]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
ASoC: rt286: Constify dmi_system_id table
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN   \
101                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME      "-"
106
107 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX    64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX  64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING    (1<<0)
118 #define RBD_FEATURE_STRIPINGV2  (1<<1)
119 #define RBD_FEATURES_ALL \
120             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
125
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN            32
133 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139         /* These six fields never change for a given rbd image */
140         char *object_prefix;
141         __u8 obj_order;
142         __u8 crypt_type;
143         __u8 comp_type;
144         u64 stripe_unit;
145         u64 stripe_count;
146         u64 features;           /* Might be changeable someday? */
147
148         /* The remaining fields need to be updated occasionally */
149         u64 image_size;
150         struct ceph_snap_context *snapc;
151         char *snap_names;       /* format 1 only */
152         u64 *snap_sizes;        /* format 1 only */
153 };
154
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181         u64             pool_id;
182         const char      *pool_name;
183
184         const char      *image_id;
185         const char      *image_name;
186
187         u64             snap_id;
188         const char      *snap_name;
189
190         struct kref     kref;
191 };
192
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197         struct ceph_client      *client;
198         struct kref             kref;
199         struct list_head        node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215         OBJ_OP_WRITE,
216         OBJ_OP_READ,
217         OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
222         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
223         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
224         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228         const char              *object_name;
229         u64                     offset;         /* object start byte */
230         u64                     length;         /* bytes from offset */
231         unsigned long           flags;
232
233         /*
234          * An object request associated with an image will have its
235          * img_data flag set; a standalone object request will not.
236          *
237          * A standalone object request will have which == BAD_WHICH
238          * and a null obj_request pointer.
239          *
240          * An object request initiated in support of a layered image
241          * object (to check for its existence before a write) will
242          * have which == BAD_WHICH and a non-null obj_request pointer.
243          *
244          * Finally, an object request for rbd image data will have
245          * which != BAD_WHICH, and will have a non-null img_request
246          * pointer.  The value of which will be in the range
247          * 0..(img_request->obj_request_count-1).
248          */
249         union {
250                 struct rbd_obj_request  *obj_request;   /* STAT op */
251                 struct {
252                         struct rbd_img_request  *img_request;
253                         u64                     img_offset;
254                         /* links for img_request->obj_requests list */
255                         struct list_head        links;
256                 };
257         };
258         u32                     which;          /* posn image request list */
259
260         enum obj_request_type   type;
261         union {
262                 struct bio      *bio_list;
263                 struct {
264                         struct page     **pages;
265                         u32             page_count;
266                 };
267         };
268         struct page             **copyup_pages;
269         u32                     copyup_page_count;
270
271         struct ceph_osd_request *osd_req;
272
273         u64                     xferred;        /* bytes transferred */
274         int                     result;
275
276         rbd_obj_callback_t      callback;
277         struct completion       completion;
278
279         struct kref             kref;
280 };
281
282 enum img_req_flags {
283         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
284         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
285         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
286         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290         struct rbd_device       *rbd_dev;
291         u64                     offset; /* starting image byte offset */
292         u64                     length; /* byte count from offset */
293         unsigned long           flags;
294         union {
295                 u64                     snap_id;        /* for reads */
296                 struct ceph_snap_context *snapc;        /* for writes */
297         };
298         union {
299                 struct request          *rq;            /* block request */
300                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
301         };
302         struct page             **copyup_pages;
303         u32                     copyup_page_count;
304         spinlock_t              completion_lock;/* protects next_completion */
305         u32                     next_completion;
306         rbd_img_callback_t      callback;
307         u64                     xferred;/* aggregate bytes transferred */
308         int                     result; /* first nonzero obj_request result */
309
310         u32                     obj_request_count;
311         struct list_head        obj_requests;   /* rbd_obj_request structs */
312
313         struct kref             kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326         bool                    read_only;
327 };
328
329 /*
330  * a single device
331  */
332 struct rbd_device {
333         int                     dev_id;         /* blkdev unique id */
334
335         int                     major;          /* blkdev assigned major */
336         int                     minor;
337         struct gendisk          *disk;          /* blkdev's gendisk and rq */
338
339         u32                     image_format;   /* Either 1 or 2 */
340         struct rbd_client       *rbd_client;
341
342         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344         spinlock_t              lock;           /* queue, flags, open_count */
345
346         struct rbd_image_header header;
347         unsigned long           flags;          /* possibly lock protected */
348         struct rbd_spec         *spec;
349         struct rbd_options      *opts;
350
351         char                    *header_name;
352
353         struct ceph_file_layout layout;
354
355         struct ceph_osd_event   *watch_event;
356         struct rbd_obj_request  *watch_request;
357
358         struct rbd_spec         *parent_spec;
359         u64                     parent_overlap;
360         atomic_t                parent_ref;
361         struct rbd_device       *parent;
362
363         /* Block layer tags. */
364         struct blk_mq_tag_set   tag_set;
365
366         /* protects updating the header */
367         struct rw_semaphore     header_rwsem;
368
369         struct rbd_mapping      mapping;
370
371         struct list_head        node;
372
373         /* sysfs related */
374         struct device           dev;
375         unsigned long           open_count;     /* protected by lock */
376 };
377
378 /*
379  * Flag bits for rbd_dev->flags.  If atomicity is required,
380  * rbd_dev->lock is used to protect access.
381  *
382  * Currently, only the "removing" flag (which is coupled with the
383  * "open_count" field) requires atomic access.
384  */
385 enum rbd_dev_flags {
386         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
387         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
388 };
389
390 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
391
392 static LIST_HEAD(rbd_dev_list);    /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394
395 static LIST_HEAD(rbd_client_list);              /* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397
398 /* Slab caches for frequently-allocated structures */
399
400 static struct kmem_cache        *rbd_img_request_cache;
401 static struct kmem_cache        *rbd_obj_request_cache;
402 static struct kmem_cache        *rbd_segment_name_cache;
403
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406
407 static struct workqueue_struct *rbd_wq;
408
409 /*
410  * Default to false for now, as single-major requires >= 0.75 version of
411  * userspace rbd utility.
412  */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418
419 static void rbd_dev_device_release(struct device *dev);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422                        size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424                           size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426                                     size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428                                        size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448         &bus_attr_add.attr,
449         &bus_attr_remove.attr,
450         &bus_attr_add_single_major.attr,
451         &bus_attr_remove_single_major.attr,
452         NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456                                   struct attribute *attr, int index)
457 {
458         if (!single_major &&
459             (attr == &bus_attr_add_single_major.attr ||
460              attr == &bus_attr_remove_single_major.attr))
461                 return 0;
462
463         return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467         .attrs = rbd_bus_attrs,
468         .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473         .name           = "rbd",
474         .bus_groups     = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482         .init_name =    "rbd",
483         .release =      rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489         struct va_format vaf;
490         va_list args;
491
492         va_start(args, fmt);
493         vaf.fmt = fmt;
494         vaf.va = &args;
495
496         if (!rbd_dev)
497                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498         else if (rbd_dev->disk)
499                 printk(KERN_WARNING "%s: %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_name)
502                 printk(KERN_WARNING "%s: image %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504         else if (rbd_dev->spec && rbd_dev->spec->image_id)
505                 printk(KERN_WARNING "%s: id %s: %pV\n",
506                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507         else    /* punt */
508                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509                         RBD_DRV_NAME, rbd_dev, &vaf);
510         va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)                                                \
515                 if (unlikely(!(expr))) {                                \
516                         printk(KERN_ERR "\nAssertion failure in %s() "  \
517                                                 "at line %d:\n\n"       \
518                                         "\trbd_assert(%s);\n\n",        \
519                                         __func__, __LINE__, #expr);     \
520                         BUG();                                          \
521                 }
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)      ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
527 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
528 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
529
530 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
531 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
532 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
533 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
534 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
535                                         u64 snap_id);
536 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
537                                 u8 *order, u64 *snap_size);
538 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
539                 u64 *snap_features);
540 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545         bool removing = false;
546
547         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548                 return -EROFS;
549
550         spin_lock_irq(&rbd_dev->lock);
551         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552                 removing = true;
553         else
554                 rbd_dev->open_count++;
555         spin_unlock_irq(&rbd_dev->lock);
556         if (removing)
557                 return -ENOENT;
558
559         (void) get_device(&rbd_dev->dev);
560
561         return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566         struct rbd_device *rbd_dev = disk->private_data;
567         unsigned long open_count_before;
568
569         spin_lock_irq(&rbd_dev->lock);
570         open_count_before = rbd_dev->open_count--;
571         spin_unlock_irq(&rbd_dev->lock);
572         rbd_assert(open_count_before > 0);
573
574         put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579         int ret = 0;
580         int val;
581         bool ro;
582         bool ro_changed = false;
583
584         /* get_user() may sleep, so call it before taking rbd_dev->lock */
585         if (get_user(val, (int __user *)(arg)))
586                 return -EFAULT;
587
588         ro = val ? true : false;
589         /* Snapshot doesn't allow to write*/
590         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591                 return -EROFS;
592
593         spin_lock_irq(&rbd_dev->lock);
594         /* prevent others open this device */
595         if (rbd_dev->open_count > 1) {
596                 ret = -EBUSY;
597                 goto out;
598         }
599
600         if (rbd_dev->mapping.read_only != ro) {
601                 rbd_dev->mapping.read_only = ro;
602                 ro_changed = true;
603         }
604
605 out:
606         spin_unlock_irq(&rbd_dev->lock);
607         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608         if (ret == 0 && ro_changed)
609                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611         return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615                         unsigned int cmd, unsigned long arg)
616 {
617         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618         int ret = 0;
619
620         switch (cmd) {
621         case BLKROSET:
622                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623                 break;
624         default:
625                 ret = -ENOTTY;
626         }
627
628         return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633                                 unsigned int cmd, unsigned long arg)
634 {
635         return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640         .owner                  = THIS_MODULE,
641         .open                   = rbd_open,
642         .release                = rbd_release,
643         .ioctl                  = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645         .compat_ioctl           = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655         struct rbd_client *rbdc;
656         int ret = -ENOMEM;
657
658         dout("%s:\n", __func__);
659         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660         if (!rbdc)
661                 goto out_opt;
662
663         kref_init(&rbdc->kref);
664         INIT_LIST_HEAD(&rbdc->node);
665
666         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667         if (IS_ERR(rbdc->client))
668                 goto out_rbdc;
669         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671         ret = ceph_open_session(rbdc->client);
672         if (ret < 0)
673                 goto out_client;
674
675         spin_lock(&rbd_client_list_lock);
676         list_add_tail(&rbdc->node, &rbd_client_list);
677         spin_unlock(&rbd_client_list_lock);
678
679         dout("%s: rbdc %p\n", __func__, rbdc);
680
681         return rbdc;
682 out_client:
683         ceph_destroy_client(rbdc->client);
684 out_rbdc:
685         kfree(rbdc);
686 out_opt:
687         if (ceph_opts)
688                 ceph_destroy_options(ceph_opts);
689         dout("%s: error %d\n", __func__, ret);
690
691         return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696         kref_get(&rbdc->kref);
697
698         return rbdc;
699 }
700
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *client_node;
708         bool found = false;
709
710         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711                 return NULL;
712
713         spin_lock(&rbd_client_list_lock);
714         list_for_each_entry(client_node, &rbd_client_list, node) {
715                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716                         __rbd_get_client(client_node);
717
718                         found = true;
719                         break;
720                 }
721         }
722         spin_unlock(&rbd_client_list_lock);
723
724         return found ? client_node : NULL;
725 }
726
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731         Opt_queue_depth,
732         Opt_last_int,
733         /* int args above */
734         Opt_last_string,
735         /* string args above */
736         Opt_read_only,
737         Opt_read_write,
738         Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742         {Opt_queue_depth, "queue_depth=%d"},
743         /* int args above */
744         /* string args above */
745         {Opt_read_only, "read_only"},
746         {Opt_read_only, "ro"},          /* Alternate spelling */
747         {Opt_read_write, "read_write"},
748         {Opt_read_write, "rw"},         /* Alternate spelling */
749         {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753         int     queue_depth;
754         bool    read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT   false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762         struct rbd_options *rbd_opts = private;
763         substring_t argstr[MAX_OPT_ARGS];
764         int token, intval, ret;
765
766         token = match_token(c, rbd_opts_tokens, argstr);
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) at '%s'\n", c);
771                         return ret;
772                 }
773                 dout("got int token %d val %d\n", token, intval);
774         } else if (token > Opt_last_int && token < Opt_last_string) {
775                 dout("got string token %d val %s\n", token, argstr[0].from);
776         } else {
777                 dout("got token %d\n", token);
778         }
779
780         switch (token) {
781         case Opt_queue_depth:
782                 if (intval < 1) {
783                         pr_err("queue_depth out of range\n");
784                         return -EINVAL;
785                 }
786                 rbd_opts->queue_depth = intval;
787                 break;
788         case Opt_read_only:
789                 rbd_opts->read_only = true;
790                 break;
791         case Opt_read_write:
792                 rbd_opts->read_only = false;
793                 break;
794         default:
795                 /* libceph prints "bad option" msg */
796                 return -EINVAL;
797         }
798
799         return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804         switch (op_type) {
805         case OBJ_OP_READ:
806                 return "read";
807         case OBJ_OP_WRITE:
808                 return "write";
809         case OBJ_OP_DISCARD:
810                 return "discard";
811         default:
812                 return "???";
813         }
814 }
815
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823         struct rbd_client *rbdc;
824
825         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826         rbdc = rbd_client_find(ceph_opts);
827         if (rbdc)       /* using an existing client */
828                 ceph_destroy_options(ceph_opts);
829         else
830                 rbdc = rbd_client_create(ceph_opts);
831         mutex_unlock(&client_mutex);
832
833         return rbdc;
834 }
835
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845         dout("%s: rbdc %p\n", __func__, rbdc);
846         spin_lock(&rbd_client_list_lock);
847         list_del(&rbdc->node);
848         spin_unlock(&rbd_client_list_lock);
849
850         ceph_destroy_client(rbdc->client);
851         kfree(rbdc);
852 }
853
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860         if (rbdc)
861                 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866         return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871         size_t size;
872         u32 snap_count;
873
874         /* The header has to start with the magic rbd header text */
875         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876                 return false;
877
878         /* The bio layer requires at least sector-sized I/O */
879
880         if (ondisk->options.order < SECTOR_SHIFT)
881                 return false;
882
883         /* If we use u64 in a few spots we may be able to loosen this */
884
885         if (ondisk->options.order > 8 * sizeof (int) - 1)
886                 return false;
887
888         /*
889          * The size of a snapshot header has to fit in a size_t, and
890          * that limits the number of snapshots.
891          */
892         snap_count = le32_to_cpu(ondisk->snap_count);
893         size = SIZE_MAX - sizeof (struct ceph_snap_context);
894         if (snap_count > size / sizeof (__le64))
895                 return false;
896
897         /*
898          * Not only that, but the size of the entire the snapshot
899          * header must also be representable in a size_t.
900          */
901         size -= snap_count * sizeof (__le64);
902         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903                 return false;
904
905         return true;
906 }
907
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913                                  struct rbd_image_header_ondisk *ondisk)
914 {
915         struct rbd_image_header *header = &rbd_dev->header;
916         bool first_time = header->object_prefix == NULL;
917         struct ceph_snap_context *snapc;
918         char *object_prefix = NULL;
919         char *snap_names = NULL;
920         u64 *snap_sizes = NULL;
921         u32 snap_count;
922         size_t size;
923         int ret = -ENOMEM;
924         u32 i;
925
926         /* Allocate this now to avoid having to handle failure below */
927
928         if (first_time) {
929                 size_t len;
930
931                 len = strnlen(ondisk->object_prefix,
932                                 sizeof (ondisk->object_prefix));
933                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934                 if (!object_prefix)
935                         return -ENOMEM;
936                 memcpy(object_prefix, ondisk->object_prefix, len);
937                 object_prefix[len] = '\0';
938         }
939
940         /* Allocate the snapshot context and fill it in */
941
942         snap_count = le32_to_cpu(ondisk->snap_count);
943         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944         if (!snapc)
945                 goto out_err;
946         snapc->seq = le64_to_cpu(ondisk->snap_seq);
947         if (snap_count) {
948                 struct rbd_image_snap_ondisk *snaps;
949                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951                 /* We'll keep a copy of the snapshot names... */
952
953                 if (snap_names_len > (u64)SIZE_MAX)
954                         goto out_2big;
955                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956                 if (!snap_names)
957                         goto out_err;
958
959                 /* ...as well as the array of their sizes. */
960
961                 size = snap_count * sizeof (*header->snap_sizes);
962                 snap_sizes = kmalloc(size, GFP_KERNEL);
963                 if (!snap_sizes)
964                         goto out_err;
965
966                 /*
967                  * Copy the names, and fill in each snapshot's id
968                  * and size.
969                  *
970                  * Note that rbd_dev_v1_header_info() guarantees the
971                  * ondisk buffer we're working with has
972                  * snap_names_len bytes beyond the end of the
973                  * snapshot id array, this memcpy() is safe.
974                  */
975                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976                 snaps = ondisk->snaps;
977                 for (i = 0; i < snap_count; i++) {
978                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980                 }
981         }
982
983         /* We won't fail any more, fill in the header */
984
985         if (first_time) {
986                 header->object_prefix = object_prefix;
987                 header->obj_order = ondisk->options.order;
988                 header->crypt_type = ondisk->options.crypt_type;
989                 header->comp_type = ondisk->options.comp_type;
990                 /* The rest aren't used for format 1 images */
991                 header->stripe_unit = 0;
992                 header->stripe_count = 0;
993                 header->features = 0;
994         } else {
995                 ceph_put_snap_context(header->snapc);
996                 kfree(header->snap_names);
997                 kfree(header->snap_sizes);
998         }
999
1000         /* The remaining fields always get updated (when we refresh) */
1001
1002         header->image_size = le64_to_cpu(ondisk->image_size);
1003         header->snapc = snapc;
1004         header->snap_names = snap_names;
1005         header->snap_sizes = snap_sizes;
1006
1007         return 0;
1008 out_2big:
1009         ret = -EIO;
1010 out_err:
1011         kfree(snap_sizes);
1012         kfree(snap_names);
1013         ceph_put_snap_context(snapc);
1014         kfree(object_prefix);
1015
1016         return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021         const char *snap_name;
1022
1023         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025         /* Skip over names until we find the one we are looking for */
1026
1027         snap_name = rbd_dev->header.snap_names;
1028         while (which--)
1029                 snap_name += strlen(snap_name) + 1;
1030
1031         return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040         u64 snap_id1 = *(u64 *)s1;
1041         u64 snap_id2 = *(u64 *)s2;
1042
1043         if (snap_id1 < snap_id2)
1044                 return 1;
1045         return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061         u64 *found;
1062
1063         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064                                 sizeof (snap_id), snapid_compare_reverse);
1065
1066         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070                                         u64 snap_id)
1071 {
1072         u32 which;
1073         const char *snap_name;
1074
1075         which = rbd_dev_snap_index(rbd_dev, snap_id);
1076         if (which == BAD_SNAP_INDEX)
1077                 return ERR_PTR(-ENOENT);
1078
1079         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085         if (snap_id == CEPH_NOSNAP)
1086                 return RBD_SNAP_HEAD_NAME;
1087
1088         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089         if (rbd_dev->image_format == 1)
1090                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096                                 u64 *snap_size)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_size = rbd_dev->header.image_size;
1101         } else if (rbd_dev->image_format == 1) {
1102                 u32 which;
1103
1104                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105                 if (which == BAD_SNAP_INDEX)
1106                         return -ENOENT;
1107
1108                 *snap_size = rbd_dev->header.snap_sizes[which];
1109         } else {
1110                 u64 size = 0;
1111                 int ret;
1112
1113                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114                 if (ret)
1115                         return ret;
1116
1117                 *snap_size = size;
1118         }
1119         return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123                         u64 *snap_features)
1124 {
1125         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126         if (snap_id == CEPH_NOSNAP) {
1127                 *snap_features = rbd_dev->header.features;
1128         } else if (rbd_dev->image_format == 1) {
1129                 *snap_features = 0;     /* No features for format 1 */
1130         } else {
1131                 u64 features = 0;
1132                 int ret;
1133
1134                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135                 if (ret)
1136                         return ret;
1137
1138                 *snap_features = features;
1139         }
1140         return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145         u64 snap_id = rbd_dev->spec->snap_id;
1146         u64 size = 0;
1147         u64 features = 0;
1148         int ret;
1149
1150         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151         if (ret)
1152                 return ret;
1153         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154         if (ret)
1155                 return ret;
1156
1157         rbd_dev->mapping.size = size;
1158         rbd_dev->mapping.features = features;
1159
1160         return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165         rbd_dev->mapping.size = 0;
1166         rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171         /* The explicit cast here is needed to drop the const qualifier */
1172
1173         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178         char *name;
1179         u64 segment;
1180         int ret;
1181         char *name_format;
1182
1183         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184         if (!name)
1185                 return NULL;
1186         segment = offset >> rbd_dev->header.obj_order;
1187         name_format = "%s.%012llx";
1188         if (rbd_dev->image_format == 2)
1189                 name_format = "%s.%016llx";
1190         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191                         rbd_dev->header.object_prefix, segment);
1192         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193                 pr_err("error formatting segment name for #%llu (%d)\n",
1194                         segment, ret);
1195                 rbd_segment_name_free(name);
1196                 name = NULL;
1197         }
1198
1199         return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206         return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210                                 u64 offset, u64 length)
1211 {
1212         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214         offset &= segment_size - 1;
1215
1216         rbd_assert(length <= U64_MAX - offset);
1217         if (offset + length > segment_size)
1218                 length = segment_size - offset;
1219
1220         return length;
1221 }
1222
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228         return 1 << header->obj_order;
1229 }
1230
1231 /*
1232  * bio helpers
1233  */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237         struct bio *tmp;
1238
1239         while (chain) {
1240                 tmp = chain;
1241                 chain = chain->bi_next;
1242                 bio_put(tmp);
1243         }
1244 }
1245
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251         struct bio_vec bv;
1252         struct bvec_iter iter;
1253         unsigned long flags;
1254         void *buf;
1255         int pos = 0;
1256
1257         while (chain) {
1258                 bio_for_each_segment(bv, chain, iter) {
1259                         if (pos + bv.bv_len > start_ofs) {
1260                                 int remainder = max(start_ofs - pos, 0);
1261                                 buf = bvec_kmap_irq(&bv, &flags);
1262                                 memset(buf + remainder, 0,
1263                                        bv.bv_len - remainder);
1264                                 flush_dcache_page(bv.bv_page);
1265                                 bvec_kunmap_irq(buf, &flags);
1266                         }
1267                         pos += bv.bv_len;
1268                 }
1269
1270                 chain = chain->bi_next;
1271         }
1272 }
1273
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282         struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284         rbd_assert(end > offset);
1285         rbd_assert(end - offset <= (u64)SIZE_MAX);
1286         while (offset < end) {
1287                 size_t page_offset;
1288                 size_t length;
1289                 unsigned long flags;
1290                 void *kaddr;
1291
1292                 page_offset = offset & ~PAGE_MASK;
1293                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294                 local_irq_save(flags);
1295                 kaddr = kmap_atomic(*page);
1296                 memset(kaddr + page_offset, 0, length);
1297                 flush_dcache_page(*page);
1298                 kunmap_atomic(kaddr);
1299                 local_irq_restore(flags);
1300
1301                 offset += length;
1302                 page++;
1303         }
1304 }
1305
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311                                         unsigned int offset,
1312                                         unsigned int len,
1313                                         gfp_t gfpmask)
1314 {
1315         struct bio *bio;
1316
1317         bio = bio_clone(bio_src, gfpmask);
1318         if (!bio)
1319                 return NULL;    /* ENOMEM */
1320
1321         bio_advance(bio, offset);
1322         bio->bi_iter.bi_size = len;
1323
1324         return bio;
1325 }
1326
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342                                         unsigned int *offset,
1343                                         unsigned int len,
1344                                         gfp_t gfpmask)
1345 {
1346         struct bio *bi = *bio_src;
1347         unsigned int off = *offset;
1348         struct bio *chain = NULL;
1349         struct bio **end;
1350
1351         /* Build up a chain of clone bios up to the limit */
1352
1353         if (!bi || off >= bi->bi_iter.bi_size || !len)
1354                 return NULL;            /* Nothing to clone */
1355
1356         end = &chain;
1357         while (len) {
1358                 unsigned int bi_size;
1359                 struct bio *bio;
1360
1361                 if (!bi) {
1362                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363                         goto out_err;   /* EINVAL; ran out of bio's */
1364                 }
1365                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367                 if (!bio)
1368                         goto out_err;   /* ENOMEM */
1369
1370                 *end = bio;
1371                 end = &bio->bi_next;
1372
1373                 off += bi_size;
1374                 if (off == bi->bi_iter.bi_size) {
1375                         bi = bi->bi_next;
1376                         off = 0;
1377                 }
1378                 len -= bi_size;
1379         }
1380         *bio_src = bi;
1381         *offset = off;
1382
1383         return chain;
1384 out_err:
1385         bio_chain_put(chain);
1386
1387         return NULL;
1388 }
1389
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398                 struct rbd_device *rbd_dev;
1399
1400                 rbd_dev = obj_request->img_request->rbd_dev;
1401                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402                         obj_request);
1403         }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408         smp_mb();
1409         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415                 struct rbd_device *rbd_dev = NULL;
1416
1417                 if (obj_request_img_data_test(obj_request))
1418                         rbd_dev = obj_request->img_request->rbd_dev;
1419                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420                         obj_request);
1421         }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426         smp_mb();
1427         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441                                 bool exists)
1442 {
1443         if (exists)
1444                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446         smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451         smp_mb();
1452         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457         smp_mb();
1458         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465         return obj_request->img_offset <
1466             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472                 atomic_read(&obj_request->kref.refcount));
1473         kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request != NULL);
1480         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481                 atomic_read(&obj_request->kref.refcount));
1482         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487         dout("%s: img %p (was %d)\n", __func__, img_request,
1488              atomic_read(&img_request->kref.refcount));
1489         kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497         rbd_assert(img_request != NULL);
1498         dout("%s: img %p (was %d)\n", __func__, img_request,
1499                 atomic_read(&img_request->kref.refcount));
1500         if (img_request_child_test(img_request))
1501                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502         else
1503                 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507                                         struct rbd_obj_request *obj_request)
1508 {
1509         rbd_assert(obj_request->img_request == NULL);
1510
1511         /* Image request now owns object's original reference */
1512         obj_request->img_request = img_request;
1513         obj_request->which = img_request->obj_request_count;
1514         rbd_assert(!obj_request_img_data_test(obj_request));
1515         obj_request_img_data_set(obj_request);
1516         rbd_assert(obj_request->which != BAD_WHICH);
1517         img_request->obj_request_count++;
1518         list_add_tail(&obj_request->links, &img_request->obj_requests);
1519         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520                 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524                                         struct rbd_obj_request *obj_request)
1525 {
1526         rbd_assert(obj_request->which != BAD_WHICH);
1527
1528         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529                 obj_request->which);
1530         list_del(&obj_request->links);
1531         rbd_assert(img_request->obj_request_count > 0);
1532         img_request->obj_request_count--;
1533         rbd_assert(obj_request->which == img_request->obj_request_count);
1534         obj_request->which = BAD_WHICH;
1535         rbd_assert(obj_request_img_data_test(obj_request));
1536         rbd_assert(obj_request->img_request == img_request);
1537         obj_request->img_request = NULL;
1538         obj_request->callback = NULL;
1539         rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544         switch (type) {
1545         case OBJ_REQUEST_NODATA:
1546         case OBJ_REQUEST_BIO:
1547         case OBJ_REQUEST_PAGES:
1548                 return true;
1549         default:
1550                 return false;
1551         }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555                                 struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s %p\n", __func__, obj_request);
1558         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563         dout("%s %p\n", __func__, obj_request);
1564         ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574                                   unsigned long timeout)
1575 {
1576         long ret;
1577
1578         dout("%s %p\n", __func__, obj_request);
1579         ret = wait_for_completion_interruptible_timeout(
1580                                         &obj_request->completion,
1581                                         ceph_timeout_jiffies(timeout));
1582         if (ret <= 0) {
1583                 if (ret == 0)
1584                         ret = -ETIMEDOUT;
1585                 rbd_obj_request_end(obj_request);
1586         } else {
1587                 ret = 0;
1588         }
1589
1590         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591         return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596         return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600                                         unsigned long timeout)
1601 {
1602         return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608         dout("%s: img %p\n", __func__, img_request);
1609
1610         /*
1611          * If no error occurred, compute the aggregate transfer
1612          * count for the image request.  We could instead use
1613          * atomic64_cmpxchg() to update it as each object request
1614          * completes; not clear which way is better off hand.
1615          */
1616         if (!img_request->result) {
1617                 struct rbd_obj_request *obj_request;
1618                 u64 xferred = 0;
1619
1620                 for_each_obj_request(img_request, obj_request)
1621                         xferred += obj_request->xferred;
1622                 img_request->xferred = xferred;
1623         }
1624
1625         if (img_request->callback)
1626                 img_request->callback(img_request);
1627         else
1628                 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638         set_bit(IMG_REQ_WRITE, &img_request->flags);
1639         smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644         smp_mb();
1645         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654         smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659         smp_mb();
1660         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665         set_bit(IMG_REQ_CHILD, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672         smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677         smp_mb();
1678         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684         smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690         smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695         smp_mb();
1696         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702         if (img_request_write_test(img_request))
1703                 return OBJ_OP_WRITE;
1704         else if (img_request_discard_test(img_request))
1705                 return OBJ_OP_DISCARD;
1706         else
1707                 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713         u64 xferred = obj_request->xferred;
1714         u64 length = obj_request->length;
1715
1716         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717                 obj_request, obj_request->img_request, obj_request->result,
1718                 xferred, length);
1719         /*
1720          * ENOENT means a hole in the image.  We zero-fill the entire
1721          * length of the request.  A short read also implies zero-fill
1722          * to the end of the request.  An error requires the whole
1723          * length of the request to be reported finished with an error
1724          * to the block layer.  In each case we update the xferred
1725          * count to indicate the whole request was satisfied.
1726          */
1727         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728         if (obj_request->result == -ENOENT) {
1729                 if (obj_request->type == OBJ_REQUEST_BIO)
1730                         zero_bio_chain(obj_request->bio_list, 0);
1731                 else
1732                         zero_pages(obj_request->pages, 0, length);
1733                 obj_request->result = 0;
1734         } else if (xferred < length && !obj_request->result) {
1735                 if (obj_request->type == OBJ_REQUEST_BIO)
1736                         zero_bio_chain(obj_request->bio_list, xferred);
1737                 else
1738                         zero_pages(obj_request->pages, xferred, length);
1739         }
1740         obj_request->xferred = length;
1741         obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746         dout("%s: obj %p cb %p\n", __func__, obj_request,
1747                 obj_request->callback);
1748         if (obj_request->callback)
1749                 obj_request->callback(obj_request);
1750         else
1751                 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756         dout("%s: obj %p\n", __func__, obj_request);
1757         obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762         struct rbd_img_request *img_request = NULL;
1763         struct rbd_device *rbd_dev = NULL;
1764         bool layered = false;
1765
1766         if (obj_request_img_data_test(obj_request)) {
1767                 img_request = obj_request->img_request;
1768                 layered = img_request && img_request_layered_test(img_request);
1769                 rbd_dev = img_request->rbd_dev;
1770         }
1771
1772         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773                 obj_request, img_request, obj_request->result,
1774                 obj_request->xferred, obj_request->length);
1775         if (layered && obj_request->result == -ENOENT &&
1776                         obj_request->img_offset < rbd_dev->parent_overlap)
1777                 rbd_img_parent_read(obj_request);
1778         else if (img_request)
1779                 rbd_img_obj_request_read_callback(obj_request);
1780         else
1781                 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787                 obj_request->result, obj_request->length);
1788         /*
1789          * There is no such thing as a successful short write.  Set
1790          * it to our originally-requested length.
1791          */
1792         obj_request->xferred = obj_request->length;
1793         obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799                 obj_request->result, obj_request->length);
1800         /*
1801          * There is no such thing as a successful short discard.  Set
1802          * it to our originally-requested length.
1803          */
1804         obj_request->xferred = obj_request->length;
1805         /* discarding a non-existent object is not a problem */
1806         if (obj_request->result == -ENOENT)
1807                 obj_request->result = 0;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817         dout("%s: obj %p\n", __func__, obj_request);
1818         obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1822                                 struct ceph_msg *msg)
1823 {
1824         struct rbd_obj_request *obj_request = osd_req->r_priv;
1825         u16 opcode;
1826
1827         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1828         rbd_assert(osd_req == obj_request->osd_req);
1829         if (obj_request_img_data_test(obj_request)) {
1830                 rbd_assert(obj_request->img_request);
1831                 rbd_assert(obj_request->which != BAD_WHICH);
1832         } else {
1833                 rbd_assert(obj_request->which == BAD_WHICH);
1834         }
1835
1836         if (osd_req->r_result < 0)
1837                 obj_request->result = osd_req->r_result;
1838
1839         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1840
1841         /*
1842          * We support a 64-bit length, but ultimately it has to be
1843          * passed to the block layer, which just supports a 32-bit
1844          * length field.
1845          */
1846         obj_request->xferred = osd_req->r_reply_op_len[0];
1847         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1848
1849         opcode = osd_req->r_ops[0].op;
1850         switch (opcode) {
1851         case CEPH_OSD_OP_READ:
1852                 rbd_osd_read_callback(obj_request);
1853                 break;
1854         case CEPH_OSD_OP_SETALLOCHINT:
1855                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1856                 /* fall through */
1857         case CEPH_OSD_OP_WRITE:
1858                 rbd_osd_write_callback(obj_request);
1859                 break;
1860         case CEPH_OSD_OP_STAT:
1861                 rbd_osd_stat_callback(obj_request);
1862                 break;
1863         case CEPH_OSD_OP_DELETE:
1864         case CEPH_OSD_OP_TRUNCATE:
1865         case CEPH_OSD_OP_ZERO:
1866                 rbd_osd_discard_callback(obj_request);
1867                 break;
1868         case CEPH_OSD_OP_CALL:
1869         case CEPH_OSD_OP_NOTIFY_ACK:
1870         case CEPH_OSD_OP_WATCH:
1871                 rbd_osd_trivial_callback(obj_request);
1872                 break;
1873         default:
1874                 rbd_warn(NULL, "%s: unsupported op %hu",
1875                         obj_request->object_name, (unsigned short) opcode);
1876                 break;
1877         }
1878
1879         if (obj_request_done_test(obj_request))
1880                 rbd_obj_request_complete(obj_request);
1881 }
1882
1883 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1884 {
1885         struct rbd_img_request *img_request = obj_request->img_request;
1886         struct ceph_osd_request *osd_req = obj_request->osd_req;
1887         u64 snap_id;
1888
1889         rbd_assert(osd_req != NULL);
1890
1891         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1892         ceph_osdc_build_request(osd_req, obj_request->offset,
1893                         NULL, snap_id, NULL);
1894 }
1895
1896 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1897 {
1898         struct rbd_img_request *img_request = obj_request->img_request;
1899         struct ceph_osd_request *osd_req = obj_request->osd_req;
1900         struct ceph_snap_context *snapc;
1901         struct timespec mtime = CURRENT_TIME;
1902
1903         rbd_assert(osd_req != NULL);
1904
1905         snapc = img_request ? img_request->snapc : NULL;
1906         ceph_osdc_build_request(osd_req, obj_request->offset,
1907                         snapc, CEPH_NOSNAP, &mtime);
1908 }
1909
1910 /*
1911  * Create an osd request.  A read request has one osd op (read).
1912  * A write request has either one (watch) or two (hint+write) osd ops.
1913  * (All rbd data writes are prefixed with an allocation hint op, but
1914  * technically osd watch is a write request, hence this distinction.)
1915  */
1916 static struct ceph_osd_request *rbd_osd_req_create(
1917                                         struct rbd_device *rbd_dev,
1918                                         enum obj_operation_type op_type,
1919                                         unsigned int num_ops,
1920                                         struct rbd_obj_request *obj_request)
1921 {
1922         struct ceph_snap_context *snapc = NULL;
1923         struct ceph_osd_client *osdc;
1924         struct ceph_osd_request *osd_req;
1925
1926         if (obj_request_img_data_test(obj_request) &&
1927                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1928                 struct rbd_img_request *img_request = obj_request->img_request;
1929                 if (op_type == OBJ_OP_WRITE) {
1930                         rbd_assert(img_request_write_test(img_request));
1931                 } else {
1932                         rbd_assert(img_request_discard_test(img_request));
1933                 }
1934                 snapc = img_request->snapc;
1935         }
1936
1937         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1938
1939         /* Allocate and initialize the request, for the num_ops ops */
1940
1941         osdc = &rbd_dev->rbd_client->client->osdc;
1942         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1943                                           GFP_ATOMIC);
1944         if (!osd_req)
1945                 return NULL;    /* ENOMEM */
1946
1947         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1948                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1949         else
1950                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1951
1952         osd_req->r_callback = rbd_osd_req_callback;
1953         osd_req->r_priv = obj_request;
1954
1955         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1956         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1957
1958         return osd_req;
1959 }
1960
1961 /*
1962  * Create a copyup osd request based on the information in the object
1963  * request supplied.  A copyup request has two or three osd ops, a
1964  * copyup method call, potentially a hint op, and a write or truncate
1965  * or zero op.
1966  */
1967 static struct ceph_osd_request *
1968 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1969 {
1970         struct rbd_img_request *img_request;
1971         struct ceph_snap_context *snapc;
1972         struct rbd_device *rbd_dev;
1973         struct ceph_osd_client *osdc;
1974         struct ceph_osd_request *osd_req;
1975         int num_osd_ops = 3;
1976
1977         rbd_assert(obj_request_img_data_test(obj_request));
1978         img_request = obj_request->img_request;
1979         rbd_assert(img_request);
1980         rbd_assert(img_request_write_test(img_request) ||
1981                         img_request_discard_test(img_request));
1982
1983         if (img_request_discard_test(img_request))
1984                 num_osd_ops = 2;
1985
1986         /* Allocate and initialize the request, for all the ops */
1987
1988         snapc = img_request->snapc;
1989         rbd_dev = img_request->rbd_dev;
1990         osdc = &rbd_dev->rbd_client->client->osdc;
1991         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1992                                                 false, GFP_ATOMIC);
1993         if (!osd_req)
1994                 return NULL;    /* ENOMEM */
1995
1996         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1997         osd_req->r_callback = rbd_osd_req_callback;
1998         osd_req->r_priv = obj_request;
1999
2000         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2001         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2002
2003         return osd_req;
2004 }
2005
2006
2007 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2008 {
2009         ceph_osdc_put_request(osd_req);
2010 }
2011
2012 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2013
2014 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2015                                                 u64 offset, u64 length,
2016                                                 enum obj_request_type type)
2017 {
2018         struct rbd_obj_request *obj_request;
2019         size_t size;
2020         char *name;
2021
2022         rbd_assert(obj_request_type_valid(type));
2023
2024         size = strlen(object_name) + 1;
2025         name = kmalloc(size, GFP_NOIO);
2026         if (!name)
2027                 return NULL;
2028
2029         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2030         if (!obj_request) {
2031                 kfree(name);
2032                 return NULL;
2033         }
2034
2035         obj_request->object_name = memcpy(name, object_name, size);
2036         obj_request->offset = offset;
2037         obj_request->length = length;
2038         obj_request->flags = 0;
2039         obj_request->which = BAD_WHICH;
2040         obj_request->type = type;
2041         INIT_LIST_HEAD(&obj_request->links);
2042         init_completion(&obj_request->completion);
2043         kref_init(&obj_request->kref);
2044
2045         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2046                 offset, length, (int)type, obj_request);
2047
2048         return obj_request;
2049 }
2050
2051 static void rbd_obj_request_destroy(struct kref *kref)
2052 {
2053         struct rbd_obj_request *obj_request;
2054
2055         obj_request = container_of(kref, struct rbd_obj_request, kref);
2056
2057         dout("%s: obj %p\n", __func__, obj_request);
2058
2059         rbd_assert(obj_request->img_request == NULL);
2060         rbd_assert(obj_request->which == BAD_WHICH);
2061
2062         if (obj_request->osd_req)
2063                 rbd_osd_req_destroy(obj_request->osd_req);
2064
2065         rbd_assert(obj_request_type_valid(obj_request->type));
2066         switch (obj_request->type) {
2067         case OBJ_REQUEST_NODATA:
2068                 break;          /* Nothing to do */
2069         case OBJ_REQUEST_BIO:
2070                 if (obj_request->bio_list)
2071                         bio_chain_put(obj_request->bio_list);
2072                 break;
2073         case OBJ_REQUEST_PAGES:
2074                 if (obj_request->pages)
2075                         ceph_release_page_vector(obj_request->pages,
2076                                                 obj_request->page_count);
2077                 break;
2078         }
2079
2080         kfree(obj_request->object_name);
2081         obj_request->object_name = NULL;
2082         kmem_cache_free(rbd_obj_request_cache, obj_request);
2083 }
2084
2085 /* It's OK to call this for a device with no parent */
2086
2087 static void rbd_spec_put(struct rbd_spec *spec);
2088 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2089 {
2090         rbd_dev_remove_parent(rbd_dev);
2091         rbd_spec_put(rbd_dev->parent_spec);
2092         rbd_dev->parent_spec = NULL;
2093         rbd_dev->parent_overlap = 0;
2094 }
2095
2096 /*
2097  * Parent image reference counting is used to determine when an
2098  * image's parent fields can be safely torn down--after there are no
2099  * more in-flight requests to the parent image.  When the last
2100  * reference is dropped, cleaning them up is safe.
2101  */
2102 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2103 {
2104         int counter;
2105
2106         if (!rbd_dev->parent_spec)
2107                 return;
2108
2109         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2110         if (counter > 0)
2111                 return;
2112
2113         /* Last reference; clean up parent data structures */
2114
2115         if (!counter)
2116                 rbd_dev_unparent(rbd_dev);
2117         else
2118                 rbd_warn(rbd_dev, "parent reference underflow");
2119 }
2120
2121 /*
2122  * If an image has a non-zero parent overlap, get a reference to its
2123  * parent.
2124  *
2125  * Returns true if the rbd device has a parent with a non-zero
2126  * overlap and a reference for it was successfully taken, or
2127  * false otherwise.
2128  */
2129 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2130 {
2131         int counter = 0;
2132
2133         if (!rbd_dev->parent_spec)
2134                 return false;
2135
2136         down_read(&rbd_dev->header_rwsem);
2137         if (rbd_dev->parent_overlap)
2138                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2139         up_read(&rbd_dev->header_rwsem);
2140
2141         if (counter < 0)
2142                 rbd_warn(rbd_dev, "parent reference overflow");
2143
2144         return counter > 0;
2145 }
2146
2147 /*
2148  * Caller is responsible for filling in the list of object requests
2149  * that comprises the image request, and the Linux request pointer
2150  * (if there is one).
2151  */
2152 static struct rbd_img_request *rbd_img_request_create(
2153                                         struct rbd_device *rbd_dev,
2154                                         u64 offset, u64 length,
2155                                         enum obj_operation_type op_type,
2156                                         struct ceph_snap_context *snapc)
2157 {
2158         struct rbd_img_request *img_request;
2159
2160         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2161         if (!img_request)
2162                 return NULL;
2163
2164         img_request->rq = NULL;
2165         img_request->rbd_dev = rbd_dev;
2166         img_request->offset = offset;
2167         img_request->length = length;
2168         img_request->flags = 0;
2169         if (op_type == OBJ_OP_DISCARD) {
2170                 img_request_discard_set(img_request);
2171                 img_request->snapc = snapc;
2172         } else if (op_type == OBJ_OP_WRITE) {
2173                 img_request_write_set(img_request);
2174                 img_request->snapc = snapc;
2175         } else {
2176                 img_request->snap_id = rbd_dev->spec->snap_id;
2177         }
2178         if (rbd_dev_parent_get(rbd_dev))
2179                 img_request_layered_set(img_request);
2180         spin_lock_init(&img_request->completion_lock);
2181         img_request->next_completion = 0;
2182         img_request->callback = NULL;
2183         img_request->result = 0;
2184         img_request->obj_request_count = 0;
2185         INIT_LIST_HEAD(&img_request->obj_requests);
2186         kref_init(&img_request->kref);
2187
2188         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2189                 obj_op_name(op_type), offset, length, img_request);
2190
2191         return img_request;
2192 }
2193
2194 static void rbd_img_request_destroy(struct kref *kref)
2195 {
2196         struct rbd_img_request *img_request;
2197         struct rbd_obj_request *obj_request;
2198         struct rbd_obj_request *next_obj_request;
2199
2200         img_request = container_of(kref, struct rbd_img_request, kref);
2201
2202         dout("%s: img %p\n", __func__, img_request);
2203
2204         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2205                 rbd_img_obj_request_del(img_request, obj_request);
2206         rbd_assert(img_request->obj_request_count == 0);
2207
2208         if (img_request_layered_test(img_request)) {
2209                 img_request_layered_clear(img_request);
2210                 rbd_dev_parent_put(img_request->rbd_dev);
2211         }
2212
2213         if (img_request_write_test(img_request) ||
2214                 img_request_discard_test(img_request))
2215                 ceph_put_snap_context(img_request->snapc);
2216
2217         kmem_cache_free(rbd_img_request_cache, img_request);
2218 }
2219
2220 static struct rbd_img_request *rbd_parent_request_create(
2221                                         struct rbd_obj_request *obj_request,
2222                                         u64 img_offset, u64 length)
2223 {
2224         struct rbd_img_request *parent_request;
2225         struct rbd_device *rbd_dev;
2226
2227         rbd_assert(obj_request->img_request);
2228         rbd_dev = obj_request->img_request->rbd_dev;
2229
2230         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2231                                                 length, OBJ_OP_READ, NULL);
2232         if (!parent_request)
2233                 return NULL;
2234
2235         img_request_child_set(parent_request);
2236         rbd_obj_request_get(obj_request);
2237         parent_request->obj_request = obj_request;
2238
2239         return parent_request;
2240 }
2241
2242 static void rbd_parent_request_destroy(struct kref *kref)
2243 {
2244         struct rbd_img_request *parent_request;
2245         struct rbd_obj_request *orig_request;
2246
2247         parent_request = container_of(kref, struct rbd_img_request, kref);
2248         orig_request = parent_request->obj_request;
2249
2250         parent_request->obj_request = NULL;
2251         rbd_obj_request_put(orig_request);
2252         img_request_child_clear(parent_request);
2253
2254         rbd_img_request_destroy(kref);
2255 }
2256
2257 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2258 {
2259         struct rbd_img_request *img_request;
2260         unsigned int xferred;
2261         int result;
2262         bool more;
2263
2264         rbd_assert(obj_request_img_data_test(obj_request));
2265         img_request = obj_request->img_request;
2266
2267         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2268         xferred = (unsigned int)obj_request->xferred;
2269         result = obj_request->result;
2270         if (result) {
2271                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2272                 enum obj_operation_type op_type;
2273
2274                 if (img_request_discard_test(img_request))
2275                         op_type = OBJ_OP_DISCARD;
2276                 else if (img_request_write_test(img_request))
2277                         op_type = OBJ_OP_WRITE;
2278                 else
2279                         op_type = OBJ_OP_READ;
2280
2281                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2282                         obj_op_name(op_type), obj_request->length,
2283                         obj_request->img_offset, obj_request->offset);
2284                 rbd_warn(rbd_dev, "  result %d xferred %x",
2285                         result, xferred);
2286                 if (!img_request->result)
2287                         img_request->result = result;
2288                 /*
2289                  * Need to end I/O on the entire obj_request worth of
2290                  * bytes in case of error.
2291                  */
2292                 xferred = obj_request->length;
2293         }
2294
2295         /* Image object requests don't own their page array */
2296
2297         if (obj_request->type == OBJ_REQUEST_PAGES) {
2298                 obj_request->pages = NULL;
2299                 obj_request->page_count = 0;
2300         }
2301
2302         if (img_request_child_test(img_request)) {
2303                 rbd_assert(img_request->obj_request != NULL);
2304                 more = obj_request->which < img_request->obj_request_count - 1;
2305         } else {
2306                 rbd_assert(img_request->rq != NULL);
2307
2308                 more = blk_update_request(img_request->rq, result, xferred);
2309                 if (!more)
2310                         __blk_mq_end_request(img_request->rq, result);
2311         }
2312
2313         return more;
2314 }
2315
2316 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2317 {
2318         struct rbd_img_request *img_request;
2319         u32 which = obj_request->which;
2320         bool more = true;
2321
2322         rbd_assert(obj_request_img_data_test(obj_request));
2323         img_request = obj_request->img_request;
2324
2325         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2326         rbd_assert(img_request != NULL);
2327         rbd_assert(img_request->obj_request_count > 0);
2328         rbd_assert(which != BAD_WHICH);
2329         rbd_assert(which < img_request->obj_request_count);
2330
2331         spin_lock_irq(&img_request->completion_lock);
2332         if (which != img_request->next_completion)
2333                 goto out;
2334
2335         for_each_obj_request_from(img_request, obj_request) {
2336                 rbd_assert(more);
2337                 rbd_assert(which < img_request->obj_request_count);
2338
2339                 if (!obj_request_done_test(obj_request))
2340                         break;
2341                 more = rbd_img_obj_end_request(obj_request);
2342                 which++;
2343         }
2344
2345         rbd_assert(more ^ (which == img_request->obj_request_count));
2346         img_request->next_completion = which;
2347 out:
2348         spin_unlock_irq(&img_request->completion_lock);
2349         rbd_img_request_put(img_request);
2350
2351         if (!more)
2352                 rbd_img_request_complete(img_request);
2353 }
2354
2355 /*
2356  * Add individual osd ops to the given ceph_osd_request and prepare
2357  * them for submission. num_ops is the current number of
2358  * osd operations already to the object request.
2359  */
2360 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2361                                 struct ceph_osd_request *osd_request,
2362                                 enum obj_operation_type op_type,
2363                                 unsigned int num_ops)
2364 {
2365         struct rbd_img_request *img_request = obj_request->img_request;
2366         struct rbd_device *rbd_dev = img_request->rbd_dev;
2367         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2368         u64 offset = obj_request->offset;
2369         u64 length = obj_request->length;
2370         u64 img_end;
2371         u16 opcode;
2372
2373         if (op_type == OBJ_OP_DISCARD) {
2374                 if (!offset && length == object_size &&
2375                     (!img_request_layered_test(img_request) ||
2376                      !obj_request_overlaps_parent(obj_request))) {
2377                         opcode = CEPH_OSD_OP_DELETE;
2378                 } else if ((offset + length == object_size)) {
2379                         opcode = CEPH_OSD_OP_TRUNCATE;
2380                 } else {
2381                         down_read(&rbd_dev->header_rwsem);
2382                         img_end = rbd_dev->header.image_size;
2383                         up_read(&rbd_dev->header_rwsem);
2384
2385                         if (obj_request->img_offset + length == img_end)
2386                                 opcode = CEPH_OSD_OP_TRUNCATE;
2387                         else
2388                                 opcode = CEPH_OSD_OP_ZERO;
2389                 }
2390         } else if (op_type == OBJ_OP_WRITE) {
2391                 opcode = CEPH_OSD_OP_WRITE;
2392                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2393                                         object_size, object_size);
2394                 num_ops++;
2395         } else {
2396                 opcode = CEPH_OSD_OP_READ;
2397         }
2398
2399         if (opcode == CEPH_OSD_OP_DELETE)
2400                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2401         else
2402                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2403                                        offset, length, 0, 0);
2404
2405         if (obj_request->type == OBJ_REQUEST_BIO)
2406                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2407                                         obj_request->bio_list, length);
2408         else if (obj_request->type == OBJ_REQUEST_PAGES)
2409                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2410                                         obj_request->pages, length,
2411                                         offset & ~PAGE_MASK, false, false);
2412
2413         /* Discards are also writes */
2414         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2415                 rbd_osd_req_format_write(obj_request);
2416         else
2417                 rbd_osd_req_format_read(obj_request);
2418 }
2419
2420 /*
2421  * Split up an image request into one or more object requests, each
2422  * to a different object.  The "type" parameter indicates whether
2423  * "data_desc" is the pointer to the head of a list of bio
2424  * structures, or the base of a page array.  In either case this
2425  * function assumes data_desc describes memory sufficient to hold
2426  * all data described by the image request.
2427  */
2428 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2429                                         enum obj_request_type type,
2430                                         void *data_desc)
2431 {
2432         struct rbd_device *rbd_dev = img_request->rbd_dev;
2433         struct rbd_obj_request *obj_request = NULL;
2434         struct rbd_obj_request *next_obj_request;
2435         struct bio *bio_list = NULL;
2436         unsigned int bio_offset = 0;
2437         struct page **pages = NULL;
2438         enum obj_operation_type op_type;
2439         u64 img_offset;
2440         u64 resid;
2441
2442         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2443                 (int)type, data_desc);
2444
2445         img_offset = img_request->offset;
2446         resid = img_request->length;
2447         rbd_assert(resid > 0);
2448         op_type = rbd_img_request_op_type(img_request);
2449
2450         if (type == OBJ_REQUEST_BIO) {
2451                 bio_list = data_desc;
2452                 rbd_assert(img_offset ==
2453                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2454         } else if (type == OBJ_REQUEST_PAGES) {
2455                 pages = data_desc;
2456         }
2457
2458         while (resid) {
2459                 struct ceph_osd_request *osd_req;
2460                 const char *object_name;
2461                 u64 offset;
2462                 u64 length;
2463
2464                 object_name = rbd_segment_name(rbd_dev, img_offset);
2465                 if (!object_name)
2466                         goto out_unwind;
2467                 offset = rbd_segment_offset(rbd_dev, img_offset);
2468                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2469                 obj_request = rbd_obj_request_create(object_name,
2470                                                 offset, length, type);
2471                 /* object request has its own copy of the object name */
2472                 rbd_segment_name_free(object_name);
2473                 if (!obj_request)
2474                         goto out_unwind;
2475
2476                 /*
2477                  * set obj_request->img_request before creating the
2478                  * osd_request so that it gets the right snapc
2479                  */
2480                 rbd_img_obj_request_add(img_request, obj_request);
2481
2482                 if (type == OBJ_REQUEST_BIO) {
2483                         unsigned int clone_size;
2484
2485                         rbd_assert(length <= (u64)UINT_MAX);
2486                         clone_size = (unsigned int)length;
2487                         obj_request->bio_list =
2488                                         bio_chain_clone_range(&bio_list,
2489                                                                 &bio_offset,
2490                                                                 clone_size,
2491                                                                 GFP_ATOMIC);
2492                         if (!obj_request->bio_list)
2493                                 goto out_unwind;
2494                 } else if (type == OBJ_REQUEST_PAGES) {
2495                         unsigned int page_count;
2496
2497                         obj_request->pages = pages;
2498                         page_count = (u32)calc_pages_for(offset, length);
2499                         obj_request->page_count = page_count;
2500                         if ((offset + length) & ~PAGE_MASK)
2501                                 page_count--;   /* more on last page */
2502                         pages += page_count;
2503                 }
2504
2505                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2506                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2507                                         obj_request);
2508                 if (!osd_req)
2509                         goto out_unwind;
2510
2511                 obj_request->osd_req = osd_req;
2512                 obj_request->callback = rbd_img_obj_callback;
2513                 obj_request->img_offset = img_offset;
2514
2515                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2516
2517                 rbd_img_request_get(img_request);
2518
2519                 img_offset += length;
2520                 resid -= length;
2521         }
2522
2523         return 0;
2524
2525 out_unwind:
2526         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2527                 rbd_img_obj_request_del(img_request, obj_request);
2528
2529         return -ENOMEM;
2530 }
2531
2532 static void
2533 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2534 {
2535         struct rbd_img_request *img_request;
2536         struct rbd_device *rbd_dev;
2537         struct page **pages;
2538         u32 page_count;
2539
2540         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2541                 obj_request->type == OBJ_REQUEST_NODATA);
2542         rbd_assert(obj_request_img_data_test(obj_request));
2543         img_request = obj_request->img_request;
2544         rbd_assert(img_request);
2545
2546         rbd_dev = img_request->rbd_dev;
2547         rbd_assert(rbd_dev);
2548
2549         pages = obj_request->copyup_pages;
2550         rbd_assert(pages != NULL);
2551         obj_request->copyup_pages = NULL;
2552         page_count = obj_request->copyup_page_count;
2553         rbd_assert(page_count);
2554         obj_request->copyup_page_count = 0;
2555         ceph_release_page_vector(pages, page_count);
2556
2557         /*
2558          * We want the transfer count to reflect the size of the
2559          * original write request.  There is no such thing as a
2560          * successful short write, so if the request was successful
2561          * we can just set it to the originally-requested length.
2562          */
2563         if (!obj_request->result)
2564                 obj_request->xferred = obj_request->length;
2565
2566         /* Finish up with the normal image object callback */
2567
2568         rbd_img_obj_callback(obj_request);
2569 }
2570
2571 static void
2572 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2573 {
2574         struct rbd_obj_request *orig_request;
2575         struct ceph_osd_request *osd_req;
2576         struct ceph_osd_client *osdc;
2577         struct rbd_device *rbd_dev;
2578         struct page **pages;
2579         enum obj_operation_type op_type;
2580         u32 page_count;
2581         int img_result;
2582         u64 parent_length;
2583
2584         rbd_assert(img_request_child_test(img_request));
2585
2586         /* First get what we need from the image request */
2587
2588         pages = img_request->copyup_pages;
2589         rbd_assert(pages != NULL);
2590         img_request->copyup_pages = NULL;
2591         page_count = img_request->copyup_page_count;
2592         rbd_assert(page_count);
2593         img_request->copyup_page_count = 0;
2594
2595         orig_request = img_request->obj_request;
2596         rbd_assert(orig_request != NULL);
2597         rbd_assert(obj_request_type_valid(orig_request->type));
2598         img_result = img_request->result;
2599         parent_length = img_request->length;
2600         rbd_assert(parent_length == img_request->xferred);
2601         rbd_img_request_put(img_request);
2602
2603         rbd_assert(orig_request->img_request);
2604         rbd_dev = orig_request->img_request->rbd_dev;
2605         rbd_assert(rbd_dev);
2606
2607         /*
2608          * If the overlap has become 0 (most likely because the
2609          * image has been flattened) we need to free the pages
2610          * and re-submit the original write request.
2611          */
2612         if (!rbd_dev->parent_overlap) {
2613                 struct ceph_osd_client *osdc;
2614
2615                 ceph_release_page_vector(pages, page_count);
2616                 osdc = &rbd_dev->rbd_client->client->osdc;
2617                 img_result = rbd_obj_request_submit(osdc, orig_request);
2618                 if (!img_result)
2619                         return;
2620         }
2621
2622         if (img_result)
2623                 goto out_err;
2624
2625         /*
2626          * The original osd request is of no use to use any more.
2627          * We need a new one that can hold the three ops in a copyup
2628          * request.  Allocate the new copyup osd request for the
2629          * original request, and release the old one.
2630          */
2631         img_result = -ENOMEM;
2632         osd_req = rbd_osd_req_create_copyup(orig_request);
2633         if (!osd_req)
2634                 goto out_err;
2635         rbd_osd_req_destroy(orig_request->osd_req);
2636         orig_request->osd_req = osd_req;
2637         orig_request->copyup_pages = pages;
2638         orig_request->copyup_page_count = page_count;
2639
2640         /* Initialize the copyup op */
2641
2642         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2643         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2644                                                 false, false);
2645
2646         /* Add the other op(s) */
2647
2648         op_type = rbd_img_request_op_type(orig_request->img_request);
2649         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2650
2651         /* All set, send it off. */
2652
2653         orig_request->callback = rbd_img_obj_copyup_callback;
2654         osdc = &rbd_dev->rbd_client->client->osdc;
2655         img_result = rbd_obj_request_submit(osdc, orig_request);
2656         if (!img_result)
2657                 return;
2658 out_err:
2659         /* Record the error code and complete the request */
2660
2661         orig_request->result = img_result;
2662         orig_request->xferred = 0;
2663         obj_request_done_set(orig_request);
2664         rbd_obj_request_complete(orig_request);
2665 }
2666
2667 /*
2668  * Read from the parent image the range of data that covers the
2669  * entire target of the given object request.  This is used for
2670  * satisfying a layered image write request when the target of an
2671  * object request from the image request does not exist.
2672  *
2673  * A page array big enough to hold the returned data is allocated
2674  * and supplied to rbd_img_request_fill() as the "data descriptor."
2675  * When the read completes, this page array will be transferred to
2676  * the original object request for the copyup operation.
2677  *
2678  * If an error occurs, record it as the result of the original
2679  * object request and mark it done so it gets completed.
2680  */
2681 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2682 {
2683         struct rbd_img_request *img_request = NULL;
2684         struct rbd_img_request *parent_request = NULL;
2685         struct rbd_device *rbd_dev;
2686         u64 img_offset;
2687         u64 length;
2688         struct page **pages = NULL;
2689         u32 page_count;
2690         int result;
2691
2692         rbd_assert(obj_request_img_data_test(obj_request));
2693         rbd_assert(obj_request_type_valid(obj_request->type));
2694
2695         img_request = obj_request->img_request;
2696         rbd_assert(img_request != NULL);
2697         rbd_dev = img_request->rbd_dev;
2698         rbd_assert(rbd_dev->parent != NULL);
2699
2700         /*
2701          * Determine the byte range covered by the object in the
2702          * child image to which the original request was to be sent.
2703          */
2704         img_offset = obj_request->img_offset - obj_request->offset;
2705         length = (u64)1 << rbd_dev->header.obj_order;
2706
2707         /*
2708          * There is no defined parent data beyond the parent
2709          * overlap, so limit what we read at that boundary if
2710          * necessary.
2711          */
2712         if (img_offset + length > rbd_dev->parent_overlap) {
2713                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2714                 length = rbd_dev->parent_overlap - img_offset;
2715         }
2716
2717         /*
2718          * Allocate a page array big enough to receive the data read
2719          * from the parent.
2720          */
2721         page_count = (u32)calc_pages_for(0, length);
2722         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2723         if (IS_ERR(pages)) {
2724                 result = PTR_ERR(pages);
2725                 pages = NULL;
2726                 goto out_err;
2727         }
2728
2729         result = -ENOMEM;
2730         parent_request = rbd_parent_request_create(obj_request,
2731                                                 img_offset, length);
2732         if (!parent_request)
2733                 goto out_err;
2734
2735         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2736         if (result)
2737                 goto out_err;
2738         parent_request->copyup_pages = pages;
2739         parent_request->copyup_page_count = page_count;
2740
2741         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2742         result = rbd_img_request_submit(parent_request);
2743         if (!result)
2744                 return 0;
2745
2746         parent_request->copyup_pages = NULL;
2747         parent_request->copyup_page_count = 0;
2748         parent_request->obj_request = NULL;
2749         rbd_obj_request_put(obj_request);
2750 out_err:
2751         if (pages)
2752                 ceph_release_page_vector(pages, page_count);
2753         if (parent_request)
2754                 rbd_img_request_put(parent_request);
2755         obj_request->result = result;
2756         obj_request->xferred = 0;
2757         obj_request_done_set(obj_request);
2758
2759         return result;
2760 }
2761
2762 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2763 {
2764         struct rbd_obj_request *orig_request;
2765         struct rbd_device *rbd_dev;
2766         int result;
2767
2768         rbd_assert(!obj_request_img_data_test(obj_request));
2769
2770         /*
2771          * All we need from the object request is the original
2772          * request and the result of the STAT op.  Grab those, then
2773          * we're done with the request.
2774          */
2775         orig_request = obj_request->obj_request;
2776         obj_request->obj_request = NULL;
2777         rbd_obj_request_put(orig_request);
2778         rbd_assert(orig_request);
2779         rbd_assert(orig_request->img_request);
2780
2781         result = obj_request->result;
2782         obj_request->result = 0;
2783
2784         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2785                 obj_request, orig_request, result,
2786                 obj_request->xferred, obj_request->length);
2787         rbd_obj_request_put(obj_request);
2788
2789         /*
2790          * If the overlap has become 0 (most likely because the
2791          * image has been flattened) we need to free the pages
2792          * and re-submit the original write request.
2793          */
2794         rbd_dev = orig_request->img_request->rbd_dev;
2795         if (!rbd_dev->parent_overlap) {
2796                 struct ceph_osd_client *osdc;
2797
2798                 osdc = &rbd_dev->rbd_client->client->osdc;
2799                 result = rbd_obj_request_submit(osdc, orig_request);
2800                 if (!result)
2801                         return;
2802         }
2803
2804         /*
2805          * Our only purpose here is to determine whether the object
2806          * exists, and we don't want to treat the non-existence as
2807          * an error.  If something else comes back, transfer the
2808          * error to the original request and complete it now.
2809          */
2810         if (!result) {
2811                 obj_request_existence_set(orig_request, true);
2812         } else if (result == -ENOENT) {
2813                 obj_request_existence_set(orig_request, false);
2814         } else if (result) {
2815                 orig_request->result = result;
2816                 goto out;
2817         }
2818
2819         /*
2820          * Resubmit the original request now that we have recorded
2821          * whether the target object exists.
2822          */
2823         orig_request->result = rbd_img_obj_request_submit(orig_request);
2824 out:
2825         if (orig_request->result)
2826                 rbd_obj_request_complete(orig_request);
2827 }
2828
2829 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2830 {
2831         struct rbd_obj_request *stat_request;
2832         struct rbd_device *rbd_dev;
2833         struct ceph_osd_client *osdc;
2834         struct page **pages = NULL;
2835         u32 page_count;
2836         size_t size;
2837         int ret;
2838
2839         /*
2840          * The response data for a STAT call consists of:
2841          *     le64 length;
2842          *     struct {
2843          *         le32 tv_sec;
2844          *         le32 tv_nsec;
2845          *     } mtime;
2846          */
2847         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2848         page_count = (u32)calc_pages_for(0, size);
2849         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2850         if (IS_ERR(pages))
2851                 return PTR_ERR(pages);
2852
2853         ret = -ENOMEM;
2854         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2855                                                         OBJ_REQUEST_PAGES);
2856         if (!stat_request)
2857                 goto out;
2858
2859         rbd_obj_request_get(obj_request);
2860         stat_request->obj_request = obj_request;
2861         stat_request->pages = pages;
2862         stat_request->page_count = page_count;
2863
2864         rbd_assert(obj_request->img_request);
2865         rbd_dev = obj_request->img_request->rbd_dev;
2866         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2867                                                    stat_request);
2868         if (!stat_request->osd_req)
2869                 goto out;
2870         stat_request->callback = rbd_img_obj_exists_callback;
2871
2872         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2873         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2874                                         false, false);
2875         rbd_osd_req_format_read(stat_request);
2876
2877         osdc = &rbd_dev->rbd_client->client->osdc;
2878         ret = rbd_obj_request_submit(osdc, stat_request);
2879 out:
2880         if (ret)
2881                 rbd_obj_request_put(obj_request);
2882
2883         return ret;
2884 }
2885
2886 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2887 {
2888         struct rbd_img_request *img_request;
2889         struct rbd_device *rbd_dev;
2890
2891         rbd_assert(obj_request_img_data_test(obj_request));
2892
2893         img_request = obj_request->img_request;
2894         rbd_assert(img_request);
2895         rbd_dev = img_request->rbd_dev;
2896
2897         /* Reads */
2898         if (!img_request_write_test(img_request) &&
2899             !img_request_discard_test(img_request))
2900                 return true;
2901
2902         /* Non-layered writes */
2903         if (!img_request_layered_test(img_request))
2904                 return true;
2905
2906         /*
2907          * Layered writes outside of the parent overlap range don't
2908          * share any data with the parent.
2909          */
2910         if (!obj_request_overlaps_parent(obj_request))
2911                 return true;
2912
2913         /*
2914          * Entire-object layered writes - we will overwrite whatever
2915          * parent data there is anyway.
2916          */
2917         if (!obj_request->offset &&
2918             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2919                 return true;
2920
2921         /*
2922          * If the object is known to already exist, its parent data has
2923          * already been copied.
2924          */
2925         if (obj_request_known_test(obj_request) &&
2926             obj_request_exists_test(obj_request))
2927                 return true;
2928
2929         return false;
2930 }
2931
2932 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2933 {
2934         if (img_obj_request_simple(obj_request)) {
2935                 struct rbd_device *rbd_dev;
2936                 struct ceph_osd_client *osdc;
2937
2938                 rbd_dev = obj_request->img_request->rbd_dev;
2939                 osdc = &rbd_dev->rbd_client->client->osdc;
2940
2941                 return rbd_obj_request_submit(osdc, obj_request);
2942         }
2943
2944         /*
2945          * It's a layered write.  The target object might exist but
2946          * we may not know that yet.  If we know it doesn't exist,
2947          * start by reading the data for the full target object from
2948          * the parent so we can use it for a copyup to the target.
2949          */
2950         if (obj_request_known_test(obj_request))
2951                 return rbd_img_obj_parent_read_full(obj_request);
2952
2953         /* We don't know whether the target exists.  Go find out. */
2954
2955         return rbd_img_obj_exists_submit(obj_request);
2956 }
2957
2958 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2959 {
2960         struct rbd_obj_request *obj_request;
2961         struct rbd_obj_request *next_obj_request;
2962
2963         dout("%s: img %p\n", __func__, img_request);
2964         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2965                 int ret;
2966
2967                 ret = rbd_img_obj_request_submit(obj_request);
2968                 if (ret)
2969                         return ret;
2970         }
2971
2972         return 0;
2973 }
2974
2975 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2976 {
2977         struct rbd_obj_request *obj_request;
2978         struct rbd_device *rbd_dev;
2979         u64 obj_end;
2980         u64 img_xferred;
2981         int img_result;
2982
2983         rbd_assert(img_request_child_test(img_request));
2984
2985         /* First get what we need from the image request and release it */
2986
2987         obj_request = img_request->obj_request;
2988         img_xferred = img_request->xferred;
2989         img_result = img_request->result;
2990         rbd_img_request_put(img_request);
2991
2992         /*
2993          * If the overlap has become 0 (most likely because the
2994          * image has been flattened) we need to re-submit the
2995          * original request.
2996          */
2997         rbd_assert(obj_request);
2998         rbd_assert(obj_request->img_request);
2999         rbd_dev = obj_request->img_request->rbd_dev;
3000         if (!rbd_dev->parent_overlap) {
3001                 struct ceph_osd_client *osdc;
3002
3003                 osdc = &rbd_dev->rbd_client->client->osdc;
3004                 img_result = rbd_obj_request_submit(osdc, obj_request);
3005                 if (!img_result)
3006                         return;
3007         }
3008
3009         obj_request->result = img_result;
3010         if (obj_request->result)
3011                 goto out;
3012
3013         /*
3014          * We need to zero anything beyond the parent overlap
3015          * boundary.  Since rbd_img_obj_request_read_callback()
3016          * will zero anything beyond the end of a short read, an
3017          * easy way to do this is to pretend the data from the
3018          * parent came up short--ending at the overlap boundary.
3019          */
3020         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3021         obj_end = obj_request->img_offset + obj_request->length;
3022         if (obj_end > rbd_dev->parent_overlap) {
3023                 u64 xferred = 0;
3024
3025                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3026                         xferred = rbd_dev->parent_overlap -
3027                                         obj_request->img_offset;
3028
3029                 obj_request->xferred = min(img_xferred, xferred);
3030         } else {
3031                 obj_request->xferred = img_xferred;
3032         }
3033 out:
3034         rbd_img_obj_request_read_callback(obj_request);
3035         rbd_obj_request_complete(obj_request);
3036 }
3037
3038 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3039 {
3040         struct rbd_img_request *img_request;
3041         int result;
3042
3043         rbd_assert(obj_request_img_data_test(obj_request));
3044         rbd_assert(obj_request->img_request != NULL);
3045         rbd_assert(obj_request->result == (s32) -ENOENT);
3046         rbd_assert(obj_request_type_valid(obj_request->type));
3047
3048         /* rbd_read_finish(obj_request, obj_request->length); */
3049         img_request = rbd_parent_request_create(obj_request,
3050                                                 obj_request->img_offset,
3051                                                 obj_request->length);
3052         result = -ENOMEM;
3053         if (!img_request)
3054                 goto out_err;
3055
3056         if (obj_request->type == OBJ_REQUEST_BIO)
3057                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3058                                                 obj_request->bio_list);
3059         else
3060                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3061                                                 obj_request->pages);
3062         if (result)
3063                 goto out_err;
3064
3065         img_request->callback = rbd_img_parent_read_callback;
3066         result = rbd_img_request_submit(img_request);
3067         if (result)
3068                 goto out_err;
3069
3070         return;
3071 out_err:
3072         if (img_request)
3073                 rbd_img_request_put(img_request);
3074         obj_request->result = result;
3075         obj_request->xferred = 0;
3076         obj_request_done_set(obj_request);
3077 }
3078
3079 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3080 {
3081         struct rbd_obj_request *obj_request;
3082         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3083         int ret;
3084
3085         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3086                                                         OBJ_REQUEST_NODATA);
3087         if (!obj_request)
3088                 return -ENOMEM;
3089
3090         ret = -ENOMEM;
3091         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3092                                                   obj_request);
3093         if (!obj_request->osd_req)
3094                 goto out;
3095
3096         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3097                                         notify_id, 0, 0);
3098         rbd_osd_req_format_read(obj_request);
3099
3100         ret = rbd_obj_request_submit(osdc, obj_request);
3101         if (ret)
3102                 goto out;
3103         ret = rbd_obj_request_wait(obj_request);
3104 out:
3105         rbd_obj_request_put(obj_request);
3106
3107         return ret;
3108 }
3109
3110 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3111 {
3112         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3113         int ret;
3114
3115         if (!rbd_dev)
3116                 return;
3117
3118         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3119                 rbd_dev->header_name, (unsigned long long)notify_id,
3120                 (unsigned int)opcode);
3121
3122         /*
3123          * Until adequate refresh error handling is in place, there is
3124          * not much we can do here, except warn.
3125          *
3126          * See http://tracker.ceph.com/issues/5040
3127          */
3128         ret = rbd_dev_refresh(rbd_dev);
3129         if (ret)
3130                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3131
3132         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3133         if (ret)
3134                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3135 }
3136
3137 /*
3138  * Send a (un)watch request and wait for the ack.  Return a request
3139  * with a ref held on success or error.
3140  */
3141 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3142                                                 struct rbd_device *rbd_dev,
3143                                                 bool watch)
3144 {
3145         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3146         struct ceph_options *opts = osdc->client->options;
3147         struct rbd_obj_request *obj_request;
3148         int ret;
3149
3150         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3151                                              OBJ_REQUEST_NODATA);
3152         if (!obj_request)
3153                 return ERR_PTR(-ENOMEM);
3154
3155         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3156                                                   obj_request);
3157         if (!obj_request->osd_req) {
3158                 ret = -ENOMEM;
3159                 goto out;
3160         }
3161
3162         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3163                               rbd_dev->watch_event->cookie, 0, watch);
3164         rbd_osd_req_format_write(obj_request);
3165
3166         if (watch)
3167                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3168
3169         ret = rbd_obj_request_submit(osdc, obj_request);
3170         if (ret)
3171                 goto out;
3172
3173         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3174         if (ret)
3175                 goto out;
3176
3177         ret = obj_request->result;
3178         if (ret) {
3179                 if (watch)
3180                         rbd_obj_request_end(obj_request);
3181                 goto out;
3182         }
3183
3184         return obj_request;
3185
3186 out:
3187         rbd_obj_request_put(obj_request);
3188         return ERR_PTR(ret);
3189 }
3190
3191 /*
3192  * Initiate a watch request, synchronously.
3193  */
3194 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3195 {
3196         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197         struct rbd_obj_request *obj_request;
3198         int ret;
3199
3200         rbd_assert(!rbd_dev->watch_event);
3201         rbd_assert(!rbd_dev->watch_request);
3202
3203         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3204                                      &rbd_dev->watch_event);
3205         if (ret < 0)
3206                 return ret;
3207
3208         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3209         if (IS_ERR(obj_request)) {
3210                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3211                 rbd_dev->watch_event = NULL;
3212                 return PTR_ERR(obj_request);
3213         }
3214
3215         /*
3216          * A watch request is set to linger, so the underlying osd
3217          * request won't go away until we unregister it.  We retain
3218          * a pointer to the object request during that time (in
3219          * rbd_dev->watch_request), so we'll keep a reference to it.
3220          * We'll drop that reference after we've unregistered it in
3221          * rbd_dev_header_unwatch_sync().
3222          */
3223         rbd_dev->watch_request = obj_request;
3224
3225         return 0;
3226 }
3227
3228 /*
3229  * Tear down a watch request, synchronously.
3230  */
3231 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3232 {
3233         struct rbd_obj_request *obj_request;
3234
3235         rbd_assert(rbd_dev->watch_event);
3236         rbd_assert(rbd_dev->watch_request);
3237
3238         rbd_obj_request_end(rbd_dev->watch_request);
3239         rbd_obj_request_put(rbd_dev->watch_request);
3240         rbd_dev->watch_request = NULL;
3241
3242         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3243         if (!IS_ERR(obj_request))
3244                 rbd_obj_request_put(obj_request);
3245         else
3246                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3247                          PTR_ERR(obj_request));
3248
3249         ceph_osdc_cancel_event(rbd_dev->watch_event);
3250         rbd_dev->watch_event = NULL;
3251 }
3252
3253 /*
3254  * Synchronous osd object method call.  Returns the number of bytes
3255  * returned in the outbound buffer, or a negative error code.
3256  */
3257 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3258                              const char *object_name,
3259                              const char *class_name,
3260                              const char *method_name,
3261                              const void *outbound,
3262                              size_t outbound_size,
3263                              void *inbound,
3264                              size_t inbound_size)
3265 {
3266         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3267         struct rbd_obj_request *obj_request;
3268         struct page **pages;
3269         u32 page_count;
3270         int ret;
3271
3272         /*
3273          * Method calls are ultimately read operations.  The result
3274          * should placed into the inbound buffer provided.  They
3275          * also supply outbound data--parameters for the object
3276          * method.  Currently if this is present it will be a
3277          * snapshot id.
3278          */
3279         page_count = (u32)calc_pages_for(0, inbound_size);
3280         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3281         if (IS_ERR(pages))
3282                 return PTR_ERR(pages);
3283
3284         ret = -ENOMEM;
3285         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3286                                                         OBJ_REQUEST_PAGES);
3287         if (!obj_request)
3288                 goto out;
3289
3290         obj_request->pages = pages;
3291         obj_request->page_count = page_count;
3292
3293         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3294                                                   obj_request);
3295         if (!obj_request->osd_req)
3296                 goto out;
3297
3298         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3299                                         class_name, method_name);
3300         if (outbound_size) {
3301                 struct ceph_pagelist *pagelist;
3302
3303                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3304                 if (!pagelist)
3305                         goto out;
3306
3307                 ceph_pagelist_init(pagelist);
3308                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3309                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3310                                                 pagelist);
3311         }
3312         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3313                                         obj_request->pages, inbound_size,
3314                                         0, false, false);
3315         rbd_osd_req_format_read(obj_request);
3316
3317         ret = rbd_obj_request_submit(osdc, obj_request);
3318         if (ret)
3319                 goto out;
3320         ret = rbd_obj_request_wait(obj_request);
3321         if (ret)
3322                 goto out;
3323
3324         ret = obj_request->result;
3325         if (ret < 0)
3326                 goto out;
3327
3328         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3329         ret = (int)obj_request->xferred;
3330         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3331 out:
3332         if (obj_request)
3333                 rbd_obj_request_put(obj_request);
3334         else
3335                 ceph_release_page_vector(pages, page_count);
3336
3337         return ret;
3338 }
3339
3340 static void rbd_queue_workfn(struct work_struct *work)
3341 {
3342         struct request *rq = blk_mq_rq_from_pdu(work);
3343         struct rbd_device *rbd_dev = rq->q->queuedata;
3344         struct rbd_img_request *img_request;
3345         struct ceph_snap_context *snapc = NULL;
3346         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3347         u64 length = blk_rq_bytes(rq);
3348         enum obj_operation_type op_type;
3349         u64 mapping_size;
3350         int result;
3351
3352         if (rq->cmd_type != REQ_TYPE_FS) {
3353                 dout("%s: non-fs request type %d\n", __func__,
3354                         (int) rq->cmd_type);
3355                 result = -EIO;
3356                 goto err;
3357         }
3358
3359         if (rq->cmd_flags & REQ_DISCARD)
3360                 op_type = OBJ_OP_DISCARD;
3361         else if (rq->cmd_flags & REQ_WRITE)
3362                 op_type = OBJ_OP_WRITE;
3363         else
3364                 op_type = OBJ_OP_READ;
3365
3366         /* Ignore/skip any zero-length requests */
3367
3368         if (!length) {
3369                 dout("%s: zero-length request\n", __func__);
3370                 result = 0;
3371                 goto err_rq;
3372         }
3373
3374         /* Only reads are allowed to a read-only device */
3375
3376         if (op_type != OBJ_OP_READ) {
3377                 if (rbd_dev->mapping.read_only) {
3378                         result = -EROFS;
3379                         goto err_rq;
3380                 }
3381                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3382         }
3383
3384         /*
3385          * Quit early if the mapped snapshot no longer exists.  It's
3386          * still possible the snapshot will have disappeared by the
3387          * time our request arrives at the osd, but there's no sense in
3388          * sending it if we already know.
3389          */
3390         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3391                 dout("request for non-existent snapshot");
3392                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3393                 result = -ENXIO;
3394                 goto err_rq;
3395         }
3396
3397         if (offset && length > U64_MAX - offset + 1) {
3398                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3399                          length);
3400                 result = -EINVAL;
3401                 goto err_rq;    /* Shouldn't happen */
3402         }
3403
3404         blk_mq_start_request(rq);
3405
3406         down_read(&rbd_dev->header_rwsem);
3407         mapping_size = rbd_dev->mapping.size;
3408         if (op_type != OBJ_OP_READ) {
3409                 snapc = rbd_dev->header.snapc;
3410                 ceph_get_snap_context(snapc);
3411         }
3412         up_read(&rbd_dev->header_rwsem);
3413
3414         if (offset + length > mapping_size) {
3415                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3416                          length, mapping_size);
3417                 result = -EIO;
3418                 goto err_rq;
3419         }
3420
3421         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3422                                              snapc);
3423         if (!img_request) {
3424                 result = -ENOMEM;
3425                 goto err_rq;
3426         }
3427         img_request->rq = rq;
3428
3429         if (op_type == OBJ_OP_DISCARD)
3430                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3431                                               NULL);
3432         else
3433                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3434                                               rq->bio);
3435         if (result)
3436                 goto err_img_request;
3437
3438         result = rbd_img_request_submit(img_request);
3439         if (result)
3440                 goto err_img_request;
3441
3442         return;
3443
3444 err_img_request:
3445         rbd_img_request_put(img_request);
3446 err_rq:
3447         if (result)
3448                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3449                          obj_op_name(op_type), length, offset, result);
3450         ceph_put_snap_context(snapc);
3451 err:
3452         blk_mq_end_request(rq, result);
3453 }
3454
3455 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3456                 const struct blk_mq_queue_data *bd)
3457 {
3458         struct request *rq = bd->rq;
3459         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3460
3461         queue_work(rbd_wq, work);
3462         return BLK_MQ_RQ_QUEUE_OK;
3463 }
3464
3465 /*
3466  * a queue callback. Makes sure that we don't create a bio that spans across
3467  * multiple osd objects. One exception would be with a single page bios,
3468  * which we handle later at bio_chain_clone_range()
3469  */
3470 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3471                           struct bio_vec *bvec)
3472 {
3473         struct rbd_device *rbd_dev = q->queuedata;
3474         sector_t sector_offset;
3475         sector_t sectors_per_obj;
3476         sector_t obj_sector_offset;
3477         int ret;
3478
3479         /*
3480          * Find how far into its rbd object the partition-relative
3481          * bio start sector is to offset relative to the enclosing
3482          * device.
3483          */
3484         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3485         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3486         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3487
3488         /*
3489          * Compute the number of bytes from that offset to the end
3490          * of the object.  Account for what's already used by the bio.
3491          */
3492         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3493         if (ret > bmd->bi_size)
3494                 ret -= bmd->bi_size;
3495         else
3496                 ret = 0;
3497
3498         /*
3499          * Don't send back more than was asked for.  And if the bio
3500          * was empty, let the whole thing through because:  "Note
3501          * that a block device *must* allow a single page to be
3502          * added to an empty bio."
3503          */
3504         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3505         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3506                 ret = (int) bvec->bv_len;
3507
3508         return ret;
3509 }
3510
3511 static void rbd_free_disk(struct rbd_device *rbd_dev)
3512 {
3513         struct gendisk *disk = rbd_dev->disk;
3514
3515         if (!disk)
3516                 return;
3517
3518         rbd_dev->disk = NULL;
3519         if (disk->flags & GENHD_FL_UP) {
3520                 del_gendisk(disk);
3521                 if (disk->queue)
3522                         blk_cleanup_queue(disk->queue);
3523                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3524         }
3525         put_disk(disk);
3526 }
3527
3528 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3529                                 const char *object_name,
3530                                 u64 offset, u64 length, void *buf)
3531
3532 {
3533         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3534         struct rbd_obj_request *obj_request;
3535         struct page **pages = NULL;
3536         u32 page_count;
3537         size_t size;
3538         int ret;
3539
3540         page_count = (u32) calc_pages_for(offset, length);
3541         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3542         if (IS_ERR(pages))
3543                 return PTR_ERR(pages);
3544
3545         ret = -ENOMEM;
3546         obj_request = rbd_obj_request_create(object_name, offset, length,
3547                                                         OBJ_REQUEST_PAGES);
3548         if (!obj_request)
3549                 goto out;
3550
3551         obj_request->pages = pages;
3552         obj_request->page_count = page_count;
3553
3554         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3555                                                   obj_request);
3556         if (!obj_request->osd_req)
3557                 goto out;
3558
3559         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3560                                         offset, length, 0, 0);
3561         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3562                                         obj_request->pages,
3563                                         obj_request->length,
3564                                         obj_request->offset & ~PAGE_MASK,
3565                                         false, false);
3566         rbd_osd_req_format_read(obj_request);
3567
3568         ret = rbd_obj_request_submit(osdc, obj_request);
3569         if (ret)
3570                 goto out;
3571         ret = rbd_obj_request_wait(obj_request);
3572         if (ret)
3573                 goto out;
3574
3575         ret = obj_request->result;
3576         if (ret < 0)
3577                 goto out;
3578
3579         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3580         size = (size_t) obj_request->xferred;
3581         ceph_copy_from_page_vector(pages, buf, 0, size);
3582         rbd_assert(size <= (size_t)INT_MAX);
3583         ret = (int)size;
3584 out:
3585         if (obj_request)
3586                 rbd_obj_request_put(obj_request);
3587         else
3588                 ceph_release_page_vector(pages, page_count);
3589
3590         return ret;
3591 }
3592
3593 /*
3594  * Read the complete header for the given rbd device.  On successful
3595  * return, the rbd_dev->header field will contain up-to-date
3596  * information about the image.
3597  */
3598 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3599 {
3600         struct rbd_image_header_ondisk *ondisk = NULL;
3601         u32 snap_count = 0;
3602         u64 names_size = 0;
3603         u32 want_count;
3604         int ret;
3605
3606         /*
3607          * The complete header will include an array of its 64-bit
3608          * snapshot ids, followed by the names of those snapshots as
3609          * a contiguous block of NUL-terminated strings.  Note that
3610          * the number of snapshots could change by the time we read
3611          * it in, in which case we re-read it.
3612          */
3613         do {
3614                 size_t size;
3615
3616                 kfree(ondisk);
3617
3618                 size = sizeof (*ondisk);
3619                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3620                 size += names_size;
3621                 ondisk = kmalloc(size, GFP_KERNEL);
3622                 if (!ondisk)
3623                         return -ENOMEM;
3624
3625                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3626                                        0, size, ondisk);
3627                 if (ret < 0)
3628                         goto out;
3629                 if ((size_t)ret < size) {
3630                         ret = -ENXIO;
3631                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3632                                 size, ret);
3633                         goto out;
3634                 }
3635                 if (!rbd_dev_ondisk_valid(ondisk)) {
3636                         ret = -ENXIO;
3637                         rbd_warn(rbd_dev, "invalid header");
3638                         goto out;
3639                 }
3640
3641                 names_size = le64_to_cpu(ondisk->snap_names_len);
3642                 want_count = snap_count;
3643                 snap_count = le32_to_cpu(ondisk->snap_count);
3644         } while (snap_count != want_count);
3645
3646         ret = rbd_header_from_disk(rbd_dev, ondisk);
3647 out:
3648         kfree(ondisk);
3649
3650         return ret;
3651 }
3652
3653 /*
3654  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3655  * has disappeared from the (just updated) snapshot context.
3656  */
3657 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3658 {
3659         u64 snap_id;
3660
3661         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3662                 return;
3663
3664         snap_id = rbd_dev->spec->snap_id;
3665         if (snap_id == CEPH_NOSNAP)
3666                 return;
3667
3668         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3669                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3670 }
3671
3672 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3673 {
3674         sector_t size;
3675         bool removing;
3676
3677         /*
3678          * Don't hold the lock while doing disk operations,
3679          * or lock ordering will conflict with the bdev mutex via:
3680          * rbd_add() -> blkdev_get() -> rbd_open()
3681          */
3682         spin_lock_irq(&rbd_dev->lock);
3683         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3684         spin_unlock_irq(&rbd_dev->lock);
3685         /*
3686          * If the device is being removed, rbd_dev->disk has
3687          * been destroyed, so don't try to update its size
3688          */
3689         if (!removing) {
3690                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3691                 dout("setting size to %llu sectors", (unsigned long long)size);
3692                 set_capacity(rbd_dev->disk, size);
3693                 revalidate_disk(rbd_dev->disk);
3694         }
3695 }
3696
3697 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3698 {
3699         u64 mapping_size;
3700         int ret;
3701
3702         down_write(&rbd_dev->header_rwsem);
3703         mapping_size = rbd_dev->mapping.size;
3704
3705         ret = rbd_dev_header_info(rbd_dev);
3706         if (ret)
3707                 goto out;
3708
3709         /*
3710          * If there is a parent, see if it has disappeared due to the
3711          * mapped image getting flattened.
3712          */
3713         if (rbd_dev->parent) {
3714                 ret = rbd_dev_v2_parent_info(rbd_dev);
3715                 if (ret)
3716                         goto out;
3717         }
3718
3719         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3720                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3721         } else {
3722                 /* validate mapped snapshot's EXISTS flag */
3723                 rbd_exists_validate(rbd_dev);
3724         }
3725
3726 out:
3727         up_write(&rbd_dev->header_rwsem);
3728         if (!ret && mapping_size != rbd_dev->mapping.size)
3729                 rbd_dev_update_size(rbd_dev);
3730
3731         return ret;
3732 }
3733
3734 static int rbd_init_request(void *data, struct request *rq,
3735                 unsigned int hctx_idx, unsigned int request_idx,
3736                 unsigned int numa_node)
3737 {
3738         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3739
3740         INIT_WORK(work, rbd_queue_workfn);
3741         return 0;
3742 }
3743
3744 static struct blk_mq_ops rbd_mq_ops = {
3745         .queue_rq       = rbd_queue_rq,
3746         .map_queue      = blk_mq_map_queue,
3747         .init_request   = rbd_init_request,
3748 };
3749
3750 static int rbd_init_disk(struct rbd_device *rbd_dev)
3751 {
3752         struct gendisk *disk;
3753         struct request_queue *q;
3754         u64 segment_size;
3755         int err;
3756
3757         /* create gendisk info */
3758         disk = alloc_disk(single_major ?
3759                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3760                           RBD_MINORS_PER_MAJOR);
3761         if (!disk)
3762                 return -ENOMEM;
3763
3764         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3765                  rbd_dev->dev_id);
3766         disk->major = rbd_dev->major;
3767         disk->first_minor = rbd_dev->minor;
3768         if (single_major)
3769                 disk->flags |= GENHD_FL_EXT_DEVT;
3770         disk->fops = &rbd_bd_ops;
3771         disk->private_data = rbd_dev;
3772
3773         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3774         rbd_dev->tag_set.ops = &rbd_mq_ops;
3775         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3776         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3777         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3778         rbd_dev->tag_set.nr_hw_queues = 1;
3779         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3780
3781         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3782         if (err)
3783                 goto out_disk;
3784
3785         q = blk_mq_init_queue(&rbd_dev->tag_set);
3786         if (IS_ERR(q)) {
3787                 err = PTR_ERR(q);
3788                 goto out_tag_set;
3789         }
3790
3791         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3792         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3793
3794         /* set io sizes to object size */
3795         segment_size = rbd_obj_bytes(&rbd_dev->header);
3796         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3797         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3798         blk_queue_max_segment_size(q, segment_size);
3799         blk_queue_io_min(q, segment_size);
3800         blk_queue_io_opt(q, segment_size);
3801
3802         /* enable the discard support */
3803         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3804         q->limits.discard_granularity = segment_size;
3805         q->limits.discard_alignment = segment_size;
3806         q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3807         q->limits.discard_zeroes_data = 1;
3808
3809         blk_queue_merge_bvec(q, rbd_merge_bvec);
3810         disk->queue = q;
3811
3812         q->queuedata = rbd_dev;
3813
3814         rbd_dev->disk = disk;
3815
3816         return 0;
3817 out_tag_set:
3818         blk_mq_free_tag_set(&rbd_dev->tag_set);
3819 out_disk:
3820         put_disk(disk);
3821         return err;
3822 }
3823
3824 /*
3825   sysfs
3826 */
3827
3828 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3829 {
3830         return container_of(dev, struct rbd_device, dev);
3831 }
3832
3833 static ssize_t rbd_size_show(struct device *dev,
3834                              struct device_attribute *attr, char *buf)
3835 {
3836         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837
3838         return sprintf(buf, "%llu\n",
3839                 (unsigned long long)rbd_dev->mapping.size);
3840 }
3841
3842 /*
3843  * Note this shows the features for whatever's mapped, which is not
3844  * necessarily the base image.
3845  */
3846 static ssize_t rbd_features_show(struct device *dev,
3847                              struct device_attribute *attr, char *buf)
3848 {
3849         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3850
3851         return sprintf(buf, "0x%016llx\n",
3852                         (unsigned long long)rbd_dev->mapping.features);
3853 }
3854
3855 static ssize_t rbd_major_show(struct device *dev,
3856                               struct device_attribute *attr, char *buf)
3857 {
3858         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3859
3860         if (rbd_dev->major)
3861                 return sprintf(buf, "%d\n", rbd_dev->major);
3862
3863         return sprintf(buf, "(none)\n");
3864 }
3865
3866 static ssize_t rbd_minor_show(struct device *dev,
3867                               struct device_attribute *attr, char *buf)
3868 {
3869         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870
3871         return sprintf(buf, "%d\n", rbd_dev->minor);
3872 }
3873
3874 static ssize_t rbd_client_id_show(struct device *dev,
3875                                   struct device_attribute *attr, char *buf)
3876 {
3877         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3878
3879         return sprintf(buf, "client%lld\n",
3880                         ceph_client_id(rbd_dev->rbd_client->client));
3881 }
3882
3883 static ssize_t rbd_pool_show(struct device *dev,
3884                              struct device_attribute *attr, char *buf)
3885 {
3886         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3887
3888         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3889 }
3890
3891 static ssize_t rbd_pool_id_show(struct device *dev,
3892                              struct device_attribute *attr, char *buf)
3893 {
3894         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3895
3896         return sprintf(buf, "%llu\n",
3897                         (unsigned long long) rbd_dev->spec->pool_id);
3898 }
3899
3900 static ssize_t rbd_name_show(struct device *dev,
3901                              struct device_attribute *attr, char *buf)
3902 {
3903         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904
3905         if (rbd_dev->spec->image_name)
3906                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3907
3908         return sprintf(buf, "(unknown)\n");
3909 }
3910
3911 static ssize_t rbd_image_id_show(struct device *dev,
3912                              struct device_attribute *attr, char *buf)
3913 {
3914         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915
3916         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3917 }
3918
3919 /*
3920  * Shows the name of the currently-mapped snapshot (or
3921  * RBD_SNAP_HEAD_NAME for the base image).
3922  */
3923 static ssize_t rbd_snap_show(struct device *dev,
3924                              struct device_attribute *attr,
3925                              char *buf)
3926 {
3927         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3928
3929         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3930 }
3931
3932 /*
3933  * For a v2 image, shows the chain of parent images, separated by empty
3934  * lines.  For v1 images or if there is no parent, shows "(no parent
3935  * image)".
3936  */
3937 static ssize_t rbd_parent_show(struct device *dev,
3938                                struct device_attribute *attr,
3939                                char *buf)
3940 {
3941         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3942         ssize_t count = 0;
3943
3944         if (!rbd_dev->parent)
3945                 return sprintf(buf, "(no parent image)\n");
3946
3947         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3948                 struct rbd_spec *spec = rbd_dev->parent_spec;
3949
3950                 count += sprintf(&buf[count], "%s"
3951                             "pool_id %llu\npool_name %s\n"
3952                             "image_id %s\nimage_name %s\n"
3953                             "snap_id %llu\nsnap_name %s\n"
3954                             "overlap %llu\n",
3955                             !count ? "" : "\n", /* first? */
3956                             spec->pool_id, spec->pool_name,
3957                             spec->image_id, spec->image_name ?: "(unknown)",
3958                             spec->snap_id, spec->snap_name,
3959                             rbd_dev->parent_overlap);
3960         }
3961
3962         return count;
3963 }
3964
3965 static ssize_t rbd_image_refresh(struct device *dev,
3966                                  struct device_attribute *attr,
3967                                  const char *buf,
3968                                  size_t size)
3969 {
3970         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3971         int ret;
3972
3973         ret = rbd_dev_refresh(rbd_dev);
3974         if (ret)
3975                 return ret;
3976
3977         return size;
3978 }
3979
3980 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3981 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3982 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3983 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3984 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3985 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3986 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3987 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3988 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3989 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3990 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3991 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3992
3993 static struct attribute *rbd_attrs[] = {
3994         &dev_attr_size.attr,
3995         &dev_attr_features.attr,
3996         &dev_attr_major.attr,
3997         &dev_attr_minor.attr,
3998         &dev_attr_client_id.attr,
3999         &dev_attr_pool.attr,
4000         &dev_attr_pool_id.attr,
4001         &dev_attr_name.attr,
4002         &dev_attr_image_id.attr,
4003         &dev_attr_current_snap.attr,
4004         &dev_attr_parent.attr,
4005         &dev_attr_refresh.attr,
4006         NULL
4007 };
4008
4009 static struct attribute_group rbd_attr_group = {
4010         .attrs = rbd_attrs,
4011 };
4012
4013 static const struct attribute_group *rbd_attr_groups[] = {
4014         &rbd_attr_group,
4015         NULL
4016 };
4017
4018 static void rbd_sysfs_dev_release(struct device *dev)
4019 {
4020 }
4021
4022 static struct device_type rbd_device_type = {
4023         .name           = "rbd",
4024         .groups         = rbd_attr_groups,
4025         .release        = rbd_sysfs_dev_release,
4026 };
4027
4028 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4029 {
4030         kref_get(&spec->kref);
4031
4032         return spec;
4033 }
4034
4035 static void rbd_spec_free(struct kref *kref);
4036 static void rbd_spec_put(struct rbd_spec *spec)
4037 {
4038         if (spec)
4039                 kref_put(&spec->kref, rbd_spec_free);
4040 }
4041
4042 static struct rbd_spec *rbd_spec_alloc(void)
4043 {
4044         struct rbd_spec *spec;
4045
4046         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4047         if (!spec)
4048                 return NULL;
4049
4050         spec->pool_id = CEPH_NOPOOL;
4051         spec->snap_id = CEPH_NOSNAP;
4052         kref_init(&spec->kref);
4053
4054         return spec;
4055 }
4056
4057 static void rbd_spec_free(struct kref *kref)
4058 {
4059         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4060
4061         kfree(spec->pool_name);
4062         kfree(spec->image_id);
4063         kfree(spec->image_name);
4064         kfree(spec->snap_name);
4065         kfree(spec);
4066 }
4067
4068 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4069                                          struct rbd_spec *spec,
4070                                          struct rbd_options *opts)
4071 {
4072         struct rbd_device *rbd_dev;
4073
4074         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4075         if (!rbd_dev)
4076                 return NULL;
4077
4078         spin_lock_init(&rbd_dev->lock);
4079         rbd_dev->flags = 0;
4080         atomic_set(&rbd_dev->parent_ref, 0);
4081         INIT_LIST_HEAD(&rbd_dev->node);
4082         init_rwsem(&rbd_dev->header_rwsem);
4083
4084         rbd_dev->rbd_client = rbdc;
4085         rbd_dev->spec = spec;
4086         rbd_dev->opts = opts;
4087
4088         /* Initialize the layout used for all rbd requests */
4089
4090         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4091         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4092         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4093         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4094
4095         return rbd_dev;
4096 }
4097
4098 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4099 {
4100         rbd_put_client(rbd_dev->rbd_client);
4101         rbd_spec_put(rbd_dev->spec);
4102         kfree(rbd_dev->opts);
4103         kfree(rbd_dev);
4104 }
4105
4106 /*
4107  * Get the size and object order for an image snapshot, or if
4108  * snap_id is CEPH_NOSNAP, gets this information for the base
4109  * image.
4110  */
4111 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4112                                 u8 *order, u64 *snap_size)
4113 {
4114         __le64 snapid = cpu_to_le64(snap_id);
4115         int ret;
4116         struct {
4117                 u8 order;
4118                 __le64 size;
4119         } __attribute__ ((packed)) size_buf = { 0 };
4120
4121         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122                                 "rbd", "get_size",
4123                                 &snapid, sizeof (snapid),
4124                                 &size_buf, sizeof (size_buf));
4125         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4126         if (ret < 0)
4127                 return ret;
4128         if (ret < sizeof (size_buf))
4129                 return -ERANGE;
4130
4131         if (order) {
4132                 *order = size_buf.order;
4133                 dout("  order %u", (unsigned int)*order);
4134         }
4135         *snap_size = le64_to_cpu(size_buf.size);
4136
4137         dout("  snap_id 0x%016llx snap_size = %llu\n",
4138                 (unsigned long long)snap_id,
4139                 (unsigned long long)*snap_size);
4140
4141         return 0;
4142 }
4143
4144 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4145 {
4146         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4147                                         &rbd_dev->header.obj_order,
4148                                         &rbd_dev->header.image_size);
4149 }
4150
4151 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4152 {
4153         void *reply_buf;
4154         int ret;
4155         void *p;
4156
4157         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4158         if (!reply_buf)
4159                 return -ENOMEM;
4160
4161         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4162                                 "rbd", "get_object_prefix", NULL, 0,
4163                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4164         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4165         if (ret < 0)
4166                 goto out;
4167
4168         p = reply_buf;
4169         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4170                                                 p + ret, NULL, GFP_NOIO);
4171         ret = 0;
4172
4173         if (IS_ERR(rbd_dev->header.object_prefix)) {
4174                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4175                 rbd_dev->header.object_prefix = NULL;
4176         } else {
4177                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4178         }
4179 out:
4180         kfree(reply_buf);
4181
4182         return ret;
4183 }
4184
4185 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4186                 u64 *snap_features)
4187 {
4188         __le64 snapid = cpu_to_le64(snap_id);
4189         struct {
4190                 __le64 features;
4191                 __le64 incompat;
4192         } __attribute__ ((packed)) features_buf = { 0 };
4193         u64 incompat;
4194         int ret;
4195
4196         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4197                                 "rbd", "get_features",
4198                                 &snapid, sizeof (snapid),
4199                                 &features_buf, sizeof (features_buf));
4200         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4201         if (ret < 0)
4202                 return ret;
4203         if (ret < sizeof (features_buf))
4204                 return -ERANGE;
4205
4206         incompat = le64_to_cpu(features_buf.incompat);
4207         if (incompat & ~RBD_FEATURES_SUPPORTED)
4208                 return -ENXIO;
4209
4210         *snap_features = le64_to_cpu(features_buf.features);
4211
4212         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4213                 (unsigned long long)snap_id,
4214                 (unsigned long long)*snap_features,
4215                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4216
4217         return 0;
4218 }
4219
4220 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4221 {
4222         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4223                                                 &rbd_dev->header.features);
4224 }
4225
4226 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4227 {
4228         struct rbd_spec *parent_spec;
4229         size_t size;
4230         void *reply_buf = NULL;
4231         __le64 snapid;
4232         void *p;
4233         void *end;
4234         u64 pool_id;
4235         char *image_id;
4236         u64 snap_id;
4237         u64 overlap;
4238         int ret;
4239
4240         parent_spec = rbd_spec_alloc();
4241         if (!parent_spec)
4242                 return -ENOMEM;
4243
4244         size = sizeof (__le64) +                                /* pool_id */
4245                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4246                 sizeof (__le64) +                               /* snap_id */
4247                 sizeof (__le64);                                /* overlap */
4248         reply_buf = kmalloc(size, GFP_KERNEL);
4249         if (!reply_buf) {
4250                 ret = -ENOMEM;
4251                 goto out_err;
4252         }
4253
4254         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4255         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4256                                 "rbd", "get_parent",
4257                                 &snapid, sizeof (snapid),
4258                                 reply_buf, size);
4259         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4260         if (ret < 0)
4261                 goto out_err;
4262
4263         p = reply_buf;
4264         end = reply_buf + ret;
4265         ret = -ERANGE;
4266         ceph_decode_64_safe(&p, end, pool_id, out_err);
4267         if (pool_id == CEPH_NOPOOL) {
4268                 /*
4269                  * Either the parent never existed, or we have
4270                  * record of it but the image got flattened so it no
4271                  * longer has a parent.  When the parent of a
4272                  * layered image disappears we immediately set the
4273                  * overlap to 0.  The effect of this is that all new
4274                  * requests will be treated as if the image had no
4275                  * parent.
4276                  */
4277                 if (rbd_dev->parent_overlap) {
4278                         rbd_dev->parent_overlap = 0;
4279                         rbd_dev_parent_put(rbd_dev);
4280                         pr_info("%s: clone image has been flattened\n",
4281                                 rbd_dev->disk->disk_name);
4282                 }
4283
4284                 goto out;       /* No parent?  No problem. */
4285         }
4286
4287         /* The ceph file layout needs to fit pool id in 32 bits */
4288
4289         ret = -EIO;
4290         if (pool_id > (u64)U32_MAX) {
4291                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4292                         (unsigned long long)pool_id, U32_MAX);
4293                 goto out_err;
4294         }
4295
4296         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4297         if (IS_ERR(image_id)) {
4298                 ret = PTR_ERR(image_id);
4299                 goto out_err;
4300         }
4301         ceph_decode_64_safe(&p, end, snap_id, out_err);
4302         ceph_decode_64_safe(&p, end, overlap, out_err);
4303
4304         /*
4305          * The parent won't change (except when the clone is
4306          * flattened, already handled that).  So we only need to
4307          * record the parent spec we have not already done so.
4308          */
4309         if (!rbd_dev->parent_spec) {
4310                 parent_spec->pool_id = pool_id;
4311                 parent_spec->image_id = image_id;
4312                 parent_spec->snap_id = snap_id;
4313                 rbd_dev->parent_spec = parent_spec;
4314                 parent_spec = NULL;     /* rbd_dev now owns this */
4315         } else {
4316                 kfree(image_id);
4317         }
4318
4319         /*
4320          * We always update the parent overlap.  If it's zero we issue
4321          * a warning, as we will proceed as if there was no parent.
4322          */
4323         if (!overlap) {
4324                 if (parent_spec) {
4325                         /* refresh, careful to warn just once */
4326                         if (rbd_dev->parent_overlap)
4327                                 rbd_warn(rbd_dev,
4328                                     "clone now standalone (overlap became 0)");
4329                 } else {
4330                         /* initial probe */
4331                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4332                 }
4333         }
4334         rbd_dev->parent_overlap = overlap;
4335
4336 out:
4337         ret = 0;
4338 out_err:
4339         kfree(reply_buf);
4340         rbd_spec_put(parent_spec);
4341
4342         return ret;
4343 }
4344
4345 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4346 {
4347         struct {
4348                 __le64 stripe_unit;
4349                 __le64 stripe_count;
4350         } __attribute__ ((packed)) striping_info_buf = { 0 };
4351         size_t size = sizeof (striping_info_buf);
4352         void *p;
4353         u64 obj_size;
4354         u64 stripe_unit;
4355         u64 stripe_count;
4356         int ret;
4357
4358         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4359                                 "rbd", "get_stripe_unit_count", NULL, 0,
4360                                 (char *)&striping_info_buf, size);
4361         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4362         if (ret < 0)
4363                 return ret;
4364         if (ret < size)
4365                 return -ERANGE;
4366
4367         /*
4368          * We don't actually support the "fancy striping" feature
4369          * (STRIPINGV2) yet, but if the striping sizes are the
4370          * defaults the behavior is the same as before.  So find
4371          * out, and only fail if the image has non-default values.
4372          */
4373         ret = -EINVAL;
4374         obj_size = (u64)1 << rbd_dev->header.obj_order;
4375         p = &striping_info_buf;
4376         stripe_unit = ceph_decode_64(&p);
4377         if (stripe_unit != obj_size) {
4378                 rbd_warn(rbd_dev, "unsupported stripe unit "
4379                                 "(got %llu want %llu)",
4380                                 stripe_unit, obj_size);
4381                 return -EINVAL;
4382         }
4383         stripe_count = ceph_decode_64(&p);
4384         if (stripe_count != 1) {
4385                 rbd_warn(rbd_dev, "unsupported stripe count "
4386                                 "(got %llu want 1)", stripe_count);
4387                 return -EINVAL;
4388         }
4389         rbd_dev->header.stripe_unit = stripe_unit;
4390         rbd_dev->header.stripe_count = stripe_count;
4391
4392         return 0;
4393 }
4394
4395 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4396 {
4397         size_t image_id_size;
4398         char *image_id;
4399         void *p;
4400         void *end;
4401         size_t size;
4402         void *reply_buf = NULL;
4403         size_t len = 0;
4404         char *image_name = NULL;
4405         int ret;
4406
4407         rbd_assert(!rbd_dev->spec->image_name);
4408
4409         len = strlen(rbd_dev->spec->image_id);
4410         image_id_size = sizeof (__le32) + len;
4411         image_id = kmalloc(image_id_size, GFP_KERNEL);
4412         if (!image_id)
4413                 return NULL;
4414
4415         p = image_id;
4416         end = image_id + image_id_size;
4417         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4418
4419         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4420         reply_buf = kmalloc(size, GFP_KERNEL);
4421         if (!reply_buf)
4422                 goto out;
4423
4424         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4425                                 "rbd", "dir_get_name",
4426                                 image_id, image_id_size,
4427                                 reply_buf, size);
4428         if (ret < 0)
4429                 goto out;
4430         p = reply_buf;
4431         end = reply_buf + ret;
4432
4433         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4434         if (IS_ERR(image_name))
4435                 image_name = NULL;
4436         else
4437                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4438 out:
4439         kfree(reply_buf);
4440         kfree(image_id);
4441
4442         return image_name;
4443 }
4444
4445 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4446 {
4447         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4448         const char *snap_name;
4449         u32 which = 0;
4450
4451         /* Skip over names until we find the one we are looking for */
4452
4453         snap_name = rbd_dev->header.snap_names;
4454         while (which < snapc->num_snaps) {
4455                 if (!strcmp(name, snap_name))
4456                         return snapc->snaps[which];
4457                 snap_name += strlen(snap_name) + 1;
4458                 which++;
4459         }
4460         return CEPH_NOSNAP;
4461 }
4462
4463 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4464 {
4465         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4466         u32 which;
4467         bool found = false;
4468         u64 snap_id;
4469
4470         for (which = 0; !found && which < snapc->num_snaps; which++) {
4471                 const char *snap_name;
4472
4473                 snap_id = snapc->snaps[which];
4474                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4475                 if (IS_ERR(snap_name)) {
4476                         /* ignore no-longer existing snapshots */
4477                         if (PTR_ERR(snap_name) == -ENOENT)
4478                                 continue;
4479                         else
4480                                 break;
4481                 }
4482                 found = !strcmp(name, snap_name);
4483                 kfree(snap_name);
4484         }
4485         return found ? snap_id : CEPH_NOSNAP;
4486 }
4487
4488 /*
4489  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4490  * no snapshot by that name is found, or if an error occurs.
4491  */
4492 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4493 {
4494         if (rbd_dev->image_format == 1)
4495                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4496
4497         return rbd_v2_snap_id_by_name(rbd_dev, name);
4498 }
4499
4500 /*
4501  * An image being mapped will have everything but the snap id.
4502  */
4503 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4504 {
4505         struct rbd_spec *spec = rbd_dev->spec;
4506
4507         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4508         rbd_assert(spec->image_id && spec->image_name);
4509         rbd_assert(spec->snap_name);
4510
4511         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4512                 u64 snap_id;
4513
4514                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4515                 if (snap_id == CEPH_NOSNAP)
4516                         return -ENOENT;
4517
4518                 spec->snap_id = snap_id;
4519         } else {
4520                 spec->snap_id = CEPH_NOSNAP;
4521         }
4522
4523         return 0;
4524 }
4525
4526 /*
4527  * A parent image will have all ids but none of the names.
4528  *
4529  * All names in an rbd spec are dynamically allocated.  It's OK if we
4530  * can't figure out the name for an image id.
4531  */
4532 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4533 {
4534         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4535         struct rbd_spec *spec = rbd_dev->spec;
4536         const char *pool_name;
4537         const char *image_name;
4538         const char *snap_name;
4539         int ret;
4540
4541         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4542         rbd_assert(spec->image_id);
4543         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4544
4545         /* Get the pool name; we have to make our own copy of this */
4546
4547         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4548         if (!pool_name) {
4549                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4550                 return -EIO;
4551         }
4552         pool_name = kstrdup(pool_name, GFP_KERNEL);
4553         if (!pool_name)
4554                 return -ENOMEM;
4555
4556         /* Fetch the image name; tolerate failure here */
4557
4558         image_name = rbd_dev_image_name(rbd_dev);
4559         if (!image_name)
4560                 rbd_warn(rbd_dev, "unable to get image name");
4561
4562         /* Fetch the snapshot name */
4563
4564         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4565         if (IS_ERR(snap_name)) {
4566                 ret = PTR_ERR(snap_name);
4567                 goto out_err;
4568         }
4569
4570         spec->pool_name = pool_name;
4571         spec->image_name = image_name;
4572         spec->snap_name = snap_name;
4573
4574         return 0;
4575
4576 out_err:
4577         kfree(image_name);
4578         kfree(pool_name);
4579         return ret;
4580 }
4581
4582 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4583 {
4584         size_t size;
4585         int ret;
4586         void *reply_buf;
4587         void *p;
4588         void *end;
4589         u64 seq;
4590         u32 snap_count;
4591         struct ceph_snap_context *snapc;
4592         u32 i;
4593
4594         /*
4595          * We'll need room for the seq value (maximum snapshot id),
4596          * snapshot count, and array of that many snapshot ids.
4597          * For now we have a fixed upper limit on the number we're
4598          * prepared to receive.
4599          */
4600         size = sizeof (__le64) + sizeof (__le32) +
4601                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4602         reply_buf = kzalloc(size, GFP_KERNEL);
4603         if (!reply_buf)
4604                 return -ENOMEM;
4605
4606         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4607                                 "rbd", "get_snapcontext", NULL, 0,
4608                                 reply_buf, size);
4609         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4610         if (ret < 0)
4611                 goto out;
4612
4613         p = reply_buf;
4614         end = reply_buf + ret;
4615         ret = -ERANGE;
4616         ceph_decode_64_safe(&p, end, seq, out);
4617         ceph_decode_32_safe(&p, end, snap_count, out);
4618
4619         /*
4620          * Make sure the reported number of snapshot ids wouldn't go
4621          * beyond the end of our buffer.  But before checking that,
4622          * make sure the computed size of the snapshot context we
4623          * allocate is representable in a size_t.
4624          */
4625         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4626                                  / sizeof (u64)) {
4627                 ret = -EINVAL;
4628                 goto out;
4629         }
4630         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4631                 goto out;
4632         ret = 0;
4633
4634         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4635         if (!snapc) {
4636                 ret = -ENOMEM;
4637                 goto out;
4638         }
4639         snapc->seq = seq;
4640         for (i = 0; i < snap_count; i++)
4641                 snapc->snaps[i] = ceph_decode_64(&p);
4642
4643         ceph_put_snap_context(rbd_dev->header.snapc);
4644         rbd_dev->header.snapc = snapc;
4645
4646         dout("  snap context seq = %llu, snap_count = %u\n",
4647                 (unsigned long long)seq, (unsigned int)snap_count);
4648 out:
4649         kfree(reply_buf);
4650
4651         return ret;
4652 }
4653
4654 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4655                                         u64 snap_id)
4656 {
4657         size_t size;
4658         void *reply_buf;
4659         __le64 snapid;
4660         int ret;
4661         void *p;
4662         void *end;
4663         char *snap_name;
4664
4665         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4666         reply_buf = kmalloc(size, GFP_KERNEL);
4667         if (!reply_buf)
4668                 return ERR_PTR(-ENOMEM);
4669
4670         snapid = cpu_to_le64(snap_id);
4671         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4672                                 "rbd", "get_snapshot_name",
4673                                 &snapid, sizeof (snapid),
4674                                 reply_buf, size);
4675         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4676         if (ret < 0) {
4677                 snap_name = ERR_PTR(ret);
4678                 goto out;
4679         }
4680
4681         p = reply_buf;
4682         end = reply_buf + ret;
4683         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4684         if (IS_ERR(snap_name))
4685                 goto out;
4686
4687         dout("  snap_id 0x%016llx snap_name = %s\n",
4688                 (unsigned long long)snap_id, snap_name);
4689 out:
4690         kfree(reply_buf);
4691
4692         return snap_name;
4693 }
4694
4695 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4696 {
4697         bool first_time = rbd_dev->header.object_prefix == NULL;
4698         int ret;
4699
4700         ret = rbd_dev_v2_image_size(rbd_dev);
4701         if (ret)
4702                 return ret;
4703
4704         if (first_time) {
4705                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4706                 if (ret)
4707                         return ret;
4708         }
4709
4710         ret = rbd_dev_v2_snap_context(rbd_dev);
4711         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4712
4713         return ret;
4714 }
4715
4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4717 {
4718         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4719
4720         if (rbd_dev->image_format == 1)
4721                 return rbd_dev_v1_header_info(rbd_dev);
4722
4723         return rbd_dev_v2_header_info(rbd_dev);
4724 }
4725
4726 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4727 {
4728         struct device *dev;
4729         int ret;
4730
4731         dev = &rbd_dev->dev;
4732         dev->bus = &rbd_bus_type;
4733         dev->type = &rbd_device_type;
4734         dev->parent = &rbd_root_dev;
4735         dev->release = rbd_dev_device_release;
4736         dev_set_name(dev, "%d", rbd_dev->dev_id);
4737         ret = device_register(dev);
4738
4739         return ret;
4740 }
4741
4742 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4743 {
4744         device_unregister(&rbd_dev->dev);
4745 }
4746
4747 /*
4748  * Get a unique rbd identifier for the given new rbd_dev, and add
4749  * the rbd_dev to the global list.
4750  */
4751 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4752 {
4753         int new_dev_id;
4754
4755         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4756                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4757                                     GFP_KERNEL);
4758         if (new_dev_id < 0)
4759                 return new_dev_id;
4760
4761         rbd_dev->dev_id = new_dev_id;
4762
4763         spin_lock(&rbd_dev_list_lock);
4764         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4765         spin_unlock(&rbd_dev_list_lock);
4766
4767         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4768
4769         return 0;
4770 }
4771
4772 /*
4773  * Remove an rbd_dev from the global list, and record that its
4774  * identifier is no longer in use.
4775  */
4776 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4777 {
4778         spin_lock(&rbd_dev_list_lock);
4779         list_del_init(&rbd_dev->node);
4780         spin_unlock(&rbd_dev_list_lock);
4781
4782         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4783
4784         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4785 }
4786
4787 /*
4788  * Skips over white space at *buf, and updates *buf to point to the
4789  * first found non-space character (if any). Returns the length of
4790  * the token (string of non-white space characters) found.  Note
4791  * that *buf must be terminated with '\0'.
4792  */
4793 static inline size_t next_token(const char **buf)
4794 {
4795         /*
4796         * These are the characters that produce nonzero for
4797         * isspace() in the "C" and "POSIX" locales.
4798         */
4799         const char *spaces = " \f\n\r\t\v";
4800
4801         *buf += strspn(*buf, spaces);   /* Find start of token */
4802
4803         return strcspn(*buf, spaces);   /* Return token length */
4804 }
4805
4806 /*
4807  * Finds the next token in *buf, dynamically allocates a buffer big
4808  * enough to hold a copy of it, and copies the token into the new
4809  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4810  * that a duplicate buffer is created even for a zero-length token.
4811  *
4812  * Returns a pointer to the newly-allocated duplicate, or a null
4813  * pointer if memory for the duplicate was not available.  If
4814  * the lenp argument is a non-null pointer, the length of the token
4815  * (not including the '\0') is returned in *lenp.
4816  *
4817  * If successful, the *buf pointer will be updated to point beyond
4818  * the end of the found token.
4819  *
4820  * Note: uses GFP_KERNEL for allocation.
4821  */
4822 static inline char *dup_token(const char **buf, size_t *lenp)
4823 {
4824         char *dup;
4825         size_t len;
4826
4827         len = next_token(buf);
4828         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4829         if (!dup)
4830                 return NULL;
4831         *(dup + len) = '\0';
4832         *buf += len;
4833
4834         if (lenp)
4835                 *lenp = len;
4836
4837         return dup;
4838 }
4839
4840 /*
4841  * Parse the options provided for an "rbd add" (i.e., rbd image
4842  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4843  * and the data written is passed here via a NUL-terminated buffer.
4844  * Returns 0 if successful or an error code otherwise.
4845  *
4846  * The information extracted from these options is recorded in
4847  * the other parameters which return dynamically-allocated
4848  * structures:
4849  *  ceph_opts
4850  *      The address of a pointer that will refer to a ceph options
4851  *      structure.  Caller must release the returned pointer using
4852  *      ceph_destroy_options() when it is no longer needed.
4853  *  rbd_opts
4854  *      Address of an rbd options pointer.  Fully initialized by
4855  *      this function; caller must release with kfree().
4856  *  spec
4857  *      Address of an rbd image specification pointer.  Fully
4858  *      initialized by this function based on parsed options.
4859  *      Caller must release with rbd_spec_put().
4860  *
4861  * The options passed take this form:
4862  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4863  * where:
4864  *  <mon_addrs>
4865  *      A comma-separated list of one or more monitor addresses.
4866  *      A monitor address is an ip address, optionally followed
4867  *      by a port number (separated by a colon).
4868  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4869  *  <options>
4870  *      A comma-separated list of ceph and/or rbd options.
4871  *  <pool_name>
4872  *      The name of the rados pool containing the rbd image.
4873  *  <image_name>
4874  *      The name of the image in that pool to map.
4875  *  <snap_id>
4876  *      An optional snapshot id.  If provided, the mapping will
4877  *      present data from the image at the time that snapshot was
4878  *      created.  The image head is used if no snapshot id is
4879  *      provided.  Snapshot mappings are always read-only.
4880  */
4881 static int rbd_add_parse_args(const char *buf,
4882                                 struct ceph_options **ceph_opts,
4883                                 struct rbd_options **opts,
4884                                 struct rbd_spec **rbd_spec)
4885 {
4886         size_t len;
4887         char *options;
4888         const char *mon_addrs;
4889         char *snap_name;
4890         size_t mon_addrs_size;
4891         struct rbd_spec *spec = NULL;
4892         struct rbd_options *rbd_opts = NULL;
4893         struct ceph_options *copts;
4894         int ret;
4895
4896         /* The first four tokens are required */
4897
4898         len = next_token(&buf);
4899         if (!len) {
4900                 rbd_warn(NULL, "no monitor address(es) provided");
4901                 return -EINVAL;
4902         }
4903         mon_addrs = buf;
4904         mon_addrs_size = len + 1;
4905         buf += len;
4906
4907         ret = -EINVAL;
4908         options = dup_token(&buf, NULL);
4909         if (!options)
4910                 return -ENOMEM;
4911         if (!*options) {
4912                 rbd_warn(NULL, "no options provided");
4913                 goto out_err;
4914         }
4915
4916         spec = rbd_spec_alloc();
4917         if (!spec)
4918                 goto out_mem;
4919
4920         spec->pool_name = dup_token(&buf, NULL);
4921         if (!spec->pool_name)
4922                 goto out_mem;
4923         if (!*spec->pool_name) {
4924                 rbd_warn(NULL, "no pool name provided");
4925                 goto out_err;
4926         }
4927
4928         spec->image_name = dup_token(&buf, NULL);
4929         if (!spec->image_name)
4930                 goto out_mem;
4931         if (!*spec->image_name) {
4932                 rbd_warn(NULL, "no image name provided");
4933                 goto out_err;
4934         }
4935
4936         /*
4937          * Snapshot name is optional; default is to use "-"
4938          * (indicating the head/no snapshot).
4939          */
4940         len = next_token(&buf);
4941         if (!len) {
4942                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4943                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4944         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4945                 ret = -ENAMETOOLONG;
4946                 goto out_err;
4947         }
4948         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4949         if (!snap_name)
4950                 goto out_mem;
4951         *(snap_name + len) = '\0';
4952         spec->snap_name = snap_name;
4953
4954         /* Initialize all rbd options to the defaults */
4955
4956         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4957         if (!rbd_opts)
4958                 goto out_mem;
4959
4960         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4961         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4962
4963         copts = ceph_parse_options(options, mon_addrs,
4964                                         mon_addrs + mon_addrs_size - 1,
4965                                         parse_rbd_opts_token, rbd_opts);
4966         if (IS_ERR(copts)) {
4967                 ret = PTR_ERR(copts);
4968                 goto out_err;
4969         }
4970         kfree(options);
4971
4972         *ceph_opts = copts;
4973         *opts = rbd_opts;
4974         *rbd_spec = spec;
4975
4976         return 0;
4977 out_mem:
4978         ret = -ENOMEM;
4979 out_err:
4980         kfree(rbd_opts);
4981         rbd_spec_put(spec);
4982         kfree(options);
4983
4984         return ret;
4985 }
4986
4987 /*
4988  * Return pool id (>= 0) or a negative error code.
4989  */
4990 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4991 {
4992         struct ceph_options *opts = rbdc->client->options;
4993         u64 newest_epoch;
4994         int tries = 0;
4995         int ret;
4996
4997 again:
4998         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4999         if (ret == -ENOENT && tries++ < 1) {
5000                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5001                                                &newest_epoch);
5002                 if (ret < 0)
5003                         return ret;
5004
5005                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5006                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
5007                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5008                                                      newest_epoch,
5009                                                      opts->mount_timeout);
5010                         goto again;
5011                 } else {
5012                         /* the osdmap we have is new enough */
5013                         return -ENOENT;
5014                 }
5015         }
5016
5017         return ret;
5018 }
5019
5020 /*
5021  * An rbd format 2 image has a unique identifier, distinct from the
5022  * name given to it by the user.  Internally, that identifier is
5023  * what's used to specify the names of objects related to the image.
5024  *
5025  * A special "rbd id" object is used to map an rbd image name to its
5026  * id.  If that object doesn't exist, then there is no v2 rbd image
5027  * with the supplied name.
5028  *
5029  * This function will record the given rbd_dev's image_id field if
5030  * it can be determined, and in that case will return 0.  If any
5031  * errors occur a negative errno will be returned and the rbd_dev's
5032  * image_id field will be unchanged (and should be NULL).
5033  */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036         int ret;
5037         size_t size;
5038         char *object_name;
5039         void *response;
5040         char *image_id;
5041
5042         /*
5043          * When probing a parent image, the image id is already
5044          * known (and the image name likely is not).  There's no
5045          * need to fetch the image id again in this case.  We
5046          * do still need to set the image format though.
5047          */
5048         if (rbd_dev->spec->image_id) {
5049                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050
5051                 return 0;
5052         }
5053
5054         /*
5055          * First, see if the format 2 image id file exists, and if
5056          * so, get the image's persistent id from it.
5057          */
5058         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059         object_name = kmalloc(size, GFP_NOIO);
5060         if (!object_name)
5061                 return -ENOMEM;
5062         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063         dout("rbd id object name is %s\n", object_name);
5064
5065         /* Response will be an encoded string, which includes a length */
5066
5067         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068         response = kzalloc(size, GFP_NOIO);
5069         if (!response) {
5070                 ret = -ENOMEM;
5071                 goto out;
5072         }
5073
5074         /* If it doesn't exist we'll assume it's a format 1 image */
5075
5076         ret = rbd_obj_method_sync(rbd_dev, object_name,
5077                                 "rbd", "get_id", NULL, 0,
5078                                 response, RBD_IMAGE_ID_LEN_MAX);
5079         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080         if (ret == -ENOENT) {
5081                 image_id = kstrdup("", GFP_KERNEL);
5082                 ret = image_id ? 0 : -ENOMEM;
5083                 if (!ret)
5084                         rbd_dev->image_format = 1;
5085         } else if (ret >= 0) {
5086                 void *p = response;
5087
5088                 image_id = ceph_extract_encoded_string(&p, p + ret,
5089                                                 NULL, GFP_NOIO);
5090                 ret = PTR_ERR_OR_ZERO(image_id);
5091                 if (!ret)
5092                         rbd_dev->image_format = 2;
5093         }
5094
5095         if (!ret) {
5096                 rbd_dev->spec->image_id = image_id;
5097                 dout("image_id is %s\n", image_id);
5098         }
5099 out:
5100         kfree(response);
5101         kfree(object_name);
5102
5103         return ret;
5104 }
5105
5106 /*
5107  * Undo whatever state changes are made by v1 or v2 header info
5108  * call.
5109  */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112         struct rbd_image_header *header;
5113
5114         rbd_dev_parent_put(rbd_dev);
5115
5116         /* Free dynamic fields from the header, then zero it out */
5117
5118         header = &rbd_dev->header;
5119         ceph_put_snap_context(header->snapc);
5120         kfree(header->snap_sizes);
5121         kfree(header->snap_names);
5122         kfree(header->object_prefix);
5123         memset(header, 0, sizeof (*header));
5124 }
5125
5126 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5127 {
5128         int ret;
5129
5130         ret = rbd_dev_v2_object_prefix(rbd_dev);
5131         if (ret)
5132                 goto out_err;
5133
5134         /*
5135          * Get the and check features for the image.  Currently the
5136          * features are assumed to never change.
5137          */
5138         ret = rbd_dev_v2_features(rbd_dev);
5139         if (ret)
5140                 goto out_err;
5141
5142         /* If the image supports fancy striping, get its parameters */
5143
5144         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5145                 ret = rbd_dev_v2_striping_info(rbd_dev);
5146                 if (ret < 0)
5147                         goto out_err;
5148         }
5149         /* No support for crypto and compression type format 2 images */
5150
5151         return 0;
5152 out_err:
5153         rbd_dev->header.features = 0;
5154         kfree(rbd_dev->header.object_prefix);
5155         rbd_dev->header.object_prefix = NULL;
5156
5157         return ret;
5158 }
5159
5160 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5161 {
5162         struct rbd_device *parent = NULL;
5163         struct rbd_spec *parent_spec;
5164         struct rbd_client *rbdc;
5165         int ret;
5166
5167         if (!rbd_dev->parent_spec)
5168                 return 0;
5169         /*
5170          * We need to pass a reference to the client and the parent
5171          * spec when creating the parent rbd_dev.  Images related by
5172          * parent/child relationships always share both.
5173          */
5174         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5175         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5176
5177         ret = -ENOMEM;
5178         parent = rbd_dev_create(rbdc, parent_spec, NULL);
5179         if (!parent)
5180                 goto out_err;
5181
5182         ret = rbd_dev_image_probe(parent, false);
5183         if (ret < 0)
5184                 goto out_err;
5185         rbd_dev->parent = parent;
5186         atomic_set(&rbd_dev->parent_ref, 1);
5187
5188         return 0;
5189 out_err:
5190         if (parent) {
5191                 rbd_dev_unparent(rbd_dev);
5192                 kfree(rbd_dev->header_name);
5193                 rbd_dev_destroy(parent);
5194         } else {
5195                 rbd_put_client(rbdc);
5196                 rbd_spec_put(parent_spec);
5197         }
5198
5199         return ret;
5200 }
5201
5202 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5203 {
5204         int ret;
5205
5206         /* Get an id and fill in device name. */
5207
5208         ret = rbd_dev_id_get(rbd_dev);
5209         if (ret)
5210                 return ret;
5211
5212         BUILD_BUG_ON(DEV_NAME_LEN
5213                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5214         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5215
5216         /* Record our major and minor device numbers. */
5217
5218         if (!single_major) {
5219                 ret = register_blkdev(0, rbd_dev->name);
5220                 if (ret < 0)
5221                         goto err_out_id;
5222
5223                 rbd_dev->major = ret;
5224                 rbd_dev->minor = 0;
5225         } else {
5226                 rbd_dev->major = rbd_major;
5227                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5228         }
5229
5230         /* Set up the blkdev mapping. */
5231
5232         ret = rbd_init_disk(rbd_dev);
5233         if (ret)
5234                 goto err_out_blkdev;
5235
5236         ret = rbd_dev_mapping_set(rbd_dev);
5237         if (ret)
5238                 goto err_out_disk;
5239
5240         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5241         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5242
5243         ret = rbd_bus_add_dev(rbd_dev);
5244         if (ret)
5245                 goto err_out_mapping;
5246
5247         /* Everything's ready.  Announce the disk to the world. */
5248
5249         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5250         add_disk(rbd_dev->disk);
5251
5252         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5253                 (unsigned long long) rbd_dev->mapping.size);
5254
5255         return ret;
5256
5257 err_out_mapping:
5258         rbd_dev_mapping_clear(rbd_dev);
5259 err_out_disk:
5260         rbd_free_disk(rbd_dev);
5261 err_out_blkdev:
5262         if (!single_major)
5263                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5264 err_out_id:
5265         rbd_dev_id_put(rbd_dev);
5266         rbd_dev_mapping_clear(rbd_dev);
5267
5268         return ret;
5269 }
5270
5271 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5272 {
5273         struct rbd_spec *spec = rbd_dev->spec;
5274         size_t size;
5275
5276         /* Record the header object name for this rbd image. */
5277
5278         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5279
5280         if (rbd_dev->image_format == 1)
5281                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5282         else
5283                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5284
5285         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5286         if (!rbd_dev->header_name)
5287                 return -ENOMEM;
5288
5289         if (rbd_dev->image_format == 1)
5290                 sprintf(rbd_dev->header_name, "%s%s",
5291                         spec->image_name, RBD_SUFFIX);
5292         else
5293                 sprintf(rbd_dev->header_name, "%s%s",
5294                         RBD_HEADER_PREFIX, spec->image_id);
5295         return 0;
5296 }
5297
5298 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5299 {
5300         rbd_dev_unprobe(rbd_dev);
5301         kfree(rbd_dev->header_name);
5302         rbd_dev->header_name = NULL;
5303         rbd_dev->image_format = 0;
5304         kfree(rbd_dev->spec->image_id);
5305         rbd_dev->spec->image_id = NULL;
5306
5307         rbd_dev_destroy(rbd_dev);
5308 }
5309
5310 /*
5311  * Probe for the existence of the header object for the given rbd
5312  * device.  If this image is the one being mapped (i.e., not a
5313  * parent), initiate a watch on its header object before using that
5314  * object to get detailed information about the rbd image.
5315  */
5316 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5317 {
5318         int ret;
5319
5320         /*
5321          * Get the id from the image id object.  Unless there's an
5322          * error, rbd_dev->spec->image_id will be filled in with
5323          * a dynamically-allocated string, and rbd_dev->image_format
5324          * will be set to either 1 or 2.
5325          */
5326         ret = rbd_dev_image_id(rbd_dev);
5327         if (ret)
5328                 return ret;
5329
5330         ret = rbd_dev_header_name(rbd_dev);
5331         if (ret)
5332                 goto err_out_format;
5333
5334         if (mapping) {
5335                 ret = rbd_dev_header_watch_sync(rbd_dev);
5336                 if (ret) {
5337                         if (ret == -ENOENT)
5338                                 pr_info("image %s/%s does not exist\n",
5339                                         rbd_dev->spec->pool_name,
5340                                         rbd_dev->spec->image_name);
5341                         goto out_header_name;
5342                 }
5343         }
5344
5345         ret = rbd_dev_header_info(rbd_dev);
5346         if (ret)
5347                 goto err_out_watch;
5348
5349         /*
5350          * If this image is the one being mapped, we have pool name and
5351          * id, image name and id, and snap name - need to fill snap id.
5352          * Otherwise this is a parent image, identified by pool, image
5353          * and snap ids - need to fill in names for those ids.
5354          */
5355         if (mapping)
5356                 ret = rbd_spec_fill_snap_id(rbd_dev);
5357         else
5358                 ret = rbd_spec_fill_names(rbd_dev);
5359         if (ret) {
5360                 if (ret == -ENOENT)
5361                         pr_info("snap %s/%s@%s does not exist\n",
5362                                 rbd_dev->spec->pool_name,
5363                                 rbd_dev->spec->image_name,
5364                                 rbd_dev->spec->snap_name);
5365                 goto err_out_probe;
5366         }
5367
5368         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5369                 ret = rbd_dev_v2_parent_info(rbd_dev);
5370                 if (ret)
5371                         goto err_out_probe;
5372
5373                 /*
5374                  * Need to warn users if this image is the one being
5375                  * mapped and has a parent.
5376                  */
5377                 if (mapping && rbd_dev->parent_spec)
5378                         rbd_warn(rbd_dev,
5379                                  "WARNING: kernel layering is EXPERIMENTAL!");
5380         }
5381
5382         ret = rbd_dev_probe_parent(rbd_dev);
5383         if (ret)
5384                 goto err_out_probe;
5385
5386         dout("discovered format %u image, header name is %s\n",
5387                 rbd_dev->image_format, rbd_dev->header_name);
5388         return 0;
5389
5390 err_out_probe:
5391         rbd_dev_unprobe(rbd_dev);
5392 err_out_watch:
5393         if (mapping)
5394                 rbd_dev_header_unwatch_sync(rbd_dev);
5395 out_header_name:
5396         kfree(rbd_dev->header_name);
5397         rbd_dev->header_name = NULL;
5398 err_out_format:
5399         rbd_dev->image_format = 0;
5400         kfree(rbd_dev->spec->image_id);
5401         rbd_dev->spec->image_id = NULL;
5402         return ret;
5403 }
5404
5405 static ssize_t do_rbd_add(struct bus_type *bus,
5406                           const char *buf,
5407                           size_t count)
5408 {
5409         struct rbd_device *rbd_dev = NULL;
5410         struct ceph_options *ceph_opts = NULL;
5411         struct rbd_options *rbd_opts = NULL;
5412         struct rbd_spec *spec = NULL;
5413         struct rbd_client *rbdc;
5414         bool read_only;
5415         int rc = -ENOMEM;
5416
5417         if (!try_module_get(THIS_MODULE))
5418                 return -ENODEV;
5419
5420         /* parse add command */
5421         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5422         if (rc < 0)
5423                 goto err_out_module;
5424
5425         rbdc = rbd_get_client(ceph_opts);
5426         if (IS_ERR(rbdc)) {
5427                 rc = PTR_ERR(rbdc);
5428                 goto err_out_args;
5429         }
5430
5431         /* pick the pool */
5432         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5433         if (rc < 0) {
5434                 if (rc == -ENOENT)
5435                         pr_info("pool %s does not exist\n", spec->pool_name);
5436                 goto err_out_client;
5437         }
5438         spec->pool_id = (u64)rc;
5439
5440         /* The ceph file layout needs to fit pool id in 32 bits */
5441
5442         if (spec->pool_id > (u64)U32_MAX) {
5443                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5444                                 (unsigned long long)spec->pool_id, U32_MAX);
5445                 rc = -EIO;
5446                 goto err_out_client;
5447         }
5448
5449         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5450         if (!rbd_dev)
5451                 goto err_out_client;
5452         rbdc = NULL;            /* rbd_dev now owns this */
5453         spec = NULL;            /* rbd_dev now owns this */
5454         rbd_opts = NULL;        /* rbd_dev now owns this */
5455
5456         rc = rbd_dev_image_probe(rbd_dev, true);
5457         if (rc < 0)
5458                 goto err_out_rbd_dev;
5459
5460         /* If we are mapping a snapshot it must be marked read-only */
5461
5462         read_only = rbd_dev->opts->read_only;
5463         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5464                 read_only = true;
5465         rbd_dev->mapping.read_only = read_only;
5466
5467         rc = rbd_dev_device_setup(rbd_dev);
5468         if (rc) {
5469                 /*
5470                  * rbd_dev_header_unwatch_sync() can't be moved into
5471                  * rbd_dev_image_release() without refactoring, see
5472                  * commit 1f3ef78861ac.
5473                  */
5474                 rbd_dev_header_unwatch_sync(rbd_dev);
5475                 rbd_dev_image_release(rbd_dev);
5476                 goto err_out_module;
5477         }
5478
5479         return count;
5480
5481 err_out_rbd_dev:
5482         rbd_dev_destroy(rbd_dev);
5483 err_out_client:
5484         rbd_put_client(rbdc);
5485 err_out_args:
5486         rbd_spec_put(spec);
5487         kfree(rbd_opts);
5488 err_out_module:
5489         module_put(THIS_MODULE);
5490
5491         dout("Error adding device %s\n", buf);
5492
5493         return (ssize_t)rc;
5494 }
5495
5496 static ssize_t rbd_add(struct bus_type *bus,
5497                        const char *buf,
5498                        size_t count)
5499 {
5500         if (single_major)
5501                 return -EINVAL;
5502
5503         return do_rbd_add(bus, buf, count);
5504 }
5505
5506 static ssize_t rbd_add_single_major(struct bus_type *bus,
5507                                     const char *buf,
5508                                     size_t count)
5509 {
5510         return do_rbd_add(bus, buf, count);
5511 }
5512
5513 static void rbd_dev_device_release(struct device *dev)
5514 {
5515         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5516
5517         rbd_free_disk(rbd_dev);
5518         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5519         rbd_dev_mapping_clear(rbd_dev);
5520         if (!single_major)
5521                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5522         rbd_dev_id_put(rbd_dev);
5523         rbd_dev_mapping_clear(rbd_dev);
5524 }
5525
5526 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5527 {
5528         while (rbd_dev->parent) {
5529                 struct rbd_device *first = rbd_dev;
5530                 struct rbd_device *second = first->parent;
5531                 struct rbd_device *third;
5532
5533                 /*
5534                  * Follow to the parent with no grandparent and
5535                  * remove it.
5536                  */
5537                 while (second && (third = second->parent)) {
5538                         first = second;
5539                         second = third;
5540                 }
5541                 rbd_assert(second);
5542                 rbd_dev_image_release(second);
5543                 first->parent = NULL;
5544                 first->parent_overlap = 0;
5545
5546                 rbd_assert(first->parent_spec);
5547                 rbd_spec_put(first->parent_spec);
5548                 first->parent_spec = NULL;
5549         }
5550 }
5551
5552 static ssize_t do_rbd_remove(struct bus_type *bus,
5553                              const char *buf,
5554                              size_t count)
5555 {
5556         struct rbd_device *rbd_dev = NULL;
5557         struct list_head *tmp;
5558         int dev_id;
5559         unsigned long ul;
5560         bool already = false;
5561         int ret;
5562
5563         ret = kstrtoul(buf, 10, &ul);
5564         if (ret)
5565                 return ret;
5566
5567         /* convert to int; abort if we lost anything in the conversion */
5568         dev_id = (int)ul;
5569         if (dev_id != ul)
5570                 return -EINVAL;
5571
5572         ret = -ENOENT;
5573         spin_lock(&rbd_dev_list_lock);
5574         list_for_each(tmp, &rbd_dev_list) {
5575                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5576                 if (rbd_dev->dev_id == dev_id) {
5577                         ret = 0;
5578                         break;
5579                 }
5580         }
5581         if (!ret) {
5582                 spin_lock_irq(&rbd_dev->lock);
5583                 if (rbd_dev->open_count)
5584                         ret = -EBUSY;
5585                 else
5586                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5587                                                         &rbd_dev->flags);
5588                 spin_unlock_irq(&rbd_dev->lock);
5589         }
5590         spin_unlock(&rbd_dev_list_lock);
5591         if (ret < 0 || already)
5592                 return ret;
5593
5594         rbd_dev_header_unwatch_sync(rbd_dev);
5595         /*
5596          * flush remaining watch callbacks - these must be complete
5597          * before the osd_client is shutdown
5598          */
5599         dout("%s: flushing notifies", __func__);
5600         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5601
5602         /*
5603          * Don't free anything from rbd_dev->disk until after all
5604          * notifies are completely processed. Otherwise
5605          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5606          * in a potential use after free of rbd_dev->disk or rbd_dev.
5607          */
5608         rbd_bus_del_dev(rbd_dev);
5609         rbd_dev_image_release(rbd_dev);
5610         module_put(THIS_MODULE);
5611
5612         return count;
5613 }
5614
5615 static ssize_t rbd_remove(struct bus_type *bus,
5616                           const char *buf,
5617                           size_t count)
5618 {
5619         if (single_major)
5620                 return -EINVAL;
5621
5622         return do_rbd_remove(bus, buf, count);
5623 }
5624
5625 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5626                                        const char *buf,
5627                                        size_t count)
5628 {
5629         return do_rbd_remove(bus, buf, count);
5630 }
5631
5632 /*
5633  * create control files in sysfs
5634  * /sys/bus/rbd/...
5635  */
5636 static int rbd_sysfs_init(void)
5637 {
5638         int ret;
5639
5640         ret = device_register(&rbd_root_dev);
5641         if (ret < 0)
5642                 return ret;
5643
5644         ret = bus_register(&rbd_bus_type);
5645         if (ret < 0)
5646                 device_unregister(&rbd_root_dev);
5647
5648         return ret;
5649 }
5650
5651 static void rbd_sysfs_cleanup(void)
5652 {
5653         bus_unregister(&rbd_bus_type);
5654         device_unregister(&rbd_root_dev);
5655 }
5656
5657 static int rbd_slab_init(void)
5658 {
5659         rbd_assert(!rbd_img_request_cache);
5660         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5661                                         sizeof (struct rbd_img_request),
5662                                         __alignof__(struct rbd_img_request),
5663                                         0, NULL);
5664         if (!rbd_img_request_cache)
5665                 return -ENOMEM;
5666
5667         rbd_assert(!rbd_obj_request_cache);
5668         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5669                                         sizeof (struct rbd_obj_request),
5670                                         __alignof__(struct rbd_obj_request),
5671                                         0, NULL);
5672         if (!rbd_obj_request_cache)
5673                 goto out_err;
5674
5675         rbd_assert(!rbd_segment_name_cache);
5676         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5677                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5678         if (rbd_segment_name_cache)
5679                 return 0;
5680 out_err:
5681         if (rbd_obj_request_cache) {
5682                 kmem_cache_destroy(rbd_obj_request_cache);
5683                 rbd_obj_request_cache = NULL;
5684         }
5685
5686         kmem_cache_destroy(rbd_img_request_cache);
5687         rbd_img_request_cache = NULL;
5688
5689         return -ENOMEM;
5690 }
5691
5692 static void rbd_slab_exit(void)
5693 {
5694         rbd_assert(rbd_segment_name_cache);
5695         kmem_cache_destroy(rbd_segment_name_cache);
5696         rbd_segment_name_cache = NULL;
5697
5698         rbd_assert(rbd_obj_request_cache);
5699         kmem_cache_destroy(rbd_obj_request_cache);
5700         rbd_obj_request_cache = NULL;
5701
5702         rbd_assert(rbd_img_request_cache);
5703         kmem_cache_destroy(rbd_img_request_cache);
5704         rbd_img_request_cache = NULL;
5705 }
5706
5707 static int __init rbd_init(void)
5708 {
5709         int rc;
5710
5711         if (!libceph_compatible(NULL)) {
5712                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5713                 return -EINVAL;
5714         }
5715
5716         rc = rbd_slab_init();
5717         if (rc)
5718                 return rc;
5719
5720         /*
5721          * The number of active work items is limited by the number of
5722          * rbd devices * queue depth, so leave @max_active at default.
5723          */
5724         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5725         if (!rbd_wq) {
5726                 rc = -ENOMEM;
5727                 goto err_out_slab;
5728         }
5729
5730         if (single_major) {
5731                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5732                 if (rbd_major < 0) {
5733                         rc = rbd_major;
5734                         goto err_out_wq;
5735                 }
5736         }
5737
5738         rc = rbd_sysfs_init();
5739         if (rc)
5740                 goto err_out_blkdev;
5741
5742         if (single_major)
5743                 pr_info("loaded (major %d)\n", rbd_major);
5744         else
5745                 pr_info("loaded\n");
5746
5747         return 0;
5748
5749 err_out_blkdev:
5750         if (single_major)
5751                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5752 err_out_wq:
5753         destroy_workqueue(rbd_wq);
5754 err_out_slab:
5755         rbd_slab_exit();
5756         return rc;
5757 }
5758
5759 static void __exit rbd_exit(void)
5760 {
5761         ida_destroy(&rbd_dev_id_ida);
5762         rbd_sysfs_cleanup();
5763         if (single_major)
5764                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5765         destroy_workqueue(rbd_wq);
5766         rbd_slab_exit();
5767 }
5768
5769 module_init(rbd_init);
5770 module_exit(rbd_exit);
5771
5772 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5773 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5774 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5775 /* following authorship retained from original osdblk.c */
5776 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5777
5778 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5779 MODULE_LICENSE("GPL");