]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/gvt/sched_policy.c
Merge branch 'akpm' (patches from Andrew)
[karo-tx-linux.git] / drivers / gpu / drm / i915 / gvt / sched_policy.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Anhua Xu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *
27  * Contributors:
28  *    Min He <min.he@intel.com>
29  *    Bing Niu <bing.niu@intel.com>
30  *    Zhi Wang <zhi.a.wang@intel.com>
31  *
32  */
33
34 #include "i915_drv.h"
35 #include "gvt.h"
36
37 static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
38 {
39         enum intel_engine_id i;
40         struct intel_engine_cs *engine;
41
42         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
43                 if (!list_empty(workload_q_head(vgpu, i)))
44                         return true;
45         }
46
47         return false;
48 }
49
50 struct vgpu_sched_data {
51         struct list_head lru_list;
52         struct intel_vgpu *vgpu;
53
54         ktime_t sched_in_time;
55         ktime_t sched_out_time;
56         ktime_t sched_time;
57         ktime_t left_ts;
58         ktime_t allocated_ts;
59
60         struct vgpu_sched_ctl sched_ctl;
61 };
62
63 struct gvt_sched_data {
64         struct intel_gvt *gvt;
65         struct hrtimer timer;
66         unsigned long period;
67         struct list_head lru_runq_head;
68 };
69
70 static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu)
71 {
72         ktime_t delta_ts;
73         struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data;
74
75         delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time;
76
77         vgpu_data->sched_time += delta_ts;
78         vgpu_data->left_ts -= delta_ts;
79 }
80
81 #define GVT_TS_BALANCE_PERIOD_MS 100
82 #define GVT_TS_BALANCE_STAGE_NUM 10
83
84 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
85 {
86         struct vgpu_sched_data *vgpu_data;
87         struct list_head *pos;
88         static uint64_t stage_check;
89         int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
90
91         /* The timeslice accumulation reset at stage 0, which is
92          * allocated again without adding previous debt.
93          */
94         if (stage == 0) {
95                 int total_weight = 0;
96                 ktime_t fair_timeslice;
97
98                 list_for_each(pos, &sched_data->lru_runq_head) {
99                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
100                         total_weight += vgpu_data->sched_ctl.weight;
101                 }
102
103                 list_for_each(pos, &sched_data->lru_runq_head) {
104                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
105                         fair_timeslice = ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS) *
106                                                 vgpu_data->sched_ctl.weight /
107                                                 total_weight;
108
109                         vgpu_data->allocated_ts = fair_timeslice;
110                         vgpu_data->left_ts = vgpu_data->allocated_ts;
111                 }
112         } else {
113                 list_for_each(pos, &sched_data->lru_runq_head) {
114                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
115
116                         /* timeslice for next 100ms should add the left/debt
117                          * slice of previous stages.
118                          */
119                         vgpu_data->left_ts += vgpu_data->allocated_ts;
120                 }
121         }
122 }
123
124 static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
125 {
126         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
127         enum intel_engine_id i;
128         struct intel_engine_cs *engine;
129         struct vgpu_sched_data *vgpu_data;
130         ktime_t cur_time;
131
132         /* no target to schedule */
133         if (!scheduler->next_vgpu)
134                 return;
135
136         /*
137          * after the flag is set, workload dispatch thread will
138          * stop dispatching workload for current vgpu
139          */
140         scheduler->need_reschedule = true;
141
142         /* still have uncompleted workload? */
143         for_each_engine(engine, gvt->dev_priv, i) {
144                 if (scheduler->current_workload[i])
145                         return;
146         }
147
148         cur_time = ktime_get();
149         if (scheduler->current_vgpu) {
150                 vgpu_data = scheduler->current_vgpu->sched_data;
151                 vgpu_data->sched_out_time = cur_time;
152                 vgpu_update_timeslice(scheduler->current_vgpu);
153         }
154         vgpu_data = scheduler->next_vgpu->sched_data;
155         vgpu_data->sched_in_time = cur_time;
156
157         /* switch current vgpu */
158         scheduler->current_vgpu = scheduler->next_vgpu;
159         scheduler->next_vgpu = NULL;
160
161         scheduler->need_reschedule = false;
162
163         /* wake up workload dispatch thread */
164         for_each_engine(engine, gvt->dev_priv, i)
165                 wake_up(&scheduler->waitq[i]);
166 }
167
168 static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
169 {
170         struct vgpu_sched_data *vgpu_data;
171         struct intel_vgpu *vgpu = NULL;
172         struct list_head *head = &sched_data->lru_runq_head;
173         struct list_head *pos;
174
175         /* search a vgpu with pending workload */
176         list_for_each(pos, head) {
177
178                 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
179                 if (!vgpu_has_pending_workload(vgpu_data->vgpu))
180                         continue;
181
182                 /* Return the vGPU only if it has time slice left */
183                 if (vgpu_data->left_ts > 0) {
184                         vgpu = vgpu_data->vgpu;
185                         break;
186                 }
187         }
188
189         return vgpu;
190 }
191
192 /* in nanosecond */
193 #define GVT_DEFAULT_TIME_SLICE 1000000
194
195 static void tbs_sched_func(struct gvt_sched_data *sched_data)
196 {
197         struct intel_gvt *gvt = sched_data->gvt;
198         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
199         struct vgpu_sched_data *vgpu_data;
200         struct intel_vgpu *vgpu = NULL;
201         static uint64_t timer_check;
202
203         if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS))
204                 gvt_balance_timeslice(sched_data);
205
206         /* no active vgpu or has already had a target */
207         if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
208                 goto out;
209
210         vgpu = find_busy_vgpu(sched_data);
211         if (vgpu) {
212                 scheduler->next_vgpu = vgpu;
213
214                 /* Move the last used vGPU to the tail of lru_list */
215                 vgpu_data = vgpu->sched_data;
216                 list_del_init(&vgpu_data->lru_list);
217                 list_add_tail(&vgpu_data->lru_list,
218                                 &sched_data->lru_runq_head);
219         } else {
220                 scheduler->next_vgpu = gvt->idle_vgpu;
221         }
222 out:
223         if (scheduler->next_vgpu)
224                 try_to_schedule_next_vgpu(gvt);
225 }
226
227 void intel_gvt_schedule(struct intel_gvt *gvt)
228 {
229         struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
230
231         mutex_lock(&gvt->lock);
232         tbs_sched_func(sched_data);
233         mutex_unlock(&gvt->lock);
234 }
235
236 static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
237 {
238         struct gvt_sched_data *data;
239
240         data = container_of(timer_data, struct gvt_sched_data, timer);
241
242         intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
243
244         hrtimer_add_expires_ns(&data->timer, data->period);
245
246         return HRTIMER_RESTART;
247 }
248
249 static int tbs_sched_init(struct intel_gvt *gvt)
250 {
251         struct intel_gvt_workload_scheduler *scheduler =
252                 &gvt->scheduler;
253
254         struct gvt_sched_data *data;
255
256         data = kzalloc(sizeof(*data), GFP_KERNEL);
257         if (!data)
258                 return -ENOMEM;
259
260         INIT_LIST_HEAD(&data->lru_runq_head);
261         hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
262         data->timer.function = tbs_timer_fn;
263         data->period = GVT_DEFAULT_TIME_SLICE;
264         data->gvt = gvt;
265
266         scheduler->sched_data = data;
267
268         return 0;
269 }
270
271 static void tbs_sched_clean(struct intel_gvt *gvt)
272 {
273         struct intel_gvt_workload_scheduler *scheduler =
274                 &gvt->scheduler;
275         struct gvt_sched_data *data = scheduler->sched_data;
276
277         hrtimer_cancel(&data->timer);
278
279         kfree(data);
280         scheduler->sched_data = NULL;
281 }
282
283 static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
284 {
285         struct vgpu_sched_data *data;
286
287         data = kzalloc(sizeof(*data), GFP_KERNEL);
288         if (!data)
289                 return -ENOMEM;
290
291         data->sched_ctl.weight = vgpu->sched_ctl.weight;
292         data->vgpu = vgpu;
293         INIT_LIST_HEAD(&data->lru_list);
294
295         vgpu->sched_data = data;
296
297         return 0;
298 }
299
300 static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
301 {
302         kfree(vgpu->sched_data);
303         vgpu->sched_data = NULL;
304 }
305
306 static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
307 {
308         struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
309         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
310
311         if (!list_empty(&vgpu_data->lru_list))
312                 return;
313
314         list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);
315
316         if (!hrtimer_active(&sched_data->timer))
317                 hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
318                         sched_data->period), HRTIMER_MODE_ABS);
319 }
320
321 static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
322 {
323         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
324
325         list_del_init(&vgpu_data->lru_list);
326 }
327
328 static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
329         .init = tbs_sched_init,
330         .clean = tbs_sched_clean,
331         .init_vgpu = tbs_sched_init_vgpu,
332         .clean_vgpu = tbs_sched_clean_vgpu,
333         .start_schedule = tbs_sched_start_schedule,
334         .stop_schedule = tbs_sched_stop_schedule,
335 };
336
337 int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
338 {
339         gvt->scheduler.sched_ops = &tbs_schedule_ops;
340
341         return gvt->scheduler.sched_ops->init(gvt);
342 }
343
344 void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
345 {
346         gvt->scheduler.sched_ops->clean(gvt);
347 }
348
349 int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
350 {
351         return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
352 }
353
354 void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
355 {
356         vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
357 }
358
359 void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
360 {
361         gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
362
363         vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
364 }
365
366 void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
367 {
368         struct intel_gvt_workload_scheduler *scheduler =
369                 &vgpu->gvt->scheduler;
370
371         gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
372
373         scheduler->sched_ops->stop_schedule(vgpu);
374
375         if (scheduler->next_vgpu == vgpu)
376                 scheduler->next_vgpu = NULL;
377
378         if (scheduler->current_vgpu == vgpu) {
379                 /* stop workload dispatching */
380                 scheduler->need_reschedule = true;
381                 scheduler->current_vgpu = NULL;
382         }
383 }