)
1519 {
1520         int res;
1521         u8 *parm_list;
1522         u16 bd_len;
1523         u8 llbaa = 0;
1524         u16 index, saved_index;
1525         u8 page_code;
1526         u16 mp_size;
1527
1528         /* Get parm list from data-in/out buffer */
1529         parm_list = kmalloc(parm_list_len, GFP_KERNEL);
1530         if (parm_list == NULL) {
1531                 res = -ENOMEM;
1532                 goto out;
1533         }
1534
1535         res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
1536         if (res)
1537                 goto out_mem;
1538
1539         nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
1540         index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE);
1541
1542         if (bd_len != 0) {
1543                 /* Block Descriptors present, parse */
1544                 nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa);
1545                 index += bd_len;
1546         }
1547         saved_index = index;
1548
1549         /* Multiple mode pages may be present; iterate through all */
1550         /* In 1st Iteration, don't do NVME Command, only check for CDB errors */
1551         do {
1552                 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1553                 mp_size = parm_list[index + 1] + 2;
1554                 if ((page_code != MODE_PAGE_CACHING) &&
1555                     (page_code != MODE_PAGE_CONTROL) &&
1556                     (page_code != MODE_PAGE_POWER_CONDITION)) {
1557                         res = nvme_trans_completion(hdr,
1558                                                 SAM_STAT_CHECK_CONDITION,
1559                                                 ILLEGAL_REQUEST,
1560                                                 SCSI_ASC_INVALID_CDB,
1561                                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1562                         goto out_mem;
1563                 }
1564                 index += mp_size;
1565         } while (index < parm_list_len);
1566
1567         /* In 2nd Iteration, do the NVME Commands */
1568         index = saved_index;
1569         do {
1570                 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1571                 mp_size = parm_list[index + 1] + 2;
1572                 res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
1573                                                                 page_code);
1574                 if (res)
1575                         break;
1576                 index += mp_size;
1577         } while (index < parm_list_len);
1578
1579  out_mem:
1580         kfree(parm_list);
1581  out:
1582         return res;
1583 }
1584
1585 /* Format Unit Helper Functions */
1586
1587 static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
1588                                              struct sg_io_hdr *hdr)
1589 {
1590         int res = 0;
1591         int nvme_sc;
1592         struct nvme_dev *dev = ns->dev;
1593         dma_addr_t dma_addr;
1594         void *mem;
1595         struct nvme_id_ns *id_ns;
1596         u8 flbas;
1597
1598         /*
1599          * SCSI Expects a MODE SELECT would have been issued prior to
1600          * a FORMAT UNIT, and the block size and number would be used
1601          * from the block descriptor in it. If a MODE SELECT had not
1602          * been issued, FORMAT shall use the current values for both.
1603          */
1604
1605         if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
1606                 mem = dma_alloc_coherent(dev->dev,
1607                         sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL);
1608                 if (mem == NULL) {
1609                         res = -ENOMEM;
1610                         goto out;
1611                 }
1612                 /* nvme ns identify */
1613                 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1614                 res = nvme_trans_status_code(hdr, nvme_sc);
1615                 if (res)
1616                         goto out_dma;
1617
1618                 id_ns = mem;
1619
1620                 if (ns->mode_select_num_blocks == 0)
1621                         ns->mode_select_num_blocks = le64_to_cpu(id_ns->ncap);
1622                 if (ns->mode_select_block_len == 0) {
1623                         flbas = (id_ns->flbas) & 0x0F;
1624                         ns->mode_select_block_len =
1625                                                 (1 << (id_ns->lbaf[flbas].ds));
1626                 }
1627  out_dma:
1628                 dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns),
1629                                   mem, dma_addr);
1630         }
1631  out:
1632         return res;
1633 }
1634
1635 static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
1636                                         u8 format_prot_info, u8 *nvme_pf_code)
1637 {
1638         int res;
1639         u8 *parm_list;
1640         u8 pf_usage, pf_code;
1641
1642         parm_list = kmalloc(len, GFP_KERNEL);
1643         if (parm_list == NULL) {
1644                 res = -ENOMEM;
1645                 goto out;
1646         }
1647         res = nvme_trans_copy_from_user(hdr, parm_list, len);
1648         if (res)
1649                 goto out_mem;
1650
1651         if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
1652                                 FORMAT_UNIT_IMMED_MASK) != 0) {
1653                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1654                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1655                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1656                 goto out_mem;
1657         }
1658
1659         if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN &&
1660             (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) {
1661                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1662                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1663                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1664                 goto out_mem;
1665         }
1666         pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] &
1667                         FORMAT_UNIT_PROT_FIELD_USAGE_MASK;
1668         pf_code = (pf_usage << 2) | format_prot_info;
1669         switch (pf_code) {
1670         case 0:
1671                 *nvme_pf_code = 0;
1672                 break;
1673         case 2:
1674                 *nvme_pf_code = 1;
1675                 break;
1676         case 3:
1677                 *nvme_pf_code = 2;
1678                 break;
1679         case 7:
1680                 *nvme_pf_code = 3;
1681                 break;
1682         default:
1683                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1684                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1685                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1686                 break;
1687         }
1688
1689  out_mem:
1690         kfree(parm_list);
1691  out:
1692         return res;
1693 }
1694
1695 static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1696                                    u8 prot_info)
1697 {
1698         int res;
1699         int nvme_sc;
1700         struct nvme_dev *dev = ns->dev;
1701         dma_addr_t dma_addr;
1702         void *mem;
1703         struct nvme_id_ns *id_ns;
1704         u8 i;
1705         u8 flbas, nlbaf;
1706         u8 selected_lbaf = 0xFF;
1707         u32 cdw10 = 0;
1708         struct nvme_command c;
1709
1710         /* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
1711         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
1712                                                         &dma_addr, GFP_KERNEL);
1713         if (mem == NULL) {
1714                 res = -ENOMEM;
1715                 goto out;
1716         }
1717         /* nvme ns identify */
1718         nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1719         res = nvme_trans_status_code(hdr, nvme_sc);
1720         if (res)
1721                 goto out_dma;
1722
1723         id_ns = mem;
1724         flbas = (id_ns->flbas) & 0x0F;
1725         nlbaf = id_ns->nlbaf;
1726
1727         for (i = 0; i < nlbaf; i++) {
1728                 if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) {
1729                         selected_lbaf = i;
1730                         break;
1731                 }
1732         }
1733         if (selected_lbaf > 0x0F) {
1734                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1735                                 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1736                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1737         }
1738         if (ns->mode_select_num_blocks != le64_to_cpu(id_ns->ncap)) {
1739                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1740                                 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1741                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1742         }
1743
1744         cdw10 |= prot_info << 5;
1745         cdw10 |= selected_lbaf & 0x0F;
1746         memset(&c, 0, sizeof(c));
1747         c.format.opcode = nvme_admin_format_nvm;
1748         c.format.nsid = cpu_to_le32(ns->ns_id);
1749         c.format.cdw10 = cpu_to_le32(cdw10);
1750
1751         nvme_sc = nvme_submit_sync_cmd(dev->admin_q, &c);
1752         res = nvme_trans_status_code(hdr, nvme_sc);
1753
1754  out_dma:
1755         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
1756  out:
1757         return res;
1758 }
1759
1760 static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
1761                                         struct nvme_trans_io_cdb *cdb_info,
1762                                         u32 max_blocks)
1763 {
1764         /* If using iovecs, send one nvme command per vector */
1765         if (hdr->iovec_count > 0)
1766                 return hdr->iovec_count;
1767         else if (cdb_info->xfer_len > max_blocks)
1768                 return ((cdb_info->xfer_len - 1) / max_blocks) + 1;
1769         else
1770                 return 1;
1771 }
1772
1773 static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
1774                                         struct nvme_trans_io_cdb *cdb_info)
1775 {
1776         u16 control = 0;
1777
1778         /* When Protection information support is added, implement here */
1779
1780         if (cdb_info->fua > 0)
1781                 control |= NVME_RW_FUA;
1782
1783         return control;
1784 }
1785
1786 static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1787                                 struct nvme_trans_io_cdb *cdb_info, u8 is_write)
1788 {
1789         int nvme_sc = NVME_SC_SUCCESS;
1790         struct nvme_dev *dev = ns->dev;
1791         u32 num_cmds;
1792         struct nvme_iod *iod;
1793         u64 unit_len;
1794         u64 unit_num_blocks;    /* Number of blocks to xfer in each nvme cmd */
1795         u32 retcode;
1796         u32 i = 0;
1797         u64 nvme_offset = 0;
1798         void __user *next_mapping_addr;
1799         struct nvme_command c;
1800         u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read);
1801         u16 control;
1802         u32 max_blocks = queue_max_hw_sectors(ns->queue);
1803
1804         num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks);
1805
1806         /*
1807          * This loop handles two cases.
1808          * First, when an SGL is used in the form of an iovec list:
1809          *   - Use iov_base as the next mapping address for the nvme command_id
1810          *   - Use iov_len as the data transfer length for the command.
1811          * Second, when we have a single buffer
1812          *   - If larger than max_blocks, split into chunks, offset
1813          *        each nvme command accordingly.
1814          */
1815         for (i = 0; i < num_cmds; i++) {
1816                 memset(&c, 0, sizeof(c));
1817                 if (hdr->iovec_count > 0) {
1818                         struct sg_iovec sgl;
1819
1820                         retcode = copy_from_user(&sgl, hdr->dxferp +
1821                                         i * sizeof(struct sg_iovec),
1822                                         sizeof(struct sg_iovec));
1823                         if (retcode)
1824                                 return -EFAULT;
1825                         unit_len = sgl.iov_len;
1826                         unit_num_blocks = unit_len >> ns->lba_shift;
1827                         next_mapping_addr = sgl.iov_base;
1828                 } else {
1829                         unit_num_blocks = min((u64)max_blocks,
1830                                         (cdb_info->xfer_len - nvme_offset));
1831                         unit_len = unit_num_blocks << ns->lba_shift;
1832                         next_mapping_addr = hdr->dxferp +
1833                                         ((1 << ns->lba_shift) * nvme_offset);
1834                 }
1835
1836                 c.rw.opcode = opcode;
1837                 c.rw.nsid = cpu_to_le32(ns->ns_id);
1838                 c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset);
1839                 c.rw.length = cpu_to_le16(unit_num_blocks - 1);
1840                 control = nvme_trans_io_get_control(ns, cdb_info);
1841                 c.rw.control = cpu_to_le16(control);
1842
1843                 iod = nvme_map_user_pages(dev,
1844                         (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
1845                         (unsigned long)next_mapping_addr, unit_len);
1846                 if (IS_ERR(iod))
1847                         return PTR_ERR(iod);
1848
1849                 retcode = nvme_setup_prps(dev, iod, unit_len, GFP_KERNEL);
1850                 if (retcode != unit_len) {
1851                         nvme_unmap_user_pages(dev,
1852                                 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
1853                                 iod);
1854                         nvme_free_iod(dev, iod);
1855                         return -ENOMEM;
1856                 }
1857                 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1858                 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1859
1860                 nvme_offset += unit_num_blocks;
1861
1862                 nvme_sc = nvme_submit_sync_cmd(ns->queue, &c);
1863
1864                 nvme_unmap_user_pages(dev,
1865                                 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
1866                                 iod);
1867                 nvme_free_iod(dev, iod);
1868
1869
1870                 if (nvme_sc != NVME_SC_SUCCESS)
1871                         break;
1872         }
1873
1874         return nvme_trans_status_code(hdr, nvme_sc);
1875 }
1876
1877
1878 /* SCSI Command Translation Functions */
1879
1880 static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
1881                                                         u8 *cmd)
1882 {
1883         int res = 0;
1884         struct nvme_trans_io_cdb cdb_info = { 0, };
1885         u8 opcode = cmd[0];
1886         u64 xfer_bytes;
1887         u64 sum_iov_len = 0;
1888         struct sg_iovec sgl;
1889         int i;
1890         size_t not_copied;
1891
1892         /*
1893          * The FUA and WPROTECT fields are not supported in 6-byte CDBs,
1894          * but always in the same place for all others.
1895          */
1896         switch (opcode) {
1897         case WRITE_6:
1898         case READ_6:
1899                 break;
1900         default:
1901                 cdb_info.fua = cmd[1] & 0x8;
1902                 cdb_info.prot_info = (cmd[1] & 0xe0) >> 5;
1903         }
1904
1905         switch (opcode) {
1906         case WRITE_6:
1907         case READ_6:
1908                 cdb_info.lba = get_unaligned_be24(&cmd[1]);
1909                 cdb_info.xfer_len = cmd[4];
1910                 if (cdb_info.xfer_len == 0)
1911                         cdb_info.xfer_len = 256;
1912                 break;
1913         case WRITE_10:
1914         case READ_10:
1915                 cdb_info.lba = get_unaligned_be32(&cmd[2]);
1916                 cdb_info.xfer_len = get_unaligned_be16(&cmd[7]);
1917                 break;
1918         case WRITE_12:
1919         case READ_12:
1920                 cdb_info.lba = get_unaligned_be32(&cmd[2]);
1921                 cdb_info.xfer_len = get_unaligned_be32(&cmd[6]);
1922                 break;
1923         case WRITE_16:
1924         case READ_16:
1925                 cdb_info.lba = get_unaligned_be64(&cmd[2]);
1926                 cdb_info.xfer_len = get_unaligned_be32(&cmd[10]);
1927                 break;
1928         default:
1929                 /* Will never really reach here */
1930                 res = -EIO;
1931                 goto out;
1932         }
1933
1934         /* Calculate total length of transfer (in bytes) */
1935         if (hdr->iovec_count > 0) {
1936                 for (i = 0; i < hdr->iovec_count; i++) {
1937                         not_copied = copy_from_user(&sgl, hdr->dxferp +
1938                                                 i * sizeof(struct sg_iovec),
1939                                                 sizeof(struct sg_iovec));
1940                         if (not_copied)
1941                                 return -EFAULT;
1942                         sum_iov_len += sgl.iov_len;
1943                         /* IO vector sizes should be multiples of block size */
1944                         if (sgl.iov_len % (1 << ns->lba_shift) != 0) {
1945                                 res = nvme_trans_completion(hdr,
1946                                                 SAM_STAT_CHECK_CONDITION,
1947                                                 ILLEGAL_REQUEST,
1948                                                 SCSI_ASC_INVALID_PARAMETER,
1949                                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1950                                 goto out;
1951                         }
1952                 }
1953         } else {
1954                 sum_iov_len = hdr->dxfer_len;
1955         }
1956
1957         /* As Per sg ioctl howto, if the lengths differ, use the lower one */
1958         xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len);
1959
1960         /* If block count and actual data buffer size dont match, error out */
1961         if (xfer_bytes != (cdb_info.xfer_len << ns->lba_shift)) {
1962                 res = -EINVAL;
1963                 goto out;
1964         }
1965
1966         /* Check for 0 length transfer - it is not illegal */
1967         if (cdb_info.xfer_len == 0)
1968                 goto out;
1969
1970         /* Send NVMe IO Command(s) */
1971         res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
1972         if (res)
1973                 goto out;
1974
1975  out:
1976         return res;
1977 }
1978
1979 static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1980                                                         u8 *cmd)
1981 {
1982         int res = 0;
1983         u8 evpd;
1984         u8 page_code;
1985         int alloc_len;
1986         u8 *inq_response;
1987
1988         evpd = cmd[1] & 0x01;
1989         page_code = cmd[2];
1990         alloc_len = get_unaligned_be16(&cmd[3]);
1991
1992         inq_response = kmalloc(alloc_len, GFP_KERNEL);
1993         if (inq_response == NULL) {
1994                 res = -ENOMEM;
1995                 goto out_mem;
1996         }
1997
1998         if (evpd == 0) {
1999                 if (page_code == INQ_STANDARD_INQUIRY_PAGE) {
2000                         res = nvme_trans_standard_inquiry_page(ns, hdr,
2001                                                 inq_response, alloc_len);
2002                 } else {
2003                         res = nvme_trans_completion(hdr,
2004                                                 SAM_STAT_CHECK_CONDITION,
2005                                                 ILLEGAL_REQUEST,
2006                                                 SCSI_ASC_INVALID_CDB,
2007                                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2008                 }
2009         } else {
2010                 switch (page_code) {
2011                 case VPD_SUPPORTED_PAGES:
2012                         res = nvme_trans_supported_vpd_pages(ns, hdr,
2013                                                 inq_response, alloc_len);
2014                         break;
2015                 case VPD_SERIAL_NUMBER:
2016                         res = nvme_trans_unit_serial_page(ns, hdr, inq_response,
2017                                                                 alloc_len);
2018                         break;
2019                 case VPD_DEVICE_IDENTIFIERS:
2020                         res = nvme_trans_device_id_page(ns, hdr, inq_response,
2021                                                                 alloc_len);
2022                         break;
2023                 case VPD_EXTENDED_INQUIRY:
2024                         res = nvme_trans_ext_inq_page(ns, hdr, alloc_len);
2025                         break;
2026                 case VPD_BLOCK_LIMITS:
2027                         res = nvme_trans_bdev_limits_page(ns, hdr, inq_response,
2028                                                                 alloc_len);
2029                         break;
2030                 case VPD_BLOCK_DEV_CHARACTERISTICS:
2031                         res = nvme_trans_bdev_char_page(ns, hdr, alloc_len);
2032                         break;
2033                 default:
2034                         res = nvme_trans_completion(hdr,
2035                                                 SAM_STAT_CHECK_CONDITION,
2036                                                 ILLEGAL_REQUEST,
2037                                                 SCSI_ASC_INVALID_CDB,
2038                                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2039                         break;
2040                 }
2041         }
2042         kfree(inq_response);
2043  out_mem:
2044         return res;
2045 }
2046
2047 static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2048                                                         u8 *cmd)
2049 {
2050         int res;
2051         u16 alloc_len;
2052         u8 pc;
2053         u8 page_code;
2054
2055         if (cmd[1] != LOG_SENSE_CDB_SP_NOT_ENABLED) {
2056                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2057                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2058                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2059                 goto out;
2060         }
2061
2062         page_code = cmd[2] & LOG_SENSE_CDB_PAGE_CODE_MASK;
2063         pc = (cmd[2] & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
2064         if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
2065                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2066                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2067                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2068                 goto out;
2069         }
2070         alloc_len = get_unaligned_be16(&cmd[7]);
2071         switch (page_code) {
2072         case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
2073                 res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
2074                 break;
2075         case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE:
2076                 res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len);
2077                 break;
2078         case LOG_PAGE_TEMPERATURE_PAGE:
2079                 res = nvme_trans_log_temperature(ns, hdr, alloc_len);
2080                 break;
2081         default:
2082                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2083                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2084                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2085                 break;
2086         }
2087
2088  out:
2089         return res;
2090 }
2091
2092 static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2093                                                         u8 *cmd)
2094 {
2095         u8 cdb10 = 0;
2096         u16 parm_list_len;
2097         u8 page_format;
2098         u8 save_pages;
2099
2100         page_format = cmd[1] & MODE_SELECT_CDB_PAGE_FORMAT_MASK;
2101         save_pages = cmd[1] & MODE_SELECT_CDB_SAVE_PAGES_MASK;
2102
2103         if (cmd[0] == MODE_SELECT) {
2104                 parm_list_len = cmd[4];
2105         } else {
2106                 parm_list_len = cmd[7];
2107                 cdb10 = 1;
2108         }
2109
2110         if (parm_list_len != 0) {
2111                 /*
2112                  * According to SPC-4 r24, a paramter list length field of 0
2113                  * shall not be considered an error
2114                  */
2115                 return nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
2116                                                 page_format, save_pages, cdb10);
2117         }
2118
2119         return 0;
2120 }
2121
2122 static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2123                                                         u8 *cmd)
2124 {
2125         int res = 0;
2126         u16 alloc_len;
2127         u8 cdb10 = 0;
2128
2129         if (cmd[0] == MODE_SENSE) {
2130                 alloc_len = cmd[4];
2131         } else {
2132                 alloc_len = get_unaligned_be16(&cmd[7]);
2133                 cdb10 = 1;
2134         }
2135
2136         if ((cmd[2] & MODE_SENSE_PAGE_CONTROL_MASK) !=
2137                         MODE_SENSE_PC_CURRENT_VALUES) {
2138                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2139                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2140                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2141                 goto out;
2142         }
2143
2144         switch (cmd[2] & MODE_SENSE_PAGE_CODE_MASK) {
2145         case MODE_PAGE_CACHING:
2146                 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2147                                                 cdb10,
2148                                                 &nvme_trans_fill_caching_page,
2149                                                 MODE_PAGE_CACHING_LEN);
2150                 break;
2151         case MODE_PAGE_CONTROL:
2152                 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2153                                                 cdb10,
2154                                                 &nvme_trans_fill_control_page,
2155                                                 MODE_PAGE_CONTROL_LEN);
2156                 break;
2157         case MODE_PAGE_POWER_CONDITION:
2158                 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2159                                                 cdb10,
2160                                                 &nvme_trans_fill_pow_cnd_page,
2161                                                 MODE_PAGE_POW_CND_LEN);
2162                 break;
2163         case MODE_PAGE_INFO_EXCEP:
2164                 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2165                                                 cdb10,
2166                                                 &nvme_trans_fill_inf_exc_page,
2167                                                 MODE_PAGE_INF_EXC_LEN);
2168                 break;
2169         case MODE_PAGE_RETURN_ALL:
2170                 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2171                                                 cdb10,
2172                                                 &nvme_trans_fill_all_pages,
2173                                                 MODE_PAGE_ALL_LEN);
2174                 break;
2175         default:
2176                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2177                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2178                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2179                 break;
2180         }
2181
2182  out:
2183         return res;
2184 }
2185
2186 static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2187                                                         u8 *cmd, u8 cdb16)
2188 {
2189         int res;
2190         int nvme_sc;
2191         u32 alloc_len;
2192         u32 resp_size;
2193         u32 xfer_len;
2194         struct nvme_dev *dev = ns->dev;
2195         dma_addr_t dma_addr;
2196         void *mem;
2197         struct nvme_id_ns *id_ns;
2198         u8 *response;
2199
2200         if (cdb16) {
2201                 alloc_len = get_unaligned_be32(&cmd[10]);
2202                 resp_size = READ_CAP_16_RESP_SIZE;
2203         } else {
2204                 alloc_len = READ_CAP_10_RESP_SIZE;
2205                 resp_size = READ_CAP_10_RESP_SIZE;
2206         }
2207
2208         mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ns),
2209                                                         &dma_addr, GFP_KERNEL);
2210         if (mem == NULL) {
2211                 res = -ENOMEM;
2212                 goto out;
2213         }
2214         /* nvme ns identify */
2215         nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
2216         res = nvme_trans_status_code(hdr, nvme_sc);
2217         if (res)
2218                 goto out_dma;
2219
2220         id_ns = mem;
2221
2222         response = kzalloc(resp_size, GFP_KERNEL);
2223         if (response == NULL) {
2224                 res = -ENOMEM;
2225                 goto out_dma;
2226         }
2227         nvme_trans_fill_read_cap(response, id_ns, cdb16);
2228
2229         xfer_len = min(alloc_len, resp_size);
2230         res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2231
2232         kfree(response);
2233  out_dma:
2234         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ns), mem, dma_addr);
2235  out:
2236         return res;
2237 }
2238
2239 static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2240                                                         u8 *cmd)
2241 {
2242         int res;
2243         int nvme_sc;
2244         u32 alloc_len, xfer_len, resp_size;
2245         u8 *response;
2246         struct nvme_dev *dev = ns->dev;
2247         dma_addr_t dma_addr;
2248         void *mem;
2249         struct nvme_id_ctrl *id_ctrl;
2250         u32 ll_length, lun_id;
2251         u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
2252         __be32 tmp_len;
2253
2254         switch (cmd[2]) {
2255         default:
2256                 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2257                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2258                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2259         case ALL_LUNS_RETURNED:
2260         case ALL_WELL_KNOWN_LUNS_RETURNED:
2261         case RESTRICTED_LUNS_RETURNED:
2262                 /* NVMe Controller Identify */
2263                 mem = dma_alloc_coherent(dev->dev, sizeof(struct nvme_id_ctrl),
2264                                         &dma_addr, GFP_KERNEL);
2265                 if (mem == NULL) {
2266                         res = -ENOMEM;
2267                         goto out;
2268                 }
2269                 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
2270                 res = nvme_trans_status_code(hdr, nvme_sc);
2271                 if (res)
2272                         goto out_dma;
2273
2274                 id_ctrl = mem;
2275                 ll_length = le32_to_cpu(id_ctrl->nn) * LUN_ENTRY_SIZE;
2276                 resp_size = ll_length + LUN_DATA_HEADER_SIZE;
2277
2278                 alloc_len = get_unaligned_be32(&cmd[6]);
2279                 if (alloc_len < resp_size) {
2280                         res = nvme_trans_completion(hdr,
2281                                         SAM_STAT_CHECK_CONDITION,
2282                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2283                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2284                         goto out_dma;
2285                 }
2286
2287                 response = kzalloc(resp_size, GFP_KERNEL);
2288                 if (response == NULL) {
2289                         res = -ENOMEM;
2290                         goto out_dma;
2291                 }
2292
2293                 /* The first LUN ID will always be 0 per the SAM spec */
2294                 for (lun_id = 0; lun_id < le32_to_cpu(id_ctrl->nn); lun_id++) {
2295                         /*
2296                          * Set the LUN Id and then increment to the next LUN
2297                          * location in the parameter data.
2298                          */
2299                         __be64 tmp_id = cpu_to_be64(lun_id);
2300                         memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64));
2301                         lun_id_offset += LUN_ENTRY_SIZE;
2302                 }
2303                 tmp_len = cpu_to_be32(ll_length);
2304                 memcpy(response, &tmp_len, sizeof(u32));
2305         }
2306
2307         xfer_len = min(alloc_len, resp_size);
2308         res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2309
2310         kfree(response);
2311  out_dma:
2312         dma_free_coherent(dev->dev, sizeof(struct nvme_id_ctrl), mem, dma_addr);
2313  out:
2314         return res;
2315 }
2316
2317 static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2318                                                         u8 *cmd)
2319 {
2320         int res;
2321         u8 alloc_len, xfer_len, resp_size;
2322         u8 desc_format;
2323         u8 *response;
2324
2325         desc_format = cmd[1] & 0x01;
2326         alloc_len = cmd[4];
2327
2328         resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
2329                                         (FIXED_FMT_SENSE_DATA_SIZE));
2330         response = kzalloc(resp_size, GFP_KERNEL);
2331         if (response == NULL) {
2332                 res = -ENOMEM;
2333                 goto out;
2334         }
2335
2336         if (desc_format) {
2337                 /* Descriptor Format Sense Data */
2338                 response[0] = DESC_FORMAT_SENSE_DATA;
2339                 response[1] = NO_SENSE;
2340                 /* TODO How is LOW POWER CONDITION ON handled? (byte 2) */
2341                 response[2] = SCSI_ASC_NO_SENSE;
2342                 response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2343                 /* SDAT_OVFL = 0 | Additional Sense Length = 0 */
2344         } else {
2345                 /* Fixed Format Sense Data */
2346                 response[0] = FIXED_SENSE_DATA;
2347                 /* Byte 1 = Obsolete */
2348                 response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */
2349                 /* Bytes 3-6 - Information - set to zero */
2350                 response[7] = FIXED_SENSE_DATA_ADD_LENGTH;
2351                 /* Bytes 8-11 - Cmd Specific Information - set to zero */
2352                 response[12] = SCSI_ASC_NO_SENSE;
2353                 response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2354                 /* Byte 14 = Field Replaceable Unit Code = 0 */
2355                 /* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */
2356         }
2357
2358         xfer_len = min(alloc_len, resp_size);
2359         res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2360
2361         kfree(response);
2362  out:
2363         return res;
2364 }
2365
2366 static int nvme_trans_security_protocol(struct nvme_ns *ns,
2367                                         struct sg_io_hdr *hdr,
2368                                         u8 *cmd)
2369 {
2370         return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2371                                 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2372                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2373 }
2374
2375 static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2376                                                         u8 *cmd)
2377 {
2378         int res;
2379         int nvme_sc;
2380         struct nvme_command c;
2381         u8 immed, pcmod, pc, no_flush, start;
2382
2383         immed = cmd[1] & 0x01;
2384         pcmod = cmd[3] & 0x0f;
2385         pc = (cmd[4] & 0xf0) >> 4;
2386         no_flush = cmd[4] & 0x04;
2387         start = cmd[4] & 0x01;
2388
2389         if (immed != 0) {
2390                 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2391                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2392                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2393         } else {
2394                 if (no_flush == 0) {
2395                         /* Issue NVME FLUSH command prior to START STOP UNIT */
2396                         memset(&c, 0, sizeof(c));
2397                         c.common.opcode = nvme_cmd_flush;
2398                         c.common.nsid = cpu_to_le32(ns->ns_id);
2399
2400                         nvme_sc = nvme_submit_sync_cmd(ns->queue, &c);
2401                         res = nvme_trans_status_code(hdr, nvme_sc);
2402                         if (res)
2403                                 return res;
2404                 }
2405                 /* Setup the expected power state transition */
2406                 return nvme_trans_power_state(ns, hdr, pc, pcmod, start);
2407         }
2408 }
2409
2410 static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
2411                                         struct sg_io_hdr *hdr, u8 *cmd)
2412 {
2413         int nvme_sc;
2414         struct nvme_command c;
2415
2416         memset(&c, 0, sizeof(c));
2417         c.common.opcode = nvme_cmd_flush;
2418         c.common.nsid = cpu_to_le32(ns->ns_id);
2419
2420         nvme_sc = nvme_submit_sync_cmd(ns->queue, &c);
2421         return nvme_trans_status_code(hdr, nvme_sc);
2422 }
2423
2424 static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2425                                                         u8 *cmd)
2426 {
2427         int res;
2428         u8 parm_hdr_len = 0;
2429         u8 nvme_pf_code = 0;
2430         u8 format_prot_info, long_list, format_data;
2431
2432         format_prot_info = (cmd[1] & 0xc0) >> 6;
2433         long_list = cmd[1] & 0x20;
2434         format_data = cmd[1] & 0x10;
2435
2436         if (format_data != 0) {
2437                 if (format_prot_info != 0) {
2438                         if (long_list == 0)
2439                                 parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN;
2440                         else
2441                                 parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN;
2442                 }
2443         } else if (format_data == 0 && format_prot_info != 0) {
2444                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2445                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2446                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2447                 goto out;
2448         }
2449
2450         /* Get parm header from data-in/out buffer */
2451         /*
2452          * According to the translation spec, the only fields in the parameter
2453          * list we are concerned with are in the header. So allocate only that.
2454          */
2455         if (parm_hdr_len > 0) {
2456                 res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
2457                                         format_prot_info, &nvme_pf_code);
2458                 if (res)
2459                         goto out;
2460         }
2461
2462         /* Attempt to activate any previously downloaded firmware image */
2463         res = nvme_trans_send_activate_fw_cmd(ns, hdr, 0);
2464
2465         /* Determine Block size and count and send format command */
2466         res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
2467         if (res)
2468                 goto out;
2469
2470         res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
2471
2472  out:
2473         return res;
2474 }
2475
2476 static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
2477                                         struct sg_io_hdr *hdr,
2478                                         u8 *cmd)
2479 {
2480         struct nvme_dev *dev = ns->dev;
2481
2482         if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
2483                 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2484                                             NOT_READY, SCSI_ASC_LUN_NOT_READY,
2485                                             SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2486         else
2487                 return nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
2488 }
2489
2490 static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2491                                                         u8 *cmd)
2492 {
2493         int res = 0;
2494         u32 buffer_offset, parm_list_length;
2495         u8 buffer_id, mode;
2496
2497         parm_list_length = get_unaligned_be24(&cmd[6]);
2498         if (parm_list_length % BYTES_TO_DWORDS != 0) {
2499                 /* NVMe expects Firmware file to be a whole number of DWORDS */
2500                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2501                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2502                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2503                 goto out;
2504         }
2505         buffer_id = cmd[2];
2506         if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
2507                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2508                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2509                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2510                 goto out;
2511         }
2512         mode = cmd[1] & 0x1f;
2513         buffer_offset = get_unaligned_be24(&cmd[3]);
2514
2515         switch (mode) {
2516         case DOWNLOAD_SAVE_ACTIVATE:
2517                 res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
2518                                                 parm_list_length, buffer_offset,
2519                                                 buffer_id);
2520                 if (res)
2521                         goto out;
2522                 res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
2523                 break;
2524         case DOWNLOAD_SAVE_DEFER_ACTIVATE:
2525                 res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
2526                                                 parm_list_length, buffer_offset,
2527                                                 buffer_id);
2528                 break;
2529         case ACTIVATE_DEFERRED_MICROCODE:
2530                 res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
2531                 break;
2532         default:
2533                 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2534                                         ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2535                                         SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2536                 break;
2537         }
2538
2539  out:
2540         return res;
2541 }
2542
2543 struct scsi_unmap_blk_desc {
2544         __be64  slba;
2545         __be32  nlb;
2546         u32     resv;
2547 };
2548
2549 struct scsi_unmap_parm_list {
2550         __be16  unmap_data_len;
2551         __be16  unmap_blk_desc_data_len;
2552         u32     resv;
2553         struct scsi_unmap_blk_desc desc[0];
2554 };
2555
2556 static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2557                                                         u8 *cmd)
2558 {
2559         struct nvme_dev *dev = ns->dev;
2560         struct scsi_unmap_parm_list *plist;
2561         struct nvme_dsm_range *range;
2562         struct nvme_command c;
2563         int i, nvme_sc, res = -ENOMEM;
2564         u16 ndesc, list_len;
2565         dma_addr_t dma_addr;
2566
2567         list_len = get_unaligned_be16(&cmd[7]);
2568         if (!list_len)
2569                 return -EINVAL;
2570
2571         plist = kmalloc(list_len, GFP_KERNEL);
2572         if (!plist)
2573                 return -ENOMEM;
2574
2575         res = nvme_trans_copy_from_user(hdr, plist, list_len);
2576         if (res)
2577                 goto out;
2578
2579         ndesc = be16_to_cpu(plist->unmap_blk_desc_data_len) >> 4;
2580         if (!ndesc || ndesc > 256) {
2581                 res = -EINVAL;
2582                 goto out;
2583         }
2584
2585         range = dma_alloc_coherent(dev->dev, ndesc * sizeof(*range),
2586                                                         &dma_addr, GFP_KERNEL);
2587         if (!range)
2588                 goto out;
2589
2590         for (i = 0; i < ndesc; i++) {
2591                 range[i].nlb = cpu_to_le32(be32_to_cpu(plist->desc[i].nlb));
2592                 range[i].slba = cpu_to_le64(be64_to_cpu(plist->desc[i].slba));
2593                 range[i].cattr = 0;
2594         }
2595
2596         memset(&c, 0, sizeof(c));
2597         c.dsm.opcode = nvme_cmd_dsm;
2598         c.dsm.nsid = cpu_to_le32(ns->ns_id);
2599         c.dsm.prp1 = cpu_to_le64(dma_addr);
2600         c.dsm.nr = cpu_to_le32(ndesc - 1);
2601         c.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
2602
2603         nvme_sc = nvme_submit_sync_cmd(ns->queue, &c);
2604         res = nvme_trans_status_code(hdr, nvme_sc);
2605
2606         dma_free_coherent(dev->dev, ndesc * sizeof(*range), range, dma_addr);
2607  out:
2608         kfree(plist);
2609         return res;
2610 }
2611
2612 static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
2613 {
2614         u8 cmd[BLK_MAX_CDB];
2615         int retcode;
2616         unsigned int opcode;
2617
2618         if (hdr->cmdp == NULL)
2619                 return -EMSGSIZE;
2620         if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len))
2621                 return -EFAULT;
2622
2623         /*
2624          * Prime the hdr with good status for scsi commands that don't require
2625          * an nvme command for translation.
2626          */
2627         retcode = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
2628         if (retcode)
2629                 return retcode;
2630
2631         opcode = cmd[0];
2632
2633         switch (opcode) {
2634         case READ_6:
2635         case READ_10:
2636         case READ_12:
2637         case READ_16:
2638                 retcode = nvme_trans_io(ns, hdr, 0, cmd);
2639                 break;
2640         case WRITE_6:
2641         case WRITE_10:
2642         case WRITE_12:
2643         case WRITE_16:
2644                 retcode = nvme_trans_io(ns, hdr, 1, cmd);
2645                 break;
2646         case INQUIRY:
2647                 retcode = nvme_trans_inquiry(ns, hdr, cmd);
2648                 break;
2649         case LOG_SENSE:
2650                 retcode = nvme_trans_log_sense(ns, hdr, cmd);
2651                 break;
2652         case MODE_SELECT:
2653         case MODE_SELECT_10:
2654                 retcode = nvme_trans_mode_select(ns, hdr, cmd);
2655                 break;
2656         case MODE_SENSE:
2657         case MODE_SENSE_10:
2658                 retcode = nvme_trans_mode_sense(ns, hdr, cmd);
2659                 break;
2660         case READ_CAPACITY:
2661                 retcode = nvme_trans_read_capacity(ns, hdr, cmd, 0);
2662                 break;
2663         case SERVICE_ACTION_IN_16:
2664                 switch (cmd[1]) {
2665                 case SAI_READ_CAPACITY_16:
2666                         retcode = nvme_trans_read_capacity(ns, hdr, cmd, 1);
2667                         break;
2668                 default:
2669                         goto out;
2670                 }
2671                 break;
2672         case REPORT_LUNS:
2673                 retcode = nvme_trans_report_luns(ns, hdr, cmd);
2674                 break;
2675         case REQUEST_SENSE:
2676                 retcode = nvme_trans_request_sense(ns, hdr, cmd);
2677                 break;
2678         case SECURITY_PROTOCOL_IN:
2679         case SECURITY_PROTOCOL_OUT:
2680                 retcode = nvme_trans_security_protocol(ns, hdr, cmd);
2681                 break;
2682         case START_STOP:
2683                 retcode = nvme_trans_start_stop(ns, hdr, cmd);
2684                 break;
2685         case SYNCHRONIZE_CACHE:
2686                 retcode = nvme_trans_synchronize_cache(ns, hdr, cmd);
2687                 break;
2688         case FORMAT_UNIT:
2689                 retcode = nvme_trans_format_unit(ns, hdr, cmd);
2690                 break;
2691         case TEST_UNIT_READY:
2692                 retcode = nvme_trans_test_unit_ready(ns, hdr, cmd);
2693                 break;
2694         case WRITE_BUFFER:
2695                 retcode = nvme_trans_write_buffer(ns, hdr, cmd);
2696                 break;
2697         case UNMAP:
2698                 retcode = nvme_trans_unmap(ns, hdr, cmd);
2699                 break;
2700         default:
2701  out:
2702                 retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2703                                 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2704                                 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2705                 break;
2706         }
2707         return retcode;
2708 }
2709
2710 int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
2711 {
2712         struct sg_io_hdr hdr;
2713         int retcode;
2714
2715         if (!capable(CAP_SYS_ADMIN))
2716                 return -EACCES;
2717         if (copy_from_user(&hdr, u_hdr, sizeof(hdr)))
2718                 return -EFAULT;
2719         if (hdr.interface_id != 'S')
2720                 return -EINVAL;
2721         if (hdr.cmd_len > BLK_MAX_CDB)
2722                 return -EINVAL;
2723
2724         /*
2725          * A positive return code means a NVMe status, which has been
2726          * translated to sense data.
2727          */
2728         retcode = nvme_scsi_translate(ns, &hdr);
2729         if (retcode < 0)
2730                 return retcode;
2731         if (copy_to_user(u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
2732                 return -EFAULT;
2733         return 0;
2734 }
2735
2736 int nvme_sg_get_version_num(int __user *ip)
2737 {
2738         return put_user(sg_version_num, ip);
2739 }