]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/xgene-dma.c
Merge tag 'dmaengine-fix-4.3-rc4' of git://git.infradead.org/users/vkoul/slave-dma
[karo-tx-linux.git] / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/module.h>
33 #include <linux/of_device.h>
34
35 #include "dmaengine.h"
36
37 /* X-Gene DMA ring csr registers and bit definations */
38 #define XGENE_DMA_RING_CONFIG                   0x04
39 #define XGENE_DMA_RING_ENABLE                   BIT(31)
40 #define XGENE_DMA_RING_ID                       0x08
41 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
42 #define XGENE_DMA_RING_ID_BUF                   0x0C
43 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
44 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
45 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
46 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
47 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
48 #define XGENE_DMA_RING_HYSTERESIS               0x68
49 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
50 #define XGENE_DMA_RING_STATE                    0x6C
51 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
52 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
53 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
54         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
55 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
56         ((m) &= (~BIT(31 - (v))))
57 #define XGENE_DMA_RING_CLKEN                    0xC208
58 #define XGENE_DMA_RING_SRST                     0xC200
59 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
60 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
61 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
62 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m)          \
67         (((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
69         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
71         (((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
73         (((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
75         (((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
77         (((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
79         (((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
81         (((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
83         (((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
85         (((u32 *)(m))[4] |= ((v) << 19))
86
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR                         0x0
89 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
92 #define XGENE_DMA_GCR                           0x10
93 #define XGENE_DMA_CH_SETUP(v)                   \
94         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT                    0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
99 #define XGENE_DMA_INT                           0x70
100 #define XGENE_DMA_INT_MASK                      0x74
101 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK                0x0
103 #define XGENE_DMA_INT_MASK_SHIFT                0x14
104 #define XGENE_DMA_RING_INT0_MASK                0x90A0
105 #define XGENE_DMA_RING_INT1_MASK                0x90A8
106 #define XGENE_DMA_RING_INT2_MASK                0x90B0
107 #define XGENE_DMA_RING_INT3_MASK                0x90B8
108 #define XGENE_DMA_RING_INT4_MASK                0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
112 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
114 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
115
116 /* X-Gene SoC EFUSE csr register and bit defination */
117 #define XGENE_SOC_JTAG1_SHADOW                  0x18
118 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
119
120 /* X-Gene DMA Descriptor format */
121 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
122 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
123 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
124 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
125 #define XGENE_DMA_DESC_ELERR_POS                46
126 #define XGENE_DMA_DESC_RTYPE_POS                56
127 #define XGENE_DMA_DESC_LERR_POS                 60
128 #define XGENE_DMA_DESC_BUFLEN_POS               48
129 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
130 #define XGENE_DMA_DESC_ELERR_RD(m)              \
131         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
132 #define XGENE_DMA_DESC_LERR_RD(m)               \
133         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
134 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
135         (((elerr) << 4) | (lerr))
136
137 /* X-Gene DMA descriptor empty s/w signature */
138 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
139
140 /* X-Gene DMA configurable parameters defines */
141 #define XGENE_DMA_RING_NUM              512
142 #define XGENE_DMA_BUFNUM                0x0
143 #define XGENE_DMA_CPU_BUFNUM            0x18
144 #define XGENE_DMA_RING_OWNER_DMA        0x03
145 #define XGENE_DMA_RING_OWNER_CPU        0x0F
146 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
147 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
148 #define XGENE_DMA_RING_NUM_CONFIG       5
149 #define XGENE_DMA_MAX_CHANNEL           4
150 #define XGENE_DMA_XOR_CHANNEL           0
151 #define XGENE_DMA_PQ_CHANNEL            1
152 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
153 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
154 #define XGENE_DMA_MAX_XOR_SRC           5
155 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
156 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
157
158 /* X-Gene DMA descriptor error codes */
159 #define ERR_DESC_AXI                    0x01
160 #define ERR_BAD_DESC                    0x02
161 #define ERR_READ_DATA_AXI               0x03
162 #define ERR_WRITE_DATA_AXI              0x04
163 #define ERR_FBP_TIMEOUT                 0x05
164 #define ERR_ECC                         0x06
165 #define ERR_DIFF_SIZE                   0x08
166 #define ERR_SCT_GAT_LEN                 0x09
167 #define ERR_CRC_ERR                     0x11
168 #define ERR_CHKSUM                      0x12
169 #define ERR_DIF                         0x13
170
171 /* X-Gene DMA error interrupt codes */
172 #define ERR_DIF_SIZE_INT                0x0
173 #define ERR_GS_ERR_INT                  0x1
174 #define ERR_FPB_TIMEO_INT               0x2
175 #define ERR_WFIFO_OVF_INT               0x3
176 #define ERR_RFIFO_OVF_INT               0x4
177 #define ERR_WR_TIMEO_INT                0x5
178 #define ERR_RD_TIMEO_INT                0x6
179 #define ERR_WR_ERR_INT                  0x7
180 #define ERR_RD_ERR_INT                  0x8
181 #define ERR_BAD_DESC_INT                0x9
182 #define ERR_DESC_DST_INT                0xA
183 #define ERR_DESC_SRC_INT                0xB
184
185 /* X-Gene DMA flyby operation code */
186 #define FLYBY_2SRC_XOR                  0x80
187 #define FLYBY_3SRC_XOR                  0x90
188 #define FLYBY_4SRC_XOR                  0xA0
189 #define FLYBY_5SRC_XOR                  0xB0
190
191 /* X-Gene DMA SW descriptor flags */
192 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
193
194 /* Define to dump X-Gene DMA descriptor */
195 #define XGENE_DMA_DESC_DUMP(desc, m)    \
196         print_hex_dump(KERN_ERR, (m),   \
197                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
198
199 #define to_dma_desc_sw(tx)              \
200         container_of(tx, struct xgene_dma_desc_sw, tx)
201 #define to_dma_chan(dchan)              \
202         container_of(dchan, struct xgene_dma_chan, dma_chan)
203
204 #define chan_dbg(chan, fmt, arg...)     \
205         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
206 #define chan_err(chan, fmt, arg...)     \
207         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
208
209 struct xgene_dma_desc_hw {
210         __le64 m0;
211         __le64 m1;
212         __le64 m2;
213         __le64 m3;
214 };
215
216 enum xgene_dma_ring_cfgsize {
217         XGENE_DMA_RING_CFG_SIZE_512B,
218         XGENE_DMA_RING_CFG_SIZE_2KB,
219         XGENE_DMA_RING_CFG_SIZE_16KB,
220         XGENE_DMA_RING_CFG_SIZE_64KB,
221         XGENE_DMA_RING_CFG_SIZE_512KB,
222         XGENE_DMA_RING_CFG_SIZE_INVALID
223 };
224
225 struct xgene_dma_ring {
226         struct xgene_dma *pdma;
227         u8 buf_num;
228         u16 id;
229         u16 num;
230         u16 head;
231         u16 owner;
232         u16 slots;
233         u16 dst_ring_num;
234         u32 size;
235         void __iomem *cmd;
236         void __iomem *cmd_base;
237         dma_addr_t desc_paddr;
238         u32 state[XGENE_DMA_RING_NUM_CONFIG];
239         enum xgene_dma_ring_cfgsize cfgsize;
240         union {
241                 void *desc_vaddr;
242                 struct xgene_dma_desc_hw *desc_hw;
243         };
244 };
245
246 struct xgene_dma_desc_sw {
247         struct xgene_dma_desc_hw desc1;
248         struct xgene_dma_desc_hw desc2;
249         u32 flags;
250         struct list_head node;
251         struct list_head tx_list;
252         struct dma_async_tx_descriptor tx;
253 };
254
255 /**
256  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
257  * @dma_chan: dmaengine channel object member
258  * @pdma: X-Gene DMA device structure reference
259  * @dev: struct device reference for dma mapping api
260  * @id: raw id of this channel
261  * @rx_irq: channel IRQ
262  * @name: name of X-Gene DMA channel
263  * @lock: serializes enqueue/dequeue operations to the descriptor pool
264  * @pending: number of transaction request pushed to DMA controller for
265  *      execution, but still waiting for completion,
266  * @max_outstanding: max number of outstanding request we can push to channel
267  * @ld_pending: descriptors which are queued to run, but have not yet been
268  *      submitted to the hardware for execution
269  * @ld_running: descriptors which are currently being executing by the hardware
270  * @ld_completed: descriptors which have finished execution by the hardware.
271  *      These descriptors have already had their cleanup actions run. They
272  *      are waiting for the ACK bit to be set by the async tx API.
273  * @desc_pool: descriptor pool for DMA operations
274  * @tasklet: bottom half where all completed descriptors cleans
275  * @tx_ring: transmit ring descriptor that we use to prepare actual
276  *      descriptors for further executions
277  * @rx_ring: receive ring descriptor that we use to get completed DMA
278  *      descriptors during cleanup time
279  */
280 struct xgene_dma_chan {
281         struct dma_chan dma_chan;
282         struct xgene_dma *pdma;
283         struct device *dev;
284         int id;
285         int rx_irq;
286         char name[10];
287         spinlock_t lock;
288         int pending;
289         int max_outstanding;
290         struct list_head ld_pending;
291         struct list_head ld_running;
292         struct list_head ld_completed;
293         struct dma_pool *desc_pool;
294         struct tasklet_struct tasklet;
295         struct xgene_dma_ring tx_ring;
296         struct xgene_dma_ring rx_ring;
297 };
298
299 /**
300  * struct xgene_dma - internal representation of an X-Gene DMA device
301  * @err_irq: DMA error irq number
302  * @ring_num: start id number for DMA ring
303  * @csr_dma: base for DMA register access
304  * @csr_ring: base for DMA ring register access
305  * @csr_ring_cmd: base for DMA ring command register access
306  * @csr_efuse: base for efuse register access
307  * @dma_dev: embedded struct dma_device
308  * @chan: reference to X-Gene DMA channels
309  */
310 struct xgene_dma {
311         struct device *dev;
312         struct clk *clk;
313         int err_irq;
314         int ring_num;
315         void __iomem *csr_dma;
316         void __iomem *csr_ring;
317         void __iomem *csr_ring_cmd;
318         void __iomem *csr_efuse;
319         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
320         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
321 };
322
323 static const char * const xgene_dma_desc_err[] = {
324         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
325         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
326         [ERR_READ_DATA_AXI] = "AXI error when reading data",
327         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
328         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
329         [ERR_ECC] = "ECC double bit error",
330         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
331         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
332         [ERR_CRC_ERR] = "CRC error",
333         [ERR_CHKSUM] = "Checksum error",
334         [ERR_DIF] = "DIF error",
335 };
336
337 static const char * const xgene_dma_err[] = {
338         [ERR_DIF_SIZE_INT] = "DIF size error",
339         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
340         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
341         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
342         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
343         [ERR_WR_TIMEO_INT] = "Write time out error",
344         [ERR_RD_TIMEO_INT] = "Read time out error",
345         [ERR_WR_ERR_INT] = "HBF bus write error",
346         [ERR_RD_ERR_INT] = "HBF bus read error",
347         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
348         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
349         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
350 };
351
352 static bool is_pq_enabled(struct xgene_dma *pdma)
353 {
354         u32 val;
355
356         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
357         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
358 }
359
360 static u64 xgene_dma_encode_len(size_t len)
361 {
362         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
363                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
364                 XGENE_DMA_16K_BUFFER_LEN_CODE;
365 }
366
367 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
368 {
369         static u8 flyby_type[] = {
370                 FLYBY_2SRC_XOR, /* Dummy */
371                 FLYBY_2SRC_XOR, /* Dummy */
372                 FLYBY_2SRC_XOR,
373                 FLYBY_3SRC_XOR,
374                 FLYBY_4SRC_XOR,
375                 FLYBY_5SRC_XOR
376         };
377
378         return flyby_type[src_cnt];
379 }
380
381 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
382                                      dma_addr_t *paddr)
383 {
384         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
385                         *len : XGENE_DMA_MAX_BYTE_CNT;
386
387         *ext8 |= cpu_to_le64(*paddr);
388         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
389         *len -= nbytes;
390         *paddr += nbytes;
391 }
392
393 static void xgene_dma_invalidate_buffer(__le64 *ext8)
394 {
395         *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
396 }
397
398 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
399 {
400         switch (idx) {
401         case 0:
402                 return &desc->m1;
403         case 1:
404                 return &desc->m0;
405         case 2:
406                 return &desc->m3;
407         case 3:
408                 return &desc->m2;
409         default:
410                 pr_err("Invalid dma descriptor index\n");
411         }
412
413         return NULL;
414 }
415
416 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
417                                 u16 dst_ring_num)
418 {
419         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
420         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
421                                 XGENE_DMA_DESC_RTYPE_POS);
422         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
423         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
424                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
425 }
426
427 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
428                                     struct xgene_dma_desc_sw *desc_sw,
429                                     dma_addr_t dst, dma_addr_t src,
430                                     size_t len)
431 {
432         struct xgene_dma_desc_hw *desc1, *desc2;
433         int i;
434
435         /* Get 1st descriptor */
436         desc1 = &desc_sw->desc1;
437         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
438
439         /* Set destination address */
440         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
441         desc1->m3 |= cpu_to_le64(dst);
442
443         /* Set 1st source address */
444         xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
445
446         if (!len)
447                 return;
448
449         /*
450          * We need to split this source buffer,
451          * and need to use 2nd descriptor
452          */
453         desc2 = &desc_sw->desc2;
454         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
455
456         /* Set 2nd to 5th source address */
457         for (i = 0; i < 4 && len; i++)
458                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
459                                          &len, &src);
460
461         /* Invalidate unused source address field */
462         for (; i < 4; i++)
463                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
464
465         /* Updated flag that we have prepared 64B descriptor */
466         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
467 }
468
469 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
470                                     struct xgene_dma_desc_sw *desc_sw,
471                                     dma_addr_t *dst, dma_addr_t *src,
472                                     u32 src_cnt, size_t *nbytes,
473                                     const u8 *scf)
474 {
475         struct xgene_dma_desc_hw *desc1, *desc2;
476         size_t len = *nbytes;
477         int i;
478
479         desc1 = &desc_sw->desc1;
480         desc2 = &desc_sw->desc2;
481
482         /* Initialize DMA descriptor */
483         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
484
485         /* Set destination address */
486         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
487         desc1->m3 |= cpu_to_le64(*dst);
488
489         /* We have multiple source addresses, so need to set NV bit*/
490         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
491
492         /* Set flyby opcode */
493         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
494
495         /* Set 1st to 5th source addresses */
496         for (i = 0; i < src_cnt; i++) {
497                 len = *nbytes;
498                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
499                                          xgene_dma_lookup_ext8(desc2, i - 1),
500                                          &len, &src[i]);
501                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
502         }
503
504         /* Update meta data */
505         *nbytes = len;
506         *dst += XGENE_DMA_MAX_BYTE_CNT;
507
508         /* We need always 64B descriptor to perform xor or pq operations */
509         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
510 }
511
512 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
513 {
514         struct xgene_dma_desc_sw *desc;
515         struct xgene_dma_chan *chan;
516         dma_cookie_t cookie;
517
518         if (unlikely(!tx))
519                 return -EINVAL;
520
521         chan = to_dma_chan(tx->chan);
522         desc = to_dma_desc_sw(tx);
523
524         spin_lock_bh(&chan->lock);
525
526         cookie = dma_cookie_assign(tx);
527
528         /* Add this transaction list onto the tail of the pending queue */
529         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
530
531         spin_unlock_bh(&chan->lock);
532
533         return cookie;
534 }
535
536 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
537                                        struct xgene_dma_desc_sw *desc)
538 {
539         list_del(&desc->node);
540         chan_dbg(chan, "LD %p free\n", desc);
541         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
542 }
543
544 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
545                                  struct xgene_dma_chan *chan)
546 {
547         struct xgene_dma_desc_sw *desc;
548         dma_addr_t phys;
549
550         desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
551         if (!desc) {
552                 chan_err(chan, "Failed to allocate LDs\n");
553                 return NULL;
554         }
555
556         memset(desc, 0, sizeof(*desc));
557
558         INIT_LIST_HEAD(&desc->tx_list);
559         desc->tx.phys = phys;
560         desc->tx.tx_submit = xgene_dma_tx_submit;
561         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
562
563         chan_dbg(chan, "LD %p allocated\n", desc);
564
565         return desc;
566 }
567
568 /**
569  * xgene_dma_clean_completed_descriptor - free all descriptors which
570  * has been completed and acked
571  * @chan: X-Gene DMA channel
572  *
573  * This function is used on all completed and acked descriptors.
574  */
575 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
576 {
577         struct xgene_dma_desc_sw *desc, *_desc;
578
579         /* Run the callback for each descriptor, in order */
580         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
581                 if (async_tx_test_ack(&desc->tx))
582                         xgene_dma_clean_descriptor(chan, desc);
583         }
584 }
585
586 /**
587  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
588  * @chan: X-Gene DMA channel
589  * @desc: descriptor to cleanup and free
590  *
591  * This function is used on a descriptor which has been executed by the DMA
592  * controller. It will run any callbacks, submit any dependencies.
593  */
594 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
595                                               struct xgene_dma_desc_sw *desc)
596 {
597         struct dma_async_tx_descriptor *tx = &desc->tx;
598
599         /*
600          * If this is not the last transaction in the group,
601          * then no need to complete cookie and run any callback as
602          * this is not the tx_descriptor which had been sent to caller
603          * of this DMA request
604          */
605
606         if (tx->cookie == 0)
607                 return;
608
609         dma_cookie_complete(tx);
610
611         /* Run the link descriptor callback function */
612         if (tx->callback)
613                 tx->callback(tx->callback_param);
614
615         dma_descriptor_unmap(tx);
616
617         /* Run any dependencies */
618         dma_run_dependencies(tx);
619 }
620
621 /**
622  * xgene_dma_clean_running_descriptor - move the completed descriptor from
623  * ld_running to ld_completed
624  * @chan: X-Gene DMA channel
625  * @desc: the descriptor which is completed
626  *
627  * Free the descriptor directly if acked by async_tx api,
628  * else move it to queue ld_completed.
629  */
630 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
631                                                struct xgene_dma_desc_sw *desc)
632 {
633         /* Remove from the list of running transactions */
634         list_del(&desc->node);
635
636         /*
637          * the client is allowed to attach dependent operations
638          * until 'ack' is set
639          */
640         if (!async_tx_test_ack(&desc->tx)) {
641                 /*
642                  * Move this descriptor to the list of descriptors which is
643                  * completed, but still awaiting the 'ack' bit to be set.
644                  */
645                 list_add_tail(&desc->node, &chan->ld_completed);
646                 return;
647         }
648
649         chan_dbg(chan, "LD %p free\n", desc);
650         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
651 }
652
653 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
654                                     struct xgene_dma_desc_sw *desc_sw)
655 {
656         struct xgene_dma_ring *ring = &chan->tx_ring;
657         struct xgene_dma_desc_hw *desc_hw;
658
659         /* Get hw descriptor from DMA tx ring */
660         desc_hw = &ring->desc_hw[ring->head];
661
662         /*
663          * Increment the head count to point next
664          * descriptor for next time
665          */
666         if (++ring->head == ring->slots)
667                 ring->head = 0;
668
669         /* Copy prepared sw descriptor data to hw descriptor */
670         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
671
672         /*
673          * Check if we have prepared 64B descriptor,
674          * in this case we need one more hw descriptor
675          */
676         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
677                 desc_hw = &ring->desc_hw[ring->head];
678
679                 if (++ring->head == ring->slots)
680                         ring->head = 0;
681
682                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
683         }
684
685         /* Increment the pending transaction count */
686         chan->pending += ((desc_sw->flags &
687                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
688
689         /* Notify the hw that we have descriptor ready for execution */
690         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
691                   2 : 1, ring->cmd);
692 }
693
694 /**
695  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
696  * @chan : X-Gene DMA channel
697  *
698  * LOCKING: must hold chan->lock
699  */
700 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
701 {
702         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
703
704         /*
705          * If the list of pending descriptors is empty, then we
706          * don't need to do any work at all
707          */
708         if (list_empty(&chan->ld_pending)) {
709                 chan_dbg(chan, "No pending LDs\n");
710                 return;
711         }
712
713         /*
714          * Move elements from the queue of pending transactions onto the list
715          * of running transactions and push it to hw for further executions
716          */
717         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
718                 /*
719                  * Check if have pushed max number of transactions to hw
720                  * as capable, so let's stop here and will push remaining
721                  * elements from pening ld queue after completing some
722                  * descriptors that we have already pushed
723                  */
724                 if (chan->pending >= chan->max_outstanding)
725                         return;
726
727                 xgene_chan_xfer_request(chan, desc_sw);
728
729                 /*
730                  * Delete this element from ld pending queue and append it to
731                  * ld running queue
732                  */
733                 list_move_tail(&desc_sw->node, &chan->ld_running);
734         }
735 }
736
737 /**
738  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
739  * and move them to ld_completed to free until flag 'ack' is set
740  * @chan: X-Gene DMA channel
741  *
742  * This function is used on descriptors which have been executed by the DMA
743  * controller. It will run any callbacks, submit any dependencies, then
744  * free these descriptors if flag 'ack' is set.
745  */
746 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
747 {
748         struct xgene_dma_ring *ring = &chan->rx_ring;
749         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
750         struct xgene_dma_desc_hw *desc_hw;
751         struct list_head ld_completed;
752         u8 status;
753
754         INIT_LIST_HEAD(&ld_completed);
755
756         spin_lock_bh(&chan->lock);
757
758         /* Clean already completed and acked descriptors */
759         xgene_dma_clean_completed_descriptor(chan);
760
761         /* Move all completed descriptors to ld completed queue, in order */
762         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
763                 /* Get subsequent hw descriptor from DMA rx ring */
764                 desc_hw = &ring->desc_hw[ring->head];
765
766                 /* Check if this descriptor has been completed */
767                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
768                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
769                         break;
770
771                 if (++ring->head == ring->slots)
772                         ring->head = 0;
773
774                 /* Check if we have any error with DMA transactions */
775                 status = XGENE_DMA_DESC_STATUS(
776                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
777                                                         desc_hw->m0)),
778                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
779                                                        desc_hw->m0)));
780                 if (status) {
781                         /* Print the DMA error type */
782                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
783
784                         /*
785                          * We have DMA transactions error here. Dump DMA Tx
786                          * and Rx descriptors for this request */
787                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
788                                             "X-Gene DMA TX DESC1: ");
789
790                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
791                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
792                                                     "X-Gene DMA TX DESC2: ");
793
794                         XGENE_DMA_DESC_DUMP(desc_hw,
795                                             "X-Gene DMA RX ERR DESC: ");
796                 }
797
798                 /* Notify the hw about this completed descriptor */
799                 iowrite32(-1, ring->cmd);
800
801                 /* Mark this hw descriptor as processed */
802                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
803
804                 /*
805                  * Decrement the pending transaction count
806                  * as we have processed one
807                  */
808                 chan->pending -= ((desc_sw->flags &
809                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
810
811                 /*
812                  * Delete this node from ld running queue and append it to
813                  * ld completed queue for further processing
814                  */
815                 list_move_tail(&desc_sw->node, &ld_completed);
816         }
817
818         /*
819          * Start any pending transactions automatically
820          * In the ideal case, we keep the DMA controller busy while we go
821          * ahead and free the descriptors below.
822          */
823         xgene_chan_xfer_ld_pending(chan);
824
825         spin_unlock_bh(&chan->lock);
826
827         /* Run the callback for each descriptor, in order */
828         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
829                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
830                 xgene_dma_clean_running_descriptor(chan, desc_sw);
831         }
832 }
833
834 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
835 {
836         struct xgene_dma_chan *chan = to_dma_chan(dchan);
837
838         /* Has this channel already been allocated? */
839         if (chan->desc_pool)
840                 return 1;
841
842         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
843                                           sizeof(struct xgene_dma_desc_sw),
844                                           0, 0);
845         if (!chan->desc_pool) {
846                 chan_err(chan, "Failed to allocate descriptor pool\n");
847                 return -ENOMEM;
848         }
849
850         chan_dbg(chan, "Allocate descripto pool\n");
851
852         return 1;
853 }
854
855 /**
856  * xgene_dma_free_desc_list - Free all descriptors in a queue
857  * @chan: X-Gene DMA channel
858  * @list: the list to free
859  *
860  * LOCKING: must hold chan->lock
861  */
862 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
863                                      struct list_head *list)
864 {
865         struct xgene_dma_desc_sw *desc, *_desc;
866
867         list_for_each_entry_safe(desc, _desc, list, node)
868                 xgene_dma_clean_descriptor(chan, desc);
869 }
870
871 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
872 {
873         struct xgene_dma_chan *chan = to_dma_chan(dchan);
874
875         chan_dbg(chan, "Free all resources\n");
876
877         if (!chan->desc_pool)
878                 return;
879
880         /* Process all running descriptor */
881         xgene_dma_cleanup_descriptors(chan);
882
883         spin_lock_bh(&chan->lock);
884
885         /* Clean all link descriptor queues */
886         xgene_dma_free_desc_list(chan, &chan->ld_pending);
887         xgene_dma_free_desc_list(chan, &chan->ld_running);
888         xgene_dma_free_desc_list(chan, &chan->ld_completed);
889
890         spin_unlock_bh(&chan->lock);
891
892         /* Delete this channel DMA pool */
893         dma_pool_destroy(chan->desc_pool);
894         chan->desc_pool = NULL;
895 }
896
897 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
898         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
899         size_t len, unsigned long flags)
900 {
901         struct xgene_dma_desc_sw *first = NULL, *new;
902         struct xgene_dma_chan *chan;
903         size_t copy;
904
905         if (unlikely(!dchan || !len))
906                 return NULL;
907
908         chan = to_dma_chan(dchan);
909
910         do {
911                 /* Allocate the link descriptor from DMA pool */
912                 new = xgene_dma_alloc_descriptor(chan);
913                 if (!new)
914                         goto fail;
915
916                 /* Create the largest transaction possible */
917                 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
918
919                 /* Prepare DMA descriptor */
920                 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
921
922                 if (!first)
923                         first = new;
924
925                 new->tx.cookie = 0;
926                 async_tx_ack(&new->tx);
927
928                 /* Update metadata */
929                 len -= copy;
930                 dst += copy;
931                 src += copy;
932
933                 /* Insert the link descriptor to the LD ring */
934                 list_add_tail(&new->node, &first->tx_list);
935         } while (len);
936
937         new->tx.flags = flags; /* client is in control of this ack */
938         new->tx.cookie = -EBUSY;
939         list_splice(&first->tx_list, &new->tx_list);
940
941         return &new->tx;
942
943 fail:
944         if (!first)
945                 return NULL;
946
947         xgene_dma_free_desc_list(chan, &first->tx_list);
948         return NULL;
949 }
950
951 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
952         struct dma_chan *dchan, struct scatterlist *dst_sg,
953         u32 dst_nents, struct scatterlist *src_sg,
954         u32 src_nents, unsigned long flags)
955 {
956         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
957         struct xgene_dma_chan *chan;
958         size_t dst_avail, src_avail;
959         dma_addr_t dst, src;
960         size_t len;
961
962         if (unlikely(!dchan))
963                 return NULL;
964
965         if (unlikely(!dst_nents || !src_nents))
966                 return NULL;
967
968         if (unlikely(!dst_sg || !src_sg))
969                 return NULL;
970
971         chan = to_dma_chan(dchan);
972
973         /* Get prepared for the loop */
974         dst_avail = sg_dma_len(dst_sg);
975         src_avail = sg_dma_len(src_sg);
976         dst_nents--;
977         src_nents--;
978
979         /* Run until we are out of scatterlist entries */
980         while (true) {
981                 /* Create the largest transaction possible */
982                 len = min_t(size_t, src_avail, dst_avail);
983                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
984                 if (len == 0)
985                         goto fetch;
986
987                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
988                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
989
990                 /* Allocate the link descriptor from DMA pool */
991                 new = xgene_dma_alloc_descriptor(chan);
992                 if (!new)
993                         goto fail;
994
995                 /* Prepare DMA descriptor */
996                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
997
998                 if (!first)
999                         first = new;
1000
1001                 new->tx.cookie = 0;
1002                 async_tx_ack(&new->tx);
1003
1004                 /* update metadata */
1005                 dst_avail -= len;
1006                 src_avail -= len;
1007
1008                 /* Insert the link descriptor to the LD ring */
1009                 list_add_tail(&new->node, &first->tx_list);
1010
1011 fetch:
1012                 /* fetch the next dst scatterlist entry */
1013                 if (dst_avail == 0) {
1014                         /* no more entries: we're done */
1015                         if (dst_nents == 0)
1016                                 break;
1017
1018                         /* fetch the next entry: if there are no more: done */
1019                         dst_sg = sg_next(dst_sg);
1020                         if (!dst_sg)
1021                                 break;
1022
1023                         dst_nents--;
1024                         dst_avail = sg_dma_len(dst_sg);
1025                 }
1026
1027                 /* fetch the next src scatterlist entry */
1028                 if (src_avail == 0) {
1029                         /* no more entries: we're done */
1030                         if (src_nents == 0)
1031                                 break;
1032
1033                         /* fetch the next entry: if there are no more: done */
1034                         src_sg = sg_next(src_sg);
1035                         if (!src_sg)
1036                                 break;
1037
1038                         src_nents--;
1039                         src_avail = sg_dma_len(src_sg);
1040                 }
1041         }
1042
1043         if (!new)
1044                 return NULL;
1045
1046         new->tx.flags = flags; /* client is in control of this ack */
1047         new->tx.cookie = -EBUSY;
1048         list_splice(&first->tx_list, &new->tx_list);
1049
1050         return &new->tx;
1051 fail:
1052         if (!first)
1053                 return NULL;
1054
1055         xgene_dma_free_desc_list(chan, &first->tx_list);
1056         return NULL;
1057 }
1058
1059 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1060         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1061         u32 src_cnt, size_t len, unsigned long flags)
1062 {
1063         struct xgene_dma_desc_sw *first = NULL, *new;
1064         struct xgene_dma_chan *chan;
1065         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1066                                 0x01, 0x01, 0x01, 0x01, 0x01};
1067
1068         if (unlikely(!dchan || !len))
1069                 return NULL;
1070
1071         chan = to_dma_chan(dchan);
1072
1073         do {
1074                 /* Allocate the link descriptor from DMA pool */
1075                 new = xgene_dma_alloc_descriptor(chan);
1076                 if (!new)
1077                         goto fail;
1078
1079                 /* Prepare xor DMA descriptor */
1080                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1081                                         src_cnt, &len, multi);
1082
1083                 if (!first)
1084                         first = new;
1085
1086                 new->tx.cookie = 0;
1087                 async_tx_ack(&new->tx);
1088
1089                 /* Insert the link descriptor to the LD ring */
1090                 list_add_tail(&new->node, &first->tx_list);
1091         } while (len);
1092
1093         new->tx.flags = flags; /* client is in control of this ack */
1094         new->tx.cookie = -EBUSY;
1095         list_splice(&first->tx_list, &new->tx_list);
1096
1097         return &new->tx;
1098
1099 fail:
1100         if (!first)
1101                 return NULL;
1102
1103         xgene_dma_free_desc_list(chan, &first->tx_list);
1104         return NULL;
1105 }
1106
1107 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1108         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1109         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1110 {
1111         struct xgene_dma_desc_sw *first = NULL, *new;
1112         struct xgene_dma_chan *chan;
1113         size_t _len = len;
1114         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1115         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1116
1117         if (unlikely(!dchan || !len))
1118                 return NULL;
1119
1120         chan = to_dma_chan(dchan);
1121
1122         /*
1123          * Save source addresses on local variable, may be we have to
1124          * prepare two descriptor to generate P and Q if both enabled
1125          * in the flags by client
1126          */
1127         memcpy(_src, src, sizeof(*src) * src_cnt);
1128
1129         if (flags & DMA_PREP_PQ_DISABLE_P)
1130                 len = 0;
1131
1132         if (flags & DMA_PREP_PQ_DISABLE_Q)
1133                 _len = 0;
1134
1135         do {
1136                 /* Allocate the link descriptor from DMA pool */
1137                 new = xgene_dma_alloc_descriptor(chan);
1138                 if (!new)
1139                         goto fail;
1140
1141                 if (!first)
1142                         first = new;
1143
1144                 new->tx.cookie = 0;
1145                 async_tx_ack(&new->tx);
1146
1147                 /* Insert the link descriptor to the LD ring */
1148                 list_add_tail(&new->node, &first->tx_list);
1149
1150                 /*
1151                  * Prepare DMA descriptor to generate P,
1152                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1153                  */
1154                 if (len) {
1155                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1156                                                 src_cnt, &len, multi);
1157                         continue;
1158                 }
1159
1160                 /*
1161                  * Prepare DMA descriptor to generate Q,
1162                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1163                  */
1164                 if (_len) {
1165                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1166                                                 src_cnt, &_len, scf);
1167                 }
1168         } while (len || _len);
1169
1170         new->tx.flags = flags; /* client is in control of this ack */
1171         new->tx.cookie = -EBUSY;
1172         list_splice(&first->tx_list, &new->tx_list);
1173
1174         return &new->tx;
1175
1176 fail:
1177         if (!first)
1178                 return NULL;
1179
1180         xgene_dma_free_desc_list(chan, &first->tx_list);
1181         return NULL;
1182 }
1183
1184 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1185 {
1186         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1187
1188         spin_lock_bh(&chan->lock);
1189         xgene_chan_xfer_ld_pending(chan);
1190         spin_unlock_bh(&chan->lock);
1191 }
1192
1193 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1194                                            dma_cookie_t cookie,
1195                                            struct dma_tx_state *txstate)
1196 {
1197         return dma_cookie_status(dchan, cookie, txstate);
1198 }
1199
1200 static void xgene_dma_tasklet_cb(unsigned long data)
1201 {
1202         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1203
1204         /* Run all cleanup for descriptors which have been completed */
1205         xgene_dma_cleanup_descriptors(chan);
1206
1207         /* Re-enable DMA channel IRQ */
1208         enable_irq(chan->rx_irq);
1209 }
1210
1211 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1212 {
1213         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1214
1215         BUG_ON(!chan);
1216
1217         /*
1218          * Disable DMA channel IRQ until we process completed
1219          * descriptors
1220          */
1221         disable_irq_nosync(chan->rx_irq);
1222
1223         /*
1224          * Schedule the tasklet to handle all cleanup of the current
1225          * transaction. It will start a new transaction if there is
1226          * one pending.
1227          */
1228         tasklet_schedule(&chan->tasklet);
1229
1230         return IRQ_HANDLED;
1231 }
1232
1233 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1234 {
1235         struct xgene_dma *pdma = (struct xgene_dma *)id;
1236         unsigned long int_mask;
1237         u32 val, i;
1238
1239         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1240
1241         /* Clear DMA interrupts */
1242         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1243
1244         /* Print DMA error info */
1245         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1246         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1247                 dev_err(pdma->dev,
1248                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1249
1250         return IRQ_HANDLED;
1251 }
1252
1253 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1254 {
1255         int i;
1256
1257         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1258
1259         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1260                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1261                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1262 }
1263
1264 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1265 {
1266         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1267         xgene_dma_wr_ring_state(ring);
1268 }
1269
1270 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1271 {
1272         void *ring_cfg = ring->state;
1273         u64 addr = ring->desc_paddr;
1274         u32 i, val;
1275
1276         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1277
1278         /* Clear DMA ring state */
1279         xgene_dma_clr_ring_state(ring);
1280
1281         /* Set DMA ring type */
1282         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1283
1284         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1285                 /* Set recombination buffer and timeout */
1286                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1287                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1288                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1289         }
1290
1291         /* Initialize DMA ring state */
1292         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1293         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1294         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1295         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1296         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1297         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1298
1299         /* Write DMA ring configurations */
1300         xgene_dma_wr_ring_state(ring);
1301
1302         /* Set DMA ring id */
1303         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1304                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1305
1306         /* Set DMA ring buffer */
1307         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1308                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1309
1310         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1311                 return;
1312
1313         /* Set empty signature to DMA Rx ring descriptors */
1314         for (i = 0; i < ring->slots; i++) {
1315                 struct xgene_dma_desc_hw *desc;
1316
1317                 desc = &ring->desc_hw[i];
1318                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1319         }
1320
1321         /* Enable DMA Rx ring interrupt */
1322         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1323         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1324         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1325 }
1326
1327 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1328 {
1329         u32 ring_id, val;
1330
1331         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1332                 /* Disable DMA Rx ring interrupt */
1333                 val = ioread32(ring->pdma->csr_ring +
1334                                XGENE_DMA_RING_NE_INT_MODE);
1335                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1336                 iowrite32(val, ring->pdma->csr_ring +
1337                           XGENE_DMA_RING_NE_INT_MODE);
1338         }
1339
1340         /* Clear DMA ring state */
1341         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1342         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1343
1344         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1345         xgene_dma_clr_ring_state(ring);
1346 }
1347
1348 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1349 {
1350         ring->cmd_base = ring->pdma->csr_ring_cmd +
1351                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1352                                                           XGENE_DMA_RING_NUM));
1353
1354         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1355 }
1356
1357 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1358                                    enum xgene_dma_ring_cfgsize cfgsize)
1359 {
1360         int size;
1361
1362         switch (cfgsize) {
1363         case XGENE_DMA_RING_CFG_SIZE_512B:
1364                 size = 0x200;
1365                 break;
1366         case XGENE_DMA_RING_CFG_SIZE_2KB:
1367                 size = 0x800;
1368                 break;
1369         case XGENE_DMA_RING_CFG_SIZE_16KB:
1370                 size = 0x4000;
1371                 break;
1372         case XGENE_DMA_RING_CFG_SIZE_64KB:
1373                 size = 0x10000;
1374                 break;
1375         case XGENE_DMA_RING_CFG_SIZE_512KB:
1376                 size = 0x80000;
1377                 break;
1378         default:
1379                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1380                 return -EINVAL;
1381         }
1382
1383         return size;
1384 }
1385
1386 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1387 {
1388         /* Clear DMA ring configurations */
1389         xgene_dma_clear_ring(ring);
1390
1391         /* De-allocate DMA ring descriptor */
1392         if (ring->desc_vaddr) {
1393                 dma_free_coherent(ring->pdma->dev, ring->size,
1394                                   ring->desc_vaddr, ring->desc_paddr);
1395                 ring->desc_vaddr = NULL;
1396         }
1397 }
1398
1399 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1400 {
1401         xgene_dma_delete_ring_one(&chan->rx_ring);
1402         xgene_dma_delete_ring_one(&chan->tx_ring);
1403 }
1404
1405 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1406                                      struct xgene_dma_ring *ring,
1407                                      enum xgene_dma_ring_cfgsize cfgsize)
1408 {
1409         int ret;
1410
1411         /* Setup DMA ring descriptor variables */
1412         ring->pdma = chan->pdma;
1413         ring->cfgsize = cfgsize;
1414         ring->num = chan->pdma->ring_num++;
1415         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1416
1417         ret = xgene_dma_get_ring_size(chan, cfgsize);
1418         if (ret <= 0)
1419                 return ret;
1420         ring->size = ret;
1421
1422         /* Allocate memory for DMA ring descriptor */
1423         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1424                                                &ring->desc_paddr, GFP_KERNEL);
1425         if (!ring->desc_vaddr) {
1426                 chan_err(chan, "Failed to allocate ring desc\n");
1427                 return -ENOMEM;
1428         }
1429
1430         /* Configure and enable DMA ring */
1431         xgene_dma_set_ring_cmd(ring);
1432         xgene_dma_setup_ring(ring);
1433
1434         return 0;
1435 }
1436
1437 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1438 {
1439         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1440         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1441         int ret;
1442
1443         /* Create DMA Rx ring descriptor */
1444         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1445         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1446
1447         ret = xgene_dma_create_ring_one(chan, rx_ring,
1448                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1449         if (ret)
1450                 return ret;
1451
1452         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1453                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1454
1455         /* Create DMA Tx ring descriptor */
1456         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1457         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1458
1459         ret = xgene_dma_create_ring_one(chan, tx_ring,
1460                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1461         if (ret) {
1462                 xgene_dma_delete_ring_one(rx_ring);
1463                 return ret;
1464         }
1465
1466         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1467
1468         chan_dbg(chan,
1469                  "Tx ring id 0x%X num %d desc 0x%p\n",
1470                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1471
1472         /* Set the max outstanding request possible to this channel */
1473         chan->max_outstanding = tx_ring->slots;
1474
1475         return ret;
1476 }
1477
1478 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1479 {
1480         int ret, i, j;
1481
1482         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1483                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1484                 if (ret) {
1485                         for (j = 0; j < i; j++)
1486                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1487                         return ret;
1488                 }
1489         }
1490
1491         return ret;
1492 }
1493
1494 static void xgene_dma_enable(struct xgene_dma *pdma)
1495 {
1496         u32 val;
1497
1498         /* Configure and enable DMA engine */
1499         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1500         XGENE_DMA_CH_SETUP(val);
1501         XGENE_DMA_ENABLE(val);
1502         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1503 }
1504
1505 static void xgene_dma_disable(struct xgene_dma *pdma)
1506 {
1507         u32 val;
1508
1509         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1510         XGENE_DMA_DISABLE(val);
1511         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1512 }
1513
1514 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1515 {
1516         /*
1517          * Mask DMA ring overflow, underflow and
1518          * AXI write/read error interrupts
1519          */
1520         iowrite32(XGENE_DMA_INT_ALL_MASK,
1521                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1522         iowrite32(XGENE_DMA_INT_ALL_MASK,
1523                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1524         iowrite32(XGENE_DMA_INT_ALL_MASK,
1525                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1526         iowrite32(XGENE_DMA_INT_ALL_MASK,
1527                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1528         iowrite32(XGENE_DMA_INT_ALL_MASK,
1529                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1530
1531         /* Mask DMA error interrupts */
1532         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1533 }
1534
1535 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1536 {
1537         /*
1538          * Unmask DMA ring overflow, underflow and
1539          * AXI write/read error interrupts
1540          */
1541         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1542                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1543         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1544                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1545         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1546                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1547         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1548                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1549         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1550                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1551
1552         /* Unmask DMA error interrupts */
1553         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1554                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1555 }
1556
1557 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1558 {
1559         u32 val;
1560
1561         /* Associate DMA ring to corresponding ring HW */
1562         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1563                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1564
1565         /* Configure RAID6 polynomial control setting */
1566         if (is_pq_enabled(pdma))
1567                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1568                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1569         else
1570                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1571
1572         xgene_dma_enable(pdma);
1573         xgene_dma_unmask_interrupts(pdma);
1574
1575         /* Get DMA id and version info */
1576         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1577
1578         /* DMA device info */
1579         dev_info(pdma->dev,
1580                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1581                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1582                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1583 }
1584
1585 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1586 {
1587         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1588             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1589                 return 0;
1590
1591         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1592         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1593
1594         /* Bring up memory */
1595         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1596
1597         /* Force a barrier */
1598         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1599
1600         /* reset may take up to 1ms */
1601         usleep_range(1000, 1100);
1602
1603         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1604                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1605                 dev_err(pdma->dev,
1606                         "Failed to release ring mngr memory from shutdown\n");
1607                 return -ENODEV;
1608         }
1609
1610         /* program threshold set 1 and all hysteresis */
1611         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1612                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1613         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1614                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1615         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1616                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1617
1618         /* Enable QPcore and assign error queue */
1619         iowrite32(XGENE_DMA_RING_ENABLE,
1620                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1621
1622         return 0;
1623 }
1624
1625 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1626 {
1627         int ret;
1628
1629         ret = xgene_dma_init_ring_mngr(pdma);
1630         if (ret)
1631                 return ret;
1632
1633         /* Bring up memory */
1634         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1635
1636         /* Force a barrier */
1637         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1638
1639         /* reset may take up to 1ms */
1640         usleep_range(1000, 1100);
1641
1642         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1643                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1644                 dev_err(pdma->dev,
1645                         "Failed to release DMA memory from shutdown\n");
1646                 return -ENODEV;
1647         }
1648
1649         return 0;
1650 }
1651
1652 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1653 {
1654         struct xgene_dma_chan *chan;
1655         int ret, i, j;
1656
1657         /* Register DMA error irq */
1658         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1659                                0, "dma_error", pdma);
1660         if (ret) {
1661                 dev_err(pdma->dev,
1662                         "Failed to register error IRQ %d\n", pdma->err_irq);
1663                 return ret;
1664         }
1665
1666         /* Register DMA channel rx irq */
1667         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1668                 chan = &pdma->chan[i];
1669                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1670                                        xgene_dma_chan_ring_isr,
1671                                        0, chan->name, chan);
1672                 if (ret) {
1673                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1674                                  chan->rx_irq);
1675                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1676
1677                         for (j = 0; j < i; j++) {
1678                                 chan = &pdma->chan[i];
1679                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1680                         }
1681
1682                         return ret;
1683                 }
1684         }
1685
1686         return 0;
1687 }
1688
1689 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1690 {
1691         struct xgene_dma_chan *chan;
1692         int i;
1693
1694         /* Free DMA device error irq */
1695         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1696
1697         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1698                 chan = &pdma->chan[i];
1699                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1700         }
1701 }
1702
1703 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1704                                struct dma_device *dma_dev)
1705 {
1706         /* Initialize DMA device capability mask */
1707         dma_cap_zero(dma_dev->cap_mask);
1708
1709         /* Set DMA device capability */
1710         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1711         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1712
1713         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1714          * and channel 1 supports XOR, PQ both. First thing here is we have
1715          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1716          * we can make sure this by reading SoC Efuse register.
1717          * Second thing, we have hw errata that if we run channel 0 and
1718          * channel 1 simultaneously with executing XOR and PQ request,
1719          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1720          * if XOR and PQ supports on channel 1 is disabled.
1721          */
1722         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1723             is_pq_enabled(chan->pdma)) {
1724                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1725                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1726         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1727                    !is_pq_enabled(chan->pdma)) {
1728                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1729         }
1730
1731         /* Set base and prep routines */
1732         dma_dev->dev = chan->dev;
1733         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1734         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1735         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1736         dma_dev->device_tx_status = xgene_dma_tx_status;
1737         dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1738         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1739
1740         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1741                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1742                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1743                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1744         }
1745
1746         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1747                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1748                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1749                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1750         }
1751 }
1752
1753 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1754 {
1755         struct xgene_dma_chan *chan = &pdma->chan[id];
1756         struct dma_device *dma_dev = &pdma->dma_dev[id];
1757         int ret;
1758
1759         chan->dma_chan.device = dma_dev;
1760
1761         spin_lock_init(&chan->lock);
1762         INIT_LIST_HEAD(&chan->ld_pending);
1763         INIT_LIST_HEAD(&chan->ld_running);
1764         INIT_LIST_HEAD(&chan->ld_completed);
1765         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1766                      (unsigned long)chan);
1767
1768         chan->pending = 0;
1769         chan->desc_pool = NULL;
1770         dma_cookie_init(&chan->dma_chan);
1771
1772         /* Setup dma device capabilities and prep routines */
1773         xgene_dma_set_caps(chan, dma_dev);
1774
1775         /* Initialize DMA device list head */
1776         INIT_LIST_HEAD(&dma_dev->channels);
1777         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1778
1779         /* Register with Linux async DMA framework*/
1780         ret = dma_async_device_register(dma_dev);
1781         if (ret) {
1782                 chan_err(chan, "Failed to register async device %d", ret);
1783                 tasklet_kill(&chan->tasklet);
1784
1785                 return ret;
1786         }
1787
1788         /* DMA capability info */
1789         dev_info(pdma->dev,
1790                  "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1791                  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1792                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1793                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1794                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1795
1796         return 0;
1797 }
1798
1799 static int xgene_dma_init_async(struct xgene_dma *pdma)
1800 {
1801         int ret, i, j;
1802
1803         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1804                 ret = xgene_dma_async_register(pdma, i);
1805                 if (ret) {
1806                         for (j = 0; j < i; j++) {
1807                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1808                                 tasklet_kill(&pdma->chan[j].tasklet);
1809                         }
1810
1811                         return ret;
1812                 }
1813         }
1814
1815         return ret;
1816 }
1817
1818 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1819 {
1820         int i;
1821
1822         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1823                 dma_async_device_unregister(&pdma->dma_dev[i]);
1824 }
1825
1826 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1827 {
1828         struct xgene_dma_chan *chan;
1829         int i;
1830
1831         pdma->ring_num = XGENE_DMA_RING_NUM;
1832
1833         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1834                 chan = &pdma->chan[i];
1835                 chan->dev = pdma->dev;
1836                 chan->pdma = pdma;
1837                 chan->id = i;
1838                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1839         }
1840 }
1841
1842 static int xgene_dma_get_resources(struct platform_device *pdev,
1843                                    struct xgene_dma *pdma)
1844 {
1845         struct resource *res;
1846         int irq, i;
1847
1848         /* Get DMA csr region */
1849         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1850         if (!res) {
1851                 dev_err(&pdev->dev, "Failed to get csr region\n");
1852                 return -ENXIO;
1853         }
1854
1855         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1856                                      resource_size(res));
1857         if (!pdma->csr_dma) {
1858                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1859                 return -ENOMEM;
1860         }
1861
1862         /* Get DMA ring csr region */
1863         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1864         if (!res) {
1865                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1866                 return -ENXIO;
1867         }
1868
1869         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1870                                        resource_size(res));
1871         if (!pdma->csr_ring) {
1872                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1873                 return -ENOMEM;
1874         }
1875
1876         /* Get DMA ring cmd csr region */
1877         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1878         if (!res) {
1879                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1880                 return -ENXIO;
1881         }
1882
1883         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1884                                           resource_size(res));
1885         if (!pdma->csr_ring_cmd) {
1886                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1887                 return -ENOMEM;
1888         }
1889
1890         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1891
1892         /* Get efuse csr region */
1893         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1894         if (!res) {
1895                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1896                 return -ENXIO;
1897         }
1898
1899         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1900                                        resource_size(res));
1901         if (!pdma->csr_efuse) {
1902                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1903                 return -ENOMEM;
1904         }
1905
1906         /* Get DMA error interrupt */
1907         irq = platform_get_irq(pdev, 0);
1908         if (irq <= 0) {
1909                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1910                 return -ENXIO;
1911         }
1912
1913         pdma->err_irq = irq;
1914
1915         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1916         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1917                 irq = platform_get_irq(pdev, i);
1918                 if (irq <= 0) {
1919                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1920                         return -ENXIO;
1921                 }
1922
1923                 pdma->chan[i - 1].rx_irq = irq;
1924         }
1925
1926         return 0;
1927 }
1928
1929 static int xgene_dma_probe(struct platform_device *pdev)
1930 {
1931         struct xgene_dma *pdma;
1932         int ret, i;
1933
1934         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1935         if (!pdma)
1936                 return -ENOMEM;
1937
1938         pdma->dev = &pdev->dev;
1939         platform_set_drvdata(pdev, pdma);
1940
1941         ret = xgene_dma_get_resources(pdev, pdma);
1942         if (ret)
1943                 return ret;
1944
1945         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1946         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1947                 dev_err(&pdev->dev, "Failed to get clk\n");
1948                 return PTR_ERR(pdma->clk);
1949         }
1950
1951         /* Enable clk before accessing registers */
1952         if (!IS_ERR(pdma->clk)) {
1953                 ret = clk_prepare_enable(pdma->clk);
1954                 if (ret) {
1955                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1956                         return ret;
1957                 }
1958         }
1959
1960         /* Remove DMA RAM out of shutdown */
1961         ret = xgene_dma_init_mem(pdma);
1962         if (ret)
1963                 goto err_clk_enable;
1964
1965         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1966         if (ret) {
1967                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1968                 goto err_dma_mask;
1969         }
1970
1971         /* Initialize DMA channels software state */
1972         xgene_dma_init_channels(pdma);
1973
1974         /* Configue DMA rings */
1975         ret = xgene_dma_init_rings(pdma);
1976         if (ret)
1977                 goto err_clk_enable;
1978
1979         ret = xgene_dma_request_irqs(pdma);
1980         if (ret)
1981                 goto err_request_irq;
1982
1983         /* Configure and enable DMA engine */
1984         xgene_dma_init_hw(pdma);
1985
1986         /* Register DMA device with linux async framework */
1987         ret = xgene_dma_init_async(pdma);
1988         if (ret)
1989                 goto err_async_init;
1990
1991         return 0;
1992
1993 err_async_init:
1994         xgene_dma_free_irqs(pdma);
1995
1996 err_request_irq:
1997         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1998                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1999
2000 err_dma_mask:
2001 err_clk_enable:
2002         if (!IS_ERR(pdma->clk))
2003                 clk_disable_unprepare(pdma->clk);
2004
2005         return ret;
2006 }
2007
2008 static int xgene_dma_remove(struct platform_device *pdev)
2009 {
2010         struct xgene_dma *pdma = platform_get_drvdata(pdev);
2011         struct xgene_dma_chan *chan;
2012         int i;
2013
2014         xgene_dma_async_unregister(pdma);
2015
2016         /* Mask interrupts and disable DMA engine */
2017         xgene_dma_mask_interrupts(pdma);
2018         xgene_dma_disable(pdma);
2019         xgene_dma_free_irqs(pdma);
2020
2021         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2022                 chan = &pdma->chan[i];
2023                 tasklet_kill(&chan->tasklet);
2024                 xgene_dma_delete_chan_rings(chan);
2025         }
2026
2027         if (!IS_ERR(pdma->clk))
2028                 clk_disable_unprepare(pdma->clk);
2029
2030         return 0;
2031 }
2032
2033 #ifdef CONFIG_ACPI
2034 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
2035         {"APMC0D43", 0},
2036         {},
2037 };
2038 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
2039 #endif
2040
2041 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2042         {.compatible = "apm,xgene-storm-dma",},
2043         {},
2044 };
2045 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2046
2047 static struct platform_driver xgene_dma_driver = {
2048         .probe = xgene_dma_probe,
2049         .remove = xgene_dma_remove,
2050         .driver = {
2051                 .name = "X-Gene-DMA",
2052                 .of_match_table = xgene_dma_of_match_ptr,
2053                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
2054         },
2055 };
2056
2057 module_platform_driver(xgene_dma_driver);
2058
2059 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2060 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2061 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2062 MODULE_LICENSE("GPL");
2063 MODULE_VERSION("1.0");