]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/ppc4xx/adma.c
Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[karo-tx-linux.git] / drivers / dma / ppc4xx / adma.c
1 /*
2  * Copyright (C) 2006-2009 DENX Software Engineering.
3  *
4  * Author: Yuri Tikhonov <yur@emcraft.com>
5  *
6  * Further porting to arch/powerpc by
7  *      Anatolij Gustschin <agust@denx.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  */
26
27 /*
28  * This driver supports the asynchrounous DMA copy and RAID engines available
29  * on the AMCC PPC440SPe Processors.
30  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31  * ADMA driver written by D.Williams.
32  */
33
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49 #include "../dmaengine.h"
50
51 enum ppc_adma_init_code {
52         PPC_ADMA_INIT_OK = 0,
53         PPC_ADMA_INIT_MEMRES,
54         PPC_ADMA_INIT_MEMREG,
55         PPC_ADMA_INIT_ALLOC,
56         PPC_ADMA_INIT_COHERENT,
57         PPC_ADMA_INIT_CHANNEL,
58         PPC_ADMA_INIT_IRQ1,
59         PPC_ADMA_INIT_IRQ2,
60         PPC_ADMA_INIT_REGISTER
61 };
62
63 static char *ppc_adma_errors[] = {
64         [PPC_ADMA_INIT_OK] = "ok",
65         [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
66         [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
67         [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
68                                 "structure",
69         [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
70                                    "hardware descriptors",
71         [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
72         [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
73         [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
74         [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
75 };
76
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
79
80 struct ppc_dma_chan_ref {
81         struct dma_chan *chan;
82         struct list_head node;
83 };
84
85 /* The list of channels exported by ppc440spe ADMA */
86 struct list_head
87 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
88
89 /* This flag is set when want to refetch the xor chain in the interrupt
90  * handler
91  */
92 static u32 do_xor_refetch;
93
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf;
96
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
99 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
100
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot *xor_last_linked;
103 static struct ppc440spe_adma_desc_slot *xor_last_submit;
104
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword[16];
107
108 static atomic_t ppc440spe_adma_err_irq_ref;
109 static dcr_host_t ppc440spe_mq_dcr_host;
110 static unsigned int ppc440spe_mq_dcr_len;
111
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113  * the block size in transactions, then we do not allow to activate more than
114  * only one RXOR transactions simultaneously. So use this var to store
115  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116  * set) or not (PPC440SPE_RXOR_RUN is clear).
117  */
118 static unsigned long ppc440spe_rxor_state;
119
120 /* These are used in enable & check routines
121  */
122 static u32 ppc440spe_r6_enabled;
123 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
124 static struct completion ppc440spe_r6_test_comp;
125
126 static int ppc440spe_adma_dma2rxor_prep_src(
127                 struct ppc440spe_adma_desc_slot *desc,
128                 struct ppc440spe_rxor *cursor, int index,
129                 int src_cnt, u32 addr);
130 static void ppc440spe_adma_dma2rxor_set_src(
131                 struct ppc440spe_adma_desc_slot *desc,
132                 int index, dma_addr_t addr);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134                 struct ppc440spe_adma_desc_slot *desc,
135                 int index, u8 mult);
136
137 #ifdef ADMA_LL_DEBUG
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
139 #else
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 #endif
142
143 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
144 {
145         struct dma_cdb *cdb;
146         struct xor_cb *cb;
147         int i;
148
149         switch (chan->device->id) {
150         case 0:
151         case 1:
152                 cdb = block;
153
154                 pr_debug("CDB at %p [%d]:\n"
155                         "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156                         "\t sg1u 0x%08x sg1l 0x%08x\n"
157                         "\t sg2u 0x%08x sg2l 0x%08x\n"
158                         "\t sg3u 0x%08x sg3l 0x%08x\n",
159                         cdb, chan->device->id,
160                         cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
161                         le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
162                         le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
163                         le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
164                 );
165                 break;
166         case 2:
167                 cb = block;
168
169                 pr_debug("CB at %p [%d]:\n"
170                         "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171                         "\t cbtah 0x%08x cbtal 0x%08x\n"
172                         "\t cblah 0x%08x cblal 0x%08x\n",
173                         cb, chan->device->id,
174                         cb->cbc, cb->cbbc, cb->cbs,
175                         cb->cbtah, cb->cbtal,
176                         cb->cblah, cb->cblal);
177                 for (i = 0; i < 16; i++) {
178                         if (i && !cb->ops[i].h && !cb->ops[i].l)
179                                 continue;
180                         pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181                                 i, cb->ops[i].h, cb->ops[i].l);
182                 }
183                 break;
184         }
185 }
186
187 static void print_cb_list(struct ppc440spe_adma_chan *chan,
188                           struct ppc440spe_adma_desc_slot *iter)
189 {
190         for (; iter; iter = iter->hw_next)
191                 print_cb(chan, iter->hw_desc);
192 }
193
194 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
195                              unsigned int src_cnt)
196 {
197         int i;
198
199         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
200         for (i = 0; i < src_cnt; i++)
201                 pr_debug("\t0x%016llx ", src[i]);
202         pr_debug("dst:\n\t0x%016llx\n", dst);
203 }
204
205 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
206                             unsigned int src_cnt)
207 {
208         int i;
209
210         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
211         for (i = 0; i < src_cnt; i++)
212                 pr_debug("\t0x%016llx ", src[i]);
213         pr_debug("dst: ");
214         for (i = 0; i < 2; i++)
215                 pr_debug("\t0x%016llx ", dst[i]);
216 }
217
218 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
219                                     unsigned int src_cnt,
220                                     const unsigned char *scf)
221 {
222         int i;
223
224         pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
225         if (scf) {
226                 for (i = 0; i < src_cnt; i++)
227                         pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
228         } else {
229                 for (i = 0; i < src_cnt; i++)
230                         pr_debug("\t0x%016llx(no) ", src[i]);
231         }
232
233         pr_debug("dst: ");
234         for (i = 0; i < 2; i++)
235                 pr_debug("\t0x%016llx ", src[src_cnt + i]);
236 }
237
238 /******************************************************************************
239  * Command (Descriptor) Blocks low-level routines
240  ******************************************************************************/
241 /**
242  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243  * pseudo operation
244  */
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
246                                           struct ppc440spe_adma_chan *chan)
247 {
248         struct xor_cb *p;
249
250         switch (chan->device->id) {
251         case PPC440SPE_XOR_ID:
252                 p = desc->hw_desc;
253                 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
254                 /* NOP with Command Block Complete Enable */
255                 p->cbc = XOR_CBCR_CBCE_BIT;
256                 break;
257         case PPC440SPE_DMA0_ID:
258         case PPC440SPE_DMA1_ID:
259                 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
260                 /* NOP with interrupt */
261                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
262                 break;
263         default:
264                 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
265                                 __func__);
266                 break;
267         }
268 }
269
270 /**
271  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272  * pseudo operation
273  */
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
275 {
276         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277         desc->hw_next = NULL;
278         desc->src_cnt = 0;
279         desc->dst_cnt = 1;
280 }
281
282 /**
283  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
284  */
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
286                                          int src_cnt, unsigned long flags)
287 {
288         struct xor_cb *hw_desc = desc->hw_desc;
289
290         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
291         desc->hw_next = NULL;
292         desc->src_cnt = src_cnt;
293         desc->dst_cnt = 1;
294
295         hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
296         if (flags & DMA_PREP_INTERRUPT)
297                 /* Enable interrupt on completion */
298                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
299 }
300
301 /**
302  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303  * operation in DMA2 controller
304  */
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
306                 int dst_cnt, int src_cnt, unsigned long flags)
307 {
308         struct xor_cb *hw_desc = desc->hw_desc;
309
310         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
311         desc->hw_next = NULL;
312         desc->src_cnt = src_cnt;
313         desc->dst_cnt = dst_cnt;
314         memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
315         desc->descs_per_op = 0;
316
317         hw_desc->cbc = XOR_CBCR_TGT_BIT;
318         if (flags & DMA_PREP_INTERRUPT)
319                 /* Enable interrupt on completion */
320                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
321 }
322
323 #define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
326
327 /**
328  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329  * with DMA0/1
330  */
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
332                                 int dst_cnt, int src_cnt, unsigned long flags,
333                                 unsigned long op)
334 {
335         struct dma_cdb *hw_desc;
336         struct ppc440spe_adma_desc_slot *iter;
337         u8 dopc;
338
339         /* Common initialization of a PQ descriptors chain */
340         set_bits(op, &desc->flags);
341         desc->src_cnt = src_cnt;
342         desc->dst_cnt = dst_cnt;
343
344         /* WXOR MULTICAST if both P and Q are being computed
345          * MV_SG1_SG2 if Q only
346          */
347         dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
348                 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
349
350         list_for_each_entry(iter, &desc->group_list, chain_node) {
351                 hw_desc = iter->hw_desc;
352                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
353
354                 if (likely(!list_is_last(&iter->chain_node,
355                                 &desc->group_list))) {
356                         /* set 'next' pointer */
357                         iter->hw_next = list_entry(iter->chain_node.next,
358                                 struct ppc440spe_adma_desc_slot, chain_node);
359                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
360                 } else {
361                         /* this is the last descriptor.
362                          * this slot will be pasted from ADMA level
363                          * each time it wants to configure parameters
364                          * of the transaction (src, dst, ...)
365                          */
366                         iter->hw_next = NULL;
367                         if (flags & DMA_PREP_INTERRUPT)
368                                 set_bit(PPC440SPE_DESC_INT, &iter->flags);
369                         else
370                                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
371                 }
372         }
373
374         /* Set OPS depending on WXOR/RXOR type of operation */
375         if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
376                 /* This is a WXOR only chain:
377                  * - first descriptors are for zeroing destinations
378                  *   if PPC440SPE_ZERO_P/Q set;
379                  * - descriptors remained are for GF-XOR operations.
380                  */
381                 iter = list_first_entry(&desc->group_list,
382                                         struct ppc440spe_adma_desc_slot,
383                                         chain_node);
384
385                 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
386                         hw_desc = iter->hw_desc;
387                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
388                         iter = list_first_entry(&iter->chain_node,
389                                         struct ppc440spe_adma_desc_slot,
390                                         chain_node);
391                 }
392
393                 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
394                         hw_desc = iter->hw_desc;
395                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
396                         iter = list_first_entry(&iter->chain_node,
397                                         struct ppc440spe_adma_desc_slot,
398                                         chain_node);
399                 }
400
401                 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
402                         hw_desc = iter->hw_desc;
403                         hw_desc->opc = dopc;
404                 }
405         } else {
406                 /* This is either RXOR-only or mixed RXOR/WXOR */
407
408                 /* The first 1 or 2 slots in chain are always RXOR,
409                  * if need to calculate P & Q, then there are two
410                  * RXOR slots; if only P or only Q, then there is one
411                  */
412                 iter = list_first_entry(&desc->group_list,
413                                         struct ppc440spe_adma_desc_slot,
414                                         chain_node);
415                 hw_desc = iter->hw_desc;
416                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
417
418                 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
419                         iter = list_first_entry(&iter->chain_node,
420                                                 struct ppc440spe_adma_desc_slot,
421                                                 chain_node);
422                         hw_desc = iter->hw_desc;
423                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
424                 }
425
426                 /* The remaining descs (if any) are WXORs */
427                 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
428                         iter = list_first_entry(&iter->chain_node,
429                                                 struct ppc440spe_adma_desc_slot,
430                                                 chain_node);
431                         list_for_each_entry_from(iter, &desc->group_list,
432                                                 chain_node) {
433                                 hw_desc = iter->hw_desc;
434                                 hw_desc->opc = dopc;
435                         }
436                 }
437         }
438 }
439
440 /**
441  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442  * for PQ_ZERO_SUM operation
443  */
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445                                 struct ppc440spe_adma_desc_slot *desc,
446                                 int dst_cnt, int src_cnt)
447 {
448         struct dma_cdb *hw_desc;
449         struct ppc440spe_adma_desc_slot *iter;
450         int i = 0;
451         u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
452                                    DMA_CDB_OPC_MV_SG1_SG2;
453         /*
454          * Initialize starting from 2nd or 3rd descriptor dependent
455          * on dst_cnt. First one or two slots are for cloning P
456          * and/or Q to chan->pdest and/or chan->qdest as we have
457          * to preserve original P/Q.
458          */
459         iter = list_first_entry(&desc->group_list,
460                                 struct ppc440spe_adma_desc_slot, chain_node);
461         iter = list_entry(iter->chain_node.next,
462                           struct ppc440spe_adma_desc_slot, chain_node);
463
464         if (dst_cnt > 1) {
465                 iter = list_entry(iter->chain_node.next,
466                                   struct ppc440spe_adma_desc_slot, chain_node);
467         }
468         /* initialize each source descriptor in chain */
469         list_for_each_entry_from(iter, &desc->group_list, chain_node) {
470                 hw_desc = iter->hw_desc;
471                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
472                 iter->src_cnt = 0;
473                 iter->dst_cnt = 0;
474
475                 /* This is a ZERO_SUM operation:
476                  * - <src_cnt> descriptors starting from 2nd or 3rd
477                  *   descriptor are for GF-XOR operations;
478                  * - remaining <dst_cnt> descriptors are for checking the result
479                  */
480                 if (i++ < src_cnt)
481                         /* MV_SG1_SG2 if only Q is being verified
482                          * MULTICAST if both P and Q are being verified
483                          */
484                         hw_desc->opc = dopc;
485                 else
486                         /* DMA_CDB_OPC_DCHECK128 operation */
487                         hw_desc->opc = DMA_CDB_OPC_DCHECK128;
488
489                 if (likely(!list_is_last(&iter->chain_node,
490                                          &desc->group_list))) {
491                         /* set 'next' pointer */
492                         iter->hw_next = list_entry(iter->chain_node.next,
493                                                 struct ppc440spe_adma_desc_slot,
494                                                 chain_node);
495                 } else {
496                         /* this is the last descriptor.
497                          * this slot will be pasted from ADMA level
498                          * each time it wants to configure parameters
499                          * of the transaction (src, dst, ...)
500                          */
501                         iter->hw_next = NULL;
502                         /* always enable interrupt generation since we get
503                          * the status of pqzero from the handler
504                          */
505                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
506                 }
507         }
508         desc->src_cnt = src_cnt;
509         desc->dst_cnt = dst_cnt;
510 }
511
512 /**
513  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
514  */
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
516                                         unsigned long flags)
517 {
518         struct dma_cdb *hw_desc = desc->hw_desc;
519
520         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
521         desc->hw_next = NULL;
522         desc->src_cnt = 1;
523         desc->dst_cnt = 1;
524
525         if (flags & DMA_PREP_INTERRUPT)
526                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
527         else
528                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
529
530         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
531 }
532
533 /**
534  * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
535  */
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
537                                         int value, unsigned long flags)
538 {
539         struct dma_cdb *hw_desc = desc->hw_desc;
540
541         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
542         desc->hw_next = NULL;
543         desc->src_cnt = 1;
544         desc->dst_cnt = 1;
545
546         if (flags & DMA_PREP_INTERRUPT)
547                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
548         else
549                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
550
551         hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
552         hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
553         hw_desc->opc = DMA_CDB_OPC_DFILL128;
554 }
555
556 /**
557  * ppc440spe_desc_set_src_addr - set source address into the descriptor
558  */
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
560                                         struct ppc440spe_adma_chan *chan,
561                                         int src_idx, dma_addr_t addrh,
562                                         dma_addr_t addrl)
563 {
564         struct dma_cdb *dma_hw_desc;
565         struct xor_cb *xor_hw_desc;
566         phys_addr_t addr64, tmplow, tmphi;
567
568         switch (chan->device->id) {
569         case PPC440SPE_DMA0_ID:
570         case PPC440SPE_DMA1_ID:
571                 if (!addrh) {
572                         addr64 = addrl;
573                         tmphi = (addr64 >> 32);
574                         tmplow = (addr64 & 0xFFFFFFFF);
575                 } else {
576                         tmphi = addrh;
577                         tmplow = addrl;
578                 }
579                 dma_hw_desc = desc->hw_desc;
580                 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
581                 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
582                 break;
583         case PPC440SPE_XOR_ID:
584                 xor_hw_desc = desc->hw_desc;
585                 xor_hw_desc->ops[src_idx].l = addrl;
586                 xor_hw_desc->ops[src_idx].h |= addrh;
587                 break;
588         }
589 }
590
591 /**
592  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
593  */
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
595                         struct ppc440spe_adma_chan *chan, u32 mult_index,
596                         int sg_index, unsigned char mult_value)
597 {
598         struct dma_cdb *dma_hw_desc;
599         struct xor_cb *xor_hw_desc;
600         u32 *psgu;
601
602         switch (chan->device->id) {
603         case PPC440SPE_DMA0_ID:
604         case PPC440SPE_DMA1_ID:
605                 dma_hw_desc = desc->hw_desc;
606
607                 switch (sg_index) {
608                 /* for RXOR operations set multiplier
609                  * into source cued address
610                  */
611                 case DMA_CDB_SG_SRC:
612                         psgu = &dma_hw_desc->sg1u;
613                         break;
614                 /* for WXOR operations set multiplier
615                  * into destination cued address(es)
616                  */
617                 case DMA_CDB_SG_DST1:
618                         psgu = &dma_hw_desc->sg2u;
619                         break;
620                 case DMA_CDB_SG_DST2:
621                         psgu = &dma_hw_desc->sg3u;
622                         break;
623                 default:
624                         BUG();
625                 }
626
627                 *psgu |= cpu_to_le32(mult_value << mult_index);
628                 break;
629         case PPC440SPE_XOR_ID:
630                 xor_hw_desc = desc->hw_desc;
631                 break;
632         default:
633                 BUG();
634         }
635 }
636
637 /**
638  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
639  */
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
641                                 struct ppc440spe_adma_chan *chan,
642                                 dma_addr_t addrh, dma_addr_t addrl,
643                                 u32 dst_idx)
644 {
645         struct dma_cdb *dma_hw_desc;
646         struct xor_cb *xor_hw_desc;
647         phys_addr_t addr64, tmphi, tmplow;
648         u32 *psgu, *psgl;
649
650         switch (chan->device->id) {
651         case PPC440SPE_DMA0_ID:
652         case PPC440SPE_DMA1_ID:
653                 if (!addrh) {
654                         addr64 = addrl;
655                         tmphi = (addr64 >> 32);
656                         tmplow = (addr64 & 0xFFFFFFFF);
657                 } else {
658                         tmphi = addrh;
659                         tmplow = addrl;
660                 }
661                 dma_hw_desc = desc->hw_desc;
662
663                 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
664                 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
665
666                 *psgl = cpu_to_le32((u32)tmplow);
667                 *psgu |= cpu_to_le32((u32)tmphi);
668                 break;
669         case PPC440SPE_XOR_ID:
670                 xor_hw_desc = desc->hw_desc;
671                 xor_hw_desc->cbtal = addrl;
672                 xor_hw_desc->cbtah |= addrh;
673                 break;
674         }
675 }
676
677 /**
678  * ppc440spe_desc_set_byte_count - set number of data bytes involved
679  * into the operation
680  */
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
682                                 struct ppc440spe_adma_chan *chan,
683                                 u32 byte_count)
684 {
685         struct dma_cdb *dma_hw_desc;
686         struct xor_cb *xor_hw_desc;
687
688         switch (chan->device->id) {
689         case PPC440SPE_DMA0_ID:
690         case PPC440SPE_DMA1_ID:
691                 dma_hw_desc = desc->hw_desc;
692                 dma_hw_desc->cnt = cpu_to_le32(byte_count);
693                 break;
694         case PPC440SPE_XOR_ID:
695                 xor_hw_desc = desc->hw_desc;
696                 xor_hw_desc->cbbc = byte_count;
697                 break;
698         }
699 }
700
701 /**
702  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
703  */
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
705 {
706         /* assume that byte_count is aligned on the 512-boundary;
707          * thus write it directly to the register (bits 23:31 are
708          * reserved there).
709          */
710         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
711 }
712
713 /**
714  * ppc440spe_desc_set_dcheck - set CHECK pattern
715  */
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
717                                 struct ppc440spe_adma_chan *chan, u8 *qword)
718 {
719         struct dma_cdb *dma_hw_desc;
720
721         switch (chan->device->id) {
722         case PPC440SPE_DMA0_ID:
723         case PPC440SPE_DMA1_ID:
724                 dma_hw_desc = desc->hw_desc;
725                 iowrite32(qword[0], &dma_hw_desc->sg3l);
726                 iowrite32(qword[4], &dma_hw_desc->sg3u);
727                 iowrite32(qword[8], &dma_hw_desc->sg2l);
728                 iowrite32(qword[12], &dma_hw_desc->sg2u);
729                 break;
730         default:
731                 BUG();
732         }
733 }
734
735 /**
736  * ppc440spe_xor_set_link - set link address in xor CB
737  */
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
739                                 struct ppc440spe_adma_desc_slot *next_desc)
740 {
741         struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
742
743         if (unlikely(!next_desc || !(next_desc->phys))) {
744                 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
745                         __func__, next_desc,
746                         next_desc ? next_desc->phys : 0);
747                 BUG();
748         }
749
750         xor_hw_desc->cbs = 0;
751         xor_hw_desc->cblal = next_desc->phys;
752         xor_hw_desc->cblah = 0;
753         xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
754 }
755
756 /**
757  * ppc440spe_desc_set_link - set the address of descriptor following this
758  * descriptor in chain
759  */
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
761                                 struct ppc440spe_adma_desc_slot *prev_desc,
762                                 struct ppc440spe_adma_desc_slot *next_desc)
763 {
764         unsigned long flags;
765         struct ppc440spe_adma_desc_slot *tail = next_desc;
766
767         if (unlikely(!prev_desc || !next_desc ||
768                 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
769                 /* If previous next is overwritten something is wrong.
770                  * though we may refetch from append to initiate list
771                  * processing; in this case - it's ok.
772                  */
773                 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
774                         "prev->hw_next=0x%p\n", __func__, prev_desc,
775                         next_desc, prev_desc ? prev_desc->hw_next : 0);
776                 BUG();
777         }
778
779         local_irq_save(flags);
780
781         /* do s/w chaining both for DMA and XOR descriptors */
782         prev_desc->hw_next = next_desc;
783
784         switch (chan->device->id) {
785         case PPC440SPE_DMA0_ID:
786         case PPC440SPE_DMA1_ID:
787                 break;
788         case PPC440SPE_XOR_ID:
789                 /* bind descriptor to the chain */
790                 while (tail->hw_next)
791                         tail = tail->hw_next;
792                 xor_last_linked = tail;
793
794                 if (prev_desc == xor_last_submit)
795                         /* do not link to the last submitted CB */
796                         break;
797                 ppc440spe_xor_set_link(prev_desc, next_desc);
798                 break;
799         }
800
801         local_irq_restore(flags);
802 }
803
804 /**
805  * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
806  */
807 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
808                                 struct ppc440spe_adma_chan *chan, int src_idx)
809 {
810         struct dma_cdb *dma_hw_desc;
811         struct xor_cb *xor_hw_desc;
812
813         switch (chan->device->id) {
814         case PPC440SPE_DMA0_ID:
815         case PPC440SPE_DMA1_ID:
816                 dma_hw_desc = desc->hw_desc;
817                 /* May have 0, 1, 2, or 3 sources */
818                 switch (dma_hw_desc->opc) {
819                 case DMA_CDB_OPC_NO_OP:
820                 case DMA_CDB_OPC_DFILL128:
821                         return 0;
822                 case DMA_CDB_OPC_DCHECK128:
823                         if (unlikely(src_idx)) {
824                                 printk(KERN_ERR "%s: try to get %d source for"
825                                     " DCHECK128\n", __func__, src_idx);
826                                 BUG();
827                         }
828                         return le32_to_cpu(dma_hw_desc->sg1l);
829                 case DMA_CDB_OPC_MULTICAST:
830                 case DMA_CDB_OPC_MV_SG1_SG2:
831                         if (unlikely(src_idx > 2)) {
832                                 printk(KERN_ERR "%s: try to get %d source from"
833                                     " DMA descr\n", __func__, src_idx);
834                                 BUG();
835                         }
836                         if (src_idx) {
837                                 if (le32_to_cpu(dma_hw_desc->sg1u) &
838                                     DMA_CUED_XOR_WIN_MSK) {
839                                         u8 region;
840
841                                         if (src_idx == 1)
842                                                 return le32_to_cpu(
843                                                     dma_hw_desc->sg1l) +
844                                                         desc->unmap_len;
845
846                                         region = (le32_to_cpu(
847                                             dma_hw_desc->sg1u)) >>
848                                                 DMA_CUED_REGION_OFF;
849
850                                         region &= DMA_CUED_REGION_MSK;
851                                         switch (region) {
852                                         case DMA_RXOR123:
853                                                 return le32_to_cpu(
854                                                     dma_hw_desc->sg1l) +
855                                                         (desc->unmap_len << 1);
856                                         case DMA_RXOR124:
857                                                 return le32_to_cpu(
858                                                     dma_hw_desc->sg1l) +
859                                                         (desc->unmap_len * 3);
860                                         case DMA_RXOR125:
861                                                 return le32_to_cpu(
862                                                     dma_hw_desc->sg1l) +
863                                                         (desc->unmap_len << 2);
864                                         default:
865                                                 printk(KERN_ERR
866                                                     "%s: try to"
867                                                     " get src3 for region %02x"
868                                                     "PPC440SPE_DESC_RXOR12?\n",
869                                                     __func__, region);
870                                                 BUG();
871                                         }
872                                 } else {
873                                         printk(KERN_ERR
874                                                 "%s: try to get %d"
875                                                 " source for non-cued descr\n",
876                                                 __func__, src_idx);
877                                         BUG();
878                                 }
879                         }
880                         return le32_to_cpu(dma_hw_desc->sg1l);
881                 default:
882                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
883                                 __func__, dma_hw_desc->opc);
884                         BUG();
885                 }
886                 return le32_to_cpu(dma_hw_desc->sg1l);
887         case PPC440SPE_XOR_ID:
888                 /* May have up to 16 sources */
889                 xor_hw_desc = desc->hw_desc;
890                 return xor_hw_desc->ops[src_idx].l;
891         }
892         return 0;
893 }
894
895 /**
896  * ppc440spe_desc_get_dest_addr - extract the destination address from the
897  * descriptor
898  */
899 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
900                                 struct ppc440spe_adma_chan *chan, int idx)
901 {
902         struct dma_cdb *dma_hw_desc;
903         struct xor_cb *xor_hw_desc;
904
905         switch (chan->device->id) {
906         case PPC440SPE_DMA0_ID:
907         case PPC440SPE_DMA1_ID:
908                 dma_hw_desc = desc->hw_desc;
909
910                 if (likely(!idx))
911                         return le32_to_cpu(dma_hw_desc->sg2l);
912                 return le32_to_cpu(dma_hw_desc->sg3l);
913         case PPC440SPE_XOR_ID:
914                 xor_hw_desc = desc->hw_desc;
915                 return xor_hw_desc->cbtal;
916         }
917         return 0;
918 }
919
920 /**
921  * ppc440spe_desc_get_src_num - extract the number of source addresses from
922  * the descriptor
923  */
924 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
925                                 struct ppc440spe_adma_chan *chan)
926 {
927         struct dma_cdb *dma_hw_desc;
928         struct xor_cb *xor_hw_desc;
929
930         switch (chan->device->id) {
931         case PPC440SPE_DMA0_ID:
932         case PPC440SPE_DMA1_ID:
933                 dma_hw_desc = desc->hw_desc;
934
935                 switch (dma_hw_desc->opc) {
936                 case DMA_CDB_OPC_NO_OP:
937                 case DMA_CDB_OPC_DFILL128:
938                         return 0;
939                 case DMA_CDB_OPC_DCHECK128:
940                         return 1;
941                 case DMA_CDB_OPC_MV_SG1_SG2:
942                 case DMA_CDB_OPC_MULTICAST:
943                         /*
944                          * Only for RXOR operations we have more than
945                          * one source
946                          */
947                         if (le32_to_cpu(dma_hw_desc->sg1u) &
948                             DMA_CUED_XOR_WIN_MSK) {
949                                 /* RXOR op, there are 2 or 3 sources */
950                                 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
951                                     DMA_CUED_REGION_OFF) &
952                                       DMA_CUED_REGION_MSK) == DMA_RXOR12) {
953                                         /* RXOR 1-2 */
954                                         return 2;
955                                 } else {
956                                         /* RXOR 1-2-3/1-2-4/1-2-5 */
957                                         return 3;
958                                 }
959                         }
960                         return 1;
961                 default:
962                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
963                                 __func__, dma_hw_desc->opc);
964                         BUG();
965                 }
966         case PPC440SPE_XOR_ID:
967                 /* up to 16 sources */
968                 xor_hw_desc = desc->hw_desc;
969                 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
970         default:
971                 BUG();
972         }
973         return 0;
974 }
975
976 /**
977  * ppc440spe_desc_get_dst_num - get the number of destination addresses in
978  * this descriptor
979  */
980 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
981                                 struct ppc440spe_adma_chan *chan)
982 {
983         struct dma_cdb *dma_hw_desc;
984
985         switch (chan->device->id) {
986         case PPC440SPE_DMA0_ID:
987         case PPC440SPE_DMA1_ID:
988                 /* May be 1 or 2 destinations */
989                 dma_hw_desc = desc->hw_desc;
990                 switch (dma_hw_desc->opc) {
991                 case DMA_CDB_OPC_NO_OP:
992                 case DMA_CDB_OPC_DCHECK128:
993                         return 0;
994                 case DMA_CDB_OPC_MV_SG1_SG2:
995                 case DMA_CDB_OPC_DFILL128:
996                         return 1;
997                 case DMA_CDB_OPC_MULTICAST:
998                         if (desc->dst_cnt == 2)
999                                 return 2;
1000                         else
1001                                 return 1;
1002                 default:
1003                         printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1004                                 __func__, dma_hw_desc->opc);
1005                         BUG();
1006                 }
1007         case PPC440SPE_XOR_ID:
1008                 /* Always only 1 destination */
1009                 return 1;
1010         default:
1011                 BUG();
1012         }
1013         return 0;
1014 }
1015
1016 /**
1017  * ppc440spe_desc_get_link - get the address of the descriptor that
1018  * follows this one
1019  */
1020 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1021                                         struct ppc440spe_adma_chan *chan)
1022 {
1023         if (!desc->hw_next)
1024                 return 0;
1025
1026         return desc->hw_next->phys;
1027 }
1028
1029 /**
1030  * ppc440spe_desc_is_aligned - check alignment
1031  */
1032 static inline int ppc440spe_desc_is_aligned(
1033         struct ppc440spe_adma_desc_slot *desc, int num_slots)
1034 {
1035         return (desc->idx & (num_slots - 1)) ? 0 : 1;
1036 }
1037
1038 /**
1039  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1040  * XOR operation
1041  */
1042 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1043                         int *slots_per_op)
1044 {
1045         int slot_cnt;
1046
1047         /* each XOR descriptor provides up to 16 source operands */
1048         slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1049
1050         if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1051                 return slot_cnt;
1052
1053         printk(KERN_ERR "%s: len %d > max %d !!\n",
1054                 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1055         BUG();
1056         return slot_cnt;
1057 }
1058
1059 /**
1060  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1061  * DMA2 PQ operation
1062  */
1063 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1064                 int src_cnt, size_t len)
1065 {
1066         signed long long order = 0;
1067         int state = 0;
1068         int addr_count = 0;
1069         int i;
1070         for (i = 1; i < src_cnt; i++) {
1071                 dma_addr_t cur_addr = srcs[i];
1072                 dma_addr_t old_addr = srcs[i-1];
1073                 switch (state) {
1074                 case 0:
1075                         if (cur_addr == old_addr + len) {
1076                                 /* direct RXOR */
1077                                 order = 1;
1078                                 state = 1;
1079                                 if (i == src_cnt-1)
1080                                         addr_count++;
1081                         } else if (old_addr == cur_addr + len) {
1082                                 /* reverse RXOR */
1083                                 order = -1;
1084                                 state = 1;
1085                                 if (i == src_cnt-1)
1086                                         addr_count++;
1087                         } else {
1088                                 state = 3;
1089                         }
1090                         break;
1091                 case 1:
1092                         if (i == src_cnt-2 || (order == -1
1093                                 && cur_addr != old_addr - len)) {
1094                                 order = 0;
1095                                 state = 0;
1096                                 addr_count++;
1097                         } else if (cur_addr == old_addr + len*order) {
1098                                 state = 2;
1099                                 if (i == src_cnt-1)
1100                                         addr_count++;
1101                         } else if (cur_addr == old_addr + 2*len) {
1102                                 state = 2;
1103                                 if (i == src_cnt-1)
1104                                         addr_count++;
1105                         } else if (cur_addr == old_addr + 3*len) {
1106                                 state = 2;
1107                                 if (i == src_cnt-1)
1108                                         addr_count++;
1109                         } else {
1110                                 order = 0;
1111                                 state = 0;
1112                                 addr_count++;
1113                         }
1114                         break;
1115                 case 2:
1116                         order = 0;
1117                         state = 0;
1118                         addr_count++;
1119                                 break;
1120                 }
1121                 if (state == 3)
1122                         break;
1123         }
1124         if (src_cnt <= 1 || (state != 1 && state != 2)) {
1125                 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1126                         __func__, src_cnt, state, addr_count, order);
1127                 for (i = 0; i < src_cnt; i++)
1128                         pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1129                 BUG();
1130         }
1131
1132         return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1133 }
1134
1135
1136 /******************************************************************************
1137  * ADMA channel low-level routines
1138  ******************************************************************************/
1139
1140 static u32
1141 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1142 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1143
1144 /**
1145  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1146  */
1147 static void ppc440spe_adma_device_clear_eot_status(
1148                                         struct ppc440spe_adma_chan *chan)
1149 {
1150         struct dma_regs *dma_reg;
1151         struct xor_regs *xor_reg;
1152         u8 *p = chan->device->dma_desc_pool_virt;
1153         struct dma_cdb *cdb;
1154         u32 rv, i;
1155
1156         switch (chan->device->id) {
1157         case PPC440SPE_DMA0_ID:
1158         case PPC440SPE_DMA1_ID:
1159                 /* read FIFO to ack */
1160                 dma_reg = chan->device->dma_reg;
1161                 while ((rv = ioread32(&dma_reg->csfpl))) {
1162                         i = rv & DMA_CDB_ADDR_MSK;
1163                         cdb = (struct dma_cdb *)&p[i -
1164                             (u32)chan->device->dma_desc_pool];
1165
1166                         /* Clear opcode to ack. This is necessary for
1167                          * ZeroSum operations only
1168                          */
1169                         cdb->opc = 0;
1170
1171                         if (test_bit(PPC440SPE_RXOR_RUN,
1172                             &ppc440spe_rxor_state)) {
1173                                 /* probably this is a completed RXOR op,
1174                                  * get pointer to CDB using the fact that
1175                                  * physical and virtual addresses of CDB
1176                                  * in pools have the same offsets
1177                                  */
1178                                 if (le32_to_cpu(cdb->sg1u) &
1179                                     DMA_CUED_XOR_BASE) {
1180                                         /* this is a RXOR */
1181                                         clear_bit(PPC440SPE_RXOR_RUN,
1182                                                   &ppc440spe_rxor_state);
1183                                 }
1184                         }
1185
1186                         if (rv & DMA_CDB_STATUS_MSK) {
1187                                 /* ZeroSum check failed
1188                                  */
1189                                 struct ppc440spe_adma_desc_slot *iter;
1190                                 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1191
1192                                 /*
1193                                  * Update the status of corresponding
1194                                  * descriptor.
1195                                  */
1196                                 list_for_each_entry(iter, &chan->chain,
1197                                     chain_node) {
1198                                         if (iter->phys == phys)
1199                                                 break;
1200                                 }
1201                                 /*
1202                                  * if cannot find the corresponding
1203                                  * slot it's a bug
1204                                  */
1205                                 BUG_ON(&iter->chain_node == &chan->chain);
1206
1207                                 if (iter->xor_check_result) {
1208                                         if (test_bit(PPC440SPE_DESC_PCHECK,
1209                                                      &iter->flags)) {
1210                                                 *iter->xor_check_result |=
1211                                                         SUM_CHECK_P_RESULT;
1212                                         } else
1213                                         if (test_bit(PPC440SPE_DESC_QCHECK,
1214                                                      &iter->flags)) {
1215                                                 *iter->xor_check_result |=
1216                                                         SUM_CHECK_Q_RESULT;
1217                                         } else
1218                                                 BUG();
1219                                 }
1220                         }
1221                 }
1222
1223                 rv = ioread32(&dma_reg->dsts);
1224                 if (rv) {
1225                         pr_err("DMA%d err status: 0x%x\n",
1226                                chan->device->id, rv);
1227                         /* write back to clear */
1228                         iowrite32(rv, &dma_reg->dsts);
1229                 }
1230                 break;
1231         case PPC440SPE_XOR_ID:
1232                 /* reset status bits to ack */
1233                 xor_reg = chan->device->xor_reg;
1234                 rv = ioread32be(&xor_reg->sr);
1235                 iowrite32be(rv, &xor_reg->sr);
1236
1237                 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1238                         if (rv & XOR_IE_RPTIE_BIT) {
1239                                 /* Read PLB Timeout Error.
1240                                  * Try to resubmit the CB
1241                                  */
1242                                 u32 val = ioread32be(&xor_reg->ccbalr);
1243
1244                                 iowrite32be(val, &xor_reg->cblalr);
1245
1246                                 val = ioread32be(&xor_reg->crsr);
1247                                 iowrite32be(val | XOR_CRSR_XAE_BIT,
1248                                             &xor_reg->crsr);
1249                         } else
1250                                 pr_err("XOR ERR 0x%x status\n", rv);
1251                         break;
1252                 }
1253
1254                 /*  if the XORcore is idle, but there are unprocessed CBs
1255                  * then refetch the s/w chain here
1256                  */
1257                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1258                     do_xor_refetch)
1259                         ppc440spe_chan_append(chan);
1260                 break;
1261         }
1262 }
1263
1264 /**
1265  * ppc440spe_chan_is_busy - get the channel status
1266  */
1267 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1268 {
1269         struct dma_regs *dma_reg;
1270         struct xor_regs *xor_reg;
1271         int busy = 0;
1272
1273         switch (chan->device->id) {
1274         case PPC440SPE_DMA0_ID:
1275         case PPC440SPE_DMA1_ID:
1276                 dma_reg = chan->device->dma_reg;
1277                 /*  if command FIFO's head and tail pointers are equal and
1278                  * status tail is the same as command, then channel is free
1279                  */
1280                 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1281                     ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1282                         busy = 1;
1283                 break;
1284         case PPC440SPE_XOR_ID:
1285                 /* use the special status bit for the XORcore
1286                  */
1287                 xor_reg = chan->device->xor_reg;
1288                 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1289                 break;
1290         }
1291
1292         return busy;
1293 }
1294
1295 /**
1296  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1297  */
1298 static void ppc440spe_chan_set_first_xor_descriptor(
1299                                 struct ppc440spe_adma_chan *chan,
1300                                 struct ppc440spe_adma_desc_slot *next_desc)
1301 {
1302         struct xor_regs *xor_reg = chan->device->xor_reg;
1303
1304         if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1305                 printk(KERN_INFO "%s: Warn: XORcore is running "
1306                         "when try to set the first CDB!\n",
1307                         __func__);
1308
1309         xor_last_submit = xor_last_linked = next_desc;
1310
1311         iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1312
1313         iowrite32be(next_desc->phys, &xor_reg->cblalr);
1314         iowrite32be(0, &xor_reg->cblahr);
1315         iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1316                     &xor_reg->cbcr);
1317
1318         chan->hw_chain_inited = 1;
1319 }
1320
1321 /**
1322  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1323  * called with irqs disabled
1324  */
1325 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1326                 struct ppc440spe_adma_desc_slot *desc)
1327 {
1328         u32 pcdb;
1329         struct dma_regs *dma_reg = chan->device->dma_reg;
1330
1331         pcdb = desc->phys;
1332         if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1333                 pcdb |= DMA_CDB_NO_INT;
1334
1335         chan_last_sub[chan->device->id] = desc;
1336
1337         ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1338
1339         iowrite32(pcdb, &dma_reg->cpfpl);
1340 }
1341
1342 /**
1343  * ppc440spe_chan_append - update the h/w chain in the channel
1344  */
1345 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1346 {
1347         struct xor_regs *xor_reg;
1348         struct ppc440spe_adma_desc_slot *iter;
1349         struct xor_cb *xcb;
1350         u32 cur_desc;
1351         unsigned long flags;
1352
1353         local_irq_save(flags);
1354
1355         switch (chan->device->id) {
1356         case PPC440SPE_DMA0_ID:
1357         case PPC440SPE_DMA1_ID:
1358                 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1359
1360                 if (likely(cur_desc)) {
1361                         iter = chan_last_sub[chan->device->id];
1362                         BUG_ON(!iter);
1363                 } else {
1364                         /* first peer */
1365                         iter = chan_first_cdb[chan->device->id];
1366                         BUG_ON(!iter);
1367                         ppc440spe_dma_put_desc(chan, iter);
1368                         chan->hw_chain_inited = 1;
1369                 }
1370
1371                 /* is there something new to append */
1372                 if (!iter->hw_next)
1373                         break;
1374
1375                 /* flush descriptors from the s/w queue to fifo */
1376                 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1377                         ppc440spe_dma_put_desc(chan, iter);
1378                         if (!iter->hw_next)
1379                                 break;
1380                 }
1381                 break;
1382         case PPC440SPE_XOR_ID:
1383                 /* update h/w links and refetch */
1384                 if (!xor_last_submit->hw_next)
1385                         break;
1386
1387                 xor_reg = chan->device->xor_reg;
1388                 /* the last linked CDB has to generate an interrupt
1389                  * that we'd be able to append the next lists to h/w
1390                  * regardless of the XOR engine state at the moment of
1391                  * appending of these next lists
1392                  */
1393                 xcb = xor_last_linked->hw_desc;
1394                 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1395
1396                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1397                         /* XORcore is idle. Refetch now */
1398                         do_xor_refetch = 0;
1399                         ppc440spe_xor_set_link(xor_last_submit,
1400                                 xor_last_submit->hw_next);
1401
1402                         ADMA_LL_DBG(print_cb_list(chan,
1403                                 xor_last_submit->hw_next));
1404
1405                         xor_last_submit = xor_last_linked;
1406                         iowrite32be(ioread32be(&xor_reg->crsr) |
1407                                     XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1408                                     &xor_reg->crsr);
1409                 } else {
1410                         /* XORcore is running. Refetch later in the handler */
1411                         do_xor_refetch = 1;
1412                 }
1413
1414                 break;
1415         }
1416
1417         local_irq_restore(flags);
1418 }
1419
1420 /**
1421  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1422  */
1423 static u32
1424 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1425 {
1426         struct dma_regs *dma_reg;
1427         struct xor_regs *xor_reg;
1428
1429         if (unlikely(!chan->hw_chain_inited))
1430                 /* h/w descriptor chain is not initialized yet */
1431                 return 0;
1432
1433         switch (chan->device->id) {
1434         case PPC440SPE_DMA0_ID:
1435         case PPC440SPE_DMA1_ID:
1436                 dma_reg = chan->device->dma_reg;
1437                 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1438         case PPC440SPE_XOR_ID:
1439                 xor_reg = chan->device->xor_reg;
1440                 return ioread32be(&xor_reg->ccbalr);
1441         }
1442         return 0;
1443 }
1444
1445 /**
1446  * ppc440spe_chan_run - enable the channel
1447  */
1448 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1449 {
1450         struct xor_regs *xor_reg;
1451
1452         switch (chan->device->id) {
1453         case PPC440SPE_DMA0_ID:
1454         case PPC440SPE_DMA1_ID:
1455                 /* DMAs are always enabled, do nothing */
1456                 break;
1457         case PPC440SPE_XOR_ID:
1458                 /* drain write buffer */
1459                 xor_reg = chan->device->xor_reg;
1460
1461                 /* fetch descriptor pointed to in <link> */
1462                 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1463                             &xor_reg->crsr);
1464                 break;
1465         }
1466 }
1467
1468 /******************************************************************************
1469  * ADMA device level
1470  ******************************************************************************/
1471
1472 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1473 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1474
1475 static dma_cookie_t
1476 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1477
1478 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1479                                     dma_addr_t addr, int index);
1480 static void
1481 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1482                                   dma_addr_t addr, int index);
1483
1484 static void
1485 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1486                            dma_addr_t *paddr, unsigned long flags);
1487 static void
1488 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1489                           dma_addr_t addr, int index);
1490 static void
1491 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1492                                unsigned char mult, int index, int dst_pos);
1493 static void
1494 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1495                                    dma_addr_t paddr, dma_addr_t qaddr);
1496
1497 static struct page *ppc440spe_rxor_srcs[32];
1498
1499 /**
1500  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1501  */
1502 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1503 {
1504         int i, order = 0, state = 0;
1505         int idx = 0;
1506
1507         if (unlikely(!(src_cnt > 1)))
1508                 return 0;
1509
1510         BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1511
1512         /* Skip holes in the source list before checking */
1513         for (i = 0; i < src_cnt; i++) {
1514                 if (!srcs[i])
1515                         continue;
1516                 ppc440spe_rxor_srcs[idx++] = srcs[i];
1517         }
1518         src_cnt = idx;
1519
1520         for (i = 1; i < src_cnt; i++) {
1521                 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1522                 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1523
1524                 switch (state) {
1525                 case 0:
1526                         if (cur_addr == old_addr + len) {
1527                                 /* direct RXOR */
1528                                 order = 1;
1529                                 state = 1;
1530                         } else if (old_addr == cur_addr + len) {
1531                                 /* reverse RXOR */
1532                                 order = -1;
1533                                 state = 1;
1534                         } else
1535                                 goto out;
1536                         break;
1537                 case 1:
1538                         if ((i == src_cnt - 2) ||
1539                             (order == -1 && cur_addr != old_addr - len)) {
1540                                 order = 0;
1541                                 state = 0;
1542                         } else if ((cur_addr == old_addr + len * order) ||
1543                                    (cur_addr == old_addr + 2 * len) ||
1544                                    (cur_addr == old_addr + 3 * len)) {
1545                                 state = 2;
1546                         } else {
1547                                 order = 0;
1548                                 state = 0;
1549                         }
1550                         break;
1551                 case 2:
1552                         order = 0;
1553                         state = 0;
1554                         break;
1555                 }
1556         }
1557
1558 out:
1559         if (state == 1 || state == 2)
1560                 return 1;
1561
1562         return 0;
1563 }
1564
1565 /**
1566  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1567  *      the operation given on this channel. It's assumed that 'chan' is
1568  *      capable to process 'cap' type of operation.
1569  * @chan: channel to use
1570  * @cap: type of transaction
1571  * @dst_lst: array of destination pointers
1572  * @dst_cnt: number of destination operands
1573  * @src_lst: array of source pointers
1574  * @src_cnt: number of source operands
1575  * @src_sz: size of each source operand
1576  */
1577 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1578         enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1579         struct page **src_lst, int src_cnt, size_t src_sz)
1580 {
1581         int ef = 1;
1582
1583         if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1584                 /* If RAID-6 capabilities were not activated don't try
1585                  * to use them
1586                  */
1587                 if (unlikely(!ppc440spe_r6_enabled))
1588                         return -1;
1589         }
1590         /*  In the current implementation of ppc440spe ADMA driver it
1591          * makes sense to pick out only pq case, because it may be
1592          * processed:
1593          * (1) either using Biskup method on DMA2;
1594          * (2) or on DMA0/1.
1595          *  Thus we give a favour to (1) if the sources are suitable;
1596          * else let it be processed on one of the DMA0/1 engines.
1597          *  In the sum_product case where destination is also the
1598          * source process it on DMA0/1 only.
1599          */
1600         if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1601
1602                 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1603                         ef = 0; /* sum_product case, process on DMA0/1 */
1604                 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1605                         ef = 3; /* override (DMA0/1 + idle) */
1606                 else
1607                         ef = 0; /* can't process on DMA2 if !rxor */
1608         }
1609
1610         /* channel idleness increases the priority */
1611         if (likely(ef) &&
1612             !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1613                 ef++;
1614
1615         return ef;
1616 }
1617
1618 struct dma_chan *
1619 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1620         struct page **dst_lst, int dst_cnt, struct page **src_lst,
1621         int src_cnt, size_t src_sz)
1622 {
1623         struct dma_chan *best_chan = NULL;
1624         struct ppc_dma_chan_ref *ref;
1625         int best_rank = -1;
1626
1627         if (unlikely(!src_sz))
1628                 return NULL;
1629         if (src_sz > PAGE_SIZE) {
1630                 /*
1631                  * should a user of the api ever pass > PAGE_SIZE requests
1632                  * we sort out cases where temporary page-sized buffers
1633                  * are used.
1634                  */
1635                 switch (cap) {
1636                 case DMA_PQ:
1637                         if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1638                                 return NULL;
1639                         if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1640                                 return NULL;
1641                         break;
1642                 case DMA_PQ_VAL:
1643                 case DMA_XOR_VAL:
1644                         return NULL;
1645                 default:
1646                         break;
1647                 }
1648         }
1649
1650         list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1651                 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1652                         int rank;
1653
1654                         rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1655                                         dst_cnt, src_lst, src_cnt, src_sz);
1656                         if (rank > best_rank) {
1657                                 best_rank = rank;
1658                                 best_chan = ref->chan;
1659                         }
1660                 }
1661         }
1662
1663         return best_chan;
1664 }
1665 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1666
1667 /**
1668  * ppc440spe_get_group_entry - get group entry with index idx
1669  * @tdesc: is the last allocated slot in the group.
1670  */
1671 static struct ppc440spe_adma_desc_slot *
1672 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1673 {
1674         struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1675         int i = 0;
1676
1677         if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1678                 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1679                         __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1680                 BUG();
1681         }
1682
1683         list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1684                 if (i++ == entry_idx)
1685                         break;
1686         }
1687         return iter;
1688 }
1689
1690 /**
1691  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1692  * @slot: Slot to free
1693  * Caller must hold &ppc440spe_chan->lock while calling this function
1694  */
1695 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1696                                       struct ppc440spe_adma_chan *chan)
1697 {
1698         int stride = slot->slots_per_op;
1699
1700         while (stride--) {
1701                 slot->slots_per_op = 0;
1702                 slot = list_entry(slot->slot_node.next,
1703                                 struct ppc440spe_adma_desc_slot,
1704                                 slot_node);
1705         }
1706 }
1707
1708 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1709                                  struct ppc440spe_adma_desc_slot *desc)
1710 {
1711         u32 src_cnt, dst_cnt;
1712         dma_addr_t addr;
1713
1714         /*
1715          * get the number of sources & destination
1716          * included in this descriptor and unmap
1717          * them all
1718          */
1719         src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1720         dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1721
1722         /* unmap destinations */
1723         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1724                 while (dst_cnt--) {
1725                         addr = ppc440spe_desc_get_dest_addr(
1726                                 desc, chan, dst_cnt);
1727                         dma_unmap_page(chan->device->dev,
1728                                         addr, desc->unmap_len,
1729                                         DMA_FROM_DEVICE);
1730                 }
1731         }
1732
1733         /* unmap sources */
1734         if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1735                 while (src_cnt--) {
1736                         addr = ppc440spe_desc_get_src_addr(
1737                                 desc, chan, src_cnt);
1738                         dma_unmap_page(chan->device->dev,
1739                                         addr, desc->unmap_len,
1740                                         DMA_TO_DEVICE);
1741                 }
1742         }
1743 }
1744
1745 /**
1746  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1747  * upon completion
1748  */
1749 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1750                 struct ppc440spe_adma_desc_slot *desc,
1751                 struct ppc440spe_adma_chan *chan,
1752                 dma_cookie_t cookie)
1753 {
1754         int i;
1755
1756         BUG_ON(desc->async_tx.cookie < 0);
1757         if (desc->async_tx.cookie > 0) {
1758                 cookie = desc->async_tx.cookie;
1759                 desc->async_tx.cookie = 0;
1760
1761                 /* call the callback (must not sleep or submit new
1762                  * operations to this channel)
1763                  */
1764                 if (desc->async_tx.callback)
1765                         desc->async_tx.callback(
1766                                 desc->async_tx.callback_param);
1767
1768                 /* unmap dma addresses
1769                  * (unmap_single vs unmap_page?)
1770                  *
1771                  * actually, ppc's dma_unmap_page() functions are empty, so
1772                  * the following code is just for the sake of completeness
1773                  */
1774                 if (chan && chan->needs_unmap && desc->group_head &&
1775                      desc->unmap_len) {
1776                         struct ppc440spe_adma_desc_slot *unmap =
1777                                                         desc->group_head;
1778                         /* assume 1 slot per op always */
1779                         u32 slot_count = unmap->slot_cnt;
1780
1781                         /* Run through the group list and unmap addresses */
1782                         for (i = 0; i < slot_count; i++) {
1783                                 BUG_ON(!unmap);
1784                                 ppc440spe_adma_unmap(chan, unmap);
1785                                 unmap = unmap->hw_next;
1786                         }
1787                 }
1788         }
1789
1790         /* run dependent operations */
1791         dma_run_dependencies(&desc->async_tx);
1792
1793         return cookie;
1794 }
1795
1796 /**
1797  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1798  */
1799 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1800                 struct ppc440spe_adma_chan *chan)
1801 {
1802         /* the client is allowed to attach dependent operations
1803          * until 'ack' is set
1804          */
1805         if (!async_tx_test_ack(&desc->async_tx))
1806                 return 0;
1807
1808         /* leave the last descriptor in the chain
1809          * so we can append to it
1810          */
1811         if (list_is_last(&desc->chain_node, &chan->chain) ||
1812             desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1813                 return 1;
1814
1815         if (chan->device->id != PPC440SPE_XOR_ID) {
1816                 /* our DMA interrupt handler clears opc field of
1817                  * each processed descriptor. For all types of
1818                  * operations except for ZeroSum we do not actually
1819                  * need ack from the interrupt handler. ZeroSum is a
1820                  * special case since the result of this operation
1821                  * is available from the handler only, so if we see
1822                  * such type of descriptor (which is unprocessed yet)
1823                  * then leave it in chain.
1824                  */
1825                 struct dma_cdb *cdb = desc->hw_desc;
1826                 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1827                         return 1;
1828         }
1829
1830         dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1831                 desc->phys, desc->idx, desc->slots_per_op);
1832
1833         list_del(&desc->chain_node);
1834         ppc440spe_adma_free_slots(desc, chan);
1835         return 0;
1836 }
1837
1838 /**
1839  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1840  *      which runs through the channel CDBs list until reach the descriptor
1841  *      currently processed. When routine determines that all CDBs of group
1842  *      are completed then corresponding callbacks (if any) are called and slots
1843  *      are freed.
1844  */
1845 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1846 {
1847         struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1848         dma_cookie_t cookie = 0;
1849         u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1850         int busy = ppc440spe_chan_is_busy(chan);
1851         int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1852
1853         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1854                 chan->device->id, __func__);
1855
1856         if (!current_desc) {
1857                 /*  There were no transactions yet, so
1858                  * nothing to clean
1859                  */
1860                 return;
1861         }
1862
1863         /* free completed slots from the chain starting with
1864          * the oldest descriptor
1865          */
1866         list_for_each_entry_safe(iter, _iter, &chan->chain,
1867                                         chain_node) {
1868                 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1869                     "busy: %d this_desc: %#llx next_desc: %#x "
1870                     "cur: %#x ack: %d\n",
1871                     iter->async_tx.cookie, iter->idx, busy, iter->phys,
1872                     ppc440spe_desc_get_link(iter, chan), current_desc,
1873                     async_tx_test_ack(&iter->async_tx));
1874                 prefetch(_iter);
1875                 prefetch(&_iter->async_tx);
1876
1877                 /* do not advance past the current descriptor loaded into the
1878                  * hardware channel,subsequent descriptors are either in process
1879                  * or have not been submitted
1880                  */
1881                 if (seen_current)
1882                         break;
1883
1884                 /* stop the search if we reach the current descriptor and the
1885                  * channel is busy, or if it appears that the current descriptor
1886                  * needs to be re-read (i.e. has been appended to)
1887                  */
1888                 if (iter->phys == current_desc) {
1889                         BUG_ON(seen_current++);
1890                         if (busy || ppc440spe_desc_get_link(iter, chan)) {
1891                                 /* not all descriptors of the group have
1892                                  * been completed; exit.
1893                                  */
1894                                 break;
1895                         }
1896                 }
1897
1898                 /* detect the start of a group transaction */
1899                 if (!slot_cnt && !slots_per_op) {
1900                         slot_cnt = iter->slot_cnt;
1901                         slots_per_op = iter->slots_per_op;
1902                         if (slot_cnt <= slots_per_op) {
1903                                 slot_cnt = 0;
1904                                 slots_per_op = 0;
1905                         }
1906                 }
1907
1908                 if (slot_cnt) {
1909                         if (!group_start)
1910                                 group_start = iter;
1911                         slot_cnt -= slots_per_op;
1912                 }
1913
1914                 /* all the members of a group are complete */
1915                 if (slots_per_op != 0 && slot_cnt == 0) {
1916                         struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1917                         int end_of_chain = 0;
1918
1919                         /* clean up the group */
1920                         slot_cnt = group_start->slot_cnt;
1921                         grp_iter = group_start;
1922                         list_for_each_entry_safe_from(grp_iter, _grp_iter,
1923                                 &chan->chain, chain_node) {
1924
1925                                 cookie = ppc440spe_adma_run_tx_complete_actions(
1926                                         grp_iter, chan, cookie);
1927
1928                                 slot_cnt -= slots_per_op;
1929                                 end_of_chain = ppc440spe_adma_clean_slot(
1930                                     grp_iter, chan);
1931                                 if (end_of_chain && slot_cnt) {
1932                                         /* Should wait for ZeroSum completion */
1933                                         if (cookie > 0)
1934                                                 chan->common.completed_cookie = cookie;
1935                                         return;
1936                                 }
1937
1938                                 if (slot_cnt == 0 || end_of_chain)
1939                                         break;
1940                         }
1941
1942                         /* the group should be complete at this point */
1943                         BUG_ON(slot_cnt);
1944
1945                         slots_per_op = 0;
1946                         group_start = NULL;
1947                         if (end_of_chain)
1948                                 break;
1949                         else
1950                                 continue;
1951                 } else if (slots_per_op) /* wait for group completion */
1952                         continue;
1953
1954                 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1955                     cookie);
1956
1957                 if (ppc440spe_adma_clean_slot(iter, chan))
1958                         break;
1959         }
1960
1961         BUG_ON(!seen_current);
1962
1963         if (cookie > 0) {
1964                 chan->common.completed_cookie = cookie;
1965                 pr_debug("\tcompleted cookie %d\n", cookie);
1966         }
1967
1968 }
1969
1970 /**
1971  * ppc440spe_adma_tasklet - clean up watch-dog initiator
1972  */
1973 static void ppc440spe_adma_tasklet(unsigned long data)
1974 {
1975         struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1976
1977         spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1978         __ppc440spe_adma_slot_cleanup(chan);
1979         spin_unlock(&chan->lock);
1980 }
1981
1982 /**
1983  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1984  */
1985 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1986 {
1987         spin_lock_bh(&chan->lock);
1988         __ppc440spe_adma_slot_cleanup(chan);
1989         spin_unlock_bh(&chan->lock);
1990 }
1991
1992 /**
1993  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1994  */
1995 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1996                 struct ppc440spe_adma_chan *chan, int num_slots,
1997                 int slots_per_op)
1998 {
1999         struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
2000         struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2001         struct list_head chain = LIST_HEAD_INIT(chain);
2002         int slots_found, retry = 0;
2003
2004
2005         BUG_ON(!num_slots || !slots_per_op);
2006         /* start search from the last allocated descrtiptor
2007          * if a contiguous allocation can not be found start searching
2008          * from the beginning of the list
2009          */
2010 retry:
2011         slots_found = 0;
2012         if (retry == 0)
2013                 iter = chan->last_used;
2014         else
2015                 iter = list_entry(&chan->all_slots,
2016                                   struct ppc440spe_adma_desc_slot,
2017                                   slot_node);
2018         list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2019             slot_node) {
2020                 prefetch(_iter);
2021                 prefetch(&_iter->async_tx);
2022                 if (iter->slots_per_op) {
2023                         slots_found = 0;
2024                         continue;
2025                 }
2026
2027                 /* start the allocation if the slot is correctly aligned */
2028                 if (!slots_found++)
2029                         alloc_start = iter;
2030
2031                 if (slots_found == num_slots) {
2032                         struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2033                         struct ppc440spe_adma_desc_slot *last_used = NULL;
2034
2035                         iter = alloc_start;
2036                         while (num_slots) {
2037                                 int i;
2038                                 /* pre-ack all but the last descriptor */
2039                                 if (num_slots != slots_per_op)
2040                                         async_tx_ack(&iter->async_tx);
2041
2042                                 list_add_tail(&iter->chain_node, &chain);
2043                                 alloc_tail = iter;
2044                                 iter->async_tx.cookie = 0;
2045                                 iter->hw_next = NULL;
2046                                 iter->flags = 0;
2047                                 iter->slot_cnt = num_slots;
2048                                 iter->xor_check_result = NULL;
2049                                 for (i = 0; i < slots_per_op; i++) {
2050                                         iter->slots_per_op = slots_per_op - i;
2051                                         last_used = iter;
2052                                         iter = list_entry(iter->slot_node.next,
2053                                                 struct ppc440spe_adma_desc_slot,
2054                                                 slot_node);
2055                                 }
2056                                 num_slots -= slots_per_op;
2057                         }
2058                         alloc_tail->group_head = alloc_start;
2059                         alloc_tail->async_tx.cookie = -EBUSY;
2060                         list_splice(&chain, &alloc_tail->group_list);
2061                         chan->last_used = last_used;
2062                         return alloc_tail;
2063                 }
2064         }
2065         if (!retry++)
2066                 goto retry;
2067
2068         /* try to free some slots if the allocation fails */
2069         tasklet_schedule(&chan->irq_tasklet);
2070         return NULL;
2071 }
2072
2073 /**
2074  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
2075  */
2076 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2077 {
2078         struct ppc440spe_adma_chan *ppc440spe_chan;
2079         struct ppc440spe_adma_desc_slot *slot = NULL;
2080         char *hw_desc;
2081         int i, db_sz;
2082         int init;
2083
2084         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2085         init = ppc440spe_chan->slots_allocated ? 0 : 1;
2086         chan->chan_id = ppc440spe_chan->device->id;
2087
2088         /* Allocate descriptor slots */
2089         i = ppc440spe_chan->slots_allocated;
2090         if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2091                 db_sz = sizeof(struct dma_cdb);
2092         else
2093                 db_sz = sizeof(struct xor_cb);
2094
2095         for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2096                 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2097                                GFP_KERNEL);
2098                 if (!slot) {
2099                         printk(KERN_INFO "SPE ADMA Channel only initialized"
2100                                 " %d descriptor slots", i--);
2101                         break;
2102                 }
2103
2104                 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2105                 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2106                 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2107                 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2108                 INIT_LIST_HEAD(&slot->chain_node);
2109                 INIT_LIST_HEAD(&slot->slot_node);
2110                 INIT_LIST_HEAD(&slot->group_list);
2111                 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2112                 slot->idx = i;
2113
2114                 spin_lock_bh(&ppc440spe_chan->lock);
2115                 ppc440spe_chan->slots_allocated++;
2116                 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2117                 spin_unlock_bh(&ppc440spe_chan->lock);
2118         }
2119
2120         if (i && !ppc440spe_chan->last_used) {
2121                 ppc440spe_chan->last_used =
2122                         list_entry(ppc440spe_chan->all_slots.next,
2123                                 struct ppc440spe_adma_desc_slot,
2124                                 slot_node);
2125         }
2126
2127         dev_dbg(ppc440spe_chan->device->common.dev,
2128                 "ppc440spe adma%d: allocated %d descriptor slots\n",
2129                 ppc440spe_chan->device->id, i);
2130
2131         /* initialize the channel and the chain with a null operation */
2132         if (init) {
2133                 switch (ppc440spe_chan->device->id) {
2134                 case PPC440SPE_DMA0_ID:
2135                 case PPC440SPE_DMA1_ID:
2136                         ppc440spe_chan->hw_chain_inited = 0;
2137                         /* Use WXOR for self-testing */
2138                         if (!ppc440spe_r6_tchan)
2139                                 ppc440spe_r6_tchan = ppc440spe_chan;
2140                         break;
2141                 case PPC440SPE_XOR_ID:
2142                         ppc440spe_chan_start_null_xor(ppc440spe_chan);
2143                         break;
2144                 default:
2145                         BUG();
2146                 }
2147                 ppc440spe_chan->needs_unmap = 1;
2148         }
2149
2150         return (i > 0) ? i : -ENOMEM;
2151 }
2152
2153 /**
2154  * ppc440spe_rxor_set_region_data -
2155  */
2156 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2157         u8 xor_arg_no, u32 mask)
2158 {
2159         struct xor_cb *xcb = desc->hw_desc;
2160
2161         xcb->ops[xor_arg_no].h |= mask;
2162 }
2163
2164 /**
2165  * ppc440spe_rxor_set_src -
2166  */
2167 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2168         u8 xor_arg_no, dma_addr_t addr)
2169 {
2170         struct xor_cb *xcb = desc->hw_desc;
2171
2172         xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2173         xcb->ops[xor_arg_no].l = addr;
2174 }
2175
2176 /**
2177  * ppc440spe_rxor_set_mult -
2178  */
2179 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2180         u8 xor_arg_no, u8 idx, u8 mult)
2181 {
2182         struct xor_cb *xcb = desc->hw_desc;
2183
2184         xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2185 }
2186
2187 /**
2188  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2189  *      has been achieved
2190  */
2191 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2192 {
2193         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2194                 chan->device->id, chan->pending);
2195
2196         if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2197                 chan->pending = 0;
2198                 ppc440spe_chan_append(chan);
2199         }
2200 }
2201
2202 /**
2203  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2204  *      (it's not necessary that descriptors will be submitted to the h/w
2205  *      chains too right now)
2206  */
2207 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2208 {
2209         struct ppc440spe_adma_desc_slot *sw_desc;
2210         struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2211         struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2212         int slot_cnt;
2213         int slots_per_op;
2214         dma_cookie_t cookie;
2215
2216         sw_desc = tx_to_ppc440spe_adma_slot(tx);
2217
2218         group_start = sw_desc->group_head;
2219         slot_cnt = group_start->slot_cnt;
2220         slots_per_op = group_start->slots_per_op;
2221
2222         spin_lock_bh(&chan->lock);
2223         cookie = dma_cookie_assign(tx);
2224
2225         if (unlikely(list_empty(&chan->chain))) {
2226                 /* first peer */
2227                 list_splice_init(&sw_desc->group_list, &chan->chain);
2228                 chan_first_cdb[chan->device->id] = group_start;
2229         } else {
2230                 /* isn't first peer, bind CDBs to chain */
2231                 old_chain_tail = list_entry(chan->chain.prev,
2232                                         struct ppc440spe_adma_desc_slot,
2233                                         chain_node);
2234                 list_splice_init(&sw_desc->group_list,
2235                     &old_chain_tail->chain_node);
2236                 /* fix up the hardware chain */
2237                 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2238         }
2239
2240         /* increment the pending count by the number of operations */
2241         chan->pending += slot_cnt / slots_per_op;
2242         ppc440spe_adma_check_threshold(chan);
2243         spin_unlock_bh(&chan->lock);
2244
2245         dev_dbg(chan->device->common.dev,
2246                 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2247                 chan->device->id, __func__,
2248                 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2249
2250         return cookie;
2251 }
2252
2253 /**
2254  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2255  */
2256 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2257                 struct dma_chan *chan, unsigned long flags)
2258 {
2259         struct ppc440spe_adma_chan *ppc440spe_chan;
2260         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2261         int slot_cnt, slots_per_op;
2262
2263         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2264
2265         dev_dbg(ppc440spe_chan->device->common.dev,
2266                 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2267                 __func__);
2268
2269         spin_lock_bh(&ppc440spe_chan->lock);
2270         slot_cnt = slots_per_op = 1;
2271         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2272                         slots_per_op);
2273         if (sw_desc) {
2274                 group_start = sw_desc->group_head;
2275                 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2276                 group_start->unmap_len = 0;
2277                 sw_desc->async_tx.flags = flags;
2278         }
2279         spin_unlock_bh(&ppc440spe_chan->lock);
2280
2281         return sw_desc ? &sw_desc->async_tx : NULL;
2282 }
2283
2284 /**
2285  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2286  */
2287 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2288                 struct dma_chan *chan, dma_addr_t dma_dest,
2289                 dma_addr_t dma_src, size_t len, unsigned long flags)
2290 {
2291         struct ppc440spe_adma_chan *ppc440spe_chan;
2292         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2293         int slot_cnt, slots_per_op;
2294
2295         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2296
2297         if (unlikely(!len))
2298                 return NULL;
2299
2300         BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2301
2302         spin_lock_bh(&ppc440spe_chan->lock);
2303
2304         dev_dbg(ppc440spe_chan->device->common.dev,
2305                 "ppc440spe adma%d: %s len: %u int_en %d\n",
2306                 ppc440spe_chan->device->id, __func__, len,
2307                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2308         slot_cnt = slots_per_op = 1;
2309         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2310                 slots_per_op);
2311         if (sw_desc) {
2312                 group_start = sw_desc->group_head;
2313                 ppc440spe_desc_init_memcpy(group_start, flags);
2314                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2315                 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2316                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2317                 sw_desc->unmap_len = len;
2318                 sw_desc->async_tx.flags = flags;
2319         }
2320         spin_unlock_bh(&ppc440spe_chan->lock);
2321
2322         return sw_desc ? &sw_desc->async_tx : NULL;
2323 }
2324
2325 /**
2326  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2327  */
2328 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2329                 struct dma_chan *chan, dma_addr_t dma_dest,
2330                 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2331                 unsigned long flags)
2332 {
2333         struct ppc440spe_adma_chan *ppc440spe_chan;
2334         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2335         int slot_cnt, slots_per_op;
2336
2337         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2338
2339         ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2340                                      dma_dest, dma_src, src_cnt));
2341         if (unlikely(!len))
2342                 return NULL;
2343         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2344
2345         dev_dbg(ppc440spe_chan->device->common.dev,
2346                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2347                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2348                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2349
2350         spin_lock_bh(&ppc440spe_chan->lock);
2351         slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2352         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2353                         slots_per_op);
2354         if (sw_desc) {
2355                 group_start = sw_desc->group_head;
2356                 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2357                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2358                 while (src_cnt--)
2359                         ppc440spe_adma_memcpy_xor_set_src(group_start,
2360                                 dma_src[src_cnt], src_cnt);
2361                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2362                 sw_desc->unmap_len = len;
2363                 sw_desc->async_tx.flags = flags;
2364         }
2365         spin_unlock_bh(&ppc440spe_chan->lock);
2366
2367         return sw_desc ? &sw_desc->async_tx : NULL;
2368 }
2369
2370 static inline void
2371 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2372                                 int src_cnt);
2373 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2374
2375 /**
2376  * ppc440spe_adma_init_dma2rxor_slot -
2377  */
2378 static void ppc440spe_adma_init_dma2rxor_slot(
2379                 struct ppc440spe_adma_desc_slot *desc,
2380                 dma_addr_t *src, int src_cnt)
2381 {
2382         int i;
2383
2384         /* initialize CDB */
2385         for (i = 0; i < src_cnt; i++) {
2386                 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2387                                                  desc->src_cnt, (u32)src[i]);
2388         }
2389 }
2390
2391 /**
2392  * ppc440spe_dma01_prep_mult -
2393  * for Q operation where destination is also the source
2394  */
2395 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2396                 struct ppc440spe_adma_chan *ppc440spe_chan,
2397                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2398                 const unsigned char *scf, size_t len, unsigned long flags)
2399 {
2400         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2401         unsigned long op = 0;
2402         int slot_cnt;
2403
2404         set_bit(PPC440SPE_DESC_WXOR, &op);
2405         slot_cnt = 2;
2406
2407         spin_lock_bh(&ppc440spe_chan->lock);
2408
2409         /* use WXOR, each descriptor occupies one slot */
2410         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2411         if (sw_desc) {
2412                 struct ppc440spe_adma_chan *chan;
2413                 struct ppc440spe_adma_desc_slot *iter;
2414                 struct dma_cdb *hw_desc;
2415
2416                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2417                 set_bits(op, &sw_desc->flags);
2418                 sw_desc->src_cnt = src_cnt;
2419                 sw_desc->dst_cnt = dst_cnt;
2420                 /* First descriptor, zero data in the destination and copy it
2421                  * to q page using MULTICAST transfer.
2422                  */
2423                 iter = list_first_entry(&sw_desc->group_list,
2424                                         struct ppc440spe_adma_desc_slot,
2425                                         chain_node);
2426                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2427                 /* set 'next' pointer */
2428                 iter->hw_next = list_entry(iter->chain_node.next,
2429                                            struct ppc440spe_adma_desc_slot,
2430                                            chain_node);
2431                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2432                 hw_desc = iter->hw_desc;
2433                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2434
2435                 ppc440spe_desc_set_dest_addr(iter, chan,
2436                                              DMA_CUED_XOR_BASE, dst[0], 0);
2437                 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2438                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2439                                             src[0]);
2440                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2441                 iter->unmap_len = len;
2442
2443                 /*
2444                  * Second descriptor, multiply data from the q page
2445                  * and store the result in real destination.
2446                  */
2447                 iter = list_first_entry(&iter->chain_node,
2448                                         struct ppc440spe_adma_desc_slot,
2449                                         chain_node);
2450                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2451                 iter->hw_next = NULL;
2452                 if (flags & DMA_PREP_INTERRUPT)
2453                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2454                 else
2455                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2456
2457                 hw_desc = iter->hw_desc;
2458                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2459                 ppc440spe_desc_set_src_addr(iter, chan, 0,
2460                                             DMA_CUED_XOR_HB, dst[1]);
2461                 ppc440spe_desc_set_dest_addr(iter, chan,
2462                                              DMA_CUED_XOR_BASE, dst[0], 0);
2463
2464                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2465                                             DMA_CDB_SG_DST1, scf[0]);
2466                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2467                 iter->unmap_len = len;
2468                 sw_desc->async_tx.flags = flags;
2469         }
2470
2471         spin_unlock_bh(&ppc440spe_chan->lock);
2472
2473         return sw_desc;
2474 }
2475
2476 /**
2477  * ppc440spe_dma01_prep_sum_product -
2478  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2479  * the source.
2480  */
2481 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2482                 struct ppc440spe_adma_chan *ppc440spe_chan,
2483                 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2484                 const unsigned char *scf, size_t len, unsigned long flags)
2485 {
2486         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2487         unsigned long op = 0;
2488         int slot_cnt;
2489
2490         set_bit(PPC440SPE_DESC_WXOR, &op);
2491         slot_cnt = 3;
2492
2493         spin_lock_bh(&ppc440spe_chan->lock);
2494
2495         /* WXOR, each descriptor occupies one slot */
2496         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2497         if (sw_desc) {
2498                 struct ppc440spe_adma_chan *chan;
2499                 struct ppc440spe_adma_desc_slot *iter;
2500                 struct dma_cdb *hw_desc;
2501
2502                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2503                 set_bits(op, &sw_desc->flags);
2504                 sw_desc->src_cnt = src_cnt;
2505                 sw_desc->dst_cnt = 1;
2506                 /* 1st descriptor, src[1] data to q page and zero destination */
2507                 iter = list_first_entry(&sw_desc->group_list,
2508                                         struct ppc440spe_adma_desc_slot,
2509                                         chain_node);
2510                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2511                 iter->hw_next = list_entry(iter->chain_node.next,
2512                                            struct ppc440spe_adma_desc_slot,
2513                                            chain_node);
2514                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2515                 hw_desc = iter->hw_desc;
2516                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2517
2518                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2519                                              *dst, 0);
2520                 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2521                                              ppc440spe_chan->qdest, 1);
2522                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2523                                             src[1]);
2524                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2525                 iter->unmap_len = len;
2526
2527                 /* 2nd descriptor, multiply src[1] data and store the
2528                  * result in destination */
2529                 iter = list_first_entry(&iter->chain_node,
2530                                         struct ppc440spe_adma_desc_slot,
2531                                         chain_node);
2532                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2533                 /* set 'next' pointer */
2534                 iter->hw_next = list_entry(iter->chain_node.next,
2535                                            struct ppc440spe_adma_desc_slot,
2536                                            chain_node);
2537                 if (flags & DMA_PREP_INTERRUPT)
2538                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2539                 else
2540                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2541
2542                 hw_desc = iter->hw_desc;
2543                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2544                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2545                                             ppc440spe_chan->qdest);
2546                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2547                                              *dst, 0);
2548                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2549                                             DMA_CDB_SG_DST1, scf[1]);
2550                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2551                 iter->unmap_len = len;
2552
2553                 /*
2554                  * 3rd descriptor, multiply src[0] data and xor it
2555                  * with destination
2556                  */
2557                 iter = list_first_entry(&iter->chain_node,
2558                                         struct ppc440spe_adma_desc_slot,
2559                                         chain_node);
2560                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2561                 iter->hw_next = NULL;
2562                 if (flags & DMA_PREP_INTERRUPT)
2563                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2564                 else
2565                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2566
2567                 hw_desc = iter->hw_desc;
2568                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2569                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2570                                             src[0]);
2571                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2572                                              *dst, 0);
2573                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2574                                             DMA_CDB_SG_DST1, scf[0]);
2575                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2576                 iter->unmap_len = len;
2577                 sw_desc->async_tx.flags = flags;
2578         }
2579
2580         spin_unlock_bh(&ppc440spe_chan->lock);
2581
2582         return sw_desc;
2583 }
2584
2585 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2586                 struct ppc440spe_adma_chan *ppc440spe_chan,
2587                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2588                 const unsigned char *scf, size_t len, unsigned long flags)
2589 {
2590         int slot_cnt;
2591         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2592         unsigned long op = 0;
2593         unsigned char mult = 1;
2594
2595         pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2596                  __func__, dst_cnt, src_cnt, len);
2597         /*  select operations WXOR/RXOR depending on the
2598          * source addresses of operators and the number
2599          * of destinations (RXOR support only Q-parity calculations)
2600          */
2601         set_bit(PPC440SPE_DESC_WXOR, &op);
2602         if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2603                 /* no active RXOR;
2604                  * do RXOR if:
2605                  * - there are more than 1 source,
2606                  * - len is aligned on 512-byte boundary,
2607                  * - source addresses fit to one of 4 possible regions.
2608                  */
2609                 if (src_cnt > 1 &&
2610                     !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2611                     (src[0] + len) == src[1]) {
2612                         /* may do RXOR R1 R2 */
2613                         set_bit(PPC440SPE_DESC_RXOR, &op);
2614                         if (src_cnt != 2) {
2615                                 /* may try to enhance region of RXOR */
2616                                 if ((src[1] + len) == src[2]) {
2617                                         /* do RXOR R1 R2 R3 */
2618                                         set_bit(PPC440SPE_DESC_RXOR123,
2619                                                 &op);
2620                                 } else if ((src[1] + len * 2) == src[2]) {
2621                                         /* do RXOR R1 R2 R4 */
2622                                         set_bit(PPC440SPE_DESC_RXOR124, &op);
2623                                 } else if ((src[1] + len * 3) == src[2]) {
2624                                         /* do RXOR R1 R2 R5 */
2625                                         set_bit(PPC440SPE_DESC_RXOR125,
2626                                                 &op);
2627                                 } else {
2628                                         /* do RXOR R1 R2 */
2629                                         set_bit(PPC440SPE_DESC_RXOR12,
2630                                                 &op);
2631                                 }
2632                         } else {
2633                                 /* do RXOR R1 R2 */
2634                                 set_bit(PPC440SPE_DESC_RXOR12, &op);
2635                         }
2636                 }
2637
2638                 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2639                         /* can not do this operation with RXOR */
2640                         clear_bit(PPC440SPE_RXOR_RUN,
2641                                 &ppc440spe_rxor_state);
2642                 } else {
2643                         /* can do; set block size right now */
2644                         ppc440spe_desc_set_rxor_block_size(len);
2645                 }
2646         }
2647
2648         /* Number of necessary slots depends on operation type selected */
2649         if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2650                 /*  This is a WXOR only chain. Need descriptors for each
2651                  * source to GF-XOR them with WXOR, and need descriptors
2652                  * for each destination to zero them with WXOR
2653                  */
2654                 slot_cnt = src_cnt;
2655
2656                 if (flags & DMA_PREP_ZERO_P) {
2657                         slot_cnt++;
2658                         set_bit(PPC440SPE_ZERO_P, &op);
2659                 }
2660                 if (flags & DMA_PREP_ZERO_Q) {
2661                         slot_cnt++;
2662                         set_bit(PPC440SPE_ZERO_Q, &op);
2663                 }
2664         } else {
2665                 /*  Need 1/2 descriptor for RXOR operation, and
2666                  * need (src_cnt - (2 or 3)) for WXOR of sources
2667                  * remained (if any)
2668                  */
2669                 slot_cnt = dst_cnt;
2670
2671                 if (flags & DMA_PREP_ZERO_P)
2672                         set_bit(PPC440SPE_ZERO_P, &op);
2673                 if (flags & DMA_PREP_ZERO_Q)
2674                         set_bit(PPC440SPE_ZERO_Q, &op);
2675
2676                 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2677                         slot_cnt += src_cnt - 2;
2678                 else
2679                         slot_cnt += src_cnt - 3;
2680
2681                 /*  Thus we have either RXOR only chain or
2682                  * mixed RXOR/WXOR
2683                  */
2684                 if (slot_cnt == dst_cnt)
2685                         /* RXOR only chain */
2686                         clear_bit(PPC440SPE_DESC_WXOR, &op);
2687         }
2688
2689         spin_lock_bh(&ppc440spe_chan->lock);
2690         /* for both RXOR/WXOR each descriptor occupies one slot */
2691         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2692         if (sw_desc) {
2693                 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2694                                 flags, op);
2695
2696                 /* setup dst/src/mult */
2697                 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2698                          __func__, dst[0], dst[1]);
2699                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2700                 while (src_cnt--) {
2701                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2702                                                   src_cnt);
2703
2704                         /* NOTE: "Multi = 0 is equivalent to = 1" as it
2705                          * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2706                          * doesn't work for RXOR with DMA0/1! Instead, multi=0
2707                          * leads to zeroing source data after RXOR.
2708                          * So, for P case set-up mult=1 explicitly.
2709                          */
2710                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2711                                 mult = scf[src_cnt];
2712                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2713                                 mult, src_cnt,  dst_cnt - 1);
2714                 }
2715
2716                 /* Setup byte count foreach slot just allocated */
2717                 sw_desc->async_tx.flags = flags;
2718                 list_for_each_entry(iter, &sw_desc->group_list,
2719                                 chain_node) {
2720                         ppc440spe_desc_set_byte_count(iter,
2721                                 ppc440spe_chan, len);
2722                         iter->unmap_len = len;
2723                 }
2724         }
2725         spin_unlock_bh(&ppc440spe_chan->lock);
2726
2727         return sw_desc;
2728 }
2729
2730 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2731                 struct ppc440spe_adma_chan *ppc440spe_chan,
2732                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2733                 const unsigned char *scf, size_t len, unsigned long flags)
2734 {
2735         int slot_cnt, descs_per_op;
2736         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2737         unsigned long op = 0;
2738         unsigned char mult = 1;
2739
2740         BUG_ON(!dst_cnt);
2741         /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2742                  __func__, dst_cnt, src_cnt, len);*/
2743
2744         spin_lock_bh(&ppc440spe_chan->lock);
2745         descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2746         if (descs_per_op < 0) {
2747                 spin_unlock_bh(&ppc440spe_chan->lock);
2748                 return NULL;
2749         }
2750
2751         /* depending on number of sources we have 1 or 2 RXOR chains */
2752         slot_cnt = descs_per_op * dst_cnt;
2753
2754         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2755         if (sw_desc) {
2756                 op = slot_cnt;
2757                 sw_desc->async_tx.flags = flags;
2758                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2759                         ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2760                                 --op ? 0 : flags);
2761                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2762                                 len);
2763                         iter->unmap_len = len;
2764
2765                         ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2766                         iter->rxor_cursor.len = len;
2767                         iter->descs_per_op = descs_per_op;
2768                 }
2769                 op = 0;
2770                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2771                         op++;
2772                         if (op % descs_per_op == 0)
2773                                 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2774                                                                   src_cnt);
2775                         if (likely(!list_is_last(&iter->chain_node,
2776                                                  &sw_desc->group_list))) {
2777                                 /* set 'next' pointer */
2778                                 iter->hw_next =
2779                                         list_entry(iter->chain_node.next,
2780                                                 struct ppc440spe_adma_desc_slot,
2781                                                 chain_node);
2782                                 ppc440spe_xor_set_link(iter, iter->hw_next);
2783                         } else {
2784                                 /* this is the last descriptor. */
2785                                 iter->hw_next = NULL;
2786                         }
2787                 }
2788
2789                 /* fixup head descriptor */
2790                 sw_desc->dst_cnt = dst_cnt;
2791                 if (flags & DMA_PREP_ZERO_P)
2792                         set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2793                 if (flags & DMA_PREP_ZERO_Q)
2794                         set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2795
2796                 /* setup dst/src/mult */
2797                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2798
2799                 while (src_cnt--) {
2800                         /* handle descriptors (if dst_cnt == 2) inside
2801                          * the ppc440spe_adma_pq_set_srcxxx() functions
2802                          */
2803                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2804                                                   src_cnt);
2805                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2806                                 mult = scf[src_cnt];
2807                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2808                                         mult, src_cnt, dst_cnt - 1);
2809                 }
2810         }
2811         spin_unlock_bh(&ppc440spe_chan->lock);
2812         ppc440spe_desc_set_rxor_block_size(len);
2813         return sw_desc;
2814 }
2815
2816 /**
2817  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2818  */
2819 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2820                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2821                 unsigned int src_cnt, const unsigned char *scf,
2822                 size_t len, unsigned long flags)
2823 {
2824         struct ppc440spe_adma_chan *ppc440spe_chan;
2825         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2826         int dst_cnt = 0;
2827
2828         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2829
2830         ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2831                                     dst, src, src_cnt));
2832         BUG_ON(!len);
2833         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2834         BUG_ON(!src_cnt);
2835
2836         if (src_cnt == 1 && dst[1] == src[0]) {
2837                 dma_addr_t dest[2];
2838
2839                 /* dst[1] is real destination (Q) */
2840                 dest[0] = dst[1];
2841                 /* this is the page to multicast source data to */
2842                 dest[1] = ppc440spe_chan->qdest;
2843                 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2844                                 dest, 2, src, src_cnt, scf, len, flags);
2845                 return sw_desc ? &sw_desc->async_tx : NULL;
2846         }
2847
2848         if (src_cnt == 2 && dst[1] == src[1]) {
2849                 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2850                                         &dst[1], src, 2, scf, len, flags);
2851                 return sw_desc ? &sw_desc->async_tx : NULL;
2852         }
2853
2854         if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2855                 BUG_ON(!dst[0]);
2856                 dst_cnt++;
2857                 flags |= DMA_PREP_ZERO_P;
2858         }
2859
2860         if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2861                 BUG_ON(!dst[1]);
2862                 dst_cnt++;
2863                 flags |= DMA_PREP_ZERO_Q;
2864         }
2865
2866         BUG_ON(!dst_cnt);
2867
2868         dev_dbg(ppc440spe_chan->device->common.dev,
2869                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2870                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2871                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2872
2873         switch (ppc440spe_chan->device->id) {
2874         case PPC440SPE_DMA0_ID:
2875         case PPC440SPE_DMA1_ID:
2876                 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2877                                 dst, dst_cnt, src, src_cnt, scf,
2878                                 len, flags);
2879                 break;
2880
2881         case PPC440SPE_XOR_ID:
2882                 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2883                                 dst, dst_cnt, src, src_cnt, scf,
2884                                 len, flags);
2885                 break;
2886         }
2887
2888         return sw_desc ? &sw_desc->async_tx : NULL;
2889 }
2890
2891 /**
2892  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2893  * a PQ_ZERO_SUM operation
2894  */
2895 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2896                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2897                 unsigned int src_cnt, const unsigned char *scf, size_t len,
2898                 enum sum_check_flags *pqres, unsigned long flags)
2899 {
2900         struct ppc440spe_adma_chan *ppc440spe_chan;
2901         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2902         dma_addr_t pdest, qdest;
2903         int slot_cnt, slots_per_op, idst, dst_cnt;
2904
2905         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2906
2907         if (flags & DMA_PREP_PQ_DISABLE_P)
2908                 pdest = 0;
2909         else
2910                 pdest = pq[0];
2911
2912         if (flags & DMA_PREP_PQ_DISABLE_Q)
2913                 qdest = 0;
2914         else
2915                 qdest = pq[1];
2916
2917         ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2918                                             src, src_cnt, scf));
2919
2920         /* Always use WXOR for P/Q calculations (two destinations).
2921          * Need 1 or 2 extra slots to verify results are zero.
2922          */
2923         idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2924
2925         /* One additional slot per destination to clone P/Q
2926          * before calculation (we have to preserve destinations).
2927          */
2928         slot_cnt = src_cnt + dst_cnt * 2;
2929         slots_per_op = 1;
2930
2931         spin_lock_bh(&ppc440spe_chan->lock);
2932         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2933                                              slots_per_op);
2934         if (sw_desc) {
2935                 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2936
2937                 /* Setup byte count for each slot just allocated */
2938                 sw_desc->async_tx.flags = flags;
2939                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2940                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2941                                                       len);
2942                         iter->unmap_len = len;
2943                 }
2944
2945                 if (pdest) {
2946                         struct dma_cdb *hw_desc;
2947                         struct ppc440spe_adma_chan *chan;
2948
2949                         iter = sw_desc->group_head;
2950                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2951                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2952                         iter->hw_next = list_entry(iter->chain_node.next,
2953                                                 struct ppc440spe_adma_desc_slot,
2954                                                 chain_node);
2955                         hw_desc = iter->hw_desc;
2956                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2957                         iter->src_cnt = 0;
2958                         iter->dst_cnt = 0;
2959                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
2960                                                      ppc440spe_chan->pdest, 0);
2961                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2962                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2963                                                       len);
2964                         iter->unmap_len = 0;
2965                         /* override pdest to preserve original P */
2966                         pdest = ppc440spe_chan->pdest;
2967                 }
2968                 if (qdest) {
2969                         struct dma_cdb *hw_desc;
2970                         struct ppc440spe_adma_chan *chan;
2971
2972                         iter = list_first_entry(&sw_desc->group_list,
2973                                                 struct ppc440spe_adma_desc_slot,
2974                                                 chain_node);
2975                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2976
2977                         if (pdest) {
2978                                 iter = list_entry(iter->chain_node.next,
2979                                                 struct ppc440spe_adma_desc_slot,
2980                                                 chain_node);
2981                         }
2982
2983                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2984                         iter->hw_next = list_entry(iter->chain_node.next,
2985                                                 struct ppc440spe_adma_desc_slot,
2986                                                 chain_node);
2987                         hw_desc = iter->hw_desc;
2988                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2989                         iter->src_cnt = 0;
2990                         iter->dst_cnt = 0;
2991                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
2992                                                      ppc440spe_chan->qdest, 0);
2993                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2994                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2995                                                       len);
2996                         iter->unmap_len = 0;
2997                         /* override qdest to preserve original Q */
2998                         qdest = ppc440spe_chan->qdest;
2999                 }
3000
3001                 /* Setup destinations for P/Q ops */
3002                 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3003
3004                 /* Setup zero QWORDs into DCHECK CDBs */
3005                 idst = dst_cnt;
3006                 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3007                                             chain_node) {
3008                         /*
3009                          * The last CDB corresponds to Q-parity check,
3010                          * the one before last CDB corresponds
3011                          * P-parity check
3012                          */
3013                         if (idst == DMA_DEST_MAX_NUM) {
3014                                 if (idst == dst_cnt) {
3015                                         set_bit(PPC440SPE_DESC_QCHECK,
3016                                                 &iter->flags);
3017                                 } else {
3018                                         set_bit(PPC440SPE_DESC_PCHECK,
3019                                                 &iter->flags);
3020                                 }
3021                         } else {
3022                                 if (qdest) {
3023                                         set_bit(PPC440SPE_DESC_QCHECK,
3024                                                 &iter->flags);
3025                                 } else {
3026                                         set_bit(PPC440SPE_DESC_PCHECK,
3027                                                 &iter->flags);
3028                                 }
3029                         }
3030                         iter->xor_check_result = pqres;
3031
3032                         /*
3033                          * set it to zero, if check fail then result will
3034                          * be updated
3035                          */
3036                         *iter->xor_check_result = 0;
3037                         ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3038                                 ppc440spe_qword);
3039
3040                         if (!(--dst_cnt))
3041                                 break;
3042                 }
3043
3044                 /* Setup sources and mults for P/Q ops */
3045                 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3046                                                      chain_node) {
3047                         struct ppc440spe_adma_chan *chan;
3048                         u32 mult_dst;
3049
3050                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3051                         ppc440spe_desc_set_src_addr(iter, chan, 0,
3052                                                     DMA_CUED_XOR_HB,
3053                                                     src[src_cnt - 1]);
3054                         if (qdest) {
3055                                 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3056                                                            DMA_CDB_SG_DST1;
3057                                 ppc440spe_desc_set_src_mult(iter, chan,
3058                                                             DMA_CUED_MULT1_OFF,
3059                                                             mult_dst,
3060                                                             scf[src_cnt - 1]);
3061                         }
3062                         if (!(--src_cnt))
3063                                 break;
3064                 }
3065         }
3066         spin_unlock_bh(&ppc440spe_chan->lock);
3067         return sw_desc ? &sw_desc->async_tx : NULL;
3068 }
3069
3070 /**
3071  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3072  * XOR ZERO_SUM operation
3073  */
3074 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3075                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3076                 size_t len, enum sum_check_flags *result, unsigned long flags)
3077 {
3078         struct dma_async_tx_descriptor *tx;
3079         dma_addr_t pq[2];
3080
3081         /* validate P, disable Q */
3082         pq[0] = src[0];
3083         pq[1] = 0;
3084         flags |= DMA_PREP_PQ_DISABLE_Q;
3085
3086         tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3087                                                 src_cnt - 1, 0, len,
3088                                                 result, flags);
3089         return tx;
3090 }
3091
3092 /**
3093  * ppc440spe_adma_set_dest - set destination address into descriptor
3094  */
3095 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3096                 dma_addr_t addr, int index)
3097 {
3098         struct ppc440spe_adma_chan *chan;
3099
3100         BUG_ON(index >= sw_desc->dst_cnt);
3101
3102         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3103
3104         switch (chan->device->id) {
3105         case PPC440SPE_DMA0_ID:
3106         case PPC440SPE_DMA1_ID:
3107                 /* to do: support transfers lengths >
3108                  * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3109                  */
3110                 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3111                         chan, 0, addr, index);
3112                 break;
3113         case PPC440SPE_XOR_ID:
3114                 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3115                 ppc440spe_desc_set_dest_addr(sw_desc,
3116                         chan, 0, addr, index);
3117                 break;
3118         }
3119 }
3120
3121 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3122                 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3123 {
3124         /*  To clear destinations update the descriptor
3125          * (P or Q depending on index) as follows:
3126          * addr is destination (0 corresponds to SG2):
3127          */
3128         ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3129
3130         /* ... and the addr is source: */
3131         ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3132
3133         /* addr is always SG2 then the mult is always DST1 */
3134         ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3135                                     DMA_CDB_SG_DST1, 1);
3136 }
3137
3138 /**
3139  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3140  * for the PQXOR operation
3141  */
3142 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3143                 dma_addr_t *addrs, unsigned long flags)
3144 {
3145         struct ppc440spe_adma_desc_slot *iter;
3146         struct ppc440spe_adma_chan *chan;
3147         dma_addr_t paddr, qaddr;
3148         dma_addr_t addr = 0, ppath, qpath;
3149         int index = 0, i;
3150
3151         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3152
3153         if (flags & DMA_PREP_PQ_DISABLE_P)
3154                 paddr = 0;
3155         else
3156                 paddr = addrs[0];
3157
3158         if (flags & DMA_PREP_PQ_DISABLE_Q)
3159                 qaddr = 0;
3160         else
3161                 qaddr = addrs[1];
3162
3163         if (!paddr || !qaddr)
3164                 addr = paddr ? paddr : qaddr;
3165
3166         switch (chan->device->id) {
3167         case PPC440SPE_DMA0_ID:
3168         case PPC440SPE_DMA1_ID:
3169                 /* walk through the WXOR source list and set P/Q-destinations
3170                  * for each slot:
3171                  */
3172                 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3173                         /* This is WXOR-only chain; may have 1/2 zero descs */
3174                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3175                                 index++;
3176                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3177                                 index++;
3178
3179                         iter = ppc440spe_get_group_entry(sw_desc, index);
3180                         if (addr) {
3181                                 /* one destination */
3182                                 list_for_each_entry_from(iter,
3183                                         &sw_desc->group_list, chain_node)
3184                                         ppc440spe_desc_set_dest_addr(iter, chan,
3185                                                 DMA_CUED_XOR_BASE, addr, 0);
3186                         } else {
3187                                 /* two destinations */
3188                                 list_for_each_entry_from(iter,
3189                                         &sw_desc->group_list, chain_node) {
3190                                         ppc440spe_desc_set_dest_addr(iter, chan,
3191                                                 DMA_CUED_XOR_BASE, paddr, 0);
3192                                         ppc440spe_desc_set_dest_addr(iter, chan,
3193                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3194                                 }
3195                         }
3196
3197                         if (index) {
3198                                 /*  To clear destinations update the descriptor
3199                                  * (1st,2nd, or both depending on flags)
3200                                  */
3201                                 index = 0;
3202                                 if (test_bit(PPC440SPE_ZERO_P,
3203                                                 &sw_desc->flags)) {
3204                                         iter = ppc440spe_get_group_entry(
3205                                                         sw_desc, index++);
3206                                         ppc440spe_adma_pq_zero_op(iter, chan,
3207                                                         paddr);
3208                                 }
3209
3210                                 if (test_bit(PPC440SPE_ZERO_Q,
3211                                                 &sw_desc->flags)) {
3212                                         iter = ppc440spe_get_group_entry(
3213                                                         sw_desc, index++);
3214                                         ppc440spe_adma_pq_zero_op(iter, chan,
3215                                                         qaddr);
3216                                 }
3217
3218                                 return;
3219                         }
3220                 } else {
3221                         /* This is RXOR-only or RXOR/WXOR mixed chain */
3222
3223                         /* If we want to include destination into calculations,
3224                          * then make dest addresses cued with mult=1 (XOR).
3225                          */
3226                         ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3227                                         DMA_CUED_XOR_HB :
3228                                         DMA_CUED_XOR_BASE |
3229                                                 (1 << DMA_CUED_MULT1_OFF);
3230                         qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3231                                         DMA_CUED_XOR_HB :
3232                                         DMA_CUED_XOR_BASE |
3233                                                 (1 << DMA_CUED_MULT1_OFF);
3234
3235                         /* Setup destination(s) in RXOR slot(s) */
3236                         iter = ppc440spe_get_group_entry(sw_desc, index++);
3237                         ppc440spe_desc_set_dest_addr(iter, chan,
3238                                                 paddr ? ppath : qpath,
3239                                                 paddr ? paddr : qaddr, 0);
3240                         if (!addr) {
3241                                 /* two destinations */
3242                                 iter = ppc440spe_get_group_entry(sw_desc,
3243                                                                  index++);
3244                                 ppc440spe_desc_set_dest_addr(iter, chan,
3245                                                 qpath, qaddr, 0);
3246                         }
3247
3248                         if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3249                                 /* Setup destination(s) in remaining WXOR
3250                                  * slots
3251                                  */
3252                                 iter = ppc440spe_get_group_entry(sw_desc,
3253                                                                  index);
3254                                 if (addr) {
3255                                         /* one destination */
3256                                         list_for_each_entry_from(iter,
3257                                             &sw_desc->group_list,
3258                                             chain_node)
3259                                                 ppc440spe_desc_set_dest_addr(
3260                                                         iter, chan,
3261                                                         DMA_CUED_XOR_BASE,
3262                                                         addr, 0);
3263
3264                                 } else {
3265                                         /* two destinations */
3266                                         list_for_each_entry_from(iter,
3267                                             &sw_desc->group_list,
3268                                             chain_node) {
3269                                                 ppc440spe_desc_set_dest_addr(
3270                                                         iter, chan,
3271                                                         DMA_CUED_XOR_BASE,
3272                                                         paddr, 0);
3273                                                 ppc440spe_desc_set_dest_addr(
3274                                                         iter, chan,
3275                                                         DMA_CUED_XOR_BASE,
3276                                                         qaddr, 1);
3277                                         }
3278                                 }
3279                         }
3280
3281                 }
3282                 break;
3283
3284         case PPC440SPE_XOR_ID:
3285                 /* DMA2 descriptors have only 1 destination, so there are
3286                  * two chains - one for each dest.
3287                  * If we want to include destination into calculations,
3288                  * then make dest addresses cued with mult=1 (XOR).
3289                  */
3290                 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3291                                 DMA_CUED_XOR_HB :
3292                                 DMA_CUED_XOR_BASE |
3293                                         (1 << DMA_CUED_MULT1_OFF);
3294
3295                 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3296                                 DMA_CUED_XOR_HB :
3297                                 DMA_CUED_XOR_BASE |
3298                                         (1 << DMA_CUED_MULT1_OFF);
3299
3300                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3301                 for (i = 0; i < sw_desc->descs_per_op; i++) {
3302                         ppc440spe_desc_set_dest_addr(iter, chan,
3303                                 paddr ? ppath : qpath,
3304                                 paddr ? paddr : qaddr, 0);
3305                         iter = list_entry(iter->chain_node.next,
3306                                           struct ppc440spe_adma_desc_slot,
3307                                           chain_node);
3308                 }
3309
3310                 if (!addr) {
3311                         /* Two destinations; setup Q here */
3312                         iter = ppc440spe_get_group_entry(sw_desc,
3313                                 sw_desc->descs_per_op);
3314                         for (i = 0; i < sw_desc->descs_per_op; i++) {
3315                                 ppc440spe_desc_set_dest_addr(iter,
3316                                         chan, qpath, qaddr, 0);
3317                                 iter = list_entry(iter->chain_node.next,
3318                                                 struct ppc440spe_adma_desc_slot,
3319                                                 chain_node);
3320                         }
3321                 }
3322
3323                 break;
3324         }
3325 }
3326
3327 /**
3328  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3329  * for the PQ_ZERO_SUM operation
3330  */
3331 static void ppc440spe_adma_pqzero_sum_set_dest(
3332                 struct ppc440spe_adma_desc_slot *sw_desc,
3333                 dma_addr_t paddr, dma_addr_t qaddr)
3334 {
3335         struct ppc440spe_adma_desc_slot *iter, *end;
3336         struct ppc440spe_adma_chan *chan;
3337         dma_addr_t addr = 0;
3338         int idx;
3339
3340         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3341
3342         /* walk through the WXOR source list and set P/Q-destinations
3343          * for each slot
3344          */
3345         idx = (paddr && qaddr) ? 2 : 1;
3346         /* set end */
3347         list_for_each_entry_reverse(end, &sw_desc->group_list,
3348                                     chain_node) {
3349                 if (!(--idx))
3350                         break;
3351         }
3352         /* set start */
3353         idx = (paddr && qaddr) ? 2 : 1;
3354         iter = ppc440spe_get_group_entry(sw_desc, idx);
3355
3356         if (paddr && qaddr) {
3357                 /* two destinations */
3358                 list_for_each_entry_from(iter, &sw_desc->group_list,
3359                                          chain_node) {
3360                         if (unlikely(iter == end))
3361                                 break;
3362                         ppc440spe_desc_set_dest_addr(iter, chan,
3363                                                 DMA_CUED_XOR_BASE, paddr, 0);
3364                         ppc440spe_desc_set_dest_addr(iter, chan,
3365                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3366                 }
3367         } else {
3368                 /* one destination */
3369                 addr = paddr ? paddr : qaddr;
3370                 list_for_each_entry_from(iter, &sw_desc->group_list,
3371                                          chain_node) {
3372                         if (unlikely(iter == end))
3373                                 break;
3374                         ppc440spe_desc_set_dest_addr(iter, chan,
3375                                                 DMA_CUED_XOR_BASE, addr, 0);
3376                 }
3377         }
3378
3379         /*  The remaining descriptors are DATACHECK. These have no need in
3380          * destination. Actually, these destinations are used there
3381          * as sources for check operation. So, set addr as source.
3382          */
3383         ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3384
3385         if (!addr) {
3386                 end = list_entry(end->chain_node.next,
3387                                  struct ppc440spe_adma_desc_slot, chain_node);
3388                 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3389         }
3390 }
3391
3392 /**
3393  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3394  */
3395 static inline void ppc440spe_desc_set_xor_src_cnt(
3396                         struct ppc440spe_adma_desc_slot *desc,
3397                         int src_cnt)
3398 {
3399         struct xor_cb *hw_desc = desc->hw_desc;
3400
3401         hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3402         hw_desc->cbc |= src_cnt;
3403 }
3404
3405 /**
3406  * ppc440spe_adma_pq_set_src - set source address into descriptor
3407  */
3408 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3409                 dma_addr_t addr, int index)
3410 {
3411         struct ppc440spe_adma_chan *chan;
3412         dma_addr_t haddr = 0;
3413         struct ppc440spe_adma_desc_slot *iter = NULL;
3414
3415         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3416
3417         switch (chan->device->id) {
3418         case PPC440SPE_DMA0_ID:
3419         case PPC440SPE_DMA1_ID:
3420                 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3421                  */
3422                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3423                         /* RXOR-only or RXOR/WXOR operation */
3424                         int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3425                                 &sw_desc->flags) ?  2 : 3;
3426
3427                         if (index == 0) {
3428                                 /* 1st slot (RXOR) */
3429                                 /* setup sources region (R1-2-3, R1-2-4,
3430                                  * or R1-2-5)
3431                                  */
3432                                 if (test_bit(PPC440SPE_DESC_RXOR12,
3433                                                 &sw_desc->flags))
3434                                         haddr = DMA_RXOR12 <<
3435                                                 DMA_CUED_REGION_OFF;
3436                                 else if (test_bit(PPC440SPE_DESC_RXOR123,
3437                                     &sw_desc->flags))
3438                                         haddr = DMA_RXOR123 <<
3439                                                 DMA_CUED_REGION_OFF;
3440                                 else if (test_bit(PPC440SPE_DESC_RXOR124,
3441                                     &sw_desc->flags))
3442                                         haddr = DMA_RXOR124 <<
3443                                                 DMA_CUED_REGION_OFF;
3444                                 else if (test_bit(PPC440SPE_DESC_RXOR125,
3445                                     &sw_desc->flags))
3446                                         haddr = DMA_RXOR125 <<
3447                                                 DMA_CUED_REGION_OFF;
3448                                 else
3449                                         BUG();
3450                                 haddr |= DMA_CUED_XOR_BASE;
3451                                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3452                         } else if (index < iskip) {
3453                                 /* 1st slot (RXOR)
3454                                  * shall actually set source address only once
3455                                  * instead of first <iskip>
3456                                  */
3457                                 iter = NULL;
3458                         } else {
3459                                 /* 2nd/3d and next slots (WXOR);
3460                                  * skip first slot with RXOR
3461                                  */
3462                                 haddr = DMA_CUED_XOR_HB;
3463                                 iter = ppc440spe_get_group_entry(sw_desc,
3464                                     index - iskip + sw_desc->dst_cnt);
3465                         }
3466                 } else {
3467                         int znum = 0;
3468
3469                         /* WXOR-only operation; skip first slots with
3470                          * zeroing destinations
3471                          */
3472                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3473                                 znum++;
3474                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3475                                 znum++;
3476
3477                         haddr = DMA_CUED_XOR_HB;
3478                         iter = ppc440spe_get_group_entry(sw_desc,
3479                                         index + znum);
3480                 }
3481
3482                 if (likely(iter)) {
3483                         ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3484
3485                         if (!index &&
3486                             test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3487                             sw_desc->dst_cnt == 2) {
3488                                 /* if we have two destinations for RXOR, then
3489                                  * setup source in the second descr too
3490                                  */
3491                                 iter = ppc440spe_get_group_entry(sw_desc, 1);
3492                                 ppc440spe_desc_set_src_addr(iter, chan, 0,
3493                                         haddr, addr);
3494                         }
3495                 }
3496                 break;
3497
3498         case PPC440SPE_XOR_ID:
3499                 /* DMA2 may do Biskup */
3500                 iter = sw_desc->group_head;
3501                 if (iter->dst_cnt == 2) {
3502                         /* both P & Q calculations required; set P src here */
3503                         ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3504
3505                         /* this is for Q */
3506                         iter = ppc440spe_get_group_entry(sw_desc,
3507                                 sw_desc->descs_per_op);
3508                 }
3509                 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3510                 break;
3511         }
3512 }
3513
3514 /**
3515  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3516  */
3517 static void ppc440spe_adma_memcpy_xor_set_src(
3518                 struct ppc440spe_adma_desc_slot *sw_desc,
3519                 dma_addr_t addr, int index)
3520 {
3521         struct ppc440spe_adma_chan *chan;
3522
3523         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3524         sw_desc = sw_desc->group_head;
3525
3526         if (likely(sw_desc))
3527                 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3528 }
3529
3530 /**
3531  * ppc440spe_adma_dma2rxor_inc_addr  -
3532  */
3533 static void ppc440spe_adma_dma2rxor_inc_addr(
3534                 struct ppc440spe_adma_desc_slot *desc,
3535                 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3536 {
3537         cursor->addr_count++;
3538         if (index == src_cnt - 1) {
3539                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3540         } else if (cursor->addr_count == XOR_MAX_OPS) {
3541                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3542                 cursor->addr_count = 0;
3543                 cursor->desc_count++;
3544         }
3545 }
3546
3547 /**
3548  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3549  */
3550 static int ppc440spe_adma_dma2rxor_prep_src(
3551                 struct ppc440spe_adma_desc_slot *hdesc,
3552                 struct ppc440spe_rxor *cursor, int index,
3553                 int src_cnt, u32 addr)
3554 {
3555         int rval = 0;
3556         u32 sign;
3557         struct ppc440spe_adma_desc_slot *desc = hdesc;
3558         int i;
3559
3560         for (i = 0; i < cursor->desc_count; i++) {
3561                 desc = list_entry(hdesc->chain_node.next,
3562                                   struct ppc440spe_adma_desc_slot,
3563                                   chain_node);
3564         }
3565
3566         switch (cursor->state) {
3567         case 0:
3568                 if (addr == cursor->addrl + cursor->len) {
3569                         /* direct RXOR */
3570                         cursor->state = 1;
3571                         cursor->xor_count++;
3572                         if (index == src_cnt-1) {
3573                                 ppc440spe_rxor_set_region(desc,
3574                                         cursor->addr_count,
3575                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3576                                 ppc440spe_adma_dma2rxor_inc_addr(
3577                                         desc, cursor, index, src_cnt);
3578                         }
3579                 } else if (cursor->addrl == addr + cursor->len) {
3580                         /* reverse RXOR */
3581                         cursor->state = 1;
3582                         cursor->xor_count++;
3583                         set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3584                         if (index == src_cnt-1) {
3585                                 ppc440spe_rxor_set_region(desc,
3586                                         cursor->addr_count,
3587                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3588                                 ppc440spe_adma_dma2rxor_inc_addr(
3589                                         desc, cursor, index, src_cnt);
3590                         }
3591                 } else {
3592                         printk(KERN_ERR "Cannot build "
3593                                 "DMA2 RXOR command block.\n");
3594                         BUG();
3595                 }
3596                 break;
3597         case 1:
3598                 sign = test_bit(cursor->addr_count,
3599                                 desc->reverse_flags)
3600                         ? -1 : 1;
3601                 if (index == src_cnt-2 || (sign == -1
3602                         && addr != cursor->addrl - 2*cursor->len)) {
3603                         cursor->state = 0;
3604                         cursor->xor_count = 1;
3605                         cursor->addrl = addr;
3606                         ppc440spe_rxor_set_region(desc,
3607                                 cursor->addr_count,
3608                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3609                         ppc440spe_adma_dma2rxor_inc_addr(
3610                                 desc, cursor, index, src_cnt);
3611                 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3612                         cursor->state = 2;
3613                         cursor->xor_count = 0;
3614                         ppc440spe_rxor_set_region(desc,
3615                                 cursor->addr_count,
3616                                 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3617                         if (index == src_cnt-1) {
3618                                 ppc440spe_adma_dma2rxor_inc_addr(
3619                                         desc, cursor, index, src_cnt);
3620                         }
3621                 } else if (addr == cursor->addrl + 3*cursor->len) {
3622                         cursor->state = 2;
3623                         cursor->xor_count = 0;
3624                         ppc440spe_rxor_set_region(desc,
3625                                 cursor->addr_count,
3626                                 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3627                         if (index == src_cnt-1) {
3628                                 ppc440spe_adma_dma2rxor_inc_addr(
3629                                         desc, cursor, index, src_cnt);
3630                         }
3631                 } else if (addr == cursor->addrl + 4*cursor->len) {
3632                         cursor->state = 2;
3633                         cursor->xor_count = 0;
3634                         ppc440spe_rxor_set_region(desc,
3635                                 cursor->addr_count,
3636                                 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3637                         if (index == src_cnt-1) {
3638                                 ppc440spe_adma_dma2rxor_inc_addr(
3639                                         desc, cursor, index, src_cnt);
3640                         }
3641                 } else {
3642                         cursor->state = 0;
3643                         cursor->xor_count = 1;
3644                         cursor->addrl = addr;
3645                         ppc440spe_rxor_set_region(desc,
3646                                 cursor->addr_count,
3647                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3648                         ppc440spe_adma_dma2rxor_inc_addr(
3649                                 desc, cursor, index, src_cnt);
3650                 }
3651                 break;
3652         case 2:
3653                 cursor->state = 0;
3654                 cursor->addrl = addr;
3655                 cursor->xor_count++;
3656                 if (index) {
3657                         ppc440spe_adma_dma2rxor_inc_addr(
3658                                 desc, cursor, index, src_cnt);
3659                 }
3660                 break;
3661         }
3662
3663         return rval;
3664 }
3665
3666 /**
3667  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3668  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3669  */
3670 static void ppc440spe_adma_dma2rxor_set_src(
3671                 struct ppc440spe_adma_desc_slot *desc,
3672                 int index, dma_addr_t addr)
3673 {
3674         struct xor_cb *xcb = desc->hw_desc;
3675         int k = 0, op = 0, lop = 0;
3676
3677         /* get the RXOR operand which corresponds to index addr */
3678         while (op <= index) {
3679                 lop = op;
3680                 if (k == XOR_MAX_OPS) {
3681                         k = 0;
3682                         desc = list_entry(desc->chain_node.next,
3683                                 struct ppc440spe_adma_desc_slot, chain_node);
3684                         xcb = desc->hw_desc;
3685
3686                 }
3687                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3688                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3689                         op += 2;
3690                 else
3691                         op += 3;
3692         }
3693
3694         BUG_ON(k < 1);
3695
3696         if (test_bit(k-1, desc->reverse_flags)) {
3697                 /* reverse operand order; put last op in RXOR group */
3698                 if (index == op - 1)
3699                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3700         } else {
3701                 /* direct operand order; put first op in RXOR group */
3702                 if (index == lop)
3703                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3704         }
3705 }
3706
3707 /**
3708  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3709  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3710  */
3711 static void ppc440spe_adma_dma2rxor_set_mult(
3712                 struct ppc440spe_adma_desc_slot *desc,
3713                 int index, u8 mult)
3714 {
3715         struct xor_cb *xcb = desc->hw_desc;
3716         int k = 0, op = 0, lop = 0;
3717
3718         /* get the RXOR operand which corresponds to index mult */
3719         while (op <= index) {
3720                 lop = op;
3721                 if (k == XOR_MAX_OPS) {
3722                         k = 0;
3723                         desc = list_entry(desc->chain_node.next,
3724                                           struct ppc440spe_adma_desc_slot,
3725                                           chain_node);
3726                         xcb = desc->hw_desc;
3727
3728                 }
3729                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3730                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3731                         op += 2;
3732                 else
3733                         op += 3;
3734         }
3735
3736         BUG_ON(k < 1);
3737         if (test_bit(k-1, desc->reverse_flags)) {
3738                 /* reverse order */
3739                 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3740         } else {
3741                 /* direct order */
3742                 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3743         }
3744 }
3745
3746 /**
3747  * ppc440spe_init_rxor_cursor -
3748  */
3749 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3750 {
3751         memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3752         cursor->state = 2;
3753 }
3754
3755 /**
3756  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3757  * descriptor for the PQXOR operation
3758  */
3759 static void ppc440spe_adma_pq_set_src_mult(
3760                 struct ppc440spe_adma_desc_slot *sw_desc,
3761                 unsigned char mult, int index, int dst_pos)
3762 {
3763         struct ppc440spe_adma_chan *chan;
3764         u32 mult_idx, mult_dst;
3765         struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3766
3767         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3768
3769         switch (chan->device->id) {
3770         case PPC440SPE_DMA0_ID:
3771         case PPC440SPE_DMA1_ID:
3772                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3773                         int region = test_bit(PPC440SPE_DESC_RXOR12,
3774                                         &sw_desc->flags) ? 2 : 3;
3775
3776                         if (index < region) {
3777                                 /* RXOR multipliers */
3778                                 iter = ppc440spe_get_group_entry(sw_desc,
3779                                         sw_desc->dst_cnt - 1);
3780                                 if (sw_desc->dst_cnt == 2)
3781                                         iter1 = ppc440spe_get_group_entry(
3782                                                         sw_desc, 0);
3783
3784                                 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3785                                 mult_dst = DMA_CDB_SG_SRC;
3786                         } else {
3787                                 /* WXOR multiplier */
3788                                 iter = ppc440spe_get_group_entry(sw_desc,
3789                                                         index - region +
3790                                                         sw_desc->dst_cnt);
3791                                 mult_idx = DMA_CUED_MULT1_OFF;
3792                                 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3793                                                      DMA_CDB_SG_DST1;
3794                         }
3795                 } else {
3796                         int znum = 0;
3797
3798                         /* WXOR-only;
3799                          * skip first slots with destinations (if ZERO_DST has
3800                          * place)
3801                          */
3802                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3803                                 znum++;
3804                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3805                                 znum++;
3806
3807                         iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3808                         mult_idx = DMA_CUED_MULT1_OFF;
3809                         mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3810                 }
3811
3812                 if (likely(iter)) {
3813                         ppc440spe_desc_set_src_mult(iter, chan,
3814                                 mult_idx, mult_dst, mult);
3815
3816                         if (unlikely(iter1)) {
3817                                 /* if we have two destinations for RXOR, then
3818                                  * we've just set Q mult. Set-up P now.
3819                                  */
3820                                 ppc440spe_desc_set_src_mult(iter1, chan,
3821                                         mult_idx, mult_dst, 1);
3822                         }
3823
3824                 }
3825                 break;
3826
3827         case PPC440SPE_XOR_ID:
3828                 iter = sw_desc->group_head;
3829                 if (sw_desc->dst_cnt == 2) {
3830                         /* both P & Q calculations required; set P mult here */
3831                         ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3832
3833                         /* and then set Q mult */
3834                         iter = ppc440spe_get_group_entry(sw_desc,
3835                                sw_desc->descs_per_op);
3836                 }
3837                 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3838                 break;
3839         }
3840 }
3841
3842 /**
3843  * ppc440spe_adma_free_chan_resources - free the resources allocated
3844  */
3845 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3846 {
3847         struct ppc440spe_adma_chan *ppc440spe_chan;
3848         struct ppc440spe_adma_desc_slot *iter, *_iter;
3849         int in_use_descs = 0;
3850
3851         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3852         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3853
3854         spin_lock_bh(&ppc440spe_chan->lock);
3855         list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3856                                         chain_node) {
3857                 in_use_descs++;
3858                 list_del(&iter->chain_node);
3859         }
3860         list_for_each_entry_safe_reverse(iter, _iter,
3861                         &ppc440spe_chan->all_slots, slot_node) {
3862                 list_del(&iter->slot_node);
3863                 kfree(iter);
3864                 ppc440spe_chan->slots_allocated--;
3865         }
3866         ppc440spe_chan->last_used = NULL;
3867
3868         dev_dbg(ppc440spe_chan->device->common.dev,
3869                 "ppc440spe adma%d %s slots_allocated %d\n",
3870                 ppc440spe_chan->device->id,
3871                 __func__, ppc440spe_chan->slots_allocated);
3872         spin_unlock_bh(&ppc440spe_chan->lock);
3873
3874         /* one is ok since we left it on there on purpose */
3875         if (in_use_descs > 1)
3876                 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3877                         in_use_descs - 1);
3878 }
3879
3880 /**
3881  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3882  * @chan: ADMA channel handle
3883  * @cookie: ADMA transaction identifier
3884  * @txstate: a holder for the current state of the channel
3885  */
3886 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3887                         dma_cookie_t cookie, struct dma_tx_state *txstate)
3888 {
3889         struct ppc440spe_adma_chan *ppc440spe_chan;
3890         enum dma_status ret;
3891
3892         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3893         ret = dma_cookie_status(chan, cookie, txstate);
3894         if (ret == DMA_SUCCESS)
3895                 return ret;
3896
3897         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3898
3899         return dma_cookie_status(chan, cookie, txstate);
3900 }
3901
3902 /**
3903  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3904  */
3905 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3906 {
3907         struct ppc440spe_adma_chan *chan = data;
3908
3909         dev_dbg(chan->device->common.dev,
3910                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3911
3912         tasklet_schedule(&chan->irq_tasklet);
3913         ppc440spe_adma_device_clear_eot_status(chan);
3914
3915         return IRQ_HANDLED;
3916 }
3917
3918 /**
3919  * ppc440spe_adma_err_handler - DMA error interrupt handler;
3920  *      do the same things as a eot handler
3921  */
3922 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3923 {
3924         struct ppc440spe_adma_chan *chan = data;
3925
3926         dev_dbg(chan->device->common.dev,
3927                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3928
3929         tasklet_schedule(&chan->irq_tasklet);
3930         ppc440spe_adma_device_clear_eot_status(chan);
3931
3932         return IRQ_HANDLED;
3933 }
3934
3935 /**
3936  * ppc440spe_test_callback - called when test operation has been done
3937  */
3938 static void ppc440spe_test_callback(void *unused)
3939 {
3940         complete(&ppc440spe_r6_test_comp);
3941 }
3942
3943 /**
3944  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3945  */
3946 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3947 {
3948         struct ppc440spe_adma_chan *ppc440spe_chan;
3949
3950         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3951         dev_dbg(ppc440spe_chan->device->common.dev,
3952                 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3953                 __func__, ppc440spe_chan->pending);
3954
3955         if (ppc440spe_chan->pending) {
3956                 ppc440spe_chan->pending = 0;
3957                 ppc440spe_chan_append(ppc440spe_chan);
3958         }
3959 }
3960
3961 /**
3962  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3963  *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3964  *      specific operation)
3965  */
3966 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3967 {
3968         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3969         dma_cookie_t cookie;
3970         int slot_cnt, slots_per_op;
3971
3972         dev_dbg(chan->device->common.dev,
3973                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3974
3975         spin_lock_bh(&chan->lock);
3976         slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3977         sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3978         if (sw_desc) {
3979                 group_start = sw_desc->group_head;
3980                 list_splice_init(&sw_desc->group_list, &chan->chain);
3981                 async_tx_ack(&sw_desc->async_tx);
3982                 ppc440spe_desc_init_null_xor(group_start);
3983
3984                 cookie = dma_cookie_assign(&sw_desc->async_tx);
3985
3986                 /* initialize the completed cookie to be less than
3987                  * the most recently used cookie
3988                  */
3989                 chan->common.completed_cookie = cookie - 1;
3990
3991                 /* channel should not be busy */
3992                 BUG_ON(ppc440spe_chan_is_busy(chan));
3993
3994                 /* set the descriptor address */
3995                 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3996
3997                 /* run the descriptor */
3998                 ppc440spe_chan_run(chan);
3999         } else
4000                 printk(KERN_ERR "ppc440spe adma%d"
4001                         " failed to allocate null descriptor\n",
4002                         chan->device->id);
4003         spin_unlock_bh(&chan->lock);
4004 }
4005
4006 /**
4007  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4008  *      For this we just perform one WXOR operation with the same source
4009  *      and destination addresses, the GF-multiplier is 1; so if RAID-6
4010  *      capabilities are enabled then we'll get src/dst filled with zero.
4011  */
4012 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4013 {
4014         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4015         struct page *pg;
4016         char *a;
4017         dma_addr_t dma_addr, addrs[2];
4018         unsigned long op = 0;
4019         int rval = 0;
4020
4021         set_bit(PPC440SPE_DESC_WXOR, &op);
4022
4023         pg = alloc_page(GFP_KERNEL);
4024         if (!pg)
4025                 return -ENOMEM;
4026
4027         spin_lock_bh(&chan->lock);
4028         sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4029         if (sw_desc) {
4030                 /* 1 src, 1 dsr, int_ena, WXOR */
4031                 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4032                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4033                         ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4034                         iter->unmap_len = PAGE_SIZE;
4035                 }
4036         } else {
4037                 rval = -EFAULT;
4038                 spin_unlock_bh(&chan->lock);
4039                 goto exit;
4040         }
4041         spin_unlock_bh(&chan->lock);
4042
4043         /* Fill the test page with ones */
4044         memset(page_address(pg), 0xFF, PAGE_SIZE);
4045         dma_addr = dma_map_page(chan->device->dev, pg, 0,
4046                                 PAGE_SIZE, DMA_BIDIRECTIONAL);
4047
4048         /* Setup addresses */
4049         ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4050         ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4051         addrs[0] = dma_addr;
4052         addrs[1] = 0;
4053         ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4054
4055         async_tx_ack(&sw_desc->async_tx);
4056         sw_desc->async_tx.callback = ppc440spe_test_callback;
4057         sw_desc->async_tx.callback_param = NULL;
4058
4059         init_completion(&ppc440spe_r6_test_comp);
4060
4061         ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4062         ppc440spe_adma_issue_pending(&chan->common);
4063
4064         wait_for_completion(&ppc440spe_r6_test_comp);
4065
4066         /* Now check if the test page is zeroed */
4067         a = page_address(pg);
4068         if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4069                 /* page is zero - RAID-6 enabled */
4070                 rval = 0;
4071         } else {
4072                 /* RAID-6 was not enabled */
4073                 rval = -EINVAL;
4074         }
4075 exit:
4076         __free_page(pg);
4077         return rval;
4078 }
4079
4080 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4081 {
4082         switch (adev->id) {
4083         case PPC440SPE_DMA0_ID:
4084         case PPC440SPE_DMA1_ID:
4085                 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4086                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4087                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4088                 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4089                 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4090                 break;
4091         case PPC440SPE_XOR_ID:
4092                 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4093                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4094                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4095                 adev->common.cap_mask = adev->common.cap_mask;
4096                 break;
4097         }
4098
4099         /* Set base routines */
4100         adev->common.device_alloc_chan_resources =
4101                                 ppc440spe_adma_alloc_chan_resources;
4102         adev->common.device_free_chan_resources =
4103                                 ppc440spe_adma_free_chan_resources;
4104         adev->common.device_tx_status = ppc440spe_adma_tx_status;
4105         adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4106
4107         /* Set prep routines based on capability */
4108         if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4109                 adev->common.device_prep_dma_memcpy =
4110                         ppc440spe_adma_prep_dma_memcpy;
4111         }
4112         if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4113                 adev->common.max_xor = XOR_MAX_OPS;
4114                 adev->common.device_prep_dma_xor =
4115                         ppc440spe_adma_prep_dma_xor;
4116         }
4117         if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4118                 switch (adev->id) {
4119                 case PPC440SPE_DMA0_ID:
4120                         dma_set_maxpq(&adev->common,
4121                                 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4122                         break;
4123                 case PPC440SPE_DMA1_ID:
4124                         dma_set_maxpq(&adev->common,
4125                                 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4126                         break;
4127                 case PPC440SPE_XOR_ID:
4128                         adev->common.max_pq = XOR_MAX_OPS * 3;
4129                         break;
4130                 }
4131                 adev->common.device_prep_dma_pq =
4132                         ppc440spe_adma_prep_dma_pq;
4133         }
4134         if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4135                 switch (adev->id) {
4136                 case PPC440SPE_DMA0_ID:
4137                         adev->common.max_pq = DMA0_FIFO_SIZE /
4138                                                 sizeof(struct dma_cdb);
4139                         break;
4140                 case PPC440SPE_DMA1_ID:
4141                         adev->common.max_pq = DMA1_FIFO_SIZE /
4142                                                 sizeof(struct dma_cdb);
4143                         break;
4144                 }
4145                 adev->common.device_prep_dma_pq_val =
4146                         ppc440spe_adma_prep_dma_pqzero_sum;
4147         }
4148         if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4149                 switch (adev->id) {
4150                 case PPC440SPE_DMA0_ID:
4151                         adev->common.max_xor = DMA0_FIFO_SIZE /
4152                                                 sizeof(struct dma_cdb);
4153                         break;
4154                 case PPC440SPE_DMA1_ID:
4155                         adev->common.max_xor = DMA1_FIFO_SIZE /
4156                                                 sizeof(struct dma_cdb);
4157                         break;
4158                 }
4159                 adev->common.device_prep_dma_xor_val =
4160                         ppc440spe_adma_prep_dma_xor_zero_sum;
4161         }
4162         if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4163                 adev->common.device_prep_dma_interrupt =
4164                         ppc440spe_adma_prep_dma_interrupt;
4165         }
4166         pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4167           "( %s%s%s%s%s%s%s)\n",
4168           dev_name(adev->dev),
4169           dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4170           dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4171           dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4172           dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4173           dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4174           dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4175 }
4176
4177 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4178                                      struct ppc440spe_adma_chan *chan,
4179                                      int *initcode)
4180 {
4181         struct platform_device *ofdev;
4182         struct device_node *np;
4183         int ret;
4184
4185         ofdev = container_of(adev->dev, struct platform_device, dev);
4186         np = ofdev->dev.of_node;
4187         if (adev->id != PPC440SPE_XOR_ID) {
4188                 adev->err_irq = irq_of_parse_and_map(np, 1);
4189                 if (adev->err_irq == NO_IRQ) {
4190                         dev_warn(adev->dev, "no err irq resource?\n");
4191                         *initcode = PPC_ADMA_INIT_IRQ2;
4192                         adev->err_irq = -ENXIO;
4193                 } else
4194                         atomic_inc(&ppc440spe_adma_err_irq_ref);
4195         } else {
4196                 adev->err_irq = -ENXIO;
4197         }
4198
4199         adev->irq = irq_of_parse_and_map(np, 0);
4200         if (adev->irq == NO_IRQ) {
4201                 dev_err(adev->dev, "no irq resource\n");
4202                 *initcode = PPC_ADMA_INIT_IRQ1;
4203                 ret = -ENXIO;
4204                 goto err_irq_map;
4205         }
4206         dev_dbg(adev->dev, "irq %d, err irq %d\n",
4207                 adev->irq, adev->err_irq);
4208
4209         ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4210                           0, dev_driver_string(adev->dev), chan);
4211         if (ret) {
4212                 dev_err(adev->dev, "can't request irq %d\n",
4213                         adev->irq);
4214                 *initcode = PPC_ADMA_INIT_IRQ1;
4215                 ret = -EIO;
4216                 goto err_req1;
4217         }
4218
4219         /* only DMA engines have a separate error IRQ
4220          * so it's Ok if err_irq < 0 in XOR engine case.
4221          */
4222         if (adev->err_irq > 0) {
4223                 /* both DMA engines share common error IRQ */
4224                 ret = request_irq(adev->err_irq,
4225                                   ppc440spe_adma_err_handler,
4226                                   IRQF_SHARED,
4227                                   dev_driver_string(adev->dev),
4228                                   chan);
4229                 if (ret) {
4230                         dev_err(adev->dev, "can't request irq %d\n",
4231                                 adev->err_irq);
4232                         *initcode = PPC_ADMA_INIT_IRQ2;
4233                         ret = -EIO;
4234                         goto err_req2;
4235                 }
4236         }
4237
4238         if (adev->id == PPC440SPE_XOR_ID) {
4239                 /* enable XOR engine interrupts */
4240                 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4241                             XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4242                             &adev->xor_reg->ier);
4243         } else {
4244                 u32 mask, enable;
4245
4246                 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4247                 if (!np) {
4248                         pr_err("%s: can't find I2O device tree node\n",
4249                                 __func__);
4250                         ret = -ENODEV;
4251                         goto err_req2;
4252                 }
4253                 adev->i2o_reg = of_iomap(np, 0);
4254                 if (!adev->i2o_reg) {
4255                         pr_err("%s: failed to map I2O registers\n", __func__);
4256                         of_node_put(np);
4257                         ret = -EINVAL;
4258                         goto err_req2;
4259                 }
4260                 of_node_put(np);
4261                 /* Unmask 'CS FIFO Attention' interrupts and
4262                  * enable generating interrupts on errors
4263                  */
4264                 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4265                          ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4266                          ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4267                 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4268                 iowrite32(mask, &adev->i2o_reg->iopim);
4269         }
4270         return 0;
4271
4272 err_req2:
4273         free_irq(adev->irq, chan);
4274 err_req1:
4275         irq_dispose_mapping(adev->irq);
4276 err_irq_map:
4277         if (adev->err_irq > 0) {
4278                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4279                         irq_dispose_mapping(adev->err_irq);
4280         }
4281         return ret;
4282 }
4283
4284 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4285                                         struct ppc440spe_adma_chan *chan)
4286 {
4287         u32 mask, disable;
4288
4289         if (adev->id == PPC440SPE_XOR_ID) {
4290                 /* disable XOR engine interrupts */
4291                 mask = ioread32be(&adev->xor_reg->ier);
4292                 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4293                           XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4294                 iowrite32be(mask, &adev->xor_reg->ier);
4295         } else {
4296                 /* disable DMAx engine interrupts */
4297                 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4298                           (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4299                           (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4300                 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4301                 iowrite32(mask, &adev->i2o_reg->iopim);
4302         }
4303         free_irq(adev->irq, chan);
4304         irq_dispose_mapping(adev->irq);
4305         if (adev->err_irq > 0) {
4306                 free_irq(adev->err_irq, chan);
4307                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4308                         irq_dispose_mapping(adev->err_irq);
4309                         iounmap(adev->i2o_reg);
4310                 }
4311         }
4312 }
4313
4314 /**
4315  * ppc440spe_adma_probe - probe the asynch device
4316  */
4317 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4318 {
4319         struct device_node *np = ofdev->dev.of_node;
4320         struct resource res;
4321         struct ppc440spe_adma_device *adev;
4322         struct ppc440spe_adma_chan *chan;
4323         struct ppc_dma_chan_ref *ref, *_ref;
4324         int ret = 0, initcode = PPC_ADMA_INIT_OK;
4325         const u32 *idx;
4326         int len;
4327         void *regs;
4328         u32 id, pool_size;
4329
4330         if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4331                 id = PPC440SPE_XOR_ID;
4332                 /* As far as the XOR engine is concerned, it does not
4333                  * use FIFOs but uses linked list. So there is no dependency
4334                  * between pool size to allocate and the engine configuration.
4335                  */
4336                 pool_size = PAGE_SIZE << 1;
4337         } else {
4338                 /* it is DMA0 or DMA1 */
4339                 idx = of_get_property(np, "cell-index", &len);
4340                 if (!idx || (len != sizeof(u32))) {
4341                         dev_err(&ofdev->dev, "Device node %s has missing "
4342                                 "or invalid cell-index property\n",
4343                                 np->full_name);
4344                         return -EINVAL;
4345                 }
4346                 id = *idx;
4347                 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4348                  * should allocate the pool accordingly to size of this
4349                  * FIFO. Thus, the pool size depends on the FIFO depth:
4350                  * how much CDBs pointers the FIFO may contain then so
4351                  * much CDBs we should provide in the pool.
4352                  * That is
4353                  *   CDB size = 32B;
4354                  *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4355                  *   Pool size = CDBs number * CDB size =
4356                  *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4357                  */
4358                 pool_size = (id == PPC440SPE_DMA0_ID) ?
4359                             DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4360                 pool_size <<= 2;
4361         }
4362
4363         if (of_address_to_resource(np, 0, &res)) {
4364                 dev_err(&ofdev->dev, "failed to get memory resource\n");
4365                 initcode = PPC_ADMA_INIT_MEMRES;
4366                 ret = -ENODEV;
4367                 goto out;
4368         }
4369
4370         if (!request_mem_region(res.start, resource_size(&res),
4371                                 dev_driver_string(&ofdev->dev))) {
4372                 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4373                         &res);
4374                 initcode = PPC_ADMA_INIT_MEMREG;
4375                 ret = -EBUSY;
4376                 goto out;
4377         }
4378
4379         /* create a device */
4380         adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4381         if (!adev) {
4382                 dev_err(&ofdev->dev, "failed to allocate device\n");
4383                 initcode = PPC_ADMA_INIT_ALLOC;
4384                 ret = -ENOMEM;
4385                 goto err_adev_alloc;
4386         }
4387
4388         adev->id = id;
4389         adev->pool_size = pool_size;
4390         /* allocate coherent memory for hardware descriptors */
4391         adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4392                                         adev->pool_size, &adev->dma_desc_pool,
4393                                         GFP_KERNEL);
4394         if (adev->dma_desc_pool_virt == NULL) {
4395                 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4396                         "memory for hardware descriptors\n",
4397                         adev->pool_size);
4398                 initcode = PPC_ADMA_INIT_COHERENT;
4399                 ret = -ENOMEM;
4400                 goto err_dma_alloc;
4401         }
4402         dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4403                 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4404
4405         regs = ioremap(res.start, resource_size(&res));
4406         if (!regs) {
4407                 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4408                 goto err_regs_alloc;
4409         }
4410
4411         if (adev->id == PPC440SPE_XOR_ID) {
4412                 adev->xor_reg = regs;
4413                 /* Reset XOR */
4414                 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4415                 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4416         } else {
4417                 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4418                                    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4419                 adev->dma_reg = regs;
4420                 /* DMAx_FIFO_SIZE is defined in bytes,
4421                  * <fsiz> - is defined in number of CDB pointers (8byte).
4422                  * DMA FIFO Length = CSlength + CPlength, where
4423                  * CSlength = CPlength = (fsiz + 1) * 8.
4424                  */
4425                 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4426                           &adev->dma_reg->fsiz);
4427                 /* Configure DMA engine */
4428                 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4429                           &adev->dma_reg->cfg);
4430                 /* Clear Status */
4431                 iowrite32(~0, &adev->dma_reg->dsts);
4432         }
4433
4434         adev->dev = &ofdev->dev;
4435         adev->common.dev = &ofdev->dev;
4436         INIT_LIST_HEAD(&adev->common.channels);
4437         platform_set_drvdata(ofdev, adev);
4438
4439         /* create a channel */
4440         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4441         if (!chan) {
4442                 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4443                 initcode = PPC_ADMA_INIT_CHANNEL;
4444                 ret = -ENOMEM;
4445                 goto err_chan_alloc;
4446         }
4447
4448         spin_lock_init(&chan->lock);
4449         INIT_LIST_HEAD(&chan->chain);
4450         INIT_LIST_HEAD(&chan->all_slots);
4451         chan->device = adev;
4452         chan->common.device = &adev->common;
4453         dma_cookie_init(&chan->common);
4454         list_add_tail(&chan->common.device_node, &adev->common.channels);
4455         tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4456                      (unsigned long)chan);
4457
4458         /* allocate and map helper pages for async validation or
4459          * async_mult/async_sum_product operations on DMA0/1.
4460          */
4461         if (adev->id != PPC440SPE_XOR_ID) {
4462                 chan->pdest_page = alloc_page(GFP_KERNEL);
4463                 chan->qdest_page = alloc_page(GFP_KERNEL);
4464                 if (!chan->pdest_page ||
4465                     !chan->qdest_page) {
4466                         if (chan->pdest_page)
4467                                 __free_page(chan->pdest_page);
4468                         if (chan->qdest_page)
4469                                 __free_page(chan->qdest_page);
4470                         ret = -ENOMEM;
4471                         goto err_page_alloc;
4472                 }
4473                 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4474                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4475                 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4476                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4477         }
4478
4479         ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4480         if (ref) {
4481                 ref->chan = &chan->common;
4482                 INIT_LIST_HEAD(&ref->node);
4483                 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4484         } else {
4485                 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4486                 ret = -ENOMEM;
4487                 goto err_ref_alloc;
4488         }
4489
4490         ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4491         if (ret)
4492                 goto err_irq;
4493
4494         ppc440spe_adma_init_capabilities(adev);
4495
4496         ret = dma_async_device_register(&adev->common);
4497         if (ret) {
4498                 initcode = PPC_ADMA_INIT_REGISTER;
4499                 dev_err(&ofdev->dev, "failed to register dma device\n");
4500                 goto err_dev_reg;
4501         }
4502
4503         goto out;
4504
4505 err_dev_reg:
4506         ppc440spe_adma_release_irqs(adev, chan);
4507 err_irq:
4508         list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4509                 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4510                         list_del(&ref->node);
4511                         kfree(ref);
4512                 }
4513         }
4514 err_ref_alloc:
4515         if (adev->id != PPC440SPE_XOR_ID) {
4516                 dma_unmap_page(&ofdev->dev, chan->pdest,
4517                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4518                 dma_unmap_page(&ofdev->dev, chan->qdest,
4519                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4520                 __free_page(chan->pdest_page);
4521                 __free_page(chan->qdest_page);
4522         }
4523 err_page_alloc:
4524         kfree(chan);
4525 err_chan_alloc:
4526         if (adev->id == PPC440SPE_XOR_ID)
4527                 iounmap(adev->xor_reg);
4528         else
4529                 iounmap(adev->dma_reg);
4530 err_regs_alloc:
4531         dma_free_coherent(adev->dev, adev->pool_size,
4532                           adev->dma_desc_pool_virt,
4533                           adev->dma_desc_pool);
4534 err_dma_alloc:
4535         kfree(adev);
4536 err_adev_alloc:
4537         release_mem_region(res.start, resource_size(&res));
4538 out:
4539         if (id < PPC440SPE_ADMA_ENGINES_NUM)
4540                 ppc440spe_adma_devices[id] = initcode;
4541
4542         return ret;
4543 }
4544
4545 /**
4546  * ppc440spe_adma_remove - remove the asynch device
4547  */
4548 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4549 {
4550         struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4551         struct device_node *np = ofdev->dev.of_node;
4552         struct resource res;
4553         struct dma_chan *chan, *_chan;
4554         struct ppc_dma_chan_ref *ref, *_ref;
4555         struct ppc440spe_adma_chan *ppc440spe_chan;
4556
4557         if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4558                 ppc440spe_adma_devices[adev->id] = -1;
4559
4560         dma_async_device_unregister(&adev->common);
4561
4562         list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4563                                  device_node) {
4564                 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4565                 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4566                 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4567                 if (adev->id != PPC440SPE_XOR_ID) {
4568                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4569                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4570                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4571                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4572                         __free_page(ppc440spe_chan->pdest_page);
4573                         __free_page(ppc440spe_chan->qdest_page);
4574                 }
4575                 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4576                                          node) {
4577                         if (ppc440spe_chan ==
4578                             to_ppc440spe_adma_chan(ref->chan)) {
4579                                 list_del(&ref->node);
4580                                 kfree(ref);
4581                         }
4582                 }
4583                 list_del(&chan->device_node);
4584                 kfree(ppc440spe_chan);
4585         }
4586
4587         dma_free_coherent(adev->dev, adev->pool_size,
4588                           adev->dma_desc_pool_virt, adev->dma_desc_pool);
4589         if (adev->id == PPC440SPE_XOR_ID)
4590                 iounmap(adev->xor_reg);
4591         else
4592                 iounmap(adev->dma_reg);
4593         of_address_to_resource(np, 0, &res);
4594         release_mem_region(res.start, resource_size(&res));
4595         kfree(adev);
4596         return 0;
4597 }
4598
4599 /*
4600  * /sys driver interface to enable h/w RAID-6 capabilities
4601  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4602  * directory are "devices", "enable" and "poly".
4603  * "devices" shows available engines.
4604  * "enable" is used to enable RAID-6 capabilities or to check
4605  * whether these has been activated.
4606  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4607  */
4608
4609 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4610 {
4611         ssize_t size = 0;
4612         int i;
4613
4614         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4615                 if (ppc440spe_adma_devices[i] == -1)
4616                         continue;
4617                 size += snprintf(buf + size, PAGE_SIZE - size,
4618                                  "PPC440SP(E)-ADMA.%d: %s\n", i,
4619                                  ppc_adma_errors[ppc440spe_adma_devices[i]]);
4620         }
4621         return size;
4622 }
4623
4624 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4625 {
4626         return snprintf(buf, PAGE_SIZE,
4627                         "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4628                         ppc440spe_r6_enabled ? "EN" : "DIS");
4629 }
4630
4631 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4632                                         const char *buf, size_t count)
4633 {
4634         unsigned long val;
4635
4636         if (!count || count > 11)
4637                 return -EINVAL;
4638
4639         if (!ppc440spe_r6_tchan)
4640                 return -EFAULT;
4641
4642         /* Write a key */
4643         sscanf(buf, "%lx", &val);
4644         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4645         isync();
4646
4647         /* Verify whether it really works now */
4648         if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4649                 pr_info("PPC440SP(e) RAID-6 has been activated "
4650                         "successfully\n");
4651                 ppc440spe_r6_enabled = 1;
4652         } else {
4653                 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4654                         " Error key ?\n");
4655                 ppc440spe_r6_enabled = 0;
4656         }
4657         return count;
4658 }
4659
4660 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4661 {
4662         ssize_t size = 0;
4663         u32 reg;
4664
4665 #ifdef CONFIG_440SP
4666         /* 440SP has fixed polynomial */
4667         reg = 0x4d;
4668 #else
4669         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4670         reg >>= MQ0_CFBHL_POLY;
4671         reg &= 0xFF;
4672 #endif
4673
4674         size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4675                         "uses 0x1%02x polynomial.\n", reg);
4676         return size;
4677 }
4678
4679 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4680                                       const char *buf, size_t count)
4681 {
4682         unsigned long reg, val;
4683
4684 #ifdef CONFIG_440SP
4685         /* 440SP uses default 0x14D polynomial only */
4686         return -EINVAL;
4687 #endif
4688
4689         if (!count || count > 6)
4690                 return -EINVAL;
4691
4692         /* e.g., 0x14D or 0x11D */
4693         sscanf(buf, "%lx", &val);
4694
4695         if (val & ~0x1FF)
4696                 return -EINVAL;
4697
4698         val &= 0xFF;
4699         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4700         reg &= ~(0xFF << MQ0_CFBHL_POLY);
4701         reg |= val << MQ0_CFBHL_POLY;
4702         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4703
4704         return count;
4705 }
4706
4707 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4708 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4709                    store_ppc440spe_r6enable);
4710 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4711                    store_ppc440spe_r6poly);
4712
4713 /*
4714  * Common initialisation for RAID engines; allocate memory for
4715  * DMAx FIFOs, perform configuration common for all DMA engines.
4716  * Further DMA engine specific configuration is done at probe time.
4717  */
4718 static int ppc440spe_configure_raid_devices(void)
4719 {
4720         struct device_node *np;
4721         struct resource i2o_res;
4722         struct i2o_regs __iomem *i2o_reg;
4723         dcr_host_t i2o_dcr_host;
4724         unsigned int dcr_base, dcr_len;
4725         int i, ret;
4726
4727         np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4728         if (!np) {
4729                 pr_err("%s: can't find I2O device tree node\n",
4730                         __func__);
4731                 return -ENODEV;
4732         }
4733
4734         if (of_address_to_resource(np, 0, &i2o_res)) {
4735                 of_node_put(np);
4736                 return -EINVAL;
4737         }
4738
4739         i2o_reg = of_iomap(np, 0);
4740         if (!i2o_reg) {
4741                 pr_err("%s: failed to map I2O registers\n", __func__);
4742                 of_node_put(np);
4743                 return -EINVAL;
4744         }
4745
4746         /* Get I2O DCRs base */
4747         dcr_base = dcr_resource_start(np, 0);
4748         dcr_len = dcr_resource_len(np, 0);
4749         if (!dcr_base && !dcr_len) {
4750                 pr_err("%s: can't get DCR registers base/len!\n",
4751                         np->full_name);
4752                 of_node_put(np);
4753                 iounmap(i2o_reg);
4754                 return -ENODEV;
4755         }
4756
4757         i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4758         if (!DCR_MAP_OK(i2o_dcr_host)) {
4759                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4760                 of_node_put(np);
4761                 iounmap(i2o_reg);
4762                 return -ENODEV;
4763         }
4764         of_node_put(np);
4765
4766         /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4767          * the base address of FIFO memory space.
4768          * Actually we need twice more physical memory than programmed in the
4769          * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4770          */
4771         ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4772                                          GFP_KERNEL);
4773         if (!ppc440spe_dma_fifo_buf) {
4774                 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4775                 iounmap(i2o_reg);
4776                 dcr_unmap(i2o_dcr_host, dcr_len);
4777                 return -ENOMEM;
4778         }
4779
4780         /*
4781          * Configure h/w
4782          */
4783         /* Reset I2O/DMA */
4784         mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4785         mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4786
4787         /* Setup the base address of mmaped registers */
4788         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4789         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4790                                                 I2O_REG_ENABLE);
4791         dcr_unmap(i2o_dcr_host, dcr_len);
4792
4793         /* Setup FIFO memory space base address */
4794         iowrite32(0, &i2o_reg->ifbah);
4795         iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4796
4797         /* set zero FIFO size for I2O, so the whole
4798          * ppc440spe_dma_fifo_buf is used by DMAs.
4799          * DMAx_FIFOs will be configured while probe.
4800          */
4801         iowrite32(0, &i2o_reg->ifsiz);
4802         iounmap(i2o_reg);
4803
4804         /* To prepare WXOR/RXOR functionality we need access to
4805          * Memory Queue Module DCRs (finally it will be enabled
4806          * via /sys interface of the ppc440spe ADMA driver).
4807          */
4808         np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4809         if (!np) {
4810                 pr_err("%s: can't find MQ device tree node\n",
4811                         __func__);
4812                 ret = -ENODEV;
4813                 goto out_free;
4814         }
4815
4816         /* Get MQ DCRs base */
4817         dcr_base = dcr_resource_start(np, 0);
4818         dcr_len = dcr_resource_len(np, 0);
4819         if (!dcr_base && !dcr_len) {
4820                 pr_err("%s: can't get DCR registers base/len!\n",
4821                         np->full_name);
4822                 ret = -ENODEV;
4823                 goto out_mq;
4824         }
4825
4826         ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4827         if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4828                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4829                 ret = -ENODEV;
4830                 goto out_mq;
4831         }
4832         of_node_put(np);
4833         ppc440spe_mq_dcr_len = dcr_len;
4834
4835         /* Set HB alias */
4836         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4837
4838         /* Set:
4839          * - LL transaction passing limit to 1;
4840          * - Memory controller cycle limit to 1;
4841          * - Galois Polynomial to 0x14d (default)
4842          */
4843         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4844                   (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4845                   (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4846
4847         atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4848         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4849                 ppc440spe_adma_devices[i] = -1;
4850
4851         return 0;
4852
4853 out_mq:
4854         of_node_put(np);
4855 out_free:
4856         kfree(ppc440spe_dma_fifo_buf);
4857         return ret;
4858 }
4859
4860 static const struct of_device_id ppc440spe_adma_of_match[] = {
4861         { .compatible   = "ibm,dma-440spe", },
4862         { .compatible   = "amcc,xor-accelerator", },
4863         {},
4864 };
4865 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4866
4867 static struct platform_driver ppc440spe_adma_driver = {
4868         .probe = ppc440spe_adma_probe,
4869         .remove = ppc440spe_adma_remove,
4870         .driver = {
4871                 .name = "PPC440SP(E)-ADMA",
4872                 .owner = THIS_MODULE,
4873                 .of_match_table = ppc440spe_adma_of_match,
4874         },
4875 };
4876
4877 static __init int ppc440spe_adma_init(void)
4878 {
4879         int ret;
4880
4881         ret = ppc440spe_configure_raid_devices();
4882         if (ret)
4883                 return ret;
4884
4885         ret = platform_driver_register(&ppc440spe_adma_driver);
4886         if (ret) {
4887                 pr_err("%s: failed to register platform driver\n",
4888                         __func__);
4889                 goto out_reg;
4890         }
4891
4892         /* Initialization status */
4893         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4894                                  &driver_attr_devices);
4895         if (ret)
4896                 goto out_dev;
4897
4898         /* RAID-6 h/w enable entry */
4899         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4900                                  &driver_attr_enable);
4901         if (ret)
4902                 goto out_en;
4903
4904         /* GF polynomial to use */
4905         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4906                                  &driver_attr_poly);
4907         if (!ret)
4908                 return ret;
4909
4910         driver_remove_file(&ppc440spe_adma_driver.driver,
4911                            &driver_attr_enable);
4912 out_en:
4913         driver_remove_file(&ppc440spe_adma_driver.driver,
4914                            &driver_attr_devices);
4915 out_dev:
4916         /* User will not be able to enable h/w RAID-6 */
4917         pr_err("%s: failed to create RAID-6 driver interface\n",
4918                 __func__);
4919         platform_driver_unregister(&ppc440spe_adma_driver);
4920 out_reg:
4921         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4922         kfree(ppc440spe_dma_fifo_buf);
4923         return ret;
4924 }
4925
4926 static void __exit ppc440spe_adma_exit(void)
4927 {
4928         driver_remove_file(&ppc440spe_adma_driver.driver,
4929                            &driver_attr_poly);
4930         driver_remove_file(&ppc440spe_adma_driver.driver,
4931                            &driver_attr_enable);
4932         driver_remove_file(&ppc440spe_adma_driver.driver,
4933                            &driver_attr_devices);
4934         platform_driver_unregister(&ppc440spe_adma_driver);
4935         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4936         kfree(ppc440spe_dma_fifo_buf);
4937 }
4938
4939 arch_initcall(ppc440spe_adma_init);
4940 module_exit(ppc440spe_adma_exit);
4941
4942 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4943 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4944 MODULE_LICENSE("GPL");