]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'platform-drivers-x86-v4.1-1' of git://git.infradead.org/users/dvhart/linux...
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52         return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57         int mask, ret;
58
59         ret = fp_toint(x);
60         mask = (1 << FRAC_BITS) - 1;
61         if (x & mask)
62                 ret += 1;
63         return ret;
64 }
65
66 struct sample {
67         int32_t core_pct_busy;
68         u64 aperf;
69         u64 mperf;
70         int freq;
71         ktime_t time;
72 };
73
74 struct pstate_data {
75         int     current_pstate;
76         int     min_pstate;
77         int     max_pstate;
78         int     scaling;
79         int     turbo_pstate;
80 };
81
82 struct vid_data {
83         int min;
84         int max;
85         int turbo;
86         int32_t ratio;
87 };
88
89 struct _pid {
90         int setpoint;
91         int32_t integral;
92         int32_t p_gain;
93         int32_t i_gain;
94         int32_t d_gain;
95         int deadband;
96         int32_t last_err;
97 };
98
99 struct cpudata {
100         int cpu;
101
102         struct timer_list timer;
103
104         struct pstate_data pstate;
105         struct vid_data vid;
106         struct _pid pid;
107
108         ktime_t last_sample_time;
109         u64     prev_aperf;
110         u64     prev_mperf;
111         struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116         int sample_rate_ms;
117         int deadband;
118         int setpoint;
119         int p_gain_pct;
120         int d_gain_pct;
121         int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125         int (*get_max)(void);
126         int (*get_min)(void);
127         int (*get_turbo)(void);
128         int (*get_scaling)(void);
129         void (*set)(struct cpudata*, int pstate);
130         void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134         struct pstate_adjust_policy pid_policy;
135         struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143         int no_turbo;
144         int turbo_disabled;
145         int max_perf_pct;
146         int min_perf_pct;
147         int32_t max_perf;
148         int32_t min_perf;
149         int max_policy_pct;
150         int max_sysfs_pct;
151         int min_policy_pct;
152         int min_sysfs_pct;
153 };
154
155 static struct perf_limits limits = {
156         .no_turbo = 0,
157         .turbo_disabled = 0,
158         .max_perf_pct = 100,
159         .max_perf = int_tofp(1),
160         .min_perf_pct = 0,
161         .min_perf = 0,
162         .max_policy_pct = 100,
163         .max_sysfs_pct = 100,
164         .min_policy_pct = 0,
165         .min_sysfs_pct = 0,
166 };
167
168 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
169                              int deadband, int integral) {
170         pid->setpoint = setpoint;
171         pid->deadband  = deadband;
172         pid->integral  = int_tofp(integral);
173         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
174 }
175
176 static inline void pid_p_gain_set(struct _pid *pid, int percent)
177 {
178         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
179 }
180
181 static inline void pid_i_gain_set(struct _pid *pid, int percent)
182 {
183         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
184 }
185
186 static inline void pid_d_gain_set(struct _pid *pid, int percent)
187 {
188         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
189 }
190
191 static signed int pid_calc(struct _pid *pid, int32_t busy)
192 {
193         signed int result;
194         int32_t pterm, dterm, fp_error;
195         int32_t integral_limit;
196
197         fp_error = int_tofp(pid->setpoint) - busy;
198
199         if (abs(fp_error) <= int_tofp(pid->deadband))
200                 return 0;
201
202         pterm = mul_fp(pid->p_gain, fp_error);
203
204         pid->integral += fp_error;
205
206         /*
207          * We limit the integral here so that it will never
208          * get higher than 30.  This prevents it from becoming
209          * too large an input over long periods of time and allows
210          * it to get factored out sooner.
211          *
212          * The value of 30 was chosen through experimentation.
213          */
214         integral_limit = int_tofp(30);
215         if (pid->integral > integral_limit)
216                 pid->integral = integral_limit;
217         if (pid->integral < -integral_limit)
218                 pid->integral = -integral_limit;
219
220         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
221         pid->last_err = fp_error;
222
223         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
224         result = result + (1 << (FRAC_BITS-1));
225         return (signed int)fp_toint(result);
226 }
227
228 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
229 {
230         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
231         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
232         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
233
234         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
235 }
236
237 static inline void intel_pstate_reset_all_pid(void)
238 {
239         unsigned int cpu;
240
241         for_each_online_cpu(cpu) {
242                 if (all_cpu_data[cpu])
243                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
244         }
245 }
246
247 static inline void update_turbo_state(void)
248 {
249         u64 misc_en;
250         struct cpudata *cpu;
251
252         cpu = all_cpu_data[0];
253         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
254         limits.turbo_disabled =
255                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
256                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
257 }
258
259 #define PCT_TO_HWP(x) (x * 255 / 100)
260 static void intel_pstate_hwp_set(void)
261 {
262         int min, max, cpu;
263         u64 value, freq;
264
265         get_online_cpus();
266
267         for_each_online_cpu(cpu) {
268                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
269                 min = PCT_TO_HWP(limits.min_perf_pct);
270                 value &= ~HWP_MIN_PERF(~0L);
271                 value |= HWP_MIN_PERF(min);
272
273                 max = PCT_TO_HWP(limits.max_perf_pct);
274                 if (limits.no_turbo) {
275                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
276                         max = HWP_GUARANTEED_PERF(freq);
277                 }
278
279                 value &= ~HWP_MAX_PERF(~0L);
280                 value |= HWP_MAX_PERF(max);
281                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
282         }
283
284         put_online_cpus();
285 }
286
287 /************************** debugfs begin ************************/
288 static int pid_param_set(void *data, u64 val)
289 {
290         *(u32 *)data = val;
291         intel_pstate_reset_all_pid();
292         return 0;
293 }
294
295 static int pid_param_get(void *data, u64 *val)
296 {
297         *val = *(u32 *)data;
298         return 0;
299 }
300 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
301
302 struct pid_param {
303         char *name;
304         void *value;
305 };
306
307 static struct pid_param pid_files[] = {
308         {"sample_rate_ms", &pid_params.sample_rate_ms},
309         {"d_gain_pct", &pid_params.d_gain_pct},
310         {"i_gain_pct", &pid_params.i_gain_pct},
311         {"deadband", &pid_params.deadband},
312         {"setpoint", &pid_params.setpoint},
313         {"p_gain_pct", &pid_params.p_gain_pct},
314         {NULL, NULL}
315 };
316
317 static void __init intel_pstate_debug_expose_params(void)
318 {
319         struct dentry *debugfs_parent;
320         int i = 0;
321
322         if (hwp_active)
323                 return;
324         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
325         if (IS_ERR_OR_NULL(debugfs_parent))
326                 return;
327         while (pid_files[i].name) {
328                 debugfs_create_file(pid_files[i].name, 0660,
329                                     debugfs_parent, pid_files[i].value,
330                                     &fops_pid_param);
331                 i++;
332         }
333 }
334
335 /************************** debugfs end ************************/
336
337 /************************** sysfs begin ************************/
338 #define show_one(file_name, object)                                     \
339         static ssize_t show_##file_name                                 \
340         (struct kobject *kobj, struct attribute *attr, char *buf)       \
341         {                                                               \
342                 return sprintf(buf, "%u\n", limits.object);             \
343         }
344
345 static ssize_t show_turbo_pct(struct kobject *kobj,
346                                 struct attribute *attr, char *buf)
347 {
348         struct cpudata *cpu;
349         int total, no_turbo, turbo_pct;
350         uint32_t turbo_fp;
351
352         cpu = all_cpu_data[0];
353
354         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
355         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
356         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
357         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
358         return sprintf(buf, "%u\n", turbo_pct);
359 }
360
361 static ssize_t show_num_pstates(struct kobject *kobj,
362                                 struct attribute *attr, char *buf)
363 {
364         struct cpudata *cpu;
365         int total;
366
367         cpu = all_cpu_data[0];
368         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
369         return sprintf(buf, "%u\n", total);
370 }
371
372 static ssize_t show_no_turbo(struct kobject *kobj,
373                              struct attribute *attr, char *buf)
374 {
375         ssize_t ret;
376
377         update_turbo_state();
378         if (limits.turbo_disabled)
379                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
380         else
381                 ret = sprintf(buf, "%u\n", limits.no_turbo);
382
383         return ret;
384 }
385
386 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
387                               const char *buf, size_t count)
388 {
389         unsigned int input;
390         int ret;
391
392         ret = sscanf(buf, "%u", &input);
393         if (ret != 1)
394                 return -EINVAL;
395
396         update_turbo_state();
397         if (limits.turbo_disabled) {
398                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
399                 return -EPERM;
400         }
401
402         limits.no_turbo = clamp_t(int, input, 0, 1);
403
404         if (hwp_active)
405                 intel_pstate_hwp_set();
406
407         return count;
408 }
409
410 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
411                                   const char *buf, size_t count)
412 {
413         unsigned int input;
414         int ret;
415
416         ret = sscanf(buf, "%u", &input);
417         if (ret != 1)
418                 return -EINVAL;
419
420         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
421         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
422         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
423
424         if (hwp_active)
425                 intel_pstate_hwp_set();
426         return count;
427 }
428
429 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
430                                   const char *buf, size_t count)
431 {
432         unsigned int input;
433         int ret;
434
435         ret = sscanf(buf, "%u", &input);
436         if (ret != 1)
437                 return -EINVAL;
438
439         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
440         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
441         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
442
443         if (hwp_active)
444                 intel_pstate_hwp_set();
445         return count;
446 }
447
448 show_one(max_perf_pct, max_perf_pct);
449 show_one(min_perf_pct, min_perf_pct);
450
451 define_one_global_rw(no_turbo);
452 define_one_global_rw(max_perf_pct);
453 define_one_global_rw(min_perf_pct);
454 define_one_global_ro(turbo_pct);
455 define_one_global_ro(num_pstates);
456
457 static struct attribute *intel_pstate_attributes[] = {
458         &no_turbo.attr,
459         &max_perf_pct.attr,
460         &min_perf_pct.attr,
461         &turbo_pct.attr,
462         &num_pstates.attr,
463         NULL
464 };
465
466 static struct attribute_group intel_pstate_attr_group = {
467         .attrs = intel_pstate_attributes,
468 };
469
470 static void __init intel_pstate_sysfs_expose_params(void)
471 {
472         struct kobject *intel_pstate_kobject;
473         int rc;
474
475         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
476                                                 &cpu_subsys.dev_root->kobj);
477         BUG_ON(!intel_pstate_kobject);
478         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
479         BUG_ON(rc);
480 }
481 /************************** sysfs end ************************/
482
483 static void intel_pstate_hwp_enable(void)
484 {
485         hwp_active++;
486         pr_info("intel_pstate HWP enabled\n");
487
488         wrmsrl( MSR_PM_ENABLE, 0x1);
489 }
490
491 static int byt_get_min_pstate(void)
492 {
493         u64 value;
494
495         rdmsrl(BYT_RATIOS, value);
496         return (value >> 8) & 0x7F;
497 }
498
499 static int byt_get_max_pstate(void)
500 {
501         u64 value;
502
503         rdmsrl(BYT_RATIOS, value);
504         return (value >> 16) & 0x7F;
505 }
506
507 static int byt_get_turbo_pstate(void)
508 {
509         u64 value;
510
511         rdmsrl(BYT_TURBO_RATIOS, value);
512         return value & 0x7F;
513 }
514
515 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
516 {
517         u64 val;
518         int32_t vid_fp;
519         u32 vid;
520
521         val = pstate << 8;
522         if (limits.no_turbo && !limits.turbo_disabled)
523                 val |= (u64)1 << 32;
524
525         vid_fp = cpudata->vid.min + mul_fp(
526                 int_tofp(pstate - cpudata->pstate.min_pstate),
527                 cpudata->vid.ratio);
528
529         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
530         vid = ceiling_fp(vid_fp);
531
532         if (pstate > cpudata->pstate.max_pstate)
533                 vid = cpudata->vid.turbo;
534
535         val |= vid;
536
537         wrmsrl(MSR_IA32_PERF_CTL, val);
538 }
539
540 #define BYT_BCLK_FREQS 5
541 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
542
543 static int byt_get_scaling(void)
544 {
545         u64 value;
546         int i;
547
548         rdmsrl(MSR_FSB_FREQ, value);
549         i = value & 0x3;
550
551         BUG_ON(i > BYT_BCLK_FREQS);
552
553         return byt_freq_table[i] * 100;
554 }
555
556 static void byt_get_vid(struct cpudata *cpudata)
557 {
558         u64 value;
559
560         rdmsrl(BYT_VIDS, value);
561         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
562         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
563         cpudata->vid.ratio = div_fp(
564                 cpudata->vid.max - cpudata->vid.min,
565                 int_tofp(cpudata->pstate.max_pstate -
566                         cpudata->pstate.min_pstate));
567
568         rdmsrl(BYT_TURBO_VIDS, value);
569         cpudata->vid.turbo = value & 0x7f;
570 }
571
572 static int core_get_min_pstate(void)
573 {
574         u64 value;
575
576         rdmsrl(MSR_PLATFORM_INFO, value);
577         return (value >> 40) & 0xFF;
578 }
579
580 static int core_get_max_pstate(void)
581 {
582         u64 value;
583
584         rdmsrl(MSR_PLATFORM_INFO, value);
585         return (value >> 8) & 0xFF;
586 }
587
588 static int core_get_turbo_pstate(void)
589 {
590         u64 value;
591         int nont, ret;
592
593         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
594         nont = core_get_max_pstate();
595         ret = (value) & 255;
596         if (ret <= nont)
597                 ret = nont;
598         return ret;
599 }
600
601 static inline int core_get_scaling(void)
602 {
603         return 100000;
604 }
605
606 static void core_set_pstate(struct cpudata *cpudata, int pstate)
607 {
608         u64 val;
609
610         val = pstate << 8;
611         if (limits.no_turbo && !limits.turbo_disabled)
612                 val |= (u64)1 << 32;
613
614         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
615 }
616
617 static int knl_get_turbo_pstate(void)
618 {
619         u64 value;
620         int nont, ret;
621
622         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
623         nont = core_get_max_pstate();
624         ret = (((value) >> 8) & 0xFF);
625         if (ret <= nont)
626                 ret = nont;
627         return ret;
628 }
629
630 static struct cpu_defaults core_params = {
631         .pid_policy = {
632                 .sample_rate_ms = 10,
633                 .deadband = 0,
634                 .setpoint = 97,
635                 .p_gain_pct = 20,
636                 .d_gain_pct = 0,
637                 .i_gain_pct = 0,
638         },
639         .funcs = {
640                 .get_max = core_get_max_pstate,
641                 .get_min = core_get_min_pstate,
642                 .get_turbo = core_get_turbo_pstate,
643                 .get_scaling = core_get_scaling,
644                 .set = core_set_pstate,
645         },
646 };
647
648 static struct cpu_defaults byt_params = {
649         .pid_policy = {
650                 .sample_rate_ms = 10,
651                 .deadband = 0,
652                 .setpoint = 97,
653                 .p_gain_pct = 14,
654                 .d_gain_pct = 0,
655                 .i_gain_pct = 4,
656         },
657         .funcs = {
658                 .get_max = byt_get_max_pstate,
659                 .get_min = byt_get_min_pstate,
660                 .get_turbo = byt_get_turbo_pstate,
661                 .set = byt_set_pstate,
662                 .get_scaling = byt_get_scaling,
663                 .get_vid = byt_get_vid,
664         },
665 };
666
667 static struct cpu_defaults knl_params = {
668         .pid_policy = {
669                 .sample_rate_ms = 10,
670                 .deadband = 0,
671                 .setpoint = 97,
672                 .p_gain_pct = 20,
673                 .d_gain_pct = 0,
674                 .i_gain_pct = 0,
675         },
676         .funcs = {
677                 .get_max = core_get_max_pstate,
678                 .get_min = core_get_min_pstate,
679                 .get_turbo = knl_get_turbo_pstate,
680                 .set = core_set_pstate,
681         },
682 };
683
684 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
685 {
686         int max_perf = cpu->pstate.turbo_pstate;
687         int max_perf_adj;
688         int min_perf;
689
690         if (limits.no_turbo || limits.turbo_disabled)
691                 max_perf = cpu->pstate.max_pstate;
692
693         /*
694          * performance can be limited by user through sysfs, by cpufreq
695          * policy, or by cpu specific default values determined through
696          * experimentation.
697          */
698         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
699         *max = clamp_t(int, max_perf_adj,
700                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
701
702         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
703         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
704 }
705
706 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
707 {
708         int max_perf, min_perf;
709
710         update_turbo_state();
711
712         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
713
714         pstate = clamp_t(int, pstate, min_perf, max_perf);
715
716         if (pstate == cpu->pstate.current_pstate)
717                 return;
718
719         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
720
721         cpu->pstate.current_pstate = pstate;
722
723         pstate_funcs.set(cpu, pstate);
724 }
725
726 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
727 {
728         cpu->pstate.min_pstate = pstate_funcs.get_min();
729         cpu->pstate.max_pstate = pstate_funcs.get_max();
730         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
731         cpu->pstate.scaling = pstate_funcs.get_scaling();
732
733         if (pstate_funcs.get_vid)
734                 pstate_funcs.get_vid(cpu);
735         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
736 }
737
738 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
739 {
740         struct sample *sample = &cpu->sample;
741         int64_t core_pct;
742
743         core_pct = int_tofp(sample->aperf) * int_tofp(100);
744         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
745
746         sample->freq = fp_toint(
747                 mul_fp(int_tofp(
748                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
749                         core_pct));
750
751         sample->core_pct_busy = (int32_t)core_pct;
752 }
753
754 static inline void intel_pstate_sample(struct cpudata *cpu)
755 {
756         u64 aperf, mperf;
757         unsigned long flags;
758
759         local_irq_save(flags);
760         rdmsrl(MSR_IA32_APERF, aperf);
761         rdmsrl(MSR_IA32_MPERF, mperf);
762         local_irq_restore(flags);
763
764         cpu->last_sample_time = cpu->sample.time;
765         cpu->sample.time = ktime_get();
766         cpu->sample.aperf = aperf;
767         cpu->sample.mperf = mperf;
768         cpu->sample.aperf -= cpu->prev_aperf;
769         cpu->sample.mperf -= cpu->prev_mperf;
770
771         intel_pstate_calc_busy(cpu);
772
773         cpu->prev_aperf = aperf;
774         cpu->prev_mperf = mperf;
775 }
776
777 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
778 {
779         int delay;
780
781         delay = msecs_to_jiffies(50);
782         mod_timer_pinned(&cpu->timer, jiffies + delay);
783 }
784
785 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
786 {
787         int delay;
788
789         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
790         mod_timer_pinned(&cpu->timer, jiffies + delay);
791 }
792
793 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
794 {
795         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
796         u32 duration_us;
797         u32 sample_time;
798
799         /*
800          * core_busy is the ratio of actual performance to max
801          * max_pstate is the max non turbo pstate available
802          * current_pstate was the pstate that was requested during
803          *      the last sample period.
804          *
805          * We normalize core_busy, which was our actual percent
806          * performance to what we requested during the last sample
807          * period. The result will be a percentage of busy at a
808          * specified pstate.
809          */
810         core_busy = cpu->sample.core_pct_busy;
811         max_pstate = int_tofp(cpu->pstate.max_pstate);
812         current_pstate = int_tofp(cpu->pstate.current_pstate);
813         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
814
815         /*
816          * Since we have a deferred timer, it will not fire unless
817          * we are in C0.  So, determine if the actual elapsed time
818          * is significantly greater (3x) than our sample interval.  If it
819          * is, then we were idle for a long enough period of time
820          * to adjust our busyness.
821          */
822         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
823         duration_us = (u32) ktime_us_delta(cpu->sample.time,
824                                            cpu->last_sample_time);
825         if (duration_us > sample_time * 3) {
826                 sample_ratio = div_fp(int_tofp(sample_time),
827                                       int_tofp(duration_us));
828                 core_busy = mul_fp(core_busy, sample_ratio);
829         }
830
831         return core_busy;
832 }
833
834 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
835 {
836         int32_t busy_scaled;
837         struct _pid *pid;
838         signed int ctl;
839
840         pid = &cpu->pid;
841         busy_scaled = intel_pstate_get_scaled_busy(cpu);
842
843         ctl = pid_calc(pid, busy_scaled);
844
845         /* Negative values of ctl increase the pstate and vice versa */
846         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
847 }
848
849 static void intel_hwp_timer_func(unsigned long __data)
850 {
851         struct cpudata *cpu = (struct cpudata *) __data;
852
853         intel_pstate_sample(cpu);
854         intel_hwp_set_sample_time(cpu);
855 }
856
857 static void intel_pstate_timer_func(unsigned long __data)
858 {
859         struct cpudata *cpu = (struct cpudata *) __data;
860         struct sample *sample;
861
862         intel_pstate_sample(cpu);
863
864         sample = &cpu->sample;
865
866         intel_pstate_adjust_busy_pstate(cpu);
867
868         trace_pstate_sample(fp_toint(sample->core_pct_busy),
869                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
870                         cpu->pstate.current_pstate,
871                         sample->mperf,
872                         sample->aperf,
873                         sample->freq);
874
875         intel_pstate_set_sample_time(cpu);
876 }
877
878 #define ICPU(model, policy) \
879         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
880                         (unsigned long)&policy }
881
882 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
883         ICPU(0x2a, core_params),
884         ICPU(0x2d, core_params),
885         ICPU(0x37, byt_params),
886         ICPU(0x3a, core_params),
887         ICPU(0x3c, core_params),
888         ICPU(0x3d, core_params),
889         ICPU(0x3e, core_params),
890         ICPU(0x3f, core_params),
891         ICPU(0x45, core_params),
892         ICPU(0x46, core_params),
893         ICPU(0x47, core_params),
894         ICPU(0x4c, byt_params),
895         ICPU(0x4e, core_params),
896         ICPU(0x4f, core_params),
897         ICPU(0x56, core_params),
898         ICPU(0x57, knl_params),
899         {}
900 };
901 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
902
903 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
904         ICPU(0x56, core_params),
905         {}
906 };
907
908 static int intel_pstate_init_cpu(unsigned int cpunum)
909 {
910         struct cpudata *cpu;
911
912         if (!all_cpu_data[cpunum])
913                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
914                                                GFP_KERNEL);
915         if (!all_cpu_data[cpunum])
916                 return -ENOMEM;
917
918         cpu = all_cpu_data[cpunum];
919
920         cpu->cpu = cpunum;
921         intel_pstate_get_cpu_pstates(cpu);
922
923         init_timer_deferrable(&cpu->timer);
924         cpu->timer.data = (unsigned long)cpu;
925         cpu->timer.expires = jiffies + HZ/100;
926
927         if (!hwp_active)
928                 cpu->timer.function = intel_pstate_timer_func;
929         else
930                 cpu->timer.function = intel_hwp_timer_func;
931
932         intel_pstate_busy_pid_reset(cpu);
933         intel_pstate_sample(cpu);
934
935         add_timer_on(&cpu->timer, cpunum);
936
937         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
938
939         return 0;
940 }
941
942 static unsigned int intel_pstate_get(unsigned int cpu_num)
943 {
944         struct sample *sample;
945         struct cpudata *cpu;
946
947         cpu = all_cpu_data[cpu_num];
948         if (!cpu)
949                 return 0;
950         sample = &cpu->sample;
951         return sample->freq;
952 }
953
954 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
955 {
956         if (!policy->cpuinfo.max_freq)
957                 return -ENODEV;
958
959         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
960             policy->max >= policy->cpuinfo.max_freq) {
961                 limits.min_policy_pct = 100;
962                 limits.min_perf_pct = 100;
963                 limits.min_perf = int_tofp(1);
964                 limits.max_policy_pct = 100;
965                 limits.max_perf_pct = 100;
966                 limits.max_perf = int_tofp(1);
967                 limits.no_turbo = 0;
968                 return 0;
969         }
970
971         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
972         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
973         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
974         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
975
976         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
977         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
978         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
979         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
980
981         if (hwp_active)
982                 intel_pstate_hwp_set();
983
984         return 0;
985 }
986
987 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
988 {
989         cpufreq_verify_within_cpu_limits(policy);
990
991         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
992             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
993                 return -EINVAL;
994
995         return 0;
996 }
997
998 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
999 {
1000         int cpu_num = policy->cpu;
1001         struct cpudata *cpu = all_cpu_data[cpu_num];
1002
1003         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1004
1005         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1006         if (hwp_active)
1007                 return;
1008
1009         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1010 }
1011
1012 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1013 {
1014         struct cpudata *cpu;
1015         int rc;
1016
1017         rc = intel_pstate_init_cpu(policy->cpu);
1018         if (rc)
1019                 return rc;
1020
1021         cpu = all_cpu_data[policy->cpu];
1022
1023         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1024                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1025         else
1026                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1027
1028         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1029         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1030
1031         /* cpuinfo and default policy values */
1032         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1033         policy->cpuinfo.max_freq =
1034                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1035         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1036         cpumask_set_cpu(policy->cpu, policy->cpus);
1037
1038         return 0;
1039 }
1040
1041 static struct cpufreq_driver intel_pstate_driver = {
1042         .flags          = CPUFREQ_CONST_LOOPS,
1043         .verify         = intel_pstate_verify_policy,
1044         .setpolicy      = intel_pstate_set_policy,
1045         .get            = intel_pstate_get,
1046         .init           = intel_pstate_cpu_init,
1047         .stop_cpu       = intel_pstate_stop_cpu,
1048         .name           = "intel_pstate",
1049 };
1050
1051 static int __initdata no_load;
1052 static int __initdata no_hwp;
1053 static int __initdata hwp_only;
1054 static unsigned int force_load;
1055
1056 static int intel_pstate_msrs_not_valid(void)
1057 {
1058         if (!pstate_funcs.get_max() ||
1059             !pstate_funcs.get_min() ||
1060             !pstate_funcs.get_turbo())
1061                 return -ENODEV;
1062
1063         return 0;
1064 }
1065
1066 static void copy_pid_params(struct pstate_adjust_policy *policy)
1067 {
1068         pid_params.sample_rate_ms = policy->sample_rate_ms;
1069         pid_params.p_gain_pct = policy->p_gain_pct;
1070         pid_params.i_gain_pct = policy->i_gain_pct;
1071         pid_params.d_gain_pct = policy->d_gain_pct;
1072         pid_params.deadband = policy->deadband;
1073         pid_params.setpoint = policy->setpoint;
1074 }
1075
1076 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1077 {
1078         pstate_funcs.get_max   = funcs->get_max;
1079         pstate_funcs.get_min   = funcs->get_min;
1080         pstate_funcs.get_turbo = funcs->get_turbo;
1081         pstate_funcs.get_scaling = funcs->get_scaling;
1082         pstate_funcs.set       = funcs->set;
1083         pstate_funcs.get_vid   = funcs->get_vid;
1084 }
1085
1086 #if IS_ENABLED(CONFIG_ACPI)
1087 #include <acpi/processor.h>
1088
1089 static bool intel_pstate_no_acpi_pss(void)
1090 {
1091         int i;
1092
1093         for_each_possible_cpu(i) {
1094                 acpi_status status;
1095                 union acpi_object *pss;
1096                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1097                 struct acpi_processor *pr = per_cpu(processors, i);
1098
1099                 if (!pr)
1100                         continue;
1101
1102                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1103                 if (ACPI_FAILURE(status))
1104                         continue;
1105
1106                 pss = buffer.pointer;
1107                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1108                         kfree(pss);
1109                         return false;
1110                 }
1111
1112                 kfree(pss);
1113         }
1114
1115         return true;
1116 }
1117
1118 static bool intel_pstate_has_acpi_ppc(void)
1119 {
1120         int i;
1121
1122         for_each_possible_cpu(i) {
1123                 struct acpi_processor *pr = per_cpu(processors, i);
1124
1125                 if (!pr)
1126                         continue;
1127                 if (acpi_has_method(pr->handle, "_PPC"))
1128                         return true;
1129         }
1130         return false;
1131 }
1132
1133 enum {
1134         PSS,
1135         PPC,
1136 };
1137
1138 struct hw_vendor_info {
1139         u16  valid;
1140         char oem_id[ACPI_OEM_ID_SIZE];
1141         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1142         int  oem_pwr_table;
1143 };
1144
1145 /* Hardware vendor-specific info that has its own power management modes */
1146 static struct hw_vendor_info vendor_info[] = {
1147         {1, "HP    ", "ProLiant", PSS},
1148         {1, "ORACLE", "X4-2    ", PPC},
1149         {1, "ORACLE", "X4-2L   ", PPC},
1150         {1, "ORACLE", "X4-2B   ", PPC},
1151         {1, "ORACLE", "X3-2    ", PPC},
1152         {1, "ORACLE", "X3-2L   ", PPC},
1153         {1, "ORACLE", "X3-2B   ", PPC},
1154         {1, "ORACLE", "X4470M2 ", PPC},
1155         {1, "ORACLE", "X4270M3 ", PPC},
1156         {1, "ORACLE", "X4270M2 ", PPC},
1157         {1, "ORACLE", "X4170M2 ", PPC},
1158         {0, "", ""},
1159 };
1160
1161 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1162 {
1163         struct acpi_table_header hdr;
1164         struct hw_vendor_info *v_info;
1165         const struct x86_cpu_id *id;
1166         u64 misc_pwr;
1167
1168         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1169         if (id) {
1170                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1171                 if ( misc_pwr & (1 << 8))
1172                         return true;
1173         }
1174
1175         if (acpi_disabled ||
1176             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1177                 return false;
1178
1179         for (v_info = vendor_info; v_info->valid; v_info++) {
1180                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1181                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1182                                                 ACPI_OEM_TABLE_ID_SIZE))
1183                         switch (v_info->oem_pwr_table) {
1184                         case PSS:
1185                                 return intel_pstate_no_acpi_pss();
1186                         case PPC:
1187                                 return intel_pstate_has_acpi_ppc() &&
1188                                         (!force_load);
1189                         }
1190         }
1191
1192         return false;
1193 }
1194 #else /* CONFIG_ACPI not enabled */
1195 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1196 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1197 #endif /* CONFIG_ACPI */
1198
1199 static int __init intel_pstate_init(void)
1200 {
1201         int cpu, rc = 0;
1202         const struct x86_cpu_id *id;
1203         struct cpu_defaults *cpu_info;
1204         struct cpuinfo_x86 *c = &boot_cpu_data;
1205
1206         if (no_load)
1207                 return -ENODEV;
1208
1209         id = x86_match_cpu(intel_pstate_cpu_ids);
1210         if (!id)
1211                 return -ENODEV;
1212
1213         /*
1214          * The Intel pstate driver will be ignored if the platform
1215          * firmware has its own power management modes.
1216          */
1217         if (intel_pstate_platform_pwr_mgmt_exists())
1218                 return -ENODEV;
1219
1220         cpu_info = (struct cpu_defaults *)id->driver_data;
1221
1222         copy_pid_params(&cpu_info->pid_policy);
1223         copy_cpu_funcs(&cpu_info->funcs);
1224
1225         if (intel_pstate_msrs_not_valid())
1226                 return -ENODEV;
1227
1228         pr_info("Intel P-state driver initializing.\n");
1229
1230         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1231         if (!all_cpu_data)
1232                 return -ENOMEM;
1233
1234         if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1235                 intel_pstate_hwp_enable();
1236
1237         if (!hwp_active && hwp_only)
1238                 goto out;
1239
1240         rc = cpufreq_register_driver(&intel_pstate_driver);
1241         if (rc)
1242                 goto out;
1243
1244         intel_pstate_debug_expose_params();
1245         intel_pstate_sysfs_expose_params();
1246
1247         return rc;
1248 out:
1249         get_online_cpus();
1250         for_each_online_cpu(cpu) {
1251                 if (all_cpu_data[cpu]) {
1252                         del_timer_sync(&all_cpu_data[cpu]->timer);
1253                         kfree(all_cpu_data[cpu]);
1254                 }
1255         }
1256
1257         put_online_cpus();
1258         vfree(all_cpu_data);
1259         return -ENODEV;
1260 }
1261 device_initcall(intel_pstate_init);
1262
1263 static int __init intel_pstate_setup(char *str)
1264 {
1265         if (!str)
1266                 return -EINVAL;
1267
1268         if (!strcmp(str, "disable"))
1269                 no_load = 1;
1270         if (!strcmp(str, "no_hwp"))
1271                 no_hwp = 1;
1272         if (!strcmp(str, "force"))
1273                 force_load = 1;
1274         if (!strcmp(str, "hwp_only"))
1275                 hwp_only = 1;
1276         return 0;
1277 }
1278 early_param("intel_pstate", intel_pstate_setup);
1279
1280 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1281 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1282 MODULE_LICENSE("GPL");