]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clk/sunxi/clk-sunxi.c
clk: sunxi: fix thinko in comment
[karo-tx-linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22
23 #include "clk-factors.h"
24
25 static DEFINE_SPINLOCK(clk_lock);
26
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS       5
29
30 /**
31  * sun4i_osc_clk_setup() - Setup function for gatable oscillator
32  */
33
34 #define SUNXI_OSC24M_GATE       0
35
36 static void __init sun4i_osc_clk_setup(struct device_node *node)
37 {
38         struct clk *clk;
39         struct clk_fixed_rate *fixed;
40         struct clk_gate *gate;
41         const char *clk_name = node->name;
42         u32 rate;
43
44         if (of_property_read_u32(node, "clock-frequency", &rate))
45                 return;
46
47         /* allocate fixed-rate and gate clock structs */
48         fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
49         if (!fixed)
50                 return;
51         gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
52         if (!gate)
53                 goto err_free_fixed;
54
55         of_property_read_string(node, "clock-output-names", &clk_name);
56
57         /* set up gate and fixed rate properties */
58         gate->reg = of_iomap(node, 0);
59         gate->bit_idx = SUNXI_OSC24M_GATE;
60         gate->lock = &clk_lock;
61         fixed->fixed_rate = rate;
62
63         clk = clk_register_composite(NULL, clk_name,
64                         NULL, 0,
65                         NULL, NULL,
66                         &fixed->hw, &clk_fixed_rate_ops,
67                         &gate->hw, &clk_gate_ops,
68                         CLK_IS_ROOT);
69
70         if (IS_ERR(clk))
71                 goto err_free_gate;
72
73         of_clk_add_provider(node, of_clk_src_simple_get, clk);
74         clk_register_clkdev(clk, clk_name, NULL);
75
76         return;
77
78 err_free_gate:
79         kfree(gate);
80 err_free_fixed:
81         kfree(fixed);
82 }
83 CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-a10-osc-clk", sun4i_osc_clk_setup);
84
85
86
87 /**
88  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
89  * PLL1 rate is calculated as follows
90  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
91  * parent_rate is always 24Mhz
92  */
93
94 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
95                                    u8 *n, u8 *k, u8 *m, u8 *p)
96 {
97         u8 div;
98
99         /* Normalize value to a 6M multiple */
100         div = *freq / 6000000;
101         *freq = 6000000 * div;
102
103         /* we were called to round the frequency, we can now return */
104         if (n == NULL)
105                 return;
106
107         /* m is always zero for pll1 */
108         *m = 0;
109
110         /* k is 1 only on these cases */
111         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
112                 *k = 1;
113         else
114                 *k = 0;
115
116         /* p will be 3 for divs under 10 */
117         if (div < 10)
118                 *p = 3;
119
120         /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
121         else if (div < 20 || (div < 32 && (div & 1)))
122                 *p = 2;
123
124         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
125          * of divs between 40-62 */
126         else if (div < 40 || (div < 64 && (div & 2)))
127                 *p = 1;
128
129         /* any other entries have p = 0 */
130         else
131                 *p = 0;
132
133         /* calculate a suitable n based on k and p */
134         div <<= *p;
135         div /= (*k + 1);
136         *n = div / 4;
137 }
138
139 /**
140  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
141  * PLL1 rate is calculated as follows
142  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
143  * parent_rate should always be 24MHz
144  */
145 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
146                                        u8 *n, u8 *k, u8 *m, u8 *p)
147 {
148         /*
149          * We can operate only on MHz, this will make our life easier
150          * later.
151          */
152         u32 freq_mhz = *freq / 1000000;
153         u32 parent_freq_mhz = parent_rate / 1000000;
154
155         /*
156          * Round down the frequency to the closest multiple of either
157          * 6 or 16
158          */
159         u32 round_freq_6 = round_down(freq_mhz, 6);
160         u32 round_freq_16 = round_down(freq_mhz, 16);
161
162         if (round_freq_6 > round_freq_16)
163                 freq_mhz = round_freq_6;
164         else
165                 freq_mhz = round_freq_16;
166
167         *freq = freq_mhz * 1000000;
168
169         /*
170          * If the factors pointer are null, we were just called to
171          * round down the frequency.
172          * Exit.
173          */
174         if (n == NULL)
175                 return;
176
177         /* If the frequency is a multiple of 32 MHz, k is always 3 */
178         if (!(freq_mhz % 32))
179                 *k = 3;
180         /* If the frequency is a multiple of 9 MHz, k is always 2 */
181         else if (!(freq_mhz % 9))
182                 *k = 2;
183         /* If the frequency is a multiple of 8 MHz, k is always 1 */
184         else if (!(freq_mhz % 8))
185                 *k = 1;
186         /* Otherwise, we don't use the k factor */
187         else
188                 *k = 0;
189
190         /*
191          * If the frequency is a multiple of 2 but not a multiple of
192          * 3, m is 3. This is the first time we use 6 here, yet we
193          * will use it on several other places.
194          * We use this number because it's the lowest frequency we can
195          * generate (with n = 0, k = 0, m = 3), so every other frequency
196          * somehow relates to this frequency.
197          */
198         if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
199                 *m = 2;
200         /*
201          * If the frequency is a multiple of 6MHz, but the factor is
202          * odd, m will be 3
203          */
204         else if ((freq_mhz / 6) & 1)
205                 *m = 3;
206         /* Otherwise, we end up with m = 1 */
207         else
208                 *m = 1;
209
210         /* Calculate n thanks to the above factors we already got */
211         *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
212
213         /*
214          * If n end up being outbound, and that we can still decrease
215          * m, do it.
216          */
217         if ((*n + 1) > 31 && (*m + 1) > 1) {
218                 *n = (*n + 1) / 2 - 1;
219                 *m = (*m + 1) / 2 - 1;
220         }
221 }
222
223 /**
224  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
225  * PLL5 rate is calculated as follows
226  * rate = parent_rate * n * (k + 1)
227  * parent_rate is always 24Mhz
228  */
229
230 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
231                                    u8 *n, u8 *k, u8 *m, u8 *p)
232 {
233         u8 div;
234
235         /* Normalize value to a parent_rate multiple (24M) */
236         div = *freq / parent_rate;
237         *freq = parent_rate * div;
238
239         /* we were called to round the frequency, we can now return */
240         if (n == NULL)
241                 return;
242
243         if (div < 31)
244                 *k = 0;
245         else if (div / 2 < 31)
246                 *k = 1;
247         else if (div / 3 < 31)
248                 *k = 2;
249         else
250                 *k = 3;
251
252         *n = DIV_ROUND_UP(div, (*k+1));
253 }
254
255 /**
256  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
257  * PLL6 rate is calculated as follows
258  * rate = parent_rate * n * (k + 1) / 2
259  * parent_rate is always 24Mhz
260  */
261
262 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
263                                        u8 *n, u8 *k, u8 *m, u8 *p)
264 {
265         u8 div;
266
267         /*
268          * We always have 24MHz / 2, so we can just say that our
269          * parent clock is 12MHz.
270          */
271         parent_rate = parent_rate / 2;
272
273         /* Normalize value to a parent_rate multiple (24M / 2) */
274         div = *freq / parent_rate;
275         *freq = parent_rate * div;
276
277         /* we were called to round the frequency, we can now return */
278         if (n == NULL)
279                 return;
280
281         *k = div / 32;
282         if (*k > 3)
283                 *k = 3;
284
285         *n = DIV_ROUND_UP(div, (*k+1));
286 }
287
288 /**
289  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
290  * APB1 rate is calculated as follows
291  * rate = (parent_rate >> p) / (m + 1);
292  */
293
294 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
295                                    u8 *n, u8 *k, u8 *m, u8 *p)
296 {
297         u8 calcm, calcp;
298
299         if (parent_rate < *freq)
300                 *freq = parent_rate;
301
302         parent_rate = DIV_ROUND_UP(parent_rate, *freq);
303
304         /* Invalid rate! */
305         if (parent_rate > 32)
306                 return;
307
308         if (parent_rate <= 4)
309                 calcp = 0;
310         else if (parent_rate <= 8)
311                 calcp = 1;
312         else if (parent_rate <= 16)
313                 calcp = 2;
314         else
315                 calcp = 3;
316
317         calcm = (parent_rate >> calcp) - 1;
318
319         *freq = (parent_rate >> calcp) / (calcm + 1);
320
321         /* we were called to round the frequency, we can now return */
322         if (n == NULL)
323                 return;
324
325         *m = calcm;
326         *p = calcp;
327 }
328
329
330
331 /**
332  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
333  * MOD0 rate is calculated as follows
334  * rate = (parent_rate >> p) / (m + 1);
335  */
336
337 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
338                                    u8 *n, u8 *k, u8 *m, u8 *p)
339 {
340         u8 div, calcm, calcp;
341
342         /* These clocks can only divide, so we will never be able to achieve
343          * frequencies higher than the parent frequency */
344         if (*freq > parent_rate)
345                 *freq = parent_rate;
346
347         div = DIV_ROUND_UP(parent_rate, *freq);
348
349         if (div < 16)
350                 calcp = 0;
351         else if (div / 2 < 16)
352                 calcp = 1;
353         else if (div / 4 < 16)
354                 calcp = 2;
355         else
356                 calcp = 3;
357
358         calcm = DIV_ROUND_UP(div, 1 << calcp);
359
360         *freq = (parent_rate >> calcp) / calcm;
361
362         /* we were called to round the frequency, we can now return */
363         if (n == NULL)
364                 return;
365
366         *m = calcm - 1;
367         *p = calcp;
368 }
369
370
371
372 /**
373  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
374  * CLK_OUT rate is calculated as follows
375  * rate = (parent_rate >> p) / (m + 1);
376  */
377
378 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
379                                       u8 *n, u8 *k, u8 *m, u8 *p)
380 {
381         u8 div, calcm, calcp;
382
383         /* These clocks can only divide, so we will never be able to achieve
384          * frequencies higher than the parent frequency */
385         if (*freq > parent_rate)
386                 *freq = parent_rate;
387
388         div = DIV_ROUND_UP(parent_rate, *freq);
389
390         if (div < 32)
391                 calcp = 0;
392         else if (div / 2 < 32)
393                 calcp = 1;
394         else if (div / 4 < 32)
395                 calcp = 2;
396         else
397                 calcp = 3;
398
399         calcm = DIV_ROUND_UP(div, 1 << calcp);
400
401         *freq = (parent_rate >> calcp) / calcm;
402
403         /* we were called to round the frequency, we can now return */
404         if (n == NULL)
405                 return;
406
407         *m = calcm - 1;
408         *p = calcp;
409 }
410
411
412
413 /**
414  * sun7i_a20_gmac_clk_setup - Setup function for A20/A31 GMAC clock module
415  *
416  * This clock looks something like this
417  *                               ________________________
418  *  MII TX clock from PHY >-----|___________    _________|----> to GMAC core
419  *  GMAC Int. RGMII TX clk >----|___________\__/__gate---|----> to PHY
420  *  Ext. 125MHz RGMII TX clk >--|__divider__/            |
421  *                              |________________________|
422  *
423  * The external 125 MHz reference is optional, i.e. GMAC can use its
424  * internal TX clock just fine. The A31 GMAC clock module does not have
425  * the divider controls for the external reference.
426  *
427  * To keep it simple, let the GMAC use either the MII TX clock for MII mode,
428  * and its internal TX clock for GMII and RGMII modes. The GMAC driver should
429  * select the appropriate source and gate/ungate the output to the PHY.
430  *
431  * Only the GMAC should use this clock. Altering the clock so that it doesn't
432  * match the GMAC's operation parameters will result in the GMAC not being
433  * able to send traffic out. The GMAC driver should set the clock rate and
434  * enable/disable this clock to configure the required state. The clock
435  * driver then responds by auto-reparenting the clock.
436  */
437
438 #define SUN7I_A20_GMAC_GPIT     2
439 #define SUN7I_A20_GMAC_MASK     0x3
440 #define SUN7I_A20_GMAC_PARENTS  2
441
442 static void __init sun7i_a20_gmac_clk_setup(struct device_node *node)
443 {
444         struct clk *clk;
445         struct clk_mux *mux;
446         struct clk_gate *gate;
447         const char *clk_name = node->name;
448         const char *parents[SUN7I_A20_GMAC_PARENTS];
449         void *reg;
450
451         if (of_property_read_string(node, "clock-output-names", &clk_name))
452                 return;
453
454         /* allocate mux and gate clock structs */
455         mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
456         if (!mux)
457                 return;
458
459         gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
460         if (!gate)
461                 goto free_mux;
462
463         /* gmac clock requires exactly 2 parents */
464         parents[0] = of_clk_get_parent_name(node, 0);
465         parents[1] = of_clk_get_parent_name(node, 1);
466         if (!parents[0] || !parents[1])
467                 goto free_gate;
468
469         reg = of_iomap(node, 0);
470         if (!reg)
471                 goto free_gate;
472
473         /* set up gate and fixed rate properties */
474         gate->reg = reg;
475         gate->bit_idx = SUN7I_A20_GMAC_GPIT;
476         gate->lock = &clk_lock;
477         mux->reg = reg;
478         mux->mask = SUN7I_A20_GMAC_MASK;
479         mux->flags = CLK_MUX_INDEX_BIT;
480         mux->lock = &clk_lock;
481
482         clk = clk_register_composite(NULL, clk_name,
483                         parents, SUN7I_A20_GMAC_PARENTS,
484                         &mux->hw, &clk_mux_ops,
485                         NULL, NULL,
486                         &gate->hw, &clk_gate_ops,
487                         0);
488
489         if (IS_ERR(clk))
490                 goto iounmap_reg;
491
492         of_clk_add_provider(node, of_clk_src_simple_get, clk);
493         clk_register_clkdev(clk, clk_name, NULL);
494
495         return;
496
497 iounmap_reg:
498         iounmap(reg);
499 free_gate:
500         kfree(gate);
501 free_mux:
502         kfree(mux);
503 }
504 CLK_OF_DECLARE(sun7i_a20_gmac, "allwinner,sun7i-a20-gmac-clk",
505                 sun7i_a20_gmac_clk_setup);
506
507
508
509 /**
510  * sunxi_factors_clk_setup() - Setup function for factor clocks
511  */
512
513 #define SUNXI_FACTORS_MUX_MASK 0x3
514
515 struct factors_data {
516         int enable;
517         int mux;
518         struct clk_factors_config *table;
519         void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
520         const char *name;
521 };
522
523 static struct clk_factors_config sun4i_pll1_config = {
524         .nshift = 8,
525         .nwidth = 5,
526         .kshift = 4,
527         .kwidth = 2,
528         .mshift = 0,
529         .mwidth = 2,
530         .pshift = 16,
531         .pwidth = 2,
532 };
533
534 static struct clk_factors_config sun6i_a31_pll1_config = {
535         .nshift = 8,
536         .nwidth = 5,
537         .kshift = 4,
538         .kwidth = 2,
539         .mshift = 0,
540         .mwidth = 2,
541 };
542
543 static struct clk_factors_config sun4i_pll5_config = {
544         .nshift = 8,
545         .nwidth = 5,
546         .kshift = 4,
547         .kwidth = 2,
548 };
549
550 static struct clk_factors_config sun6i_a31_pll6_config = {
551         .nshift = 8,
552         .nwidth = 5,
553         .kshift = 4,
554         .kwidth = 2,
555 };
556
557 static struct clk_factors_config sun4i_apb1_config = {
558         .mshift = 0,
559         .mwidth = 5,
560         .pshift = 16,
561         .pwidth = 2,
562 };
563
564 /* user manual says "n" but it's really "p" */
565 static struct clk_factors_config sun4i_mod0_config = {
566         .mshift = 0,
567         .mwidth = 4,
568         .pshift = 16,
569         .pwidth = 2,
570 };
571
572 /* user manual says "n" but it's really "p" */
573 static struct clk_factors_config sun7i_a20_out_config = {
574         .mshift = 8,
575         .mwidth = 5,
576         .pshift = 20,
577         .pwidth = 2,
578 };
579
580 static const struct factors_data sun4i_pll1_data __initconst = {
581         .enable = 31,
582         .table = &sun4i_pll1_config,
583         .getter = sun4i_get_pll1_factors,
584 };
585
586 static const struct factors_data sun6i_a31_pll1_data __initconst = {
587         .enable = 31,
588         .table = &sun6i_a31_pll1_config,
589         .getter = sun6i_a31_get_pll1_factors,
590 };
591
592 static const struct factors_data sun7i_a20_pll4_data __initconst = {
593         .enable = 31,
594         .table = &sun4i_pll5_config,
595         .getter = sun4i_get_pll5_factors,
596 };
597
598 static const struct factors_data sun4i_pll5_data __initconst = {
599         .enable = 31,
600         .table = &sun4i_pll5_config,
601         .getter = sun4i_get_pll5_factors,
602         .name = "pll5",
603 };
604
605 static const struct factors_data sun4i_pll6_data __initconst = {
606         .enable = 31,
607         .table = &sun4i_pll5_config,
608         .getter = sun4i_get_pll5_factors,
609         .name = "pll6",
610 };
611
612 static const struct factors_data sun6i_a31_pll6_data __initconst = {
613         .enable = 31,
614         .table = &sun6i_a31_pll6_config,
615         .getter = sun6i_a31_get_pll6_factors,
616 };
617
618 static const struct factors_data sun4i_apb1_data __initconst = {
619         .table = &sun4i_apb1_config,
620         .getter = sun4i_get_apb1_factors,
621 };
622
623 static const struct factors_data sun4i_mod0_data __initconst = {
624         .enable = 31,
625         .mux = 24,
626         .table = &sun4i_mod0_config,
627         .getter = sun4i_get_mod0_factors,
628 };
629
630 static const struct factors_data sun7i_a20_out_data __initconst = {
631         .enable = 31,
632         .mux = 24,
633         .table = &sun7i_a20_out_config,
634         .getter = sun7i_a20_get_out_factors,
635 };
636
637 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
638                                                 const struct factors_data *data)
639 {
640         struct clk *clk;
641         struct clk_factors *factors;
642         struct clk_gate *gate = NULL;
643         struct clk_mux *mux = NULL;
644         struct clk_hw *gate_hw = NULL;
645         struct clk_hw *mux_hw = NULL;
646         const char *clk_name = node->name;
647         const char *parents[SUNXI_MAX_PARENTS];
648         void *reg;
649         int i = 0;
650
651         reg = of_iomap(node, 0);
652
653         /* if we have a mux, we will have >1 parents */
654         while (i < SUNXI_MAX_PARENTS &&
655                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
656                 i++;
657
658         /*
659          * some factor clocks, such as pll5 and pll6, may have multiple
660          * outputs, and have their name designated in factors_data
661          */
662         if (data->name)
663                 clk_name = data->name;
664         else
665                 of_property_read_string(node, "clock-output-names", &clk_name);
666
667         factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
668         if (!factors)
669                 return NULL;
670
671         /* Add a gate if this factor clock can be gated */
672         if (data->enable) {
673                 gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
674                 if (!gate) {
675                         kfree(factors);
676                         return NULL;
677                 }
678
679                 /* set up gate properties */
680                 gate->reg = reg;
681                 gate->bit_idx = data->enable;
682                 gate->lock = &clk_lock;
683                 gate_hw = &gate->hw;
684         }
685
686         /* Add a mux if this factor clock can be muxed */
687         if (data->mux) {
688                 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
689                 if (!mux) {
690                         kfree(factors);
691                         kfree(gate);
692                         return NULL;
693                 }
694
695                 /* set up gate properties */
696                 mux->reg = reg;
697                 mux->shift = data->mux;
698                 mux->mask = SUNXI_FACTORS_MUX_MASK;
699                 mux->lock = &clk_lock;
700                 mux_hw = &mux->hw;
701         }
702
703         /* set up factors properties */
704         factors->reg = reg;
705         factors->config = data->table;
706         factors->get_factors = data->getter;
707         factors->lock = &clk_lock;
708
709         clk = clk_register_composite(NULL, clk_name,
710                         parents, i,
711                         mux_hw, &clk_mux_ops,
712                         &factors->hw, &clk_factors_ops,
713                         gate_hw, &clk_gate_ops, 0);
714
715         if (!IS_ERR(clk)) {
716                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
717                 clk_register_clkdev(clk, clk_name, NULL);
718         }
719
720         return clk;
721 }
722
723
724
725 /**
726  * sunxi_mux_clk_setup() - Setup function for muxes
727  */
728
729 #define SUNXI_MUX_GATE_WIDTH    2
730
731 struct mux_data {
732         u8 shift;
733 };
734
735 static const struct mux_data sun4i_cpu_mux_data __initconst = {
736         .shift = 16,
737 };
738
739 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
740         .shift = 12,
741 };
742
743 static const struct mux_data sun4i_apb1_mux_data __initconst = {
744         .shift = 24,
745 };
746
747 static void __init sunxi_mux_clk_setup(struct device_node *node,
748                                        struct mux_data *data)
749 {
750         struct clk *clk;
751         const char *clk_name = node->name;
752         const char *parents[SUNXI_MAX_PARENTS];
753         void *reg;
754         int i = 0;
755
756         reg = of_iomap(node, 0);
757
758         while (i < SUNXI_MAX_PARENTS &&
759                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
760                 i++;
761
762         of_property_read_string(node, "clock-output-names", &clk_name);
763
764         clk = clk_register_mux(NULL, clk_name, parents, i,
765                                CLK_SET_RATE_NO_REPARENT, reg,
766                                data->shift, SUNXI_MUX_GATE_WIDTH,
767                                0, &clk_lock);
768
769         if (clk) {
770                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
771                 clk_register_clkdev(clk, clk_name, NULL);
772         }
773 }
774
775
776
777 /**
778  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
779  */
780
781 struct div_data {
782         u8      shift;
783         u8      pow;
784         u8      width;
785 };
786
787 static const struct div_data sun4i_axi_data __initconst = {
788         .shift  = 0,
789         .pow    = 0,
790         .width  = 2,
791 };
792
793 static const struct div_data sun4i_ahb_data __initconst = {
794         .shift  = 4,
795         .pow    = 1,
796         .width  = 2,
797 };
798
799 static const struct div_data sun4i_apb0_data __initconst = {
800         .shift  = 8,
801         .pow    = 1,
802         .width  = 2,
803 };
804
805 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
806         .shift  = 0,
807         .pow    = 0,
808         .width  = 4,
809 };
810
811 static void __init sunxi_divider_clk_setup(struct device_node *node,
812                                            struct div_data *data)
813 {
814         struct clk *clk;
815         const char *clk_name = node->name;
816         const char *clk_parent;
817         void *reg;
818
819         reg = of_iomap(node, 0);
820
821         clk_parent = of_clk_get_parent_name(node, 0);
822
823         of_property_read_string(node, "clock-output-names", &clk_name);
824
825         clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
826                                    reg, data->shift, data->width,
827                                    data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
828                                    &clk_lock);
829         if (clk) {
830                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
831                 clk_register_clkdev(clk, clk_name, NULL);
832         }
833 }
834
835
836
837 /**
838  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
839  */
840
841 struct gates_reset_data {
842         void __iomem                    *reg;
843         spinlock_t                      *lock;
844         struct reset_controller_dev     rcdev;
845 };
846
847 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
848                               unsigned long id)
849 {
850         struct gates_reset_data *data = container_of(rcdev,
851                                                      struct gates_reset_data,
852                                                      rcdev);
853         unsigned long flags;
854         u32 reg;
855
856         spin_lock_irqsave(data->lock, flags);
857
858         reg = readl(data->reg);
859         writel(reg & ~BIT(id), data->reg);
860
861         spin_unlock_irqrestore(data->lock, flags);
862
863         return 0;
864 }
865
866 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
867                                 unsigned long id)
868 {
869         struct gates_reset_data *data = container_of(rcdev,
870                                                      struct gates_reset_data,
871                                                      rcdev);
872         unsigned long flags;
873         u32 reg;
874
875         spin_lock_irqsave(data->lock, flags);
876
877         reg = readl(data->reg);
878         writel(reg | BIT(id), data->reg);
879
880         spin_unlock_irqrestore(data->lock, flags);
881
882         return 0;
883 }
884
885 static struct reset_control_ops sunxi_gates_reset_ops = {
886         .assert         = sunxi_gates_reset_assert,
887         .deassert       = sunxi_gates_reset_deassert,
888 };
889
890 /**
891  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
892  */
893
894 #define SUNXI_GATES_MAX_SIZE    64
895
896 struct gates_data {
897         DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
898         u32 reset_mask;
899 };
900
901 static const struct gates_data sun4i_axi_gates_data __initconst = {
902         .mask = {1},
903 };
904
905 static const struct gates_data sun4i_ahb_gates_data __initconst = {
906         .mask = {0x7F77FFF, 0x14FB3F},
907 };
908
909 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
910         .mask = {0x147667e7, 0x185915},
911 };
912
913 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
914         .mask = {0x107067e7, 0x185111},
915 };
916
917 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
918         .mask = {0xEDFE7F62, 0x794F931},
919 };
920
921 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
922         .mask = { 0x12f77fff, 0x16ff3f },
923 };
924
925 static const struct gates_data sun4i_apb0_gates_data __initconst = {
926         .mask = {0x4EF},
927 };
928
929 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
930         .mask = {0x469},
931 };
932
933 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
934         .mask = {0x61},
935 };
936
937 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
938         .mask = { 0x4ff },
939 };
940
941 static const struct gates_data sun4i_apb1_gates_data __initconst = {
942         .mask = {0xFF00F7},
943 };
944
945 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
946         .mask = {0xf0007},
947 };
948
949 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
950         .mask = {0xa0007},
951 };
952
953 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
954         .mask = {0x3031},
955 };
956
957 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
958         .mask = {0x3F000F},
959 };
960
961 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
962         .mask = { 0xff80ff },
963 };
964
965 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
966         .mask = {0x1C0},
967         .reset_mask = 0x07,
968 };
969
970 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
971         .mask = {0x140},
972         .reset_mask = 0x03,
973 };
974
975 static void __init sunxi_gates_clk_setup(struct device_node *node,
976                                          struct gates_data *data)
977 {
978         struct clk_onecell_data *clk_data;
979         struct gates_reset_data *reset_data;
980         const char *clk_parent;
981         const char *clk_name;
982         void *reg;
983         int qty;
984         int i = 0;
985         int j = 0;
986         int ignore;
987
988         reg = of_iomap(node, 0);
989
990         clk_parent = of_clk_get_parent_name(node, 0);
991
992         /* Worst-case size approximation and memory allocation */
993         qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
994         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
995         if (!clk_data)
996                 return;
997         clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
998         if (!clk_data->clks) {
999                 kfree(clk_data);
1000                 return;
1001         }
1002
1003         for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1004                 of_property_read_string_index(node, "clock-output-names",
1005                                               j, &clk_name);
1006
1007                 /* No driver claims this clock, but it should remain gated */
1008                 ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
1009
1010                 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1011                                                       clk_parent, ignore,
1012                                                       reg + 4 * (i/32), i % 32,
1013                                                       0, &clk_lock);
1014                 WARN_ON(IS_ERR(clk_data->clks[i]));
1015
1016                 j++;
1017         }
1018
1019         /* Adjust to the real max */
1020         clk_data->clk_num = i;
1021
1022         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1023
1024         /* Register a reset controler for gates with reset bits */
1025         if (data->reset_mask == 0)
1026                 return;
1027
1028         reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
1029         if (!reset_data)
1030                 return;
1031
1032         reset_data->reg = reg;
1033         reset_data->lock = &clk_lock;
1034         reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
1035         reset_data->rcdev.ops = &sunxi_gates_reset_ops;
1036         reset_data->rcdev.of_node = node;
1037         reset_controller_register(&reset_data->rcdev);
1038 }
1039
1040
1041
1042 /**
1043  * sunxi_divs_clk_setup() helper data
1044  */
1045
1046 #define SUNXI_DIVS_MAX_QTY      2
1047 #define SUNXI_DIVISOR_WIDTH     2
1048
1049 struct divs_data {
1050         const struct factors_data *factors; /* data for the factor clock */
1051         struct {
1052                 u8 fixed; /* is it a fixed divisor? if not... */
1053                 struct clk_div_table *table; /* is it a table based divisor? */
1054                 u8 shift; /* otherwise it's a normal divisor with this shift */
1055                 u8 pow;   /* is it power-of-two based? */
1056                 u8 gate;  /* is it independently gateable? */
1057         } div[SUNXI_DIVS_MAX_QTY];
1058 };
1059
1060 static struct clk_div_table pll6_sata_tbl[] = {
1061         { .val = 0, .div = 6, },
1062         { .val = 1, .div = 12, },
1063         { .val = 2, .div = 18, },
1064         { .val = 3, .div = 24, },
1065         { } /* sentinel */
1066 };
1067
1068 static const struct divs_data pll5_divs_data __initconst = {
1069         .factors = &sun4i_pll5_data,
1070         .div = {
1071                 { .shift = 0, .pow = 0, }, /* M, DDR */
1072                 { .shift = 16, .pow = 1, }, /* P, other */
1073         }
1074 };
1075
1076 static const struct divs_data pll6_divs_data __initconst = {
1077         .factors = &sun4i_pll6_data,
1078         .div = {
1079                 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1080                 { .fixed = 2 }, /* P, other */
1081         }
1082 };
1083
1084 /**
1085  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1086  *
1087  * These clocks look something like this
1088  *            ________________________
1089  *           |         ___divisor 1---|----> to consumer
1090  * parent >--|  pll___/___divisor 2---|----> to consumer
1091  *           |        \_______________|____> to consumer
1092  *           |________________________|
1093  */
1094
1095 static void __init sunxi_divs_clk_setup(struct device_node *node,
1096                                         struct divs_data *data)
1097 {
1098         struct clk_onecell_data *clk_data;
1099         const char *parent;
1100         const char *clk_name;
1101         struct clk **clks, *pclk;
1102         struct clk_hw *gate_hw, *rate_hw;
1103         const struct clk_ops *rate_ops;
1104         struct clk_gate *gate = NULL;
1105         struct clk_fixed_factor *fix_factor;
1106         struct clk_divider *divider;
1107         void *reg;
1108         int i = 0;
1109         int flags, clkflags;
1110
1111         /* Set up factor clock that we will be dividing */
1112         pclk = sunxi_factors_clk_setup(node, data->factors);
1113         parent = __clk_get_name(pclk);
1114
1115         reg = of_iomap(node, 0);
1116
1117         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1118         if (!clk_data)
1119                 return;
1120
1121         clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1122         if (!clks)
1123                 goto free_clkdata;
1124
1125         clk_data->clks = clks;
1126
1127         /* It's not a good idea to have automatic reparenting changing
1128          * our RAM clock! */
1129         clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1130
1131         for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1132                 if (of_property_read_string_index(node, "clock-output-names",
1133                                                   i, &clk_name) != 0)
1134                         break;
1135
1136                 gate_hw = NULL;
1137                 rate_hw = NULL;
1138                 rate_ops = NULL;
1139
1140                 /* If this leaf clock can be gated, create a gate */
1141                 if (data->div[i].gate) {
1142                         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1143                         if (!gate)
1144                                 goto free_clks;
1145
1146                         gate->reg = reg;
1147                         gate->bit_idx = data->div[i].gate;
1148                         gate->lock = &clk_lock;
1149
1150                         gate_hw = &gate->hw;
1151                 }
1152
1153                 /* Leaves can be fixed or configurable divisors */
1154                 if (data->div[i].fixed) {
1155                         fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1156                         if (!fix_factor)
1157                                 goto free_gate;
1158
1159                         fix_factor->mult = 1;
1160                         fix_factor->div = data->div[i].fixed;
1161
1162                         rate_hw = &fix_factor->hw;
1163                         rate_ops = &clk_fixed_factor_ops;
1164                 } else {
1165                         divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1166                         if (!divider)
1167                                 goto free_gate;
1168
1169                         flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1170
1171                         divider->reg = reg;
1172                         divider->shift = data->div[i].shift;
1173                         divider->width = SUNXI_DIVISOR_WIDTH;
1174                         divider->flags = flags;
1175                         divider->lock = &clk_lock;
1176                         divider->table = data->div[i].table;
1177
1178                         rate_hw = &divider->hw;
1179                         rate_ops = &clk_divider_ops;
1180                 }
1181
1182                 /* Wrap the (potential) gate and the divisor on a composite
1183                  * clock to unify them */
1184                 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1185                                                  NULL, NULL,
1186                                                  rate_hw, rate_ops,
1187                                                  gate_hw, &clk_gate_ops,
1188                                                  clkflags);
1189
1190                 WARN_ON(IS_ERR(clk_data->clks[i]));
1191                 clk_register_clkdev(clks[i], clk_name, NULL);
1192         }
1193
1194         /* The last clock available on the getter is the parent */
1195         clks[i++] = pclk;
1196
1197         /* Adjust to the real max */
1198         clk_data->clk_num = i;
1199
1200         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1201
1202         return;
1203
1204 free_gate:
1205         kfree(gate);
1206 free_clks:
1207         kfree(clks);
1208 free_clkdata:
1209         kfree(clk_data);
1210 }
1211
1212
1213
1214 /* Matches for factors clocks */
1215 static const struct of_device_id clk_factors_match[] __initconst = {
1216         {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1217         {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1218         {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1219         {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1220         {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1221         {.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1222         {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1223         {}
1224 };
1225
1226 /* Matches for divider clocks */
1227 static const struct of_device_id clk_div_match[] __initconst = {
1228         {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1229         {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1230         {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1231         {.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1232         {}
1233 };
1234
1235 /* Matches for divided outputs */
1236 static const struct of_device_id clk_divs_match[] __initconst = {
1237         {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1238         {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1239         {}
1240 };
1241
1242 /* Matches for mux clocks */
1243 static const struct of_device_id clk_mux_match[] __initconst = {
1244         {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1245         {.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1246         {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1247         {}
1248 };
1249
1250 /* Matches for gate clocks */
1251 static const struct of_device_id clk_gates_match[] __initconst = {
1252         {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1253         {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1254         {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1255         {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1256         {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1257         {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1258         {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1259         {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1260         {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1261         {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1262         {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1263         {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1264         {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1265         {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1266         {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1267         {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1268         {.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1269         {.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1270         {}
1271 };
1272
1273 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1274                                               void *function)
1275 {
1276         struct device_node *np;
1277         const struct div_data *data;
1278         const struct of_device_id *match;
1279         void (*setup_function)(struct device_node *, const void *) = function;
1280
1281         for_each_matching_node(np, clk_match) {
1282                 match = of_match_node(clk_match, np);
1283                 data = match->data;
1284                 setup_function(np, data);
1285         }
1286 }
1287
1288 /**
1289  * System clock protection
1290  *
1291  * By enabling these critical clocks, we prevent their accidental gating
1292  * by the framework
1293  */
1294 static void __init sunxi_clock_protect(void)
1295 {
1296         struct clk *clk;
1297
1298         /* memory bus clock - sun5i+ */
1299         clk = clk_get(NULL, "mbus");
1300         if (!IS_ERR(clk)) {
1301                 clk_prepare_enable(clk);
1302                 clk_put(clk);
1303         }
1304
1305         /* DDR clock - sun4i+ */
1306         clk = clk_get(NULL, "pll5_ddr");
1307         if (!IS_ERR(clk)) {
1308                 clk_prepare_enable(clk);
1309                 clk_put(clk);
1310         }
1311 }
1312
1313 static void __init sunxi_init_clocks(void)
1314 {
1315         /* Register factor clocks */
1316         of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1317
1318         /* Register divider clocks */
1319         of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1320
1321         /* Register divided output clocks */
1322         of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1323
1324         /* Register mux clocks */
1325         of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1326
1327         /* Register gate clocks */
1328         of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1329
1330         /* Enable core system clocks */
1331         sunxi_clock_protect();
1332 }
1333 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
1334 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
1335 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
1336 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
1337 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);