]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/xgene-dma.c
HID: hid-lg: Add USBID for Logitech G29 Wheel
[karo-tx-linux.git] / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dmapool.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33
34 #include "dmaengine.h"
35
36 /* X-Gene DMA ring csr registers and bit definations */
37 #define XGENE_DMA_RING_CONFIG                   0x04
38 #define XGENE_DMA_RING_ENABLE                   BIT(31)
39 #define XGENE_DMA_RING_ID                       0x08
40 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
41 #define XGENE_DMA_RING_ID_BUF                   0x0C
42 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
43 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
45 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
47 #define XGENE_DMA_RING_HYSTERESIS               0x68
48 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
49 #define XGENE_DMA_RING_STATE                    0x6C
50 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
51 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
53         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
55         ((m) &= (~BIT(31 - (v))))
56 #define XGENE_DMA_RING_CLKEN                    0xC208
57 #define XGENE_DMA_RING_SRST                     0xC200
58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
59 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
61 #define XGENE_DMA_RING_DESC_CNT(v)              (((v) & 0x0001FFFE) >> 1)
62 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m)          \
67         (((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
69         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
71         (((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
73         (((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
75         (((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
77         (((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
79         (((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
81         (((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
83         (((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
85         (((u32 *)(m))[4] |= ((v) << 19))
86
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR                         0x0
89 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
92 #define XGENE_DMA_GCR                           0x10
93 #define XGENE_DMA_CH_SETUP(v)                   \
94         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT                    0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
99 #define XGENE_DMA_INT                           0x70
100 #define XGENE_DMA_INT_MASK                      0x74
101 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK                0x0
103 #define XGENE_DMA_INT_MASK_SHIFT                0x14
104 #define XGENE_DMA_RING_INT0_MASK                0x90A0
105 #define XGENE_DMA_RING_INT1_MASK                0x90A8
106 #define XGENE_DMA_RING_INT2_MASK                0x90B0
107 #define XGENE_DMA_RING_INT3_MASK                0x90B8
108 #define XGENE_DMA_RING_INT4_MASK                0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
112 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
114
115 /* X-Gene SoC EFUSE csr register and bit defination */
116 #define XGENE_SOC_JTAG1_SHADOW                  0x18
117 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
118
119 /* X-Gene DMA Descriptor format */
120 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
121 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
122 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
123 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
124 #define XGENE_DMA_DESC_ELERR_POS                46
125 #define XGENE_DMA_DESC_RTYPE_POS                56
126 #define XGENE_DMA_DESC_LERR_POS                 60
127 #define XGENE_DMA_DESC_BUFLEN_POS               48
128 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
129 #define XGENE_DMA_DESC_ELERR_RD(m)              \
130         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
131 #define XGENE_DMA_DESC_LERR_RD(m)               \
132         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
133 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
134         (((elerr) << 4) | (lerr))
135
136 /* X-Gene DMA descriptor empty s/w signature */
137 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
138
139 /* X-Gene DMA configurable parameters defines */
140 #define XGENE_DMA_RING_NUM              512
141 #define XGENE_DMA_BUFNUM                0x0
142 #define XGENE_DMA_CPU_BUFNUM            0x18
143 #define XGENE_DMA_RING_OWNER_DMA        0x03
144 #define XGENE_DMA_RING_OWNER_CPU        0x0F
145 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
146 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
147 #define XGENE_DMA_RING_NUM_CONFIG       5
148 #define XGENE_DMA_MAX_CHANNEL           4
149 #define XGENE_DMA_XOR_CHANNEL           0
150 #define XGENE_DMA_PQ_CHANNEL            1
151 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
152 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
153 #define XGENE_DMA_XOR_ALIGNMENT         6       /* 64 Bytes */
154 #define XGENE_DMA_MAX_XOR_SRC           5
155 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
156 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
157
158 /* X-Gene DMA descriptor error codes */
159 #define ERR_DESC_AXI                    0x01
160 #define ERR_BAD_DESC                    0x02
161 #define ERR_READ_DATA_AXI               0x03
162 #define ERR_WRITE_DATA_AXI              0x04
163 #define ERR_FBP_TIMEOUT                 0x05
164 #define ERR_ECC                         0x06
165 #define ERR_DIFF_SIZE                   0x08
166 #define ERR_SCT_GAT_LEN                 0x09
167 #define ERR_CRC_ERR                     0x11
168 #define ERR_CHKSUM                      0x12
169 #define ERR_DIF                         0x13
170
171 /* X-Gene DMA error interrupt codes */
172 #define ERR_DIF_SIZE_INT                0x0
173 #define ERR_GS_ERR_INT                  0x1
174 #define ERR_FPB_TIMEO_INT               0x2
175 #define ERR_WFIFO_OVF_INT               0x3
176 #define ERR_RFIFO_OVF_INT               0x4
177 #define ERR_WR_TIMEO_INT                0x5
178 #define ERR_RD_TIMEO_INT                0x6
179 #define ERR_WR_ERR_INT                  0x7
180 #define ERR_RD_ERR_INT                  0x8
181 #define ERR_BAD_DESC_INT                0x9
182 #define ERR_DESC_DST_INT                0xA
183 #define ERR_DESC_SRC_INT                0xB
184
185 /* X-Gene DMA flyby operation code */
186 #define FLYBY_2SRC_XOR                  0x80
187 #define FLYBY_3SRC_XOR                  0x90
188 #define FLYBY_4SRC_XOR                  0xA0
189 #define FLYBY_5SRC_XOR                  0xB0
190
191 /* X-Gene DMA SW descriptor flags */
192 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
193
194 /* Define to dump X-Gene DMA descriptor */
195 #define XGENE_DMA_DESC_DUMP(desc, m)    \
196         print_hex_dump(KERN_ERR, (m),   \
197                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
198
199 #define to_dma_desc_sw(tx)              \
200         container_of(tx, struct xgene_dma_desc_sw, tx)
201 #define to_dma_chan(dchan)              \
202         container_of(dchan, struct xgene_dma_chan, dma_chan)
203
204 #define chan_dbg(chan, fmt, arg...)     \
205         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
206 #define chan_err(chan, fmt, arg...)     \
207         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
208
209 struct xgene_dma_desc_hw {
210         __le64 m0;
211         __le64 m1;
212         __le64 m2;
213         __le64 m3;
214 };
215
216 enum xgene_dma_ring_cfgsize {
217         XGENE_DMA_RING_CFG_SIZE_512B,
218         XGENE_DMA_RING_CFG_SIZE_2KB,
219         XGENE_DMA_RING_CFG_SIZE_16KB,
220         XGENE_DMA_RING_CFG_SIZE_64KB,
221         XGENE_DMA_RING_CFG_SIZE_512KB,
222         XGENE_DMA_RING_CFG_SIZE_INVALID
223 };
224
225 struct xgene_dma_ring {
226         struct xgene_dma *pdma;
227         u8 buf_num;
228         u16 id;
229         u16 num;
230         u16 head;
231         u16 owner;
232         u16 slots;
233         u16 dst_ring_num;
234         u32 size;
235         void __iomem *cmd;
236         void __iomem *cmd_base;
237         dma_addr_t desc_paddr;
238         u32 state[XGENE_DMA_RING_NUM_CONFIG];
239         enum xgene_dma_ring_cfgsize cfgsize;
240         union {
241                 void *desc_vaddr;
242                 struct xgene_dma_desc_hw *desc_hw;
243         };
244 };
245
246 struct xgene_dma_desc_sw {
247         struct xgene_dma_desc_hw desc1;
248         struct xgene_dma_desc_hw desc2;
249         u32 flags;
250         struct list_head node;
251         struct list_head tx_list;
252         struct dma_async_tx_descriptor tx;
253 };
254
255 /**
256  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
257  * @dma_chan: dmaengine channel object member
258  * @pdma: X-Gene DMA device structure reference
259  * @dev: struct device reference for dma mapping api
260  * @id: raw id of this channel
261  * @rx_irq: channel IRQ
262  * @name: name of X-Gene DMA channel
263  * @lock: serializes enqueue/dequeue operations to the descriptor pool
264  * @pending: number of transaction request pushed to DMA controller for
265  *      execution, but still waiting for completion,
266  * @max_outstanding: max number of outstanding request we can push to channel
267  * @ld_pending: descriptors which are queued to run, but have not yet been
268  *      submitted to the hardware for execution
269  * @ld_running: descriptors which are currently being executing by the hardware
270  * @ld_completed: descriptors which have finished execution by the hardware.
271  *      These descriptors have already had their cleanup actions run. They
272  *      are waiting for the ACK bit to be set by the async tx API.
273  * @desc_pool: descriptor pool for DMA operations
274  * @tasklet: bottom half where all completed descriptors cleans
275  * @tx_ring: transmit ring descriptor that we use to prepare actual
276  *      descriptors for further executions
277  * @rx_ring: receive ring descriptor that we use to get completed DMA
278  *      descriptors during cleanup time
279  */
280 struct xgene_dma_chan {
281         struct dma_chan dma_chan;
282         struct xgene_dma *pdma;
283         struct device *dev;
284         int id;
285         int rx_irq;
286         char name[10];
287         spinlock_t lock;
288         int pending;
289         int max_outstanding;
290         struct list_head ld_pending;
291         struct list_head ld_running;
292         struct list_head ld_completed;
293         struct dma_pool *desc_pool;
294         struct tasklet_struct tasklet;
295         struct xgene_dma_ring tx_ring;
296         struct xgene_dma_ring rx_ring;
297 };
298
299 /**
300  * struct xgene_dma - internal representation of an X-Gene DMA device
301  * @err_irq: DMA error irq number
302  * @ring_num: start id number for DMA ring
303  * @csr_dma: base for DMA register access
304  * @csr_ring: base for DMA ring register access
305  * @csr_ring_cmd: base for DMA ring command register access
306  * @csr_efuse: base for efuse register access
307  * @dma_dev: embedded struct dma_device
308  * @chan: reference to X-Gene DMA channels
309  */
310 struct xgene_dma {
311         struct device *dev;
312         struct clk *clk;
313         int err_irq;
314         int ring_num;
315         void __iomem *csr_dma;
316         void __iomem *csr_ring;
317         void __iomem *csr_ring_cmd;
318         void __iomem *csr_efuse;
319         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
320         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
321 };
322
323 static const char * const xgene_dma_desc_err[] = {
324         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
325         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
326         [ERR_READ_DATA_AXI] = "AXI error when reading data",
327         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
328         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
329         [ERR_ECC] = "ECC double bit error",
330         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
331         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
332         [ERR_CRC_ERR] = "CRC error",
333         [ERR_CHKSUM] = "Checksum error",
334         [ERR_DIF] = "DIF error",
335 };
336
337 static const char * const xgene_dma_err[] = {
338         [ERR_DIF_SIZE_INT] = "DIF size error",
339         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
340         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
341         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
342         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
343         [ERR_WR_TIMEO_INT] = "Write time out error",
344         [ERR_RD_TIMEO_INT] = "Read time out error",
345         [ERR_WR_ERR_INT] = "HBF bus write error",
346         [ERR_RD_ERR_INT] = "HBF bus read error",
347         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
348         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
349         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
350 };
351
352 static bool is_pq_enabled(struct xgene_dma *pdma)
353 {
354         u32 val;
355
356         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
357         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
358 }
359
360 static u64 xgene_dma_encode_len(size_t len)
361 {
362         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
363                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
364                 XGENE_DMA_16K_BUFFER_LEN_CODE;
365 }
366
367 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
368 {
369         static u8 flyby_type[] = {
370                 FLYBY_2SRC_XOR, /* Dummy */
371                 FLYBY_2SRC_XOR, /* Dummy */
372                 FLYBY_2SRC_XOR,
373                 FLYBY_3SRC_XOR,
374                 FLYBY_4SRC_XOR,
375                 FLYBY_5SRC_XOR
376         };
377
378         return flyby_type[src_cnt];
379 }
380
381 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
382 {
383         u32 __iomem *cmd_base = ring->cmd_base;
384         u32 ring_state = ioread32(&cmd_base[1]);
385
386         return XGENE_DMA_RING_DESC_CNT(ring_state);
387 }
388
389 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
390                                      dma_addr_t *paddr)
391 {
392         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
393                         *len : XGENE_DMA_MAX_BYTE_CNT;
394
395         *ext8 |= cpu_to_le64(*paddr);
396         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
397         *len -= nbytes;
398         *paddr += nbytes;
399 }
400
401 static void xgene_dma_invalidate_buffer(__le64 *ext8)
402 {
403         *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
404 }
405
406 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
407 {
408         switch (idx) {
409         case 0:
410                 return &desc->m1;
411         case 1:
412                 return &desc->m0;
413         case 2:
414                 return &desc->m3;
415         case 3:
416                 return &desc->m2;
417         default:
418                 pr_err("Invalid dma descriptor index\n");
419         }
420
421         return NULL;
422 }
423
424 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
425                                 u16 dst_ring_num)
426 {
427         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
428         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
429                                 XGENE_DMA_DESC_RTYPE_POS);
430         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
431         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
432                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
433 }
434
435 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
436                                     struct xgene_dma_desc_sw *desc_sw,
437                                     dma_addr_t dst, dma_addr_t src,
438                                     size_t len)
439 {
440         struct xgene_dma_desc_hw *desc1, *desc2;
441         int i;
442
443         /* Get 1st descriptor */
444         desc1 = &desc_sw->desc1;
445         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
446
447         /* Set destination address */
448         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
449         desc1->m3 |= cpu_to_le64(dst);
450
451         /* Set 1st source address */
452         xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
453
454         if (!len)
455                 return;
456
457         /*
458          * We need to split this source buffer,
459          * and need to use 2nd descriptor
460          */
461         desc2 = &desc_sw->desc2;
462         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
463
464         /* Set 2nd to 5th source address */
465         for (i = 0; i < 4 && len; i++)
466                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
467                                          &len, &src);
468
469         /* Invalidate unused source address field */
470         for (; i < 4; i++)
471                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
472
473         /* Updated flag that we have prepared 64B descriptor */
474         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
475 }
476
477 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
478                                     struct xgene_dma_desc_sw *desc_sw,
479                                     dma_addr_t *dst, dma_addr_t *src,
480                                     u32 src_cnt, size_t *nbytes,
481                                     const u8 *scf)
482 {
483         struct xgene_dma_desc_hw *desc1, *desc2;
484         size_t len = *nbytes;
485         int i;
486
487         desc1 = &desc_sw->desc1;
488         desc2 = &desc_sw->desc2;
489
490         /* Initialize DMA descriptor */
491         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
492
493         /* Set destination address */
494         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
495         desc1->m3 |= cpu_to_le64(*dst);
496
497         /* We have multiple source addresses, so need to set NV bit*/
498         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
499
500         /* Set flyby opcode */
501         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
502
503         /* Set 1st to 5th source addresses */
504         for (i = 0; i < src_cnt; i++) {
505                 len = *nbytes;
506                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
507                                          xgene_dma_lookup_ext8(desc2, i - 1),
508                                          &len, &src[i]);
509                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
510         }
511
512         /* Update meta data */
513         *nbytes = len;
514         *dst += XGENE_DMA_MAX_BYTE_CNT;
515
516         /* We need always 64B descriptor to perform xor or pq operations */
517         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
518 }
519
520 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
521 {
522         struct xgene_dma_desc_sw *desc;
523         struct xgene_dma_chan *chan;
524         dma_cookie_t cookie;
525
526         if (unlikely(!tx))
527                 return -EINVAL;
528
529         chan = to_dma_chan(tx->chan);
530         desc = to_dma_desc_sw(tx);
531
532         spin_lock_bh(&chan->lock);
533
534         cookie = dma_cookie_assign(tx);
535
536         /* Add this transaction list onto the tail of the pending queue */
537         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
538
539         spin_unlock_bh(&chan->lock);
540
541         return cookie;
542 }
543
544 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
545                                        struct xgene_dma_desc_sw *desc)
546 {
547         list_del(&desc->node);
548         chan_dbg(chan, "LD %p free\n", desc);
549         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
550 }
551
552 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
553                                  struct xgene_dma_chan *chan)
554 {
555         struct xgene_dma_desc_sw *desc;
556         dma_addr_t phys;
557
558         desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
559         if (!desc) {
560                 chan_err(chan, "Failed to allocate LDs\n");
561                 return NULL;
562         }
563
564         memset(desc, 0, sizeof(*desc));
565
566         INIT_LIST_HEAD(&desc->tx_list);
567         desc->tx.phys = phys;
568         desc->tx.tx_submit = xgene_dma_tx_submit;
569         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
570
571         chan_dbg(chan, "LD %p allocated\n", desc);
572
573         return desc;
574 }
575
576 /**
577  * xgene_dma_clean_completed_descriptor - free all descriptors which
578  * has been completed and acked
579  * @chan: X-Gene DMA channel
580  *
581  * This function is used on all completed and acked descriptors.
582  */
583 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
584 {
585         struct xgene_dma_desc_sw *desc, *_desc;
586
587         /* Run the callback for each descriptor, in order */
588         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
589                 if (async_tx_test_ack(&desc->tx))
590                         xgene_dma_clean_descriptor(chan, desc);
591         }
592 }
593
594 /**
595  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
596  * @chan: X-Gene DMA channel
597  * @desc: descriptor to cleanup and free
598  *
599  * This function is used on a descriptor which has been executed by the DMA
600  * controller. It will run any callbacks, submit any dependencies.
601  */
602 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
603                                               struct xgene_dma_desc_sw *desc)
604 {
605         struct dma_async_tx_descriptor *tx = &desc->tx;
606
607         /*
608          * If this is not the last transaction in the group,
609          * then no need to complete cookie and run any callback as
610          * this is not the tx_descriptor which had been sent to caller
611          * of this DMA request
612          */
613
614         if (tx->cookie == 0)
615                 return;
616
617         dma_cookie_complete(tx);
618
619         /* Run the link descriptor callback function */
620         if (tx->callback)
621                 tx->callback(tx->callback_param);
622
623         dma_descriptor_unmap(tx);
624
625         /* Run any dependencies */
626         dma_run_dependencies(tx);
627 }
628
629 /**
630  * xgene_dma_clean_running_descriptor - move the completed descriptor from
631  * ld_running to ld_completed
632  * @chan: X-Gene DMA channel
633  * @desc: the descriptor which is completed
634  *
635  * Free the descriptor directly if acked by async_tx api,
636  * else move it to queue ld_completed.
637  */
638 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
639                                                struct xgene_dma_desc_sw *desc)
640 {
641         /* Remove from the list of running transactions */
642         list_del(&desc->node);
643
644         /*
645          * the client is allowed to attach dependent operations
646          * until 'ack' is set
647          */
648         if (!async_tx_test_ack(&desc->tx)) {
649                 /*
650                  * Move this descriptor to the list of descriptors which is
651                  * completed, but still awaiting the 'ack' bit to be set.
652                  */
653                 list_add_tail(&desc->node, &chan->ld_completed);
654                 return;
655         }
656
657         chan_dbg(chan, "LD %p free\n", desc);
658         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
659 }
660
661 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
662                                    struct xgene_dma_desc_sw *desc_sw)
663 {
664         struct xgene_dma_desc_hw *desc_hw;
665
666         /* Check if can push more descriptor to hw for execution */
667         if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
668                 return -EBUSY;
669
670         /* Get hw descriptor from DMA tx ring */
671         desc_hw = &ring->desc_hw[ring->head];
672
673         /*
674          * Increment the head count to point next
675          * descriptor for next time
676          */
677         if (++ring->head == ring->slots)
678                 ring->head = 0;
679
680         /* Copy prepared sw descriptor data to hw descriptor */
681         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
682
683         /*
684          * Check if we have prepared 64B descriptor,
685          * in this case we need one more hw descriptor
686          */
687         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
688                 desc_hw = &ring->desc_hw[ring->head];
689
690                 if (++ring->head == ring->slots)
691                         ring->head = 0;
692
693                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
694         }
695
696         /* Notify the hw that we have descriptor ready for execution */
697         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
698                   2 : 1, ring->cmd);
699
700         return 0;
701 }
702
703 /**
704  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
705  * @chan : X-Gene DMA channel
706  *
707  * LOCKING: must hold chan->lock
708  */
709 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
710 {
711         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
712         int ret;
713
714         /*
715          * If the list of pending descriptors is empty, then we
716          * don't need to do any work at all
717          */
718         if (list_empty(&chan->ld_pending)) {
719                 chan_dbg(chan, "No pending LDs\n");
720                 return;
721         }
722
723         /*
724          * Move elements from the queue of pending transactions onto the list
725          * of running transactions and push it to hw for further executions
726          */
727         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
728                 /*
729                  * Check if have pushed max number of transactions to hw
730                  * as capable, so let's stop here and will push remaining
731                  * elements from pening ld queue after completing some
732                  * descriptors that we have already pushed
733                  */
734                 if (chan->pending >= chan->max_outstanding)
735                         return;
736
737                 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
738                 if (ret)
739                         return;
740
741                 /*
742                  * Delete this element from ld pending queue and append it to
743                  * ld running queue
744                  */
745                 list_move_tail(&desc_sw->node, &chan->ld_running);
746
747                 /* Increment the pending transaction count */
748                 chan->pending++;
749         }
750 }
751
752 /**
753  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
754  * and move them to ld_completed to free until flag 'ack' is set
755  * @chan: X-Gene DMA channel
756  *
757  * This function is used on descriptors which have been executed by the DMA
758  * controller. It will run any callbacks, submit any dependencies, then
759  * free these descriptors if flag 'ack' is set.
760  */
761 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
762 {
763         struct xgene_dma_ring *ring = &chan->rx_ring;
764         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
765         struct xgene_dma_desc_hw *desc_hw;
766         u8 status;
767
768         /* Clean already completed and acked descriptors */
769         xgene_dma_clean_completed_descriptor(chan);
770
771         /* Run the callback for each descriptor, in order */
772         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
773                 /* Get subsequent hw descriptor from DMA rx ring */
774                 desc_hw = &ring->desc_hw[ring->head];
775
776                 /* Check if this descriptor has been completed */
777                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
778                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
779                         break;
780
781                 if (++ring->head == ring->slots)
782                         ring->head = 0;
783
784                 /* Check if we have any error with DMA transactions */
785                 status = XGENE_DMA_DESC_STATUS(
786                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
787                                                         desc_hw->m0)),
788                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
789                                                        desc_hw->m0)));
790                 if (status) {
791                         /* Print the DMA error type */
792                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
793
794                         /*
795                          * We have DMA transactions error here. Dump DMA Tx
796                          * and Rx descriptors for this request */
797                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
798                                             "X-Gene DMA TX DESC1: ");
799
800                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
801                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
802                                                     "X-Gene DMA TX DESC2: ");
803
804                         XGENE_DMA_DESC_DUMP(desc_hw,
805                                             "X-Gene DMA RX ERR DESC: ");
806                 }
807
808                 /* Notify the hw about this completed descriptor */
809                 iowrite32(-1, ring->cmd);
810
811                 /* Mark this hw descriptor as processed */
812                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
813
814                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
815
816                 xgene_dma_clean_running_descriptor(chan, desc_sw);
817
818                 /*
819                  * Decrement the pending transaction count
820                  * as we have processed one
821                  */
822                 chan->pending--;
823         }
824
825         /*
826          * Start any pending transactions automatically
827          * In the ideal case, we keep the DMA controller busy while we go
828          * ahead and free the descriptors below.
829          */
830         xgene_chan_xfer_ld_pending(chan);
831 }
832
833 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
834 {
835         struct xgene_dma_chan *chan = to_dma_chan(dchan);
836
837         /* Has this channel already been allocated? */
838         if (chan->desc_pool)
839                 return 1;
840
841         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
842                                           sizeof(struct xgene_dma_desc_sw),
843                                           0, 0);
844         if (!chan->desc_pool) {
845                 chan_err(chan, "Failed to allocate descriptor pool\n");
846                 return -ENOMEM;
847         }
848
849         chan_dbg(chan, "Allocate descripto pool\n");
850
851         return 1;
852 }
853
854 /**
855  * xgene_dma_free_desc_list - Free all descriptors in a queue
856  * @chan: X-Gene DMA channel
857  * @list: the list to free
858  *
859  * LOCKING: must hold chan->lock
860  */
861 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
862                                      struct list_head *list)
863 {
864         struct xgene_dma_desc_sw *desc, *_desc;
865
866         list_for_each_entry_safe(desc, _desc, list, node)
867                 xgene_dma_clean_descriptor(chan, desc);
868 }
869
870 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
871 {
872         struct xgene_dma_chan *chan = to_dma_chan(dchan);
873
874         chan_dbg(chan, "Free all resources\n");
875
876         if (!chan->desc_pool)
877                 return;
878
879         spin_lock_bh(&chan->lock);
880
881         /* Process all running descriptor */
882         xgene_dma_cleanup_descriptors(chan);
883
884         /* Clean all link descriptor queues */
885         xgene_dma_free_desc_list(chan, &chan->ld_pending);
886         xgene_dma_free_desc_list(chan, &chan->ld_running);
887         xgene_dma_free_desc_list(chan, &chan->ld_completed);
888
889         spin_unlock_bh(&chan->lock);
890
891         /* Delete this channel DMA pool */
892         dma_pool_destroy(chan->desc_pool);
893         chan->desc_pool = NULL;
894 }
895
896 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
897         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
898         size_t len, unsigned long flags)
899 {
900         struct xgene_dma_desc_sw *first = NULL, *new;
901         struct xgene_dma_chan *chan;
902         size_t copy;
903
904         if (unlikely(!dchan || !len))
905                 return NULL;
906
907         chan = to_dma_chan(dchan);
908
909         do {
910                 /* Allocate the link descriptor from DMA pool */
911                 new = xgene_dma_alloc_descriptor(chan);
912                 if (!new)
913                         goto fail;
914
915                 /* Create the largest transaction possible */
916                 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
917
918                 /* Prepare DMA descriptor */
919                 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
920
921                 if (!first)
922                         first = new;
923
924                 new->tx.cookie = 0;
925                 async_tx_ack(&new->tx);
926
927                 /* Update metadata */
928                 len -= copy;
929                 dst += copy;
930                 src += copy;
931
932                 /* Insert the link descriptor to the LD ring */
933                 list_add_tail(&new->node, &first->tx_list);
934         } while (len);
935
936         new->tx.flags = flags; /* client is in control of this ack */
937         new->tx.cookie = -EBUSY;
938         list_splice(&first->tx_list, &new->tx_list);
939
940         return &new->tx;
941
942 fail:
943         if (!first)
944                 return NULL;
945
946         xgene_dma_free_desc_list(chan, &first->tx_list);
947         return NULL;
948 }
949
950 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
951         struct dma_chan *dchan, struct scatterlist *dst_sg,
952         u32 dst_nents, struct scatterlist *src_sg,
953         u32 src_nents, unsigned long flags)
954 {
955         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
956         struct xgene_dma_chan *chan;
957         size_t dst_avail, src_avail;
958         dma_addr_t dst, src;
959         size_t len;
960
961         if (unlikely(!dchan))
962                 return NULL;
963
964         if (unlikely(!dst_nents || !src_nents))
965                 return NULL;
966
967         if (unlikely(!dst_sg || !src_sg))
968                 return NULL;
969
970         chan = to_dma_chan(dchan);
971
972         /* Get prepared for the loop */
973         dst_avail = sg_dma_len(dst_sg);
974         src_avail = sg_dma_len(src_sg);
975         dst_nents--;
976         src_nents--;
977
978         /* Run until we are out of scatterlist entries */
979         while (true) {
980                 /* Create the largest transaction possible */
981                 len = min_t(size_t, src_avail, dst_avail);
982                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
983                 if (len == 0)
984                         goto fetch;
985
986                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
987                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
988
989                 /* Allocate the link descriptor from DMA pool */
990                 new = xgene_dma_alloc_descriptor(chan);
991                 if (!new)
992                         goto fail;
993
994                 /* Prepare DMA descriptor */
995                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
996
997                 if (!first)
998                         first = new;
999
1000                 new->tx.cookie = 0;
1001                 async_tx_ack(&new->tx);
1002
1003                 /* update metadata */
1004                 dst_avail -= len;
1005                 src_avail -= len;
1006
1007                 /* Insert the link descriptor to the LD ring */
1008                 list_add_tail(&new->node, &first->tx_list);
1009
1010 fetch:
1011                 /* fetch the next dst scatterlist entry */
1012                 if (dst_avail == 0) {
1013                         /* no more entries: we're done */
1014                         if (dst_nents == 0)
1015                                 break;
1016
1017                         /* fetch the next entry: if there are no more: done */
1018                         dst_sg = sg_next(dst_sg);
1019                         if (!dst_sg)
1020                                 break;
1021
1022                         dst_nents--;
1023                         dst_avail = sg_dma_len(dst_sg);
1024                 }
1025
1026                 /* fetch the next src scatterlist entry */
1027                 if (src_avail == 0) {
1028                         /* no more entries: we're done */
1029                         if (src_nents == 0)
1030                                 break;
1031
1032                         /* fetch the next entry: if there are no more: done */
1033                         src_sg = sg_next(src_sg);
1034                         if (!src_sg)
1035                                 break;
1036
1037                         src_nents--;
1038                         src_avail = sg_dma_len(src_sg);
1039                 }
1040         }
1041
1042         if (!new)
1043                 return NULL;
1044
1045         new->tx.flags = flags; /* client is in control of this ack */
1046         new->tx.cookie = -EBUSY;
1047         list_splice(&first->tx_list, &new->tx_list);
1048
1049         return &new->tx;
1050 fail:
1051         if (!first)
1052                 return NULL;
1053
1054         xgene_dma_free_desc_list(chan, &first->tx_list);
1055         return NULL;
1056 }
1057
1058 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1059         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1060         u32 src_cnt, size_t len, unsigned long flags)
1061 {
1062         struct xgene_dma_desc_sw *first = NULL, *new;
1063         struct xgene_dma_chan *chan;
1064         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1065                                 0x01, 0x01, 0x01, 0x01, 0x01};
1066
1067         if (unlikely(!dchan || !len))
1068                 return NULL;
1069
1070         chan = to_dma_chan(dchan);
1071
1072         do {
1073                 /* Allocate the link descriptor from DMA pool */
1074                 new = xgene_dma_alloc_descriptor(chan);
1075                 if (!new)
1076                         goto fail;
1077
1078                 /* Prepare xor DMA descriptor */
1079                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1080                                         src_cnt, &len, multi);
1081
1082                 if (!first)
1083                         first = new;
1084
1085                 new->tx.cookie = 0;
1086                 async_tx_ack(&new->tx);
1087
1088                 /* Insert the link descriptor to the LD ring */
1089                 list_add_tail(&new->node, &first->tx_list);
1090         } while (len);
1091
1092         new->tx.flags = flags; /* client is in control of this ack */
1093         new->tx.cookie = -EBUSY;
1094         list_splice(&first->tx_list, &new->tx_list);
1095
1096         return &new->tx;
1097
1098 fail:
1099         if (!first)
1100                 return NULL;
1101
1102         xgene_dma_free_desc_list(chan, &first->tx_list);
1103         return NULL;
1104 }
1105
1106 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1107         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1108         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1109 {
1110         struct xgene_dma_desc_sw *first = NULL, *new;
1111         struct xgene_dma_chan *chan;
1112         size_t _len = len;
1113         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1114         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1115
1116         if (unlikely(!dchan || !len))
1117                 return NULL;
1118
1119         chan = to_dma_chan(dchan);
1120
1121         /*
1122          * Save source addresses on local variable, may be we have to
1123          * prepare two descriptor to generate P and Q if both enabled
1124          * in the flags by client
1125          */
1126         memcpy(_src, src, sizeof(*src) * src_cnt);
1127
1128         if (flags & DMA_PREP_PQ_DISABLE_P)
1129                 len = 0;
1130
1131         if (flags & DMA_PREP_PQ_DISABLE_Q)
1132                 _len = 0;
1133
1134         do {
1135                 /* Allocate the link descriptor from DMA pool */
1136                 new = xgene_dma_alloc_descriptor(chan);
1137                 if (!new)
1138                         goto fail;
1139
1140                 if (!first)
1141                         first = new;
1142
1143                 new->tx.cookie = 0;
1144                 async_tx_ack(&new->tx);
1145
1146                 /* Insert the link descriptor to the LD ring */
1147                 list_add_tail(&new->node, &first->tx_list);
1148
1149                 /*
1150                  * Prepare DMA descriptor to generate P,
1151                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1152                  */
1153                 if (len) {
1154                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1155                                                 src_cnt, &len, multi);
1156                         continue;
1157                 }
1158
1159                 /*
1160                  * Prepare DMA descriptor to generate Q,
1161                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1162                  */
1163                 if (_len) {
1164                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1165                                                 src_cnt, &_len, scf);
1166                 }
1167         } while (len || _len);
1168
1169         new->tx.flags = flags; /* client is in control of this ack */
1170         new->tx.cookie = -EBUSY;
1171         list_splice(&first->tx_list, &new->tx_list);
1172
1173         return &new->tx;
1174
1175 fail:
1176         if (!first)
1177                 return NULL;
1178
1179         xgene_dma_free_desc_list(chan, &first->tx_list);
1180         return NULL;
1181 }
1182
1183 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1184 {
1185         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1186
1187         spin_lock_bh(&chan->lock);
1188         xgene_chan_xfer_ld_pending(chan);
1189         spin_unlock_bh(&chan->lock);
1190 }
1191
1192 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1193                                            dma_cookie_t cookie,
1194                                            struct dma_tx_state *txstate)
1195 {
1196         return dma_cookie_status(dchan, cookie, txstate);
1197 }
1198
1199 static void xgene_dma_tasklet_cb(unsigned long data)
1200 {
1201         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1202
1203         spin_lock_bh(&chan->lock);
1204
1205         /* Run all cleanup for descriptors which have been completed */
1206         xgene_dma_cleanup_descriptors(chan);
1207
1208         /* Re-enable DMA channel IRQ */
1209         enable_irq(chan->rx_irq);
1210
1211         spin_unlock_bh(&chan->lock);
1212 }
1213
1214 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1215 {
1216         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1217
1218         BUG_ON(!chan);
1219
1220         /*
1221          * Disable DMA channel IRQ until we process completed
1222          * descriptors
1223          */
1224         disable_irq_nosync(chan->rx_irq);
1225
1226         /*
1227          * Schedule the tasklet to handle all cleanup of the current
1228          * transaction. It will start a new transaction if there is
1229          * one pending.
1230          */
1231         tasklet_schedule(&chan->tasklet);
1232
1233         return IRQ_HANDLED;
1234 }
1235
1236 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1237 {
1238         struct xgene_dma *pdma = (struct xgene_dma *)id;
1239         unsigned long int_mask;
1240         u32 val, i;
1241
1242         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1243
1244         /* Clear DMA interrupts */
1245         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1246
1247         /* Print DMA error info */
1248         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1249         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1250                 dev_err(pdma->dev,
1251                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1252
1253         return IRQ_HANDLED;
1254 }
1255
1256 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1257 {
1258         int i;
1259
1260         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1261
1262         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1263                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1264                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1265 }
1266
1267 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1268 {
1269         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1270         xgene_dma_wr_ring_state(ring);
1271 }
1272
1273 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1274 {
1275         void *ring_cfg = ring->state;
1276         u64 addr = ring->desc_paddr;
1277         u32 i, val;
1278
1279         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1280
1281         /* Clear DMA ring state */
1282         xgene_dma_clr_ring_state(ring);
1283
1284         /* Set DMA ring type */
1285         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1286
1287         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1288                 /* Set recombination buffer and timeout */
1289                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1290                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1291                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1292         }
1293
1294         /* Initialize DMA ring state */
1295         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1296         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1297         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1298         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1299         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1300         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1301
1302         /* Write DMA ring configurations */
1303         xgene_dma_wr_ring_state(ring);
1304
1305         /* Set DMA ring id */
1306         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1307                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1308
1309         /* Set DMA ring buffer */
1310         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1311                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1312
1313         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1314                 return;
1315
1316         /* Set empty signature to DMA Rx ring descriptors */
1317         for (i = 0; i < ring->slots; i++) {
1318                 struct xgene_dma_desc_hw *desc;
1319
1320                 desc = &ring->desc_hw[i];
1321                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1322         }
1323
1324         /* Enable DMA Rx ring interrupt */
1325         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1326         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1327         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1328 }
1329
1330 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1331 {
1332         u32 ring_id, val;
1333
1334         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1335                 /* Disable DMA Rx ring interrupt */
1336                 val = ioread32(ring->pdma->csr_ring +
1337                                XGENE_DMA_RING_NE_INT_MODE);
1338                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1339                 iowrite32(val, ring->pdma->csr_ring +
1340                           XGENE_DMA_RING_NE_INT_MODE);
1341         }
1342
1343         /* Clear DMA ring state */
1344         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1345         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1346
1347         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1348         xgene_dma_clr_ring_state(ring);
1349 }
1350
1351 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1352 {
1353         ring->cmd_base = ring->pdma->csr_ring_cmd +
1354                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1355                                                           XGENE_DMA_RING_NUM));
1356
1357         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1358 }
1359
1360 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1361                                    enum xgene_dma_ring_cfgsize cfgsize)
1362 {
1363         int size;
1364
1365         switch (cfgsize) {
1366         case XGENE_DMA_RING_CFG_SIZE_512B:
1367                 size = 0x200;
1368                 break;
1369         case XGENE_DMA_RING_CFG_SIZE_2KB:
1370                 size = 0x800;
1371                 break;
1372         case XGENE_DMA_RING_CFG_SIZE_16KB:
1373                 size = 0x4000;
1374                 break;
1375         case XGENE_DMA_RING_CFG_SIZE_64KB:
1376                 size = 0x10000;
1377                 break;
1378         case XGENE_DMA_RING_CFG_SIZE_512KB:
1379                 size = 0x80000;
1380                 break;
1381         default:
1382                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1383                 return -EINVAL;
1384         }
1385
1386         return size;
1387 }
1388
1389 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1390 {
1391         /* Clear DMA ring configurations */
1392         xgene_dma_clear_ring(ring);
1393
1394         /* De-allocate DMA ring descriptor */
1395         if (ring->desc_vaddr) {
1396                 dma_free_coherent(ring->pdma->dev, ring->size,
1397                                   ring->desc_vaddr, ring->desc_paddr);
1398                 ring->desc_vaddr = NULL;
1399         }
1400 }
1401
1402 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1403 {
1404         xgene_dma_delete_ring_one(&chan->rx_ring);
1405         xgene_dma_delete_ring_one(&chan->tx_ring);
1406 }
1407
1408 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1409                                      struct xgene_dma_ring *ring,
1410                                      enum xgene_dma_ring_cfgsize cfgsize)
1411 {
1412         /* Setup DMA ring descriptor variables */
1413         ring->pdma = chan->pdma;
1414         ring->cfgsize = cfgsize;
1415         ring->num = chan->pdma->ring_num++;
1416         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1417
1418         ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1419         if (ring->size <= 0)
1420                 return ring->size;
1421
1422         /* Allocate memory for DMA ring descriptor */
1423         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1424                                                &ring->desc_paddr, GFP_KERNEL);
1425         if (!ring->desc_vaddr) {
1426                 chan_err(chan, "Failed to allocate ring desc\n");
1427                 return -ENOMEM;
1428         }
1429
1430         /* Configure and enable DMA ring */
1431         xgene_dma_set_ring_cmd(ring);
1432         xgene_dma_setup_ring(ring);
1433
1434         return 0;
1435 }
1436
1437 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1438 {
1439         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1440         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1441         int ret;
1442
1443         /* Create DMA Rx ring descriptor */
1444         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1445         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1446
1447         ret = xgene_dma_create_ring_one(chan, rx_ring,
1448                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1449         if (ret)
1450                 return ret;
1451
1452         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1453                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1454
1455         /* Create DMA Tx ring descriptor */
1456         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1457         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1458
1459         ret = xgene_dma_create_ring_one(chan, tx_ring,
1460                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1461         if (ret) {
1462                 xgene_dma_delete_ring_one(rx_ring);
1463                 return ret;
1464         }
1465
1466         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1467
1468         chan_dbg(chan,
1469                  "Tx ring id 0x%X num %d desc 0x%p\n",
1470                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1471
1472         /* Set the max outstanding request possible to this channel */
1473         chan->max_outstanding = rx_ring->slots;
1474
1475         return ret;
1476 }
1477
1478 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1479 {
1480         int ret, i, j;
1481
1482         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1483                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1484                 if (ret) {
1485                         for (j = 0; j < i; j++)
1486                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1487                         return ret;
1488                 }
1489         }
1490
1491         return ret;
1492 }
1493
1494 static void xgene_dma_enable(struct xgene_dma *pdma)
1495 {
1496         u32 val;
1497
1498         /* Configure and enable DMA engine */
1499         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1500         XGENE_DMA_CH_SETUP(val);
1501         XGENE_DMA_ENABLE(val);
1502         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1503 }
1504
1505 static void xgene_dma_disable(struct xgene_dma *pdma)
1506 {
1507         u32 val;
1508
1509         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1510         XGENE_DMA_DISABLE(val);
1511         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1512 }
1513
1514 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1515 {
1516         /*
1517          * Mask DMA ring overflow, underflow and
1518          * AXI write/read error interrupts
1519          */
1520         iowrite32(XGENE_DMA_INT_ALL_MASK,
1521                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1522         iowrite32(XGENE_DMA_INT_ALL_MASK,
1523                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1524         iowrite32(XGENE_DMA_INT_ALL_MASK,
1525                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1526         iowrite32(XGENE_DMA_INT_ALL_MASK,
1527                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1528         iowrite32(XGENE_DMA_INT_ALL_MASK,
1529                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1530
1531         /* Mask DMA error interrupts */
1532         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1533 }
1534
1535 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1536 {
1537         /*
1538          * Unmask DMA ring overflow, underflow and
1539          * AXI write/read error interrupts
1540          */
1541         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1542                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1543         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1544                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1545         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1546                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1547         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1548                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1549         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1550                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1551
1552         /* Unmask DMA error interrupts */
1553         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1554                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1555 }
1556
1557 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1558 {
1559         u32 val;
1560
1561         /* Associate DMA ring to corresponding ring HW */
1562         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1563                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1564
1565         /* Configure RAID6 polynomial control setting */
1566         if (is_pq_enabled(pdma))
1567                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1568                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1569         else
1570                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1571
1572         xgene_dma_enable(pdma);
1573         xgene_dma_unmask_interrupts(pdma);
1574
1575         /* Get DMA id and version info */
1576         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1577
1578         /* DMA device info */
1579         dev_info(pdma->dev,
1580                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1581                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1582                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1583 }
1584
1585 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1586 {
1587         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1588             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1589                 return 0;
1590
1591         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1592         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1593
1594         /* Bring up memory */
1595         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1596
1597         /* Force a barrier */
1598         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1599
1600         /* reset may take up to 1ms */
1601         usleep_range(1000, 1100);
1602
1603         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1604                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1605                 dev_err(pdma->dev,
1606                         "Failed to release ring mngr memory from shutdown\n");
1607                 return -ENODEV;
1608         }
1609
1610         /* program threshold set 1 and all hysteresis */
1611         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1612                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1613         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1614                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1615         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1616                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1617
1618         /* Enable QPcore and assign error queue */
1619         iowrite32(XGENE_DMA_RING_ENABLE,
1620                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1621
1622         return 0;
1623 }
1624
1625 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1626 {
1627         int ret;
1628
1629         ret = xgene_dma_init_ring_mngr(pdma);
1630         if (ret)
1631                 return ret;
1632
1633         /* Bring up memory */
1634         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1635
1636         /* Force a barrier */
1637         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1638
1639         /* reset may take up to 1ms */
1640         usleep_range(1000, 1100);
1641
1642         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1643                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1644                 dev_err(pdma->dev,
1645                         "Failed to release DMA memory from shutdown\n");
1646                 return -ENODEV;
1647         }
1648
1649         return 0;
1650 }
1651
1652 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1653 {
1654         struct xgene_dma_chan *chan;
1655         int ret, i, j;
1656
1657         /* Register DMA error irq */
1658         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1659                                0, "dma_error", pdma);
1660         if (ret) {
1661                 dev_err(pdma->dev,
1662                         "Failed to register error IRQ %d\n", pdma->err_irq);
1663                 return ret;
1664         }
1665
1666         /* Register DMA channel rx irq */
1667         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1668                 chan = &pdma->chan[i];
1669                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1670                                        xgene_dma_chan_ring_isr,
1671                                        0, chan->name, chan);
1672                 if (ret) {
1673                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1674                                  chan->rx_irq);
1675                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1676
1677                         for (j = 0; j < i; j++) {
1678                                 chan = &pdma->chan[i];
1679                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1680                         }
1681
1682                         return ret;
1683                 }
1684         }
1685
1686         return 0;
1687 }
1688
1689 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1690 {
1691         struct xgene_dma_chan *chan;
1692         int i;
1693
1694         /* Free DMA device error irq */
1695         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1696
1697         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1698                 chan = &pdma->chan[i];
1699                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1700         }
1701 }
1702
1703 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1704                                struct dma_device *dma_dev)
1705 {
1706         /* Initialize DMA device capability mask */
1707         dma_cap_zero(dma_dev->cap_mask);
1708
1709         /* Set DMA device capability */
1710         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1711         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1712
1713         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1714          * and channel 1 supports XOR, PQ both. First thing here is we have
1715          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1716          * we can make sure this by reading SoC Efuse register.
1717          * Second thing, we have hw errata that if we run channel 0 and
1718          * channel 1 simultaneously with executing XOR and PQ request,
1719          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1720          * if XOR and PQ supports on channel 1 is disabled.
1721          */
1722         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1723             is_pq_enabled(chan->pdma)) {
1724                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1725                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1726         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1727                    !is_pq_enabled(chan->pdma)) {
1728                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1729         }
1730
1731         /* Set base and prep routines */
1732         dma_dev->dev = chan->dev;
1733         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1734         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1735         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1736         dma_dev->device_tx_status = xgene_dma_tx_status;
1737         dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1738         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1739
1740         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1741                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1742                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1743                 dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
1744         }
1745
1746         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1747                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1748                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1749                 dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
1750         }
1751 }
1752
1753 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1754 {
1755         struct xgene_dma_chan *chan = &pdma->chan[id];
1756         struct dma_device *dma_dev = &pdma->dma_dev[id];
1757         int ret;
1758
1759         chan->dma_chan.device = dma_dev;
1760
1761         spin_lock_init(&chan->lock);
1762         INIT_LIST_HEAD(&chan->ld_pending);
1763         INIT_LIST_HEAD(&chan->ld_running);
1764         INIT_LIST_HEAD(&chan->ld_completed);
1765         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1766                      (unsigned long)chan);
1767
1768         chan->pending = 0;
1769         chan->desc_pool = NULL;
1770         dma_cookie_init(&chan->dma_chan);
1771
1772         /* Setup dma device capabilities and prep routines */
1773         xgene_dma_set_caps(chan, dma_dev);
1774
1775         /* Initialize DMA device list head */
1776         INIT_LIST_HEAD(&dma_dev->channels);
1777         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1778
1779         /* Register with Linux async DMA framework*/
1780         ret = dma_async_device_register(dma_dev);
1781         if (ret) {
1782                 chan_err(chan, "Failed to register async device %d", ret);
1783                 tasklet_kill(&chan->tasklet);
1784
1785                 return ret;
1786         }
1787
1788         /* DMA capability info */
1789         dev_info(pdma->dev,
1790                  "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1791                  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1792                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1793                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1794                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1795
1796         return 0;
1797 }
1798
1799 static int xgene_dma_init_async(struct xgene_dma *pdma)
1800 {
1801         int ret, i, j;
1802
1803         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1804                 ret = xgene_dma_async_register(pdma, i);
1805                 if (ret) {
1806                         for (j = 0; j < i; j++) {
1807                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1808                                 tasklet_kill(&pdma->chan[j].tasklet);
1809                         }
1810
1811                         return ret;
1812                 }
1813         }
1814
1815         return ret;
1816 }
1817
1818 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1819 {
1820         int i;
1821
1822         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1823                 dma_async_device_unregister(&pdma->dma_dev[i]);
1824 }
1825
1826 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1827 {
1828         struct xgene_dma_chan *chan;
1829         int i;
1830
1831         pdma->ring_num = XGENE_DMA_RING_NUM;
1832
1833         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1834                 chan = &pdma->chan[i];
1835                 chan->dev = pdma->dev;
1836                 chan->pdma = pdma;
1837                 chan->id = i;
1838                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1839         }
1840 }
1841
1842 static int xgene_dma_get_resources(struct platform_device *pdev,
1843                                    struct xgene_dma *pdma)
1844 {
1845         struct resource *res;
1846         int irq, i;
1847
1848         /* Get DMA csr region */
1849         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1850         if (!res) {
1851                 dev_err(&pdev->dev, "Failed to get csr region\n");
1852                 return -ENXIO;
1853         }
1854
1855         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1856                                      resource_size(res));
1857         if (!pdma->csr_dma) {
1858                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1859                 return -ENOMEM;
1860         }
1861
1862         /* Get DMA ring csr region */
1863         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1864         if (!res) {
1865                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1866                 return -ENXIO;
1867         }
1868
1869         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1870                                        resource_size(res));
1871         if (!pdma->csr_ring) {
1872                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1873                 return -ENOMEM;
1874         }
1875
1876         /* Get DMA ring cmd csr region */
1877         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1878         if (!res) {
1879                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1880                 return -ENXIO;
1881         }
1882
1883         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1884                                           resource_size(res));
1885         if (!pdma->csr_ring_cmd) {
1886                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1887                 return -ENOMEM;
1888         }
1889
1890         /* Get efuse csr region */
1891         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1892         if (!res) {
1893                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1894                 return -ENXIO;
1895         }
1896
1897         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1898                                        resource_size(res));
1899         if (!pdma->csr_efuse) {
1900                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1901                 return -ENOMEM;
1902         }
1903
1904         /* Get DMA error interrupt */
1905         irq = platform_get_irq(pdev, 0);
1906         if (irq <= 0) {
1907                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1908                 return -ENXIO;
1909         }
1910
1911         pdma->err_irq = irq;
1912
1913         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1914         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1915                 irq = platform_get_irq(pdev, i);
1916                 if (irq <= 0) {
1917                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1918                         return -ENXIO;
1919                 }
1920
1921                 pdma->chan[i - 1].rx_irq = irq;
1922         }
1923
1924         return 0;
1925 }
1926
1927 static int xgene_dma_probe(struct platform_device *pdev)
1928 {
1929         struct xgene_dma *pdma;
1930         int ret, i;
1931
1932         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1933         if (!pdma)
1934                 return -ENOMEM;
1935
1936         pdma->dev = &pdev->dev;
1937         platform_set_drvdata(pdev, pdma);
1938
1939         ret = xgene_dma_get_resources(pdev, pdma);
1940         if (ret)
1941                 return ret;
1942
1943         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1944         if (IS_ERR(pdma->clk)) {
1945                 dev_err(&pdev->dev, "Failed to get clk\n");
1946                 return PTR_ERR(pdma->clk);
1947         }
1948
1949         /* Enable clk before accessing registers */
1950         ret = clk_prepare_enable(pdma->clk);
1951         if (ret) {
1952                 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1953                 return ret;
1954         }
1955
1956         /* Remove DMA RAM out of shutdown */
1957         ret = xgene_dma_init_mem(pdma);
1958         if (ret)
1959                 goto err_clk_enable;
1960
1961         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1962         if (ret) {
1963                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1964                 goto err_dma_mask;
1965         }
1966
1967         /* Initialize DMA channels software state */
1968         xgene_dma_init_channels(pdma);
1969
1970         /* Configue DMA rings */
1971         ret = xgene_dma_init_rings(pdma);
1972         if (ret)
1973                 goto err_clk_enable;
1974
1975         ret = xgene_dma_request_irqs(pdma);
1976         if (ret)
1977                 goto err_request_irq;
1978
1979         /* Configure and enable DMA engine */
1980         xgene_dma_init_hw(pdma);
1981
1982         /* Register DMA device with linux async framework */
1983         ret = xgene_dma_init_async(pdma);
1984         if (ret)
1985                 goto err_async_init;
1986
1987         return 0;
1988
1989 err_async_init:
1990         xgene_dma_free_irqs(pdma);
1991
1992 err_request_irq:
1993         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1994                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1995
1996 err_dma_mask:
1997 err_clk_enable:
1998         clk_disable_unprepare(pdma->clk);
1999
2000         return ret;
2001 }
2002
2003 static int xgene_dma_remove(struct platform_device *pdev)
2004 {
2005         struct xgene_dma *pdma = platform_get_drvdata(pdev);
2006         struct xgene_dma_chan *chan;
2007         int i;
2008
2009         xgene_dma_async_unregister(pdma);
2010
2011         /* Mask interrupts and disable DMA engine */
2012         xgene_dma_mask_interrupts(pdma);
2013         xgene_dma_disable(pdma);
2014         xgene_dma_free_irqs(pdma);
2015
2016         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2017                 chan = &pdma->chan[i];
2018                 tasklet_kill(&chan->tasklet);
2019                 xgene_dma_delete_chan_rings(chan);
2020         }
2021
2022         clk_disable_unprepare(pdma->clk);
2023
2024         return 0;
2025 }
2026
2027 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2028         {.compatible = "apm,xgene-storm-dma",},
2029         {},
2030 };
2031 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2032
2033 static struct platform_driver xgene_dma_driver = {
2034         .probe = xgene_dma_probe,
2035         .remove = xgene_dma_remove,
2036         .driver = {
2037                 .name = "X-Gene-DMA",
2038                 .of_match_table = xgene_dma_of_match_ptr,
2039         },
2040 };
2041
2042 module_platform_driver(xgene_dma_driver);
2043
2044 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2045 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2046 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2047 MODULE_LICENSE("GPL");
2048 MODULE_VERSION("1.0");