]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_ondemand.c
powerpc: Put the gpr save/restore functions in their own section
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_SAMPLING_DOWN_FACTOR                (1)
34 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO                 (2)
52
53 static unsigned int min_sampling_rate;
54
55 #define LATENCY_MULTIPLIER                      (1000)
56 #define MIN_LATENCY_MULTIPLIER                  (100)
57 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
58
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61                                 unsigned int event);
62
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76 struct cpu_dbs_info_s {
77         cputime64_t prev_cpu_idle;
78         cputime64_t prev_cpu_iowait;
79         cputime64_t prev_cpu_wall;
80         cputime64_t prev_cpu_nice;
81         struct cpufreq_policy *cur_policy;
82         struct delayed_work work;
83         struct cpufreq_frequency_table *freq_table;
84         unsigned int freq_lo;
85         unsigned int freq_lo_jiffies;
86         unsigned int freq_hi_jiffies;
87         unsigned int rate_mult;
88         int cpu;
89         unsigned int sample_type:1;
90         /*
91          * percpu mutex that serializes governor limit change with
92          * do_dbs_timer invocation. We do not want do_dbs_timer to run
93          * when user is changing the governor or limits.
94          */
95         struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
100
101 /*
102  * dbs_mutex protects dbs_enable in governor start/stop.
103  */
104 static DEFINE_MUTEX(dbs_mutex);
105
106 static struct dbs_tuners {
107         unsigned int sampling_rate;
108         unsigned int up_threshold;
109         unsigned int down_differential;
110         unsigned int ignore_nice;
111         unsigned int sampling_down_factor;
112         unsigned int powersave_bias;
113         unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118         .ignore_nice = 0,
119         .powersave_bias = 0,
120 };
121
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124         u64 idle_time;
125         u64 cur_wall_time;
126         u64 busy_time;
127
128         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
129
130         busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
136
137         idle_time = cur_wall_time - busy_time;
138         if (wall)
139                 *wall = jiffies_to_usecs(cur_wall_time);
140
141         return jiffies_to_usecs(idle_time);
142 }
143
144 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145 {
146         u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
147
148         if (idle_time == -1ULL)
149                 return get_cpu_idle_time_jiffy(cpu, wall);
150         else
151                 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153         return idle_time;
154 }
155
156 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157 {
158         u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160         if (iowait_time == -1ULL)
161                 return 0;
162
163         return iowait_time;
164 }
165
166 /*
167  * Find right freq to be set now with powersave_bias on.
168  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170  */
171 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172                                           unsigned int freq_next,
173                                           unsigned int relation)
174 {
175         unsigned int freq_req, freq_reduc, freq_avg;
176         unsigned int freq_hi, freq_lo;
177         unsigned int index = 0;
178         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180                                                    policy->cpu);
181
182         if (!dbs_info->freq_table) {
183                 dbs_info->freq_lo = 0;
184                 dbs_info->freq_lo_jiffies = 0;
185                 return freq_next;
186         }
187
188         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189                         relation, &index);
190         freq_req = dbs_info->freq_table[index].frequency;
191         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192         freq_avg = freq_req - freq_reduc;
193
194         /* Find freq bounds for freq_avg in freq_table */
195         index = 0;
196         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197                         CPUFREQ_RELATION_H, &index);
198         freq_lo = dbs_info->freq_table[index].frequency;
199         index = 0;
200         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201                         CPUFREQ_RELATION_L, &index);
202         freq_hi = dbs_info->freq_table[index].frequency;
203
204         /* Find out how long we have to be in hi and lo freqs */
205         if (freq_hi == freq_lo) {
206                 dbs_info->freq_lo = 0;
207                 dbs_info->freq_lo_jiffies = 0;
208                 return freq_lo;
209         }
210         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212         jiffies_hi += ((freq_hi - freq_lo) / 2);
213         jiffies_hi /= (freq_hi - freq_lo);
214         jiffies_lo = jiffies_total - jiffies_hi;
215         dbs_info->freq_lo = freq_lo;
216         dbs_info->freq_lo_jiffies = jiffies_lo;
217         dbs_info->freq_hi_jiffies = jiffies_hi;
218         return freq_hi;
219 }
220
221 static void ondemand_powersave_bias_init_cpu(int cpu)
222 {
223         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225         dbs_info->freq_lo = 0;
226 }
227
228 static void ondemand_powersave_bias_init(void)
229 {
230         int i;
231         for_each_online_cpu(i) {
232                 ondemand_powersave_bias_init_cpu(i);
233         }
234 }
235
236 /************************** sysfs interface ************************/
237
238 static ssize_t show_sampling_rate_min(struct kobject *kobj,
239                                       struct attribute *attr, char *buf)
240 {
241         return sprintf(buf, "%u\n", min_sampling_rate);
242 }
243
244 define_one_global_ro(sampling_rate_min);
245
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object)                                     \
248 static ssize_t show_##file_name                                         \
249 (struct kobject *kobj, struct attribute *attr, char *buf)              \
250 {                                                                       \
251         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
252 }
253 show_one(sampling_rate, sampling_rate);
254 show_one(io_is_busy, io_is_busy);
255 show_one(up_threshold, up_threshold);
256 show_one(sampling_down_factor, sampling_down_factor);
257 show_one(ignore_nice_load, ignore_nice);
258 show_one(powersave_bias, powersave_bias);
259
260 /**
261  * update_sampling_rate - update sampling rate effective immediately if needed.
262  * @new_rate: new sampling rate
263  *
264  * If new rate is smaller than the old, simply updaing
265  * dbs_tuners_int.sampling_rate might not be appropriate. For example,
266  * if the original sampling_rate was 1 second and the requested new sampling
267  * rate is 10 ms because the user needs immediate reaction from ondemand
268  * governor, but not sure if higher frequency will be required or not,
269  * then, the governor may change the sampling rate too late; up to 1 second
270  * later. Thus, if we are reducing the sampling rate, we need to make the
271  * new value effective immediately.
272  */
273 static void update_sampling_rate(unsigned int new_rate)
274 {
275         int cpu;
276
277         dbs_tuners_ins.sampling_rate = new_rate
278                                      = max(new_rate, min_sampling_rate);
279
280         for_each_online_cpu(cpu) {
281                 struct cpufreq_policy *policy;
282                 struct cpu_dbs_info_s *dbs_info;
283                 unsigned long next_sampling, appointed_at;
284
285                 policy = cpufreq_cpu_get(cpu);
286                 if (!policy)
287                         continue;
288                 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
289                 cpufreq_cpu_put(policy);
290
291                 mutex_lock(&dbs_info->timer_mutex);
292
293                 if (!delayed_work_pending(&dbs_info->work)) {
294                         mutex_unlock(&dbs_info->timer_mutex);
295                         continue;
296                 }
297
298                 next_sampling  = jiffies + usecs_to_jiffies(new_rate);
299                 appointed_at = dbs_info->work.timer.expires;
300
301
302                 if (time_before(next_sampling, appointed_at)) {
303
304                         mutex_unlock(&dbs_info->timer_mutex);
305                         cancel_delayed_work_sync(&dbs_info->work);
306                         mutex_lock(&dbs_info->timer_mutex);
307
308                         schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
309                                                  usecs_to_jiffies(new_rate));
310
311                 }
312                 mutex_unlock(&dbs_info->timer_mutex);
313         }
314 }
315
316 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
317                                    const char *buf, size_t count)
318 {
319         unsigned int input;
320         int ret;
321         ret = sscanf(buf, "%u", &input);
322         if (ret != 1)
323                 return -EINVAL;
324         update_sampling_rate(input);
325         return count;
326 }
327
328 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
329                                    const char *buf, size_t count)
330 {
331         unsigned int input;
332         int ret;
333
334         ret = sscanf(buf, "%u", &input);
335         if (ret != 1)
336                 return -EINVAL;
337         dbs_tuners_ins.io_is_busy = !!input;
338         return count;
339 }
340
341 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
342                                   const char *buf, size_t count)
343 {
344         unsigned int input;
345         int ret;
346         ret = sscanf(buf, "%u", &input);
347
348         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
349                         input < MIN_FREQUENCY_UP_THRESHOLD) {
350                 return -EINVAL;
351         }
352         dbs_tuners_ins.up_threshold = input;
353         return count;
354 }
355
356 static ssize_t store_sampling_down_factor(struct kobject *a,
357                         struct attribute *b, const char *buf, size_t count)
358 {
359         unsigned int input, j;
360         int ret;
361         ret = sscanf(buf, "%u", &input);
362
363         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
364                 return -EINVAL;
365         dbs_tuners_ins.sampling_down_factor = input;
366
367         /* Reset down sampling multiplier in case it was active */
368         for_each_online_cpu(j) {
369                 struct cpu_dbs_info_s *dbs_info;
370                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
371                 dbs_info->rate_mult = 1;
372         }
373         return count;
374 }
375
376 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
377                                       const char *buf, size_t count)
378 {
379         unsigned int input;
380         int ret;
381
382         unsigned int j;
383
384         ret = sscanf(buf, "%u", &input);
385         if (ret != 1)
386                 return -EINVAL;
387
388         if (input > 1)
389                 input = 1;
390
391         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
392                 return count;
393         }
394         dbs_tuners_ins.ignore_nice = input;
395
396         /* we need to re-evaluate prev_cpu_idle */
397         for_each_online_cpu(j) {
398                 struct cpu_dbs_info_s *dbs_info;
399                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
400                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
401                                                 &dbs_info->prev_cpu_wall);
402                 if (dbs_tuners_ins.ignore_nice)
403                         dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
404
405         }
406         return count;
407 }
408
409 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410                                     const char *buf, size_t count)
411 {
412         unsigned int input;
413         int ret;
414         ret = sscanf(buf, "%u", &input);
415
416         if (ret != 1)
417                 return -EINVAL;
418
419         if (input > 1000)
420                 input = 1000;
421
422         dbs_tuners_ins.powersave_bias = input;
423         ondemand_powersave_bias_init();
424         return count;
425 }
426
427 define_one_global_rw(sampling_rate);
428 define_one_global_rw(io_is_busy);
429 define_one_global_rw(up_threshold);
430 define_one_global_rw(sampling_down_factor);
431 define_one_global_rw(ignore_nice_load);
432 define_one_global_rw(powersave_bias);
433
434 static struct attribute *dbs_attributes[] = {
435         &sampling_rate_min.attr,
436         &sampling_rate.attr,
437         &up_threshold.attr,
438         &sampling_down_factor.attr,
439         &ignore_nice_load.attr,
440         &powersave_bias.attr,
441         &io_is_busy.attr,
442         NULL
443 };
444
445 static struct attribute_group dbs_attr_group = {
446         .attrs = dbs_attributes,
447         .name = "ondemand",
448 };
449
450 /************************** sysfs end ************************/
451
452 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
453 {
454         if (dbs_tuners_ins.powersave_bias)
455                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
456         else if (p->cur == p->max)
457                 return;
458
459         __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
460                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
461 }
462
463 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
464 {
465         unsigned int max_load_freq;
466
467         struct cpufreq_policy *policy;
468         unsigned int j;
469
470         this_dbs_info->freq_lo = 0;
471         policy = this_dbs_info->cur_policy;
472
473         /*
474          * Every sampling_rate, we check, if current idle time is less
475          * than 20% (default), then we try to increase frequency
476          * Every sampling_rate, we look for a the lowest
477          * frequency which can sustain the load while keeping idle time over
478          * 30%. If such a frequency exist, we try to decrease to this frequency.
479          *
480          * Any frequency increase takes it to the maximum frequency.
481          * Frequency reduction happens at minimum steps of
482          * 5% (default) of current frequency
483          */
484
485         /* Get Absolute Load - in terms of freq */
486         max_load_freq = 0;
487
488         for_each_cpu(j, policy->cpus) {
489                 struct cpu_dbs_info_s *j_dbs_info;
490                 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
491                 unsigned int idle_time, wall_time, iowait_time;
492                 unsigned int load, load_freq;
493                 int freq_avg;
494
495                 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
496
497                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
498                 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
499
500                 wall_time = (unsigned int)
501                         (cur_wall_time - j_dbs_info->prev_cpu_wall);
502                 j_dbs_info->prev_cpu_wall = cur_wall_time;
503
504                 idle_time = (unsigned int)
505                         (cur_idle_time - j_dbs_info->prev_cpu_idle);
506                 j_dbs_info->prev_cpu_idle = cur_idle_time;
507
508                 iowait_time = (unsigned int)
509                         (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
510                 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
511
512                 if (dbs_tuners_ins.ignore_nice) {
513                         u64 cur_nice;
514                         unsigned long cur_nice_jiffies;
515
516                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
517                                          j_dbs_info->prev_cpu_nice;
518                         /*
519                          * Assumption: nice time between sampling periods will
520                          * be less than 2^32 jiffies for 32 bit sys
521                          */
522                         cur_nice_jiffies = (unsigned long)
523                                         cputime64_to_jiffies64(cur_nice);
524
525                         j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
526                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
527                 }
528
529                 /*
530                  * For the purpose of ondemand, waiting for disk IO is an
531                  * indication that you're performance critical, and not that
532                  * the system is actually idle. So subtract the iowait time
533                  * from the cpu idle time.
534                  */
535
536                 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
537                         idle_time -= iowait_time;
538
539                 if (unlikely(!wall_time || wall_time < idle_time))
540                         continue;
541
542                 load = 100 * (wall_time - idle_time) / wall_time;
543
544                 freq_avg = __cpufreq_driver_getavg(policy, j);
545                 if (freq_avg <= 0)
546                         freq_avg = policy->cur;
547
548                 load_freq = load * freq_avg;
549                 if (load_freq > max_load_freq)
550                         max_load_freq = load_freq;
551         }
552
553         /* Check for frequency increase */
554         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
555                 /* If switching to max speed, apply sampling_down_factor */
556                 if (policy->cur < policy->max)
557                         this_dbs_info->rate_mult =
558                                 dbs_tuners_ins.sampling_down_factor;
559                 dbs_freq_increase(policy, policy->max);
560                 return;
561         }
562
563         /* Check for frequency decrease */
564         /* if we cannot reduce the frequency anymore, break out early */
565         if (policy->cur == policy->min)
566                 return;
567
568         /*
569          * The optimal frequency is the frequency that is the lowest that
570          * can support the current CPU usage without triggering the up
571          * policy. To be safe, we focus 10 points under the threshold.
572          */
573         if (max_load_freq <
574             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
575              policy->cur) {
576                 unsigned int freq_next;
577                 freq_next = max_load_freq /
578                                 (dbs_tuners_ins.up_threshold -
579                                  dbs_tuners_ins.down_differential);
580
581                 /* No longer fully busy, reset rate_mult */
582                 this_dbs_info->rate_mult = 1;
583
584                 if (freq_next < policy->min)
585                         freq_next = policy->min;
586
587                 if (!dbs_tuners_ins.powersave_bias) {
588                         __cpufreq_driver_target(policy, freq_next,
589                                         CPUFREQ_RELATION_L);
590                 } else {
591                         int freq = powersave_bias_target(policy, freq_next,
592                                         CPUFREQ_RELATION_L);
593                         __cpufreq_driver_target(policy, freq,
594                                 CPUFREQ_RELATION_L);
595                 }
596         }
597 }
598
599 static void do_dbs_timer(struct work_struct *work)
600 {
601         struct cpu_dbs_info_s *dbs_info =
602                 container_of(work, struct cpu_dbs_info_s, work.work);
603         unsigned int cpu = dbs_info->cpu;
604         int sample_type = dbs_info->sample_type;
605
606         int delay;
607
608         mutex_lock(&dbs_info->timer_mutex);
609
610         /* Common NORMAL_SAMPLE setup */
611         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
612         if (!dbs_tuners_ins.powersave_bias ||
613             sample_type == DBS_NORMAL_SAMPLE) {
614                 dbs_check_cpu(dbs_info);
615                 if (dbs_info->freq_lo) {
616                         /* Setup timer for SUB_SAMPLE */
617                         dbs_info->sample_type = DBS_SUB_SAMPLE;
618                         delay = dbs_info->freq_hi_jiffies;
619                 } else {
620                         /* We want all CPUs to do sampling nearly on
621                          * same jiffy
622                          */
623                         delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
624                                 * dbs_info->rate_mult);
625
626                         if (num_online_cpus() > 1)
627                                 delay -= jiffies % delay;
628                 }
629         } else {
630                 __cpufreq_driver_target(dbs_info->cur_policy,
631                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
632                 delay = dbs_info->freq_lo_jiffies;
633         }
634         schedule_delayed_work_on(cpu, &dbs_info->work, delay);
635         mutex_unlock(&dbs_info->timer_mutex);
636 }
637
638 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
639 {
640         /* We want all CPUs to do sampling nearly on same jiffy */
641         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
642
643         if (num_online_cpus() > 1)
644                 delay -= jiffies % delay;
645
646         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
647         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
648         schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
649 }
650
651 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
652 {
653         cancel_delayed_work_sync(&dbs_info->work);
654 }
655
656 /*
657  * Not all CPUs want IO time to be accounted as busy; this dependson how
658  * efficient idling at a higher frequency/voltage is.
659  * Pavel Machek says this is not so for various generations of AMD and old
660  * Intel systems.
661  * Mike Chan (androidlcom) calis this is also not true for ARM.
662  * Because of this, whitelist specific known (series) of CPUs by default, and
663  * leave all others up to the user.
664  */
665 static int should_io_be_busy(void)
666 {
667 #if defined(CONFIG_X86)
668         /*
669          * For Intel, Core 2 (model 15) andl later have an efficient idle.
670          */
671         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
672             boot_cpu_data.x86 == 6 &&
673             boot_cpu_data.x86_model >= 15)
674                 return 1;
675 #endif
676         return 0;
677 }
678
679 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
680                                    unsigned int event)
681 {
682         unsigned int cpu = policy->cpu;
683         struct cpu_dbs_info_s *this_dbs_info;
684         unsigned int j;
685         int rc;
686
687         this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
688
689         switch (event) {
690         case CPUFREQ_GOV_START:
691                 if ((!cpu_online(cpu)) || (!policy->cur))
692                         return -EINVAL;
693
694                 mutex_lock(&dbs_mutex);
695
696                 dbs_enable++;
697                 for_each_cpu(j, policy->cpus) {
698                         struct cpu_dbs_info_s *j_dbs_info;
699                         j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
700                         j_dbs_info->cur_policy = policy;
701
702                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
703                                                 &j_dbs_info->prev_cpu_wall);
704                         if (dbs_tuners_ins.ignore_nice)
705                                 j_dbs_info->prev_cpu_nice =
706                                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
707                 }
708                 this_dbs_info->cpu = cpu;
709                 this_dbs_info->rate_mult = 1;
710                 ondemand_powersave_bias_init_cpu(cpu);
711                 /*
712                  * Start the timerschedule work, when this governor
713                  * is used for first time
714                  */
715                 if (dbs_enable == 1) {
716                         unsigned int latency;
717
718                         rc = sysfs_create_group(cpufreq_global_kobject,
719                                                 &dbs_attr_group);
720                         if (rc) {
721                                 mutex_unlock(&dbs_mutex);
722                                 return rc;
723                         }
724
725                         /* policy latency is in nS. Convert it to uS first */
726                         latency = policy->cpuinfo.transition_latency / 1000;
727                         if (latency == 0)
728                                 latency = 1;
729                         /* Bring kernel and HW constraints together */
730                         min_sampling_rate = max(min_sampling_rate,
731                                         MIN_LATENCY_MULTIPLIER * latency);
732                         dbs_tuners_ins.sampling_rate =
733                                 max(min_sampling_rate,
734                                     latency * LATENCY_MULTIPLIER);
735                         dbs_tuners_ins.io_is_busy = should_io_be_busy();
736                 }
737                 mutex_unlock(&dbs_mutex);
738
739                 mutex_init(&this_dbs_info->timer_mutex);
740                 dbs_timer_init(this_dbs_info);
741                 break;
742
743         case CPUFREQ_GOV_STOP:
744                 dbs_timer_exit(this_dbs_info);
745
746                 mutex_lock(&dbs_mutex);
747                 mutex_destroy(&this_dbs_info->timer_mutex);
748                 dbs_enable--;
749                 mutex_unlock(&dbs_mutex);
750                 if (!dbs_enable)
751                         sysfs_remove_group(cpufreq_global_kobject,
752                                            &dbs_attr_group);
753
754                 break;
755
756         case CPUFREQ_GOV_LIMITS:
757                 mutex_lock(&this_dbs_info->timer_mutex);
758                 if (policy->max < this_dbs_info->cur_policy->cur)
759                         __cpufreq_driver_target(this_dbs_info->cur_policy,
760                                 policy->max, CPUFREQ_RELATION_H);
761                 else if (policy->min > this_dbs_info->cur_policy->cur)
762                         __cpufreq_driver_target(this_dbs_info->cur_policy,
763                                 policy->min, CPUFREQ_RELATION_L);
764                 mutex_unlock(&this_dbs_info->timer_mutex);
765                 break;
766         }
767         return 0;
768 }
769
770 static int __init cpufreq_gov_dbs_init(void)
771 {
772         u64 idle_time;
773         int cpu = get_cpu();
774
775         idle_time = get_cpu_idle_time_us(cpu, NULL);
776         put_cpu();
777         if (idle_time != -1ULL) {
778                 /* Idle micro accounting is supported. Use finer thresholds */
779                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
780                 dbs_tuners_ins.down_differential =
781                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
782                 /*
783                  * In nohz/micro accounting case we set the minimum frequency
784                  * not depending on HZ, but fixed (very low). The deferred
785                  * timer might skip some samples if idle/sleeping as needed.
786                 */
787                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
788         } else {
789                 /* For correct statistics, we need 10 ticks for each measure */
790                 min_sampling_rate =
791                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
792         }
793
794         return cpufreq_register_governor(&cpufreq_gov_ondemand);
795 }
796
797 static void __exit cpufreq_gov_dbs_exit(void)
798 {
799         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
800 }
801
802
803 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
804 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
805 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
806         "Low Latency Frequency Transition capable processors");
807 MODULE_LICENSE("GPL");
808
809 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
810 fs_initcall(cpufreq_gov_dbs_init);
811 #else
812 module_init(cpufreq_gov_dbs_init);
813 #endif
814 module_exit(cpufreq_gov_dbs_exit);