]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
regmap: rbtree: When adding a reg do a bsearch for target node
[karo-tx-linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52
53 #define PFX "acpi-cpufreq: "
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         struct cpufreq_frequency_table *freq_table;
69         unsigned int resume;
70         unsigned int cpu_feature;
71         unsigned int acpi_perf_cpu;
72         cpumask_var_t freqdomain_cpus;
73 };
74
75 /* acpi_perf_data is a pointer to percpu data. */
76 static struct acpi_processor_performance __percpu *acpi_perf_data;
77
78 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
79 {
80         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
81 }
82
83 static struct cpufreq_driver acpi_cpufreq_driver;
84
85 static unsigned int acpi_pstate_strict;
86 static struct msr __percpu *msrs;
87
88 static bool boost_state(unsigned int cpu)
89 {
90         u32 lo, hi;
91         u64 msr;
92
93         switch (boot_cpu_data.x86_vendor) {
94         case X86_VENDOR_INTEL:
95                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
96                 msr = lo | ((u64)hi << 32);
97                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
98         case X86_VENDOR_AMD:
99                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
100                 msr = lo | ((u64)hi << 32);
101                 return !(msr & MSR_K7_HWCR_CPB_DIS);
102         }
103         return false;
104 }
105
106 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
107 {
108         u32 cpu;
109         u32 msr_addr;
110         u64 msr_mask;
111
112         switch (boot_cpu_data.x86_vendor) {
113         case X86_VENDOR_INTEL:
114                 msr_addr = MSR_IA32_MISC_ENABLE;
115                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
116                 break;
117         case X86_VENDOR_AMD:
118                 msr_addr = MSR_K7_HWCR;
119                 msr_mask = MSR_K7_HWCR_CPB_DIS;
120                 break;
121         default:
122                 return;
123         }
124
125         rdmsr_on_cpus(cpumask, msr_addr, msrs);
126
127         for_each_cpu(cpu, cpumask) {
128                 struct msr *reg = per_cpu_ptr(msrs, cpu);
129                 if (enable)
130                         reg->q &= ~msr_mask;
131                 else
132                         reg->q |= msr_mask;
133         }
134
135         wrmsr_on_cpus(cpumask, msr_addr, msrs);
136 }
137
138 static int _store_boost(int val)
139 {
140         get_online_cpus();
141         boost_set_msrs(val, cpu_online_mask);
142         put_online_cpus();
143         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
144
145         return 0;
146 }
147
148 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
149 {
150         struct acpi_cpufreq_data *data = policy->driver_data;
151
152         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
153 }
154
155 cpufreq_freq_attr_ro(freqdomain_cpus);
156
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_boost(const char *buf, size_t count)
159 {
160         int ret;
161         unsigned long val = 0;
162
163         if (!acpi_cpufreq_driver.boost_supported)
164                 return -EINVAL;
165
166         ret = kstrtoul(buf, 10, &val);
167         if (ret || (val > 1))
168                 return -EINVAL;
169
170         _store_boost((int) val);
171
172         return count;
173 }
174
175 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
176                          size_t count)
177 {
178         return store_boost(buf, count);
179 }
180
181 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182 {
183         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184 }
185
186 cpufreq_freq_attr_rw(cpb);
187 #endif
188
189 static int check_est_cpu(unsigned int cpuid)
190 {
191         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193         return cpu_has(cpu, X86_FEATURE_EST);
194 }
195
196 static int check_amd_hwpstate_cpu(unsigned int cpuid)
197 {
198         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201 }
202
203 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204 {
205         struct acpi_processor_performance *perf;
206         int i;
207
208         perf = to_perf_data(data);
209
210         for (i = 0; i < perf->state_count; i++) {
211                 if (value == perf->states[i].status)
212                         return data->freq_table[i].frequency;
213         }
214         return 0;
215 }
216
217 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218 {
219         struct cpufreq_frequency_table *pos;
220         struct acpi_processor_performance *perf;
221
222         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223                 msr &= AMD_MSR_RANGE;
224         else
225                 msr &= INTEL_MSR_RANGE;
226
227         perf = to_perf_data(data);
228
229         cpufreq_for_each_entry(pos, data->freq_table)
230                 if (msr == perf->states[pos->driver_data].status)
231                         return pos->frequency;
232         return data->freq_table[0].frequency;
233 }
234
235 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236 {
237         switch (data->cpu_feature) {
238         case SYSTEM_INTEL_MSR_CAPABLE:
239         case SYSTEM_AMD_MSR_CAPABLE:
240                 return extract_msr(val, data);
241         case SYSTEM_IO_CAPABLE:
242                 return extract_io(val, data);
243         default:
244                 return 0;
245         }
246 }
247
248 struct msr_addr {
249         u32 reg;
250 };
251
252 struct io_addr {
253         u16 port;
254         u8 bit_width;
255 };
256
257 struct drv_cmd {
258         unsigned int type;
259         const struct cpumask *mask;
260         union {
261                 struct msr_addr msr;
262                 struct io_addr io;
263         } addr;
264         u32 val;
265 };
266
267 /* Called via smp_call_function_single(), on the target CPU */
268 static void do_drv_read(void *_cmd)
269 {
270         struct drv_cmd *cmd = _cmd;
271         u32 h;
272
273         switch (cmd->type) {
274         case SYSTEM_INTEL_MSR_CAPABLE:
275         case SYSTEM_AMD_MSR_CAPABLE:
276                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
277                 break;
278         case SYSTEM_IO_CAPABLE:
279                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
280                                 &cmd->val,
281                                 (u32)cmd->addr.io.bit_width);
282                 break;
283         default:
284                 break;
285         }
286 }
287
288 /* Called via smp_call_function_many(), on the target CPUs */
289 static void do_drv_write(void *_cmd)
290 {
291         struct drv_cmd *cmd = _cmd;
292         u32 lo, hi;
293
294         switch (cmd->type) {
295         case SYSTEM_INTEL_MSR_CAPABLE:
296                 rdmsr(cmd->addr.msr.reg, lo, hi);
297                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
298                 wrmsr(cmd->addr.msr.reg, lo, hi);
299                 break;
300         case SYSTEM_AMD_MSR_CAPABLE:
301                 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
302                 break;
303         case SYSTEM_IO_CAPABLE:
304                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
305                                 cmd->val,
306                                 (u32)cmd->addr.io.bit_width);
307                 break;
308         default:
309                 break;
310         }
311 }
312
313 static void drv_read(struct drv_cmd *cmd)
314 {
315         int err;
316         cmd->val = 0;
317
318         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
319         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
320 }
321
322 static void drv_write(struct drv_cmd *cmd)
323 {
324         int this_cpu;
325
326         this_cpu = get_cpu();
327         if (cpumask_test_cpu(this_cpu, cmd->mask))
328                 do_drv_write(cmd);
329         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
330         put_cpu();
331 }
332
333 static u32
334 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
335 {
336         struct acpi_processor_performance *perf;
337         struct drv_cmd cmd;
338
339         if (unlikely(cpumask_empty(mask)))
340                 return 0;
341
342         switch (data->cpu_feature) {
343         case SYSTEM_INTEL_MSR_CAPABLE:
344                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
345                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
346                 break;
347         case SYSTEM_AMD_MSR_CAPABLE:
348                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
349                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
350                 break;
351         case SYSTEM_IO_CAPABLE:
352                 cmd.type = SYSTEM_IO_CAPABLE;
353                 perf = to_perf_data(data);
354                 cmd.addr.io.port = perf->control_register.address;
355                 cmd.addr.io.bit_width = perf->control_register.bit_width;
356                 break;
357         default:
358                 return 0;
359         }
360
361         cmd.mask = mask;
362         drv_read(&cmd);
363
364         pr_debug("get_cur_val = %u\n", cmd.val);
365
366         return cmd.val;
367 }
368
369 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
370 {
371         struct acpi_cpufreq_data *data;
372         struct cpufreq_policy *policy;
373         unsigned int freq;
374         unsigned int cached_freq;
375
376         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
377
378         policy = cpufreq_cpu_get(cpu);
379         if (unlikely(!policy))
380                 return 0;
381
382         data = policy->driver_data;
383         cpufreq_cpu_put(policy);
384         if (unlikely(!data || !data->freq_table))
385                 return 0;
386
387         cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
388         freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
389         if (freq != cached_freq) {
390                 /*
391                  * The dreaded BIOS frequency change behind our back.
392                  * Force set the frequency on next target call.
393                  */
394                 data->resume = 1;
395         }
396
397         pr_debug("cur freq = %u\n", freq);
398
399         return freq;
400 }
401
402 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
403                                 struct acpi_cpufreq_data *data)
404 {
405         unsigned int cur_freq;
406         unsigned int i;
407
408         for (i = 0; i < 100; i++) {
409                 cur_freq = extract_freq(get_cur_val(mask, data), data);
410                 if (cur_freq == freq)
411                         return 1;
412                 udelay(10);
413         }
414         return 0;
415 }
416
417 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
418                                unsigned int index)
419 {
420         struct acpi_cpufreq_data *data = policy->driver_data;
421         struct acpi_processor_performance *perf;
422         struct drv_cmd cmd;
423         unsigned int next_perf_state = 0; /* Index into perf table */
424         int result = 0;
425
426         if (unlikely(data == NULL || data->freq_table == NULL)) {
427                 return -ENODEV;
428         }
429
430         perf = to_perf_data(data);
431         next_perf_state = data->freq_table[index].driver_data;
432         if (perf->state == next_perf_state) {
433                 if (unlikely(data->resume)) {
434                         pr_debug("Called after resume, resetting to P%d\n",
435                                 next_perf_state);
436                         data->resume = 0;
437                 } else {
438                         pr_debug("Already at target state (P%d)\n",
439                                 next_perf_state);
440                         goto out;
441                 }
442         }
443
444         switch (data->cpu_feature) {
445         case SYSTEM_INTEL_MSR_CAPABLE:
446                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
447                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
448                 cmd.val = (u32) perf->states[next_perf_state].control;
449                 break;
450         case SYSTEM_AMD_MSR_CAPABLE:
451                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
452                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
453                 cmd.val = (u32) perf->states[next_perf_state].control;
454                 break;
455         case SYSTEM_IO_CAPABLE:
456                 cmd.type = SYSTEM_IO_CAPABLE;
457                 cmd.addr.io.port = perf->control_register.address;
458                 cmd.addr.io.bit_width = perf->control_register.bit_width;
459                 cmd.val = (u32) perf->states[next_perf_state].control;
460                 break;
461         default:
462                 result = -ENODEV;
463                 goto out;
464         }
465
466         /* cpufreq holds the hotplug lock, so we are safe from here on */
467         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
468                 cmd.mask = policy->cpus;
469         else
470                 cmd.mask = cpumask_of(policy->cpu);
471
472         drv_write(&cmd);
473
474         if (acpi_pstate_strict) {
475                 if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
476                                         data)) {
477                         pr_debug("acpi_cpufreq_target failed (%d)\n",
478                                 policy->cpu);
479                         result = -EAGAIN;
480                 }
481         }
482
483         if (!result)
484                 perf->state = next_perf_state;
485
486 out:
487         return result;
488 }
489
490 static unsigned long
491 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
492 {
493         struct acpi_processor_performance *perf;
494
495         perf = to_perf_data(data);
496         if (cpu_khz) {
497                 /* search the closest match to cpu_khz */
498                 unsigned int i;
499                 unsigned long freq;
500                 unsigned long freqn = perf->states[0].core_frequency * 1000;
501
502                 for (i = 0; i < (perf->state_count-1); i++) {
503                         freq = freqn;
504                         freqn = perf->states[i+1].core_frequency * 1000;
505                         if ((2 * cpu_khz) > (freqn + freq)) {
506                                 perf->state = i;
507                                 return freq;
508                         }
509                 }
510                 perf->state = perf->state_count-1;
511                 return freqn;
512         } else {
513                 /* assume CPU is at P0... */
514                 perf->state = 0;
515                 return perf->states[0].core_frequency * 1000;
516         }
517 }
518
519 static void free_acpi_perf_data(void)
520 {
521         unsigned int i;
522
523         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
524         for_each_possible_cpu(i)
525                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
526                                  ->shared_cpu_map);
527         free_percpu(acpi_perf_data);
528 }
529
530 static int boost_notify(struct notifier_block *nb, unsigned long action,
531                       void *hcpu)
532 {
533         unsigned cpu = (long)hcpu;
534         const struct cpumask *cpumask;
535
536         cpumask = get_cpu_mask(cpu);
537
538         /*
539          * Clear the boost-disable bit on the CPU_DOWN path so that
540          * this cpu cannot block the remaining ones from boosting. On
541          * the CPU_UP path we simply keep the boost-disable flag in
542          * sync with the current global state.
543          */
544
545         switch (action) {
546         case CPU_UP_PREPARE:
547         case CPU_UP_PREPARE_FROZEN:
548                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
549                 break;
550
551         case CPU_DOWN_PREPARE:
552         case CPU_DOWN_PREPARE_FROZEN:
553                 boost_set_msrs(1, cpumask);
554                 break;
555
556         default:
557                 break;
558         }
559
560         return NOTIFY_OK;
561 }
562
563
564 static struct notifier_block boost_nb = {
565         .notifier_call          = boost_notify,
566 };
567
568 /*
569  * acpi_cpufreq_early_init - initialize ACPI P-States library
570  *
571  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
572  * in order to determine correct frequency and voltage pairings. We can
573  * do _PDC and _PSD and find out the processor dependency for the
574  * actual init that will happen later...
575  */
576 static int __init acpi_cpufreq_early_init(void)
577 {
578         unsigned int i;
579         pr_debug("acpi_cpufreq_early_init\n");
580
581         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
582         if (!acpi_perf_data) {
583                 pr_debug("Memory allocation error for acpi_perf_data.\n");
584                 return -ENOMEM;
585         }
586         for_each_possible_cpu(i) {
587                 if (!zalloc_cpumask_var_node(
588                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
589                         GFP_KERNEL, cpu_to_node(i))) {
590
591                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
592                         free_acpi_perf_data();
593                         return -ENOMEM;
594                 }
595         }
596
597         /* Do initialization in ACPI core */
598         acpi_processor_preregister_performance(acpi_perf_data);
599         return 0;
600 }
601
602 #ifdef CONFIG_SMP
603 /*
604  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
605  * or do it in BIOS firmware and won't inform about it to OS. If not
606  * detected, this has a side effect of making CPU run at a different speed
607  * than OS intended it to run at. Detect it and handle it cleanly.
608  */
609 static int bios_with_sw_any_bug;
610
611 static int sw_any_bug_found(const struct dmi_system_id *d)
612 {
613         bios_with_sw_any_bug = 1;
614         return 0;
615 }
616
617 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
618         {
619                 .callback = sw_any_bug_found,
620                 .ident = "Supermicro Server X6DLP",
621                 .matches = {
622                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
623                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
624                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
625                 },
626         },
627         { }
628 };
629
630 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
631 {
632         /* Intel Xeon Processor 7100 Series Specification Update
633          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
634          * AL30: A Machine Check Exception (MCE) Occurring during an
635          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
636          * Both Processor Cores to Lock Up. */
637         if (c->x86_vendor == X86_VENDOR_INTEL) {
638                 if ((c->x86 == 15) &&
639                     (c->x86_model == 6) &&
640                     (c->x86_mask == 8)) {
641                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
642                             "Xeon(R) 7100 Errata AL30, processors may "
643                             "lock up on frequency changes: disabling "
644                             "acpi-cpufreq.\n");
645                         return -ENODEV;
646                     }
647                 }
648         return 0;
649 }
650 #endif
651
652 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
653 {
654         unsigned int i;
655         unsigned int valid_states = 0;
656         unsigned int cpu = policy->cpu;
657         struct acpi_cpufreq_data *data;
658         unsigned int result = 0;
659         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
660         struct acpi_processor_performance *perf;
661 #ifdef CONFIG_SMP
662         static int blacklisted;
663 #endif
664
665         pr_debug("acpi_cpufreq_cpu_init\n");
666
667 #ifdef CONFIG_SMP
668         if (blacklisted)
669                 return blacklisted;
670         blacklisted = acpi_cpufreq_blacklist(c);
671         if (blacklisted)
672                 return blacklisted;
673 #endif
674
675         data = kzalloc(sizeof(*data), GFP_KERNEL);
676         if (!data)
677                 return -ENOMEM;
678
679         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
680                 result = -ENOMEM;
681                 goto err_free;
682         }
683
684         perf = per_cpu_ptr(acpi_perf_data, cpu);
685         data->acpi_perf_cpu = cpu;
686         policy->driver_data = data;
687
688         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
689                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
690
691         result = acpi_processor_register_performance(perf, cpu);
692         if (result)
693                 goto err_free_mask;
694
695         policy->shared_type = perf->shared_type;
696
697         /*
698          * Will let policy->cpus know about dependency only when software
699          * coordination is required.
700          */
701         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
702             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
703                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
704         }
705         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
706
707 #ifdef CONFIG_SMP
708         dmi_check_system(sw_any_bug_dmi_table);
709         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
710                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
711                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
712         }
713
714         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
715                 cpumask_clear(policy->cpus);
716                 cpumask_set_cpu(cpu, policy->cpus);
717                 cpumask_copy(data->freqdomain_cpus,
718                              topology_sibling_cpumask(cpu));
719                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
720                 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
721         }
722 #endif
723
724         /* capability check */
725         if (perf->state_count <= 1) {
726                 pr_debug("No P-States\n");
727                 result = -ENODEV;
728                 goto err_unreg;
729         }
730
731         if (perf->control_register.space_id != perf->status_register.space_id) {
732                 result = -ENODEV;
733                 goto err_unreg;
734         }
735
736         switch (perf->control_register.space_id) {
737         case ACPI_ADR_SPACE_SYSTEM_IO:
738                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
739                     boot_cpu_data.x86 == 0xf) {
740                         pr_debug("AMD K8 systems must use native drivers.\n");
741                         result = -ENODEV;
742                         goto err_unreg;
743                 }
744                 pr_debug("SYSTEM IO addr space\n");
745                 data->cpu_feature = SYSTEM_IO_CAPABLE;
746                 break;
747         case ACPI_ADR_SPACE_FIXED_HARDWARE:
748                 pr_debug("HARDWARE addr space\n");
749                 if (check_est_cpu(cpu)) {
750                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
751                         break;
752                 }
753                 if (check_amd_hwpstate_cpu(cpu)) {
754                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
755                         break;
756                 }
757                 result = -ENODEV;
758                 goto err_unreg;
759         default:
760                 pr_debug("Unknown addr space %d\n",
761                         (u32) (perf->control_register.space_id));
762                 result = -ENODEV;
763                 goto err_unreg;
764         }
765
766         data->freq_table = kzalloc(sizeof(*data->freq_table) *
767                     (perf->state_count+1), GFP_KERNEL);
768         if (!data->freq_table) {
769                 result = -ENOMEM;
770                 goto err_unreg;
771         }
772
773         /* detect transition latency */
774         policy->cpuinfo.transition_latency = 0;
775         for (i = 0; i < perf->state_count; i++) {
776                 if ((perf->states[i].transition_latency * 1000) >
777                     policy->cpuinfo.transition_latency)
778                         policy->cpuinfo.transition_latency =
779                             perf->states[i].transition_latency * 1000;
780         }
781
782         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
783         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
784             policy->cpuinfo.transition_latency > 20 * 1000) {
785                 policy->cpuinfo.transition_latency = 20 * 1000;
786                 printk_once(KERN_INFO
787                             "P-state transition latency capped at 20 uS\n");
788         }
789
790         /* table init */
791         for (i = 0; i < perf->state_count; i++) {
792                 if (i > 0 && perf->states[i].core_frequency >=
793                     data->freq_table[valid_states-1].frequency / 1000)
794                         continue;
795
796                 data->freq_table[valid_states].driver_data = i;
797                 data->freq_table[valid_states].frequency =
798                     perf->states[i].core_frequency * 1000;
799                 valid_states++;
800         }
801         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
802         perf->state = 0;
803
804         result = cpufreq_table_validate_and_show(policy, data->freq_table);
805         if (result)
806                 goto err_freqfree;
807
808         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
809                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
810
811         switch (perf->control_register.space_id) {
812         case ACPI_ADR_SPACE_SYSTEM_IO:
813                 /*
814                  * The core will not set policy->cur, because
815                  * cpufreq_driver->get is NULL, so we need to set it here.
816                  * However, we have to guess it, because the current speed is
817                  * unknown and not detectable via IO ports.
818                  */
819                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
820                 break;
821         case ACPI_ADR_SPACE_FIXED_HARDWARE:
822                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
823                 break;
824         default:
825                 break;
826         }
827
828         /* notify BIOS that we exist */
829         acpi_processor_notify_smm(THIS_MODULE);
830
831         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
832         for (i = 0; i < perf->state_count; i++)
833                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
834                         (i == perf->state ? '*' : ' '), i,
835                         (u32) perf->states[i].core_frequency,
836                         (u32) perf->states[i].power,
837                         (u32) perf->states[i].transition_latency);
838
839         /*
840          * the first call to ->target() should result in us actually
841          * writing something to the appropriate registers.
842          */
843         data->resume = 1;
844
845         return result;
846
847 err_freqfree:
848         kfree(data->freq_table);
849 err_unreg:
850         acpi_processor_unregister_performance(cpu);
851 err_free_mask:
852         free_cpumask_var(data->freqdomain_cpus);
853 err_free:
854         kfree(data);
855         policy->driver_data = NULL;
856
857         return result;
858 }
859
860 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
861 {
862         struct acpi_cpufreq_data *data = policy->driver_data;
863
864         pr_debug("acpi_cpufreq_cpu_exit\n");
865
866         if (data) {
867                 policy->driver_data = NULL;
868                 acpi_processor_unregister_performance(data->acpi_perf_cpu);
869                 free_cpumask_var(data->freqdomain_cpus);
870                 kfree(data->freq_table);
871                 kfree(data);
872         }
873
874         return 0;
875 }
876
877 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
878 {
879         struct acpi_cpufreq_data *data = policy->driver_data;
880
881         pr_debug("acpi_cpufreq_resume\n");
882
883         data->resume = 1;
884
885         return 0;
886 }
887
888 static struct freq_attr *acpi_cpufreq_attr[] = {
889         &cpufreq_freq_attr_scaling_available_freqs,
890         &freqdomain_cpus,
891 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
892         &cpb,
893 #endif
894         NULL,
895 };
896
897 static struct cpufreq_driver acpi_cpufreq_driver = {
898         .verify         = cpufreq_generic_frequency_table_verify,
899         .target_index   = acpi_cpufreq_target,
900         .bios_limit     = acpi_processor_get_bios_limit,
901         .init           = acpi_cpufreq_cpu_init,
902         .exit           = acpi_cpufreq_cpu_exit,
903         .resume         = acpi_cpufreq_resume,
904         .name           = "acpi-cpufreq",
905         .attr           = acpi_cpufreq_attr,
906         .set_boost      = _store_boost,
907 };
908
909 static void __init acpi_cpufreq_boost_init(void)
910 {
911         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
912                 msrs = msrs_alloc();
913
914                 if (!msrs)
915                         return;
916
917                 acpi_cpufreq_driver.boost_supported = true;
918                 acpi_cpufreq_driver.boost_enabled = boost_state(0);
919
920                 cpu_notifier_register_begin();
921
922                 /* Force all MSRs to the same value */
923                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
924                                cpu_online_mask);
925
926                 __register_cpu_notifier(&boost_nb);
927
928                 cpu_notifier_register_done();
929         }
930 }
931
932 static void acpi_cpufreq_boost_exit(void)
933 {
934         if (msrs) {
935                 unregister_cpu_notifier(&boost_nb);
936
937                 msrs_free(msrs);
938                 msrs = NULL;
939         }
940 }
941
942 static int __init acpi_cpufreq_init(void)
943 {
944         int ret;
945
946         if (acpi_disabled)
947                 return -ENODEV;
948
949         /* don't keep reloading if cpufreq_driver exists */
950         if (cpufreq_get_current_driver())
951                 return -EEXIST;
952
953         pr_debug("acpi_cpufreq_init\n");
954
955         ret = acpi_cpufreq_early_init();
956         if (ret)
957                 return ret;
958
959 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
960         /* this is a sysfs file with a strange name and an even stranger
961          * semantic - per CPU instantiation, but system global effect.
962          * Lets enable it only on AMD CPUs for compatibility reasons and
963          * only if configured. This is considered legacy code, which
964          * will probably be removed at some point in the future.
965          */
966         if (!check_amd_hwpstate_cpu(0)) {
967                 struct freq_attr **attr;
968
969                 pr_debug("CPB unsupported, do not expose it\n");
970
971                 for (attr = acpi_cpufreq_attr; *attr; attr++)
972                         if (*attr == &cpb) {
973                                 *attr = NULL;
974                                 break;
975                         }
976         }
977 #endif
978         acpi_cpufreq_boost_init();
979
980         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
981         if (ret) {
982                 free_acpi_perf_data();
983                 acpi_cpufreq_boost_exit();
984         }
985         return ret;
986 }
987
988 static void __exit acpi_cpufreq_exit(void)
989 {
990         pr_debug("acpi_cpufreq_exit\n");
991
992         acpi_cpufreq_boost_exit();
993
994         cpufreq_unregister_driver(&acpi_cpufreq_driver);
995
996         free_acpi_perf_data();
997 }
998
999 module_param(acpi_pstate_strict, uint, 0644);
1000 MODULE_PARM_DESC(acpi_pstate_strict,
1001         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1002         "performed during frequency changes.");
1003
1004 late_initcall(acpi_cpufreq_init);
1005 module_exit(acpi_cpufreq_exit);
1006
1007 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1008         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1009         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1010         {}
1011 };
1012 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1013
1014 static const struct acpi_device_id processor_device_ids[] = {
1015         {ACPI_PROCESSOR_OBJECT_HID, },
1016         {ACPI_PROCESSOR_DEVICE_HID, },
1017         {},
1018 };
1019 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1020
1021 MODULE_ALIAS("acpi");