]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197                 struct drm_device *dev,
198                 uint64_t size,
199                 uint32_t *handle_p)
200 {
201         struct drm_i915_gem_object *obj;
202         int ret;
203         u32 handle;
204
205         size = roundup(size, PAGE_SIZE);
206         if (size == 0)
207                 return -EINVAL;
208
209         /* Allocate the new object */
210         obj = i915_gem_alloc_object(dev, size);
211         if (obj == NULL)
212                 return -ENOMEM;
213
214         ret = drm_gem_handle_create(file, &obj->base, &handle);
215         if (ret) {
216                 drm_gem_object_release(&obj->base);
217                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218                 kfree(obj);
219                 return ret;
220         }
221
222         /* drop reference from allocate - handle holds it now */
223         drm_gem_object_unreference(&obj->base);
224         trace_i915_gem_object_create(obj);
225
226         *handle_p = handle;
227         return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232                      struct drm_device *dev,
233                      struct drm_mode_create_dumb *args)
234 {
235         /* have to work out size/pitch and return them */
236         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237         args->size = args->pitch * args->height;
238         return i915_gem_create(file, dev,
239                                args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243                           struct drm_device *dev,
244                           uint32_t handle)
245 {
246         return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254                       struct drm_file *file)
255 {
256         struct drm_i915_gem_create *args = data;
257
258         return i915_gem_create(file, dev,
259                                args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267                 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272                         const char *gpu_vaddr, int gpu_offset,
273                         int length)
274 {
275         int ret, cpu_offset = 0;
276
277         while (length > 0) {
278                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279                 int this_length = min(cacheline_end - gpu_offset, length);
280                 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283                                      gpu_vaddr + swizzled_gpu_offset,
284                                      this_length);
285                 if (ret)
286                         return ret + length;
287
288                 cpu_offset += this_length;
289                 gpu_offset += this_length;
290                 length -= this_length;
291         }
292
293         return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298                           const char __user *cpu_vaddr,
299                           int length)
300 {
301         int ret, cpu_offset = 0;
302
303         while (length > 0) {
304                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305                 int this_length = min(cacheline_end - gpu_offset, length);
306                 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309                                        cpu_vaddr + cpu_offset,
310                                        this_length);
311                 if (ret)
312                         return ret + length;
313
314                 cpu_offset += this_length;
315                 gpu_offset += this_length;
316                 length -= this_length;
317         }
318
319         return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327                  char __user *user_data,
328                  bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330         char *vaddr;
331         int ret;
332
333         if (unlikely(page_do_bit17_swizzling))
334                 return -EINVAL;
335
336         vaddr = kmap_atomic(page);
337         if (needs_clflush)
338                 drm_clflush_virt_range(vaddr + shmem_page_offset,
339                                        page_length);
340         ret = __copy_to_user_inatomic(user_data,
341                                       vaddr + shmem_page_offset,
342                                       page_length);
343         kunmap_atomic(vaddr);
344
345         return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350                              bool swizzled)
351 {
352         if (unlikely(swizzled)) {
353                 unsigned long start = (unsigned long) addr;
354                 unsigned long end = (unsigned long) addr + length;
355
356                 /* For swizzling simply ensure that we always flush both
357                  * channels. Lame, but simple and it works. Swizzled
358                  * pwrite/pread is far from a hotpath - current userspace
359                  * doesn't use it at all. */
360                 start = round_down(start, 128);
361                 end = round_up(end, 128);
362
363                 drm_clflush_virt_range((void *)start, end - start);
364         } else {
365                 drm_clflush_virt_range(addr, length);
366         }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374                  char __user *user_data,
375                  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377         char *vaddr;
378         int ret;
379
380         vaddr = kmap(page);
381         if (needs_clflush)
382                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383                                              page_length,
384                                              page_do_bit17_swizzling);
385
386         if (page_do_bit17_swizzling)
387                 ret = __copy_to_user_swizzled(user_data,
388                                               vaddr, shmem_page_offset,
389                                               page_length);
390         else
391                 ret = __copy_to_user(user_data,
392                                      vaddr + shmem_page_offset,
393                                      page_length);
394         kunmap(page);
395
396         return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401                      struct drm_i915_gem_object *obj,
402                      struct drm_i915_gem_pread *args,
403                      struct drm_file *file)
404 {
405         char __user *user_data;
406         ssize_t remain;
407         loff_t offset;
408         int shmem_page_offset, page_length, ret = 0;
409         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410         int hit_slowpath = 0;
411         int prefaulted = 0;
412         int needs_clflush = 0;
413         struct scatterlist *sg;
414         int i;
415
416         user_data = (char __user *) (uintptr_t) args->data_ptr;
417         remain = args->size;
418
419         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422                 /* If we're not in the cpu read domain, set ourself into the gtt
423                  * read domain and manually flush cachelines (if required). This
424                  * optimizes for the case when the gpu will dirty the data
425                  * anyway again before the next pread happens. */
426                 if (obj->cache_level == I915_CACHE_NONE)
427                         needs_clflush = 1;
428                 if (obj->gtt_space) {
429                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
430                         if (ret)
431                                 return ret;
432                 }
433         }
434
435         ret = i915_gem_object_get_pages(obj);
436         if (ret)
437                 return ret;
438
439         i915_gem_object_pin_pages(obj);
440
441         offset = args->offset;
442
443         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444                 struct page *page;
445
446                 if (i < offset >> PAGE_SHIFT)
447                         continue;
448
449                 if (remain <= 0)
450                         break;
451
452                 /* Operation in this page
453                  *
454                  * shmem_page_offset = offset within page in shmem file
455                  * page_length = bytes to copy for this page
456                  */
457                 shmem_page_offset = offset_in_page(offset);
458                 page_length = remain;
459                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460                         page_length = PAGE_SIZE - shmem_page_offset;
461
462                 page = sg_page(sg);
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         if (hit_slowpath) {
506                 /* Fixup: Kill any reinstated backing storage pages */
507                 if (obj->madv == __I915_MADV_PURGED)
508                         i915_gem_object_truncate(obj);
509         }
510
511         return ret;
512 }
513
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521                      struct drm_file *file)
522 {
523         struct drm_i915_gem_pread *args = data;
524         struct drm_i915_gem_object *obj;
525         int ret = 0;
526
527         if (args->size == 0)
528                 return 0;
529
530         if (!access_ok(VERIFY_WRITE,
531                        (char __user *)(uintptr_t)args->data_ptr,
532                        args->size))
533                 return -EFAULT;
534
535         ret = i915_mutex_lock_interruptible(dev);
536         if (ret)
537                 return ret;
538
539         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540         if (&obj->base == NULL) {
541                 ret = -ENOENT;
542                 goto unlock;
543         }
544
545         /* Bounds check source.  */
546         if (args->offset > obj->base.size ||
547             args->size > obj->base.size - args->offset) {
548                 ret = -EINVAL;
549                 goto out;
550         }
551
552         /* prime objects have no backing filp to GEM pread/pwrite
553          * pages from.
554          */
555         if (!obj->base.filp) {
556                 ret = -EINVAL;
557                 goto out;
558         }
559
560         trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562         ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565         drm_gem_object_unreference(&obj->base);
566 unlock:
567         mutex_unlock(&dev->struct_mutex);
568         return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577                 loff_t page_base, int page_offset,
578                 char __user *user_data,
579                 int length)
580 {
581         void __iomem *vaddr_atomic;
582         void *vaddr;
583         unsigned long unwritten;
584
585         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586         /* We can use the cpu mem copy function because this is X86. */
587         vaddr = (void __force*)vaddr_atomic + page_offset;
588         unwritten = __copy_from_user_inatomic_nocache(vaddr,
589                                                       user_data, length);
590         io_mapping_unmap_atomic(vaddr_atomic);
591         return unwritten;
592 }
593
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600                          struct drm_i915_gem_object *obj,
601                          struct drm_i915_gem_pwrite *args,
602                          struct drm_file *file)
603 {
604         drm_i915_private_t *dev_priv = dev->dev_private;
605         ssize_t remain;
606         loff_t offset, page_base;
607         char __user *user_data;
608         int page_offset, page_length, ret;
609
610         ret = i915_gem_object_pin(obj, 0, true, true);
611         if (ret)
612                 goto out;
613
614         ret = i915_gem_object_set_to_gtt_domain(obj, true);
615         if (ret)
616                 goto out_unpin;
617
618         ret = i915_gem_object_put_fence(obj);
619         if (ret)
620                 goto out_unpin;
621
622         user_data = (char __user *) (uintptr_t) args->data_ptr;
623         remain = args->size;
624
625         offset = obj->gtt_offset + args->offset;
626
627         while (remain > 0) {
628                 /* Operation in this page
629                  *
630                  * page_base = page offset within aperture
631                  * page_offset = offset within page
632                  * page_length = bytes to copy for this page
633                  */
634                 page_base = offset & PAGE_MASK;
635                 page_offset = offset_in_page(offset);
636                 page_length = remain;
637                 if ((page_offset + remain) > PAGE_SIZE)
638                         page_length = PAGE_SIZE - page_offset;
639
640                 /* If we get a fault while copying data, then (presumably) our
641                  * source page isn't available.  Return the error and we'll
642                  * retry in the slow path.
643                  */
644                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645                                     page_offset, user_data, page_length)) {
646                         ret = -EFAULT;
647                         goto out_unpin;
648                 }
649
650                 remain -= page_length;
651                 user_data += page_length;
652                 offset += page_length;
653         }
654
655 out_unpin:
656         i915_gem_object_unpin(obj);
657 out:
658         return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667                   char __user *user_data,
668                   bool page_do_bit17_swizzling,
669                   bool needs_clflush_before,
670                   bool needs_clflush_after)
671 {
672         char *vaddr;
673         int ret;
674
675         if (unlikely(page_do_bit17_swizzling))
676                 return -EINVAL;
677
678         vaddr = kmap_atomic(page);
679         if (needs_clflush_before)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683                                                 user_data,
684                                                 page_length);
685         if (needs_clflush_after)
686                 drm_clflush_virt_range(vaddr + shmem_page_offset,
687                                        page_length);
688         kunmap_atomic(vaddr);
689
690         return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697                   char __user *user_data,
698                   bool page_do_bit17_swizzling,
699                   bool needs_clflush_before,
700                   bool needs_clflush_after)
701 {
702         char *vaddr;
703         int ret;
704
705         vaddr = kmap(page);
706         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708                                              page_length,
709                                              page_do_bit17_swizzling);
710         if (page_do_bit17_swizzling)
711                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712                                                 user_data,
713                                                 page_length);
714         else
715                 ret = __copy_from_user(vaddr + shmem_page_offset,
716                                        user_data,
717                                        page_length);
718         if (needs_clflush_after)
719                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720                                              page_length,
721                                              page_do_bit17_swizzling);
722         kunmap(page);
723
724         return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729                       struct drm_i915_gem_object *obj,
730                       struct drm_i915_gem_pwrite *args,
731                       struct drm_file *file)
732 {
733         ssize_t remain;
734         loff_t offset;
735         char __user *user_data;
736         int shmem_page_offset, page_length, ret = 0;
737         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738         int hit_slowpath = 0;
739         int needs_clflush_after = 0;
740         int needs_clflush_before = 0;
741         int i;
742         struct scatterlist *sg;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750                 /* If we're not in the cpu write domain, set ourself into the gtt
751                  * write domain and manually flush cachelines (if required). This
752                  * optimizes for the case when the gpu will use the data
753                  * right away and we therefore have to clflush anyway. */
754                 if (obj->cache_level == I915_CACHE_NONE)
755                         needs_clflush_after = 1;
756                 if (obj->gtt_space) {
757                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
758                         if (ret)
759                                 return ret;
760                 }
761         }
762         /* Same trick applies for invalidate partially written cachelines before
763          * writing.  */
764         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765             && obj->cache_level == I915_CACHE_NONE)
766                 needs_clflush_before = 1;
767
768         ret = i915_gem_object_get_pages(obj);
769         if (ret)
770                 return ret;
771
772         i915_gem_object_pin_pages(obj);
773
774         offset = args->offset;
775         obj->dirty = 1;
776
777         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778                 struct page *page;
779                 int partial_cacheline_write;
780
781                 if (i < offset >> PAGE_SHIFT)
782                         continue;
783
784                 if (remain <= 0)
785                         break;
786
787                 /* Operation in this page
788                  *
789                  * shmem_page_offset = offset within page in shmem file
790                  * page_length = bytes to copy for this page
791                  */
792                 shmem_page_offset = offset_in_page(offset);
793
794                 page_length = remain;
795                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796                         page_length = PAGE_SIZE - shmem_page_offset;
797
798                 /* If we don't overwrite a cacheline completely we need to be
799                  * careful to have up-to-date data by first clflushing. Don't
800                  * overcomplicate things and flush the entire patch. */
801                 partial_cacheline_write = needs_clflush_before &&
802                         ((shmem_page_offset | page_length)
803                                 & (boot_cpu_data.x86_clflush_size - 1));
804
805                 page = sg_page(sg);
806                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807                         (page_to_phys(page) & (1 << 17)) != 0;
808
809                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813                 if (ret == 0)
814                         goto next_page;
815
816                 hit_slowpath = 1;
817                 mutex_unlock(&dev->struct_mutex);
818                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819                                         user_data, page_do_bit17_swizzling,
820                                         partial_cacheline_write,
821                                         needs_clflush_after);
822
823                 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826                 set_page_dirty(page);
827                 mark_page_accessed(page);
828
829                 if (ret)
830                         goto out;
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out:
838         i915_gem_object_unpin_pages(obj);
839
840         if (hit_slowpath) {
841                 /* Fixup: Kill any reinstated backing storage pages */
842                 if (obj->madv == __I915_MADV_PURGED)
843                         i915_gem_object_truncate(obj);
844                 /* and flush dirty cachelines in case the object isn't in the cpu write
845                  * domain anymore. */
846                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847                         i915_gem_clflush_object(obj);
848                         intel_gtt_chipset_flush();
849                 }
850         }
851
852         if (needs_clflush_after)
853                 intel_gtt_chipset_flush();
854
855         return ret;
856 }
857
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865                       struct drm_file *file)
866 {
867         struct drm_i915_gem_pwrite *args = data;
868         struct drm_i915_gem_object *obj;
869         int ret;
870
871         if (args->size == 0)
872                 return 0;
873
874         if (!access_ok(VERIFY_READ,
875                        (char __user *)(uintptr_t)args->data_ptr,
876                        args->size))
877                 return -EFAULT;
878
879         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880                                            args->size);
881         if (ret)
882                 return -EFAULT;
883
884         ret = i915_mutex_lock_interruptible(dev);
885         if (ret)
886                 return ret;
887
888         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889         if (&obj->base == NULL) {
890                 ret = -ENOENT;
891                 goto unlock;
892         }
893
894         /* Bounds check destination. */
895         if (args->offset > obj->base.size ||
896             args->size > obj->base.size - args->offset) {
897                 ret = -EINVAL;
898                 goto out;
899         }
900
901         /* prime objects have no backing filp to GEM pread/pwrite
902          * pages from.
903          */
904         if (!obj->base.filp) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911         ret = -EFAULT;
912         /* We can only do the GTT pwrite on untiled buffers, as otherwise
913          * it would end up going through the fenced access, and we'll get
914          * different detiling behavior between reading and writing.
915          * pread/pwrite currently are reading and writing from the CPU
916          * perspective, requiring manual detiling by the client.
917          */
918         if (obj->phys_obj) {
919                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920                 goto out;
921         }
922
923         if (obj->cache_level == I915_CACHE_NONE &&
924             obj->tiling_mode == I915_TILING_NONE &&
925             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927                 /* Note that the gtt paths might fail with non-page-backed user
928                  * pointers (e.g. gtt mappings when moving data between
929                  * textures). Fallback to the shmem path in that case. */
930         }
931
932         if (ret == -EFAULT || ret == -ENOSPC)
933                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936         drm_gem_object_unreference(&obj->base);
937 unlock:
938         mutex_unlock(&dev->struct_mutex);
939         return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944                      bool interruptible)
945 {
946         if (atomic_read(&dev_priv->mm.wedged)) {
947                 struct completion *x = &dev_priv->error_completion;
948                 bool recovery_complete;
949                 unsigned long flags;
950
951                 /* Give the error handler a chance to run. */
952                 spin_lock_irqsave(&x->wait.lock, flags);
953                 recovery_complete = x->done > 0;
954                 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956                 /* Non-interruptible callers can't handle -EAGAIN, hence return
957                  * -EIO unconditionally for these. */
958                 if (!interruptible)
959                         return -EIO;
960
961                 /* Recovery complete, but still wedged means reset failure. */
962                 if (recovery_complete)
963                         return -EIO;
964
965                 return -EAGAIN;
966         }
967
968         return 0;
969 }
970
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978         int ret;
979
980         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982         ret = 0;
983         if (seqno == ring->outstanding_lazy_request)
984                 ret = i915_add_request(ring, NULL, NULL);
985
986         return ret;
987 }
988
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000                         bool interruptible, struct timespec *timeout)
1001 {
1002         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003         struct timespec before, now, wait_time={1,0};
1004         unsigned long timeout_jiffies;
1005         long end;
1006         bool wait_forever = true;
1007         int ret;
1008
1009         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010                 return 0;
1011
1012         trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014         if (timeout != NULL) {
1015                 wait_time = *timeout;
1016                 wait_forever = false;
1017         }
1018
1019         timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021         if (WARN_ON(!ring->irq_get(ring)))
1022                 return -ENODEV;
1023
1024         /* Record current time in case interrupted by signal, or wedged * */
1025         getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029         atomic_read(&dev_priv->mm.wedged))
1030         do {
1031                 if (interruptible)
1032                         end = wait_event_interruptible_timeout(ring->irq_queue,
1033                                                                EXIT_COND,
1034                                                                timeout_jiffies);
1035                 else
1036                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037                                                  timeout_jiffies);
1038
1039                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040                 if (ret)
1041                         end = ret;
1042         } while (end == 0 && wait_forever);
1043
1044         getrawmonotonic(&now);
1045
1046         ring->irq_put(ring);
1047         trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050         if (timeout) {
1051                 struct timespec sleep_time = timespec_sub(now, before);
1052                 *timeout = timespec_sub(*timeout, sleep_time);
1053         }
1054
1055         switch (end) {
1056         case -EIO:
1057         case -EAGAIN: /* Wedged */
1058         case -ERESTARTSYS: /* Signal */
1059                 return (int)end;
1060         case 0: /* Timeout */
1061                 if (timeout)
1062                         set_normalized_timespec(timeout, 0, 0);
1063                 return -ETIME;
1064         default: /* Completed */
1065                 WARN_ON(end < 0); /* We're not aware of other errors */
1066                 return 0;
1067         }
1068 }
1069
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077         struct drm_device *dev = ring->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         bool interruptible = dev_priv->mm.interruptible;
1080         int ret;
1081
1082         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083         BUG_ON(seqno == 0);
1084
1085         ret = i915_gem_check_wedge(dev_priv, interruptible);
1086         if (ret)
1087                 return ret;
1088
1089         ret = i915_gem_check_olr(ring, seqno);
1090         if (ret)
1091                 return ret;
1092
1093         return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102                                bool readonly)
1103 {
1104         struct intel_ring_buffer *ring = obj->ring;
1105         u32 seqno;
1106         int ret;
1107
1108         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109         if (seqno == 0)
1110                 return 0;
1111
1112         ret = i915_wait_seqno(ring, seqno);
1113         if (ret)
1114                 return ret;
1115
1116         i915_gem_retire_requests_ring(ring);
1117
1118         /* Manually manage the write flush as we may have not yet
1119          * retired the buffer.
1120          */
1121         if (obj->last_write_seqno &&
1122             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123                 obj->last_write_seqno = 0;
1124                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125         }
1126
1127         return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135                                             bool readonly)
1136 {
1137         struct drm_device *dev = obj->base.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         struct intel_ring_buffer *ring = obj->ring;
1140         u32 seqno;
1141         int ret;
1142
1143         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144         BUG_ON(!dev_priv->mm.interruptible);
1145
1146         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147         if (seqno == 0)
1148                 return 0;
1149
1150         ret = i915_gem_check_wedge(dev_priv, true);
1151         if (ret)
1152                 return ret;
1153
1154         ret = i915_gem_check_olr(ring, seqno);
1155         if (ret)
1156                 return ret;
1157
1158         mutex_unlock(&dev->struct_mutex);
1159         ret = __wait_seqno(ring, seqno, true, NULL);
1160         mutex_lock(&dev->struct_mutex);
1161
1162         i915_gem_retire_requests_ring(ring);
1163
1164         /* Manually manage the write flush as we may have not yet
1165          * retired the buffer.
1166          */
1167         if (obj->last_write_seqno &&
1168             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169                 obj->last_write_seqno = 0;
1170                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171         }
1172
1173         return ret;
1174 }
1175
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182                           struct drm_file *file)
1183 {
1184         struct drm_i915_gem_set_domain *args = data;
1185         struct drm_i915_gem_object *obj;
1186         uint32_t read_domains = args->read_domains;
1187         uint32_t write_domain = args->write_domain;
1188         int ret;
1189
1190         /* Only handle setting domains to types used by the CPU. */
1191         if (write_domain & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         if (read_domains & I915_GEM_GPU_DOMAINS)
1195                 return -EINVAL;
1196
1197         /* Having something in the write domain implies it's in the read
1198          * domain, and only that read domain.  Enforce that in the request.
1199          */
1200         if (write_domain != 0 && read_domains != write_domain)
1201                 return -EINVAL;
1202
1203         ret = i915_mutex_lock_interruptible(dev);
1204         if (ret)
1205                 return ret;
1206
1207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208         if (&obj->base == NULL) {
1209                 ret = -ENOENT;
1210                 goto unlock;
1211         }
1212
1213         /* Try to flush the object off the GPU without holding the lock.
1214          * We will repeat the flush holding the lock in the normal manner
1215          * to catch cases where we are gazumped.
1216          */
1217         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218         if (ret)
1219                 goto unref;
1220
1221         if (read_domains & I915_GEM_DOMAIN_GTT) {
1222                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224                 /* Silently promote "you're not bound, there was nothing to do"
1225                  * to success, since the client was just asking us to
1226                  * make sure everything was done.
1227                  */
1228                 if (ret == -EINVAL)
1229                         ret = 0;
1230         } else {
1231                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232         }
1233
1234 unref:
1235         drm_gem_object_unreference(&obj->base);
1236 unlock:
1237         mutex_unlock(&dev->struct_mutex);
1238         return ret;
1239 }
1240
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246                          struct drm_file *file)
1247 {
1248         struct drm_i915_gem_sw_finish *args = data;
1249         struct drm_i915_gem_object *obj;
1250         int ret = 0;
1251
1252         ret = i915_mutex_lock_interruptible(dev);
1253         if (ret)
1254                 return ret;
1255
1256         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257         if (&obj->base == NULL) {
1258                 ret = -ENOENT;
1259                 goto unlock;
1260         }
1261
1262         /* Pinned buffers may be scanout, so flush the cache */
1263         if (obj->pin_count)
1264                 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266         drm_gem_object_unreference(&obj->base);
1267 unlock:
1268         mutex_unlock(&dev->struct_mutex);
1269         return ret;
1270 }
1271
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281                     struct drm_file *file)
1282 {
1283         struct drm_i915_gem_mmap *args = data;
1284         struct drm_gem_object *obj;
1285         unsigned long addr;
1286
1287         obj = drm_gem_object_lookup(dev, file, args->handle);
1288         if (obj == NULL)
1289                 return -ENOENT;
1290
1291         /* prime objects have no backing filp to GEM mmap
1292          * pages from.
1293          */
1294         if (!obj->filp) {
1295                 drm_gem_object_unreference_unlocked(obj);
1296                 return -EINVAL;
1297         }
1298
1299         addr = vm_mmap(obj->filp, 0, args->size,
1300                        PROT_READ | PROT_WRITE, MAP_SHARED,
1301                        args->offset);
1302         drm_gem_object_unreference_unlocked(obj);
1303         if (IS_ERR((void *)addr))
1304                 return addr;
1305
1306         args->addr_ptr = (uint64_t) addr;
1307
1308         return 0;
1309 }
1310
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330         struct drm_device *dev = obj->base.dev;
1331         drm_i915_private_t *dev_priv = dev->dev_private;
1332         pgoff_t page_offset;
1333         unsigned long pfn;
1334         int ret = 0;
1335         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337         /* We don't use vmf->pgoff since that has the fake offset */
1338         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339                 PAGE_SHIFT;
1340
1341         ret = i915_mutex_lock_interruptible(dev);
1342         if (ret)
1343                 goto out;
1344
1345         trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347         /* Now bind it into the GTT if needed */
1348         if (!obj->map_and_fenceable) {
1349                 ret = i915_gem_object_unbind(obj);
1350                 if (ret)
1351                         goto unlock;
1352         }
1353         if (!obj->gtt_space) {
1354                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355                 if (ret)
1356                         goto unlock;
1357
1358                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359                 if (ret)
1360                         goto unlock;
1361         }
1362
1363         if (!obj->has_global_gtt_mapping)
1364                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
1366         ret = i915_gem_object_get_fence(obj);
1367         if (ret)
1368                 goto unlock;
1369
1370         if (i915_gem_object_is_inactive(obj))
1371                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372
1373         obj->fault_mappable = true;
1374
1375         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376                 page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381         mutex_unlock(&dev->struct_mutex);
1382 out:
1383         switch (ret) {
1384         case -EIO:
1385                 /* If this -EIO is due to a gpu hang, give the reset code a
1386                  * chance to clean up the mess. Otherwise return the proper
1387                  * SIGBUS. */
1388                 if (!atomic_read(&dev_priv->mm.wedged))
1389                         return VM_FAULT_SIGBUS;
1390         case -EAGAIN:
1391                 /* Give the error handler a chance to run and move the
1392                  * objects off the GPU active list. Next time we service the
1393                  * fault, we should be able to transition the page into the
1394                  * GTT without touching the GPU (and so avoid further
1395                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396                  * with coherency, just lost writes.
1397                  */
1398                 set_need_resched();
1399         case 0:
1400         case -ERESTARTSYS:
1401         case -EINTR:
1402         case -EBUSY:
1403                 /*
1404                  * EBUSY is ok: this just means that another thread
1405                  * already did the job.
1406                  */
1407                 return VM_FAULT_NOPAGE;
1408         case -ENOMEM:
1409                 return VM_FAULT_OOM;
1410         case -ENOSPC:
1411                 return VM_FAULT_SIGBUS;
1412         default:
1413                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414                 return VM_FAULT_SIGBUS;
1415         }
1416 }
1417
1418 /**
1419  * i915_gem_release_mmap - remove physical page mappings
1420  * @obj: obj in question
1421  *
1422  * Preserve the reservation of the mmapping with the DRM core code, but
1423  * relinquish ownership of the pages back to the system.
1424  *
1425  * It is vital that we remove the page mapping if we have mapped a tiled
1426  * object through the GTT and then lose the fence register due to
1427  * resource pressure. Similarly if the object has been moved out of the
1428  * aperture, than pages mapped into userspace must be revoked. Removing the
1429  * mapping will then trigger a page fault on the next user access, allowing
1430  * fixup by i915_gem_fault().
1431  */
1432 void
1433 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1434 {
1435         if (!obj->fault_mappable)
1436                 return;
1437
1438         if (obj->base.dev->dev_mapping)
1439                 unmap_mapping_range(obj->base.dev->dev_mapping,
1440                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441                                     obj->base.size, 1);
1442
1443         obj->fault_mappable = false;
1444 }
1445
1446 static uint32_t
1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1448 {
1449         uint32_t gtt_size;
1450
1451         if (INTEL_INFO(dev)->gen >= 4 ||
1452             tiling_mode == I915_TILING_NONE)
1453                 return size;
1454
1455         /* Previous chips need a power-of-two fence region when tiling */
1456         if (INTEL_INFO(dev)->gen == 3)
1457                 gtt_size = 1024*1024;
1458         else
1459                 gtt_size = 512*1024;
1460
1461         while (gtt_size < size)
1462                 gtt_size <<= 1;
1463
1464         return gtt_size;
1465 }
1466
1467 /**
1468  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469  * @obj: object to check
1470  *
1471  * Return the required GTT alignment for an object, taking into account
1472  * potential fence register mapping.
1473  */
1474 static uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_device *dev,
1476                            uint32_t size,
1477                            int tiling_mode)
1478 {
1479         /*
1480          * Minimum alignment is 4k (GTT page size), but might be greater
1481          * if a fence register is needed for the object.
1482          */
1483         if (INTEL_INFO(dev)->gen >= 4 ||
1484             tiling_mode == I915_TILING_NONE)
1485                 return 4096;
1486
1487         /*
1488          * Previous chips need to be aligned to the size of the smallest
1489          * fence register that can contain the object.
1490          */
1491         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1492 }
1493
1494 /**
1495  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1496  *                                       unfenced object
1497  * @dev: the device
1498  * @size: size of the object
1499  * @tiling_mode: tiling mode of the object
1500  *
1501  * Return the required GTT alignment for an object, only taking into account
1502  * unfenced tiled surface requirements.
1503  */
1504 uint32_t
1505 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1506                                     uint32_t size,
1507                                     int tiling_mode)
1508 {
1509         /*
1510          * Minimum alignment is 4k (GTT page size) for sane hw.
1511          */
1512         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1513             tiling_mode == I915_TILING_NONE)
1514                 return 4096;
1515
1516         /* Previous hardware however needs to be aligned to a power-of-two
1517          * tile height. The simplest method for determining this is to reuse
1518          * the power-of-tile object size.
1519          */
1520         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1521 }
1522
1523 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524 {
1525         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526         int ret;
1527
1528         if (obj->base.map_list.map)
1529                 return 0;
1530
1531         ret = drm_gem_create_mmap_offset(&obj->base);
1532         if (ret != -ENOSPC)
1533                 return ret;
1534
1535         /* Badly fragmented mmap space? The only way we can recover
1536          * space is by destroying unwanted objects. We can't randomly release
1537          * mmap_offsets as userspace expects them to be persistent for the
1538          * lifetime of the objects. The closest we can is to release the
1539          * offsets on purgeable objects by truncating it and marking it purged,
1540          * which prevents userspace from ever using that object again.
1541          */
1542         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543         ret = drm_gem_create_mmap_offset(&obj->base);
1544         if (ret != -ENOSPC)
1545                 return ret;
1546
1547         i915_gem_shrink_all(dev_priv);
1548         return drm_gem_create_mmap_offset(&obj->base);
1549 }
1550
1551 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552 {
1553         if (!obj->base.map_list.map)
1554                 return;
1555
1556         drm_gem_free_mmap_offset(&obj->base);
1557 }
1558
1559 int
1560 i915_gem_mmap_gtt(struct drm_file *file,
1561                   struct drm_device *dev,
1562                   uint32_t handle,
1563                   uint64_t *offset)
1564 {
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         struct drm_i915_gem_object *obj;
1567         int ret;
1568
1569         ret = i915_mutex_lock_interruptible(dev);
1570         if (ret)
1571                 return ret;
1572
1573         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1574         if (&obj->base == NULL) {
1575                 ret = -ENOENT;
1576                 goto unlock;
1577         }
1578
1579         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1580                 ret = -E2BIG;
1581                 goto out;
1582         }
1583
1584         if (obj->madv != I915_MADV_WILLNEED) {
1585                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1586                 ret = -EINVAL;
1587                 goto out;
1588         }
1589
1590         ret = i915_gem_object_create_mmap_offset(obj);
1591         if (ret)
1592                 goto out;
1593
1594         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1595
1596 out:
1597         drm_gem_object_unreference(&obj->base);
1598 unlock:
1599         mutex_unlock(&dev->struct_mutex);
1600         return ret;
1601 }
1602
1603 /**
1604  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1605  * @dev: DRM device
1606  * @data: GTT mapping ioctl data
1607  * @file: GEM object info
1608  *
1609  * Simply returns the fake offset to userspace so it can mmap it.
1610  * The mmap call will end up in drm_gem_mmap(), which will set things
1611  * up so we can get faults in the handler above.
1612  *
1613  * The fault handler will take care of binding the object into the GTT
1614  * (since it may have been evicted to make room for something), allocating
1615  * a fence register, and mapping the appropriate aperture address into
1616  * userspace.
1617  */
1618 int
1619 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1620                         struct drm_file *file)
1621 {
1622         struct drm_i915_gem_mmap_gtt *args = data;
1623
1624         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625 }
1626
1627 /* Immediately discard the backing storage */
1628 static void
1629 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1630 {
1631         struct inode *inode;
1632
1633         i915_gem_object_free_mmap_offset(obj);
1634
1635         if (obj->base.filp == NULL)
1636                 return;
1637
1638         /* Our goal here is to return as much of the memory as
1639          * is possible back to the system as we are called from OOM.
1640          * To do this we must instruct the shmfs to drop all of its
1641          * backing pages, *now*.
1642          */
1643         inode = obj->base.filp->f_path.dentry->d_inode;
1644         shmem_truncate_range(inode, 0, (loff_t)-1);
1645
1646         obj->madv = __I915_MADV_PURGED;
1647 }
1648
1649 static inline int
1650 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651 {
1652         return obj->madv == I915_MADV_DONTNEED;
1653 }
1654
1655 static void
1656 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1657 {
1658         int page_count = obj->base.size / PAGE_SIZE;
1659         struct scatterlist *sg;
1660         int ret, i;
1661
1662         BUG_ON(obj->madv == __I915_MADV_PURGED);
1663
1664         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665         if (ret) {
1666                 /* In the event of a disaster, abandon all caches and
1667                  * hope for the best.
1668                  */
1669                 WARN_ON(ret != -EIO);
1670                 i915_gem_clflush_object(obj);
1671                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672         }
1673
1674         if (i915_gem_object_needs_bit17_swizzle(obj))
1675                 i915_gem_object_save_bit_17_swizzle(obj);
1676
1677         if (obj->madv == I915_MADV_DONTNEED)
1678                 obj->dirty = 0;
1679
1680         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681                 struct page *page = sg_page(sg);
1682
1683                 if (obj->dirty)
1684                         set_page_dirty(page);
1685
1686                 if (obj->madv == I915_MADV_WILLNEED)
1687                         mark_page_accessed(page);
1688
1689                 page_cache_release(page);
1690         }
1691         obj->dirty = 0;
1692
1693         sg_free_table(obj->pages);
1694         kfree(obj->pages);
1695 }
1696
1697 static int
1698 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699 {
1700         const struct drm_i915_gem_object_ops *ops = obj->ops;
1701
1702         if (obj->pages == NULL)
1703                 return 0;
1704
1705         BUG_ON(obj->gtt_space);
1706
1707         if (obj->pages_pin_count)
1708                 return -EBUSY;
1709
1710         ops->put_pages(obj);
1711         obj->pages = NULL;
1712
1713         list_del(&obj->gtt_list);
1714         if (i915_gem_object_is_purgeable(obj))
1715                 i915_gem_object_truncate(obj);
1716
1717         return 0;
1718 }
1719
1720 static long
1721 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722 {
1723         struct drm_i915_gem_object *obj, *next;
1724         long count = 0;
1725
1726         list_for_each_entry_safe(obj, next,
1727                                  &dev_priv->mm.unbound_list,
1728                                  gtt_list) {
1729                 if (i915_gem_object_is_purgeable(obj) &&
1730                     i915_gem_object_put_pages(obj) == 0) {
1731                         count += obj->base.size >> PAGE_SHIFT;
1732                         if (count >= target)
1733                                 return count;
1734                 }
1735         }
1736
1737         list_for_each_entry_safe(obj, next,
1738                                  &dev_priv->mm.inactive_list,
1739                                  mm_list) {
1740                 if (i915_gem_object_is_purgeable(obj) &&
1741                     i915_gem_object_unbind(obj) == 0 &&
1742                     i915_gem_object_put_pages(obj) == 0) {
1743                         count += obj->base.size >> PAGE_SHIFT;
1744                         if (count >= target)
1745                                 return count;
1746                 }
1747         }
1748
1749         return count;
1750 }
1751
1752 static void
1753 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754 {
1755         struct drm_i915_gem_object *obj, *next;
1756
1757         i915_gem_evict_everything(dev_priv->dev);
1758
1759         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1760                 i915_gem_object_put_pages(obj);
1761 }
1762
1763 static int
1764 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1765 {
1766         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1767         int page_count, i;
1768         struct address_space *mapping;
1769         struct sg_table *st;
1770         struct scatterlist *sg;
1771         struct page *page;
1772         gfp_t gfp;
1773
1774         /* Assert that the object is not currently in any GPU domain. As it
1775          * wasn't in the GTT, there shouldn't be any way it could have been in
1776          * a GPU cache
1777          */
1778         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780
1781         st = kmalloc(sizeof(*st), GFP_KERNEL);
1782         if (st == NULL)
1783                 return -ENOMEM;
1784
1785         page_count = obj->base.size / PAGE_SIZE;
1786         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787                 sg_free_table(st);
1788                 kfree(st);
1789                 return -ENOMEM;
1790         }
1791
1792         /* Get the list of pages out of our struct file.  They'll be pinned
1793          * at this point until we release them.
1794          *
1795          * Fail silently without starting the shrinker
1796          */
1797         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798         gfp = mapping_gfp_mask(mapping);
1799         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1800         gfp &= ~(__GFP_IO | __GFP_WAIT);
1801         for_each_sg(st->sgl, sg, page_count, i) {
1802                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803                 if (IS_ERR(page)) {
1804                         i915_gem_purge(dev_priv, page_count);
1805                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806                 }
1807                 if (IS_ERR(page)) {
1808                         /* We've tried hard to allocate the memory by reaping
1809                          * our own buffer, now let the real VM do its job and
1810                          * go down in flames if truly OOM.
1811                          */
1812                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1813                         gfp |= __GFP_IO | __GFP_WAIT;
1814
1815                         i915_gem_shrink_all(dev_priv);
1816                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817                         if (IS_ERR(page))
1818                                 goto err_pages;
1819
1820                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1821                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1822                 }
1823
1824                 sg_set_page(sg, page, PAGE_SIZE, 0);
1825         }
1826
1827         obj->pages = st;
1828
1829         if (i915_gem_object_needs_bit17_swizzle(obj))
1830                 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832         return 0;
1833
1834 err_pages:
1835         for_each_sg(st->sgl, sg, i, page_count)
1836                 page_cache_release(sg_page(sg));
1837         sg_free_table(st);
1838         kfree(st);
1839         return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853         const struct drm_i915_gem_object_ops *ops = obj->ops;
1854         int ret;
1855
1856         if (obj->pages)
1857                 return 0;
1858
1859         BUG_ON(obj->pages_pin_count);
1860
1861         ret = ops->get_pages(obj);
1862         if (ret)
1863                 return ret;
1864
1865         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866         return 0;
1867 }
1868
1869 void
1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1871                                struct intel_ring_buffer *ring,
1872                                u32 seqno)
1873 {
1874         struct drm_device *dev = obj->base.dev;
1875         struct drm_i915_private *dev_priv = dev->dev_private;
1876
1877         BUG_ON(ring == NULL);
1878         obj->ring = ring;
1879
1880         /* Add a reference if we're newly entering the active list. */
1881         if (!obj->active) {
1882                 drm_gem_object_reference(&obj->base);
1883                 obj->active = 1;
1884         }
1885
1886         /* Move from whatever list we were on to the tail of execution. */
1887         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888         list_move_tail(&obj->ring_list, &ring->active_list);
1889
1890         obj->last_read_seqno = seqno;
1891
1892         if (obj->fenced_gpu_access) {
1893                 obj->last_fenced_seqno = seqno;
1894
1895                 /* Bump MRU to take account of the delayed flush */
1896                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897                         struct drm_i915_fence_reg *reg;
1898
1899                         reg = &dev_priv->fence_regs[obj->fence_reg];
1900                         list_move_tail(&reg->lru_list,
1901                                        &dev_priv->mm.fence_list);
1902                 }
1903         }
1904 }
1905
1906 static void
1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1908 {
1909         struct drm_device *dev = obj->base.dev;
1910         struct drm_i915_private *dev_priv = dev->dev_private;
1911
1912         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1913         BUG_ON(!obj->active);
1914
1915         if (obj->pin_count) /* are we a framebuffer? */
1916                 intel_mark_fb_idle(obj);
1917
1918         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1919
1920         list_del_init(&obj->ring_list);
1921         obj->ring = NULL;
1922
1923         obj->last_read_seqno = 0;
1924         obj->last_write_seqno = 0;
1925         obj->base.write_domain = 0;
1926
1927         obj->last_fenced_seqno = 0;
1928         obj->fenced_gpu_access = false;
1929
1930         obj->active = 0;
1931         drm_gem_object_unreference(&obj->base);
1932
1933         WARN_ON(i915_verify_lists(dev));
1934 }
1935
1936 static u32
1937 i915_gem_get_seqno(struct drm_device *dev)
1938 {
1939         drm_i915_private_t *dev_priv = dev->dev_private;
1940         u32 seqno = dev_priv->next_seqno;
1941
1942         /* reserve 0 for non-seqno */
1943         if (++dev_priv->next_seqno == 0)
1944                 dev_priv->next_seqno = 1;
1945
1946         return seqno;
1947 }
1948
1949 u32
1950 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1951 {
1952         if (ring->outstanding_lazy_request == 0)
1953                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954
1955         return ring->outstanding_lazy_request;
1956 }
1957
1958 int
1959 i915_add_request(struct intel_ring_buffer *ring,
1960                  struct drm_file *file,
1961                  u32 *out_seqno)
1962 {
1963         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1964         struct drm_i915_gem_request *request;
1965         u32 request_ring_position;
1966         u32 seqno;
1967         int was_empty;
1968         int ret;
1969
1970         /*
1971          * Emit any outstanding flushes - execbuf can fail to emit the flush
1972          * after having emitted the batchbuffer command. Hence we need to fix
1973          * things up similar to emitting the lazy request. The difference here
1974          * is that the flush _must_ happen before the next request, no matter
1975          * what.
1976          */
1977         ret = intel_ring_flush_all_caches(ring);
1978         if (ret)
1979                 return ret;
1980
1981         request = kmalloc(sizeof(*request), GFP_KERNEL);
1982         if (request == NULL)
1983                 return -ENOMEM;
1984
1985         seqno = i915_gem_next_request_seqno(ring);
1986
1987         /* Record the position of the start of the request so that
1988          * should we detect the updated seqno part-way through the
1989          * GPU processing the request, we never over-estimate the
1990          * position of the head.
1991          */
1992         request_ring_position = intel_ring_get_tail(ring);
1993
1994         ret = ring->add_request(ring, &seqno);
1995         if (ret) {
1996                 kfree(request);
1997                 return ret;
1998         }
1999
2000         trace_i915_gem_request_add(ring, seqno);
2001
2002         request->seqno = seqno;
2003         request->ring = ring;
2004         request->tail = request_ring_position;
2005         request->emitted_jiffies = jiffies;
2006         was_empty = list_empty(&ring->request_list);
2007         list_add_tail(&request->list, &ring->request_list);
2008         request->file_priv = NULL;
2009
2010         if (file) {
2011                 struct drm_i915_file_private *file_priv = file->driver_priv;
2012
2013                 spin_lock(&file_priv->mm.lock);
2014                 request->file_priv = file_priv;
2015                 list_add_tail(&request->client_list,
2016                               &file_priv->mm.request_list);
2017                 spin_unlock(&file_priv->mm.lock);
2018         }
2019
2020         ring->outstanding_lazy_request = 0;
2021
2022         if (!dev_priv->mm.suspended) {
2023                 if (i915_enable_hangcheck) {
2024                         mod_timer(&dev_priv->hangcheck_timer,
2025                                   jiffies +
2026                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2027                 }
2028                 if (was_empty) {
2029                         queue_delayed_work(dev_priv->wq,
2030                                            &dev_priv->mm.retire_work, HZ);
2031                         intel_mark_busy(dev_priv->dev);
2032                 }
2033         }
2034
2035         if (out_seqno)
2036                 *out_seqno = seqno;
2037         return 0;
2038 }
2039
2040 static inline void
2041 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2042 {
2043         struct drm_i915_file_private *file_priv = request->file_priv;
2044
2045         if (!file_priv)
2046                 return;
2047
2048         spin_lock(&file_priv->mm.lock);
2049         if (request->file_priv) {
2050                 list_del(&request->client_list);
2051                 request->file_priv = NULL;
2052         }
2053         spin_unlock(&file_priv->mm.lock);
2054 }
2055
2056 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057                                       struct intel_ring_buffer *ring)
2058 {
2059         while (!list_empty(&ring->request_list)) {
2060                 struct drm_i915_gem_request *request;
2061
2062                 request = list_first_entry(&ring->request_list,
2063                                            struct drm_i915_gem_request,
2064                                            list);
2065
2066                 list_del(&request->list);
2067                 i915_gem_request_remove_from_client(request);
2068                 kfree(request);
2069         }
2070
2071         while (!list_empty(&ring->active_list)) {
2072                 struct drm_i915_gem_object *obj;
2073
2074                 obj = list_first_entry(&ring->active_list,
2075                                        struct drm_i915_gem_object,
2076                                        ring_list);
2077
2078                 i915_gem_object_move_to_inactive(obj);
2079         }
2080 }
2081
2082 static void i915_gem_reset_fences(struct drm_device *dev)
2083 {
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         int i;
2086
2087         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2088                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2089
2090                 i915_gem_write_fence(dev, i, NULL);
2091
2092                 if (reg->obj)
2093                         i915_gem_object_fence_lost(reg->obj);
2094
2095                 reg->pin_count = 0;
2096                 reg->obj = NULL;
2097                 INIT_LIST_HEAD(&reg->lru_list);
2098         }
2099
2100         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2101 }
2102
2103 void i915_gem_reset(struct drm_device *dev)
2104 {
2105         struct drm_i915_private *dev_priv = dev->dev_private;
2106         struct drm_i915_gem_object *obj;
2107         struct intel_ring_buffer *ring;
2108         int i;
2109
2110         for_each_ring(ring, dev_priv, i)
2111                 i915_gem_reset_ring_lists(dev_priv, ring);
2112
2113         /* Move everything out of the GPU domains to ensure we do any
2114          * necessary invalidation upon reuse.
2115          */
2116         list_for_each_entry(obj,
2117                             &dev_priv->mm.inactive_list,
2118                             mm_list)
2119         {
2120                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2121         }
2122
2123         /* The fence registers are invalidated so clear them out */
2124         i915_gem_reset_fences(dev);
2125 }
2126
2127 /**
2128  * This function clears the request list as sequence numbers are passed.
2129  */
2130 void
2131 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2132 {
2133         uint32_t seqno;
2134         int i;
2135
2136         if (list_empty(&ring->request_list))
2137                 return;
2138
2139         WARN_ON(i915_verify_lists(ring->dev));
2140
2141         seqno = ring->get_seqno(ring, true);
2142
2143         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2144                 if (seqno >= ring->sync_seqno[i])
2145                         ring->sync_seqno[i] = 0;
2146
2147         while (!list_empty(&ring->request_list)) {
2148                 struct drm_i915_gem_request *request;
2149
2150                 request = list_first_entry(&ring->request_list,
2151                                            struct drm_i915_gem_request,
2152                                            list);
2153
2154                 if (!i915_seqno_passed(seqno, request->seqno))
2155                         break;
2156
2157                 trace_i915_gem_request_retire(ring, request->seqno);
2158                 /* We know the GPU must have read the request to have
2159                  * sent us the seqno + interrupt, so use the position
2160                  * of tail of the request to update the last known position
2161                  * of the GPU head.
2162                  */
2163                 ring->last_retired_head = request->tail;
2164
2165                 list_del(&request->list);
2166                 i915_gem_request_remove_from_client(request);
2167                 kfree(request);
2168         }
2169
2170         /* Move any buffers on the active list that are no longer referenced
2171          * by the ringbuffer to the flushing/inactive lists as appropriate.
2172          */
2173         while (!list_empty(&ring->active_list)) {
2174                 struct drm_i915_gem_object *obj;
2175
2176                 obj = list_first_entry(&ring->active_list,
2177                                       struct drm_i915_gem_object,
2178                                       ring_list);
2179
2180                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2181                         break;
2182
2183                 i915_gem_object_move_to_inactive(obj);
2184         }
2185
2186         if (unlikely(ring->trace_irq_seqno &&
2187                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2188                 ring->irq_put(ring);
2189                 ring->trace_irq_seqno = 0;
2190         }
2191
2192         WARN_ON(i915_verify_lists(ring->dev));
2193 }
2194
2195 void
2196 i915_gem_retire_requests(struct drm_device *dev)
2197 {
2198         drm_i915_private_t *dev_priv = dev->dev_private;
2199         struct intel_ring_buffer *ring;
2200         int i;
2201
2202         for_each_ring(ring, dev_priv, i)
2203                 i915_gem_retire_requests_ring(ring);
2204 }
2205
2206 static void
2207 i915_gem_retire_work_handler(struct work_struct *work)
2208 {
2209         drm_i915_private_t *dev_priv;
2210         struct drm_device *dev;
2211         struct intel_ring_buffer *ring;
2212         bool idle;
2213         int i;
2214
2215         dev_priv = container_of(work, drm_i915_private_t,
2216                                 mm.retire_work.work);
2217         dev = dev_priv->dev;
2218
2219         /* Come back later if the device is busy... */
2220         if (!mutex_trylock(&dev->struct_mutex)) {
2221                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2222                 return;
2223         }
2224
2225         i915_gem_retire_requests(dev);
2226
2227         /* Send a periodic flush down the ring so we don't hold onto GEM
2228          * objects indefinitely.
2229          */
2230         idle = true;
2231         for_each_ring(ring, dev_priv, i) {
2232                 if (ring->gpu_caches_dirty)
2233                         i915_add_request(ring, NULL, NULL);
2234
2235                 idle &= list_empty(&ring->request_list);
2236         }
2237
2238         if (!dev_priv->mm.suspended && !idle)
2239                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2240         if (idle)
2241                 intel_mark_idle(dev);
2242
2243         mutex_unlock(&dev->struct_mutex);
2244 }
2245
2246 /**
2247  * Ensures that an object will eventually get non-busy by flushing any required
2248  * write domains, emitting any outstanding lazy request and retiring and
2249  * completed requests.
2250  */
2251 static int
2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253 {
2254         int ret;
2255
2256         if (obj->active) {
2257                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2258                 if (ret)
2259                         return ret;
2260
2261                 i915_gem_retire_requests_ring(obj->ring);
2262         }
2263
2264         return 0;
2265 }
2266
2267 /**
2268  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2269  * @DRM_IOCTL_ARGS: standard ioctl arguments
2270  *
2271  * Returns 0 if successful, else an error is returned with the remaining time in
2272  * the timeout parameter.
2273  *  -ETIME: object is still busy after timeout
2274  *  -ERESTARTSYS: signal interrupted the wait
2275  *  -ENONENT: object doesn't exist
2276  * Also possible, but rare:
2277  *  -EAGAIN: GPU wedged
2278  *  -ENOMEM: damn
2279  *  -ENODEV: Internal IRQ fail
2280  *  -E?: The add request failed
2281  *
2282  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2283  * non-zero timeout parameter the wait ioctl will wait for the given number of
2284  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2285  * without holding struct_mutex the object may become re-busied before this
2286  * function completes. A similar but shorter * race condition exists in the busy
2287  * ioctl
2288  */
2289 int
2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291 {
2292         struct drm_i915_gem_wait *args = data;
2293         struct drm_i915_gem_object *obj;
2294         struct intel_ring_buffer *ring = NULL;
2295         struct timespec timeout_stack, *timeout = NULL;
2296         u32 seqno = 0;
2297         int ret = 0;
2298
2299         if (args->timeout_ns >= 0) {
2300                 timeout_stack = ns_to_timespec(args->timeout_ns);
2301                 timeout = &timeout_stack;
2302         }
2303
2304         ret = i915_mutex_lock_interruptible(dev);
2305         if (ret)
2306                 return ret;
2307
2308         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309         if (&obj->base == NULL) {
2310                 mutex_unlock(&dev->struct_mutex);
2311                 return -ENOENT;
2312         }
2313
2314         /* Need to make sure the object gets inactive eventually. */
2315         ret = i915_gem_object_flush_active(obj);
2316         if (ret)
2317                 goto out;
2318
2319         if (obj->active) {
2320                 seqno = obj->last_read_seqno;
2321                 ring = obj->ring;
2322         }
2323
2324         if (seqno == 0)
2325                  goto out;
2326
2327         /* Do this after OLR check to make sure we make forward progress polling
2328          * on this IOCTL with a 0 timeout (like busy ioctl)
2329          */
2330         if (!args->timeout_ns) {
2331                 ret = -ETIME;
2332                 goto out;
2333         }
2334
2335         drm_gem_object_unreference(&obj->base);
2336         mutex_unlock(&dev->struct_mutex);
2337
2338         ret = __wait_seqno(ring, seqno, true, timeout);
2339         if (timeout) {
2340                 WARN_ON(!timespec_valid(timeout));
2341                 args->timeout_ns = timespec_to_ns(timeout);
2342         }
2343         return ret;
2344
2345 out:
2346         drm_gem_object_unreference(&obj->base);
2347         mutex_unlock(&dev->struct_mutex);
2348         return ret;
2349 }
2350
2351 /**
2352  * i915_gem_object_sync - sync an object to a ring.
2353  *
2354  * @obj: object which may be in use on another ring.
2355  * @to: ring we wish to use the object on. May be NULL.
2356  *
2357  * This code is meant to abstract object synchronization with the GPU.
2358  * Calling with NULL implies synchronizing the object with the CPU
2359  * rather than a particular GPU ring.
2360  *
2361  * Returns 0 if successful, else propagates up the lower layer error.
2362  */
2363 int
2364 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2365                      struct intel_ring_buffer *to)
2366 {
2367         struct intel_ring_buffer *from = obj->ring;
2368         u32 seqno;
2369         int ret, idx;
2370
2371         if (from == NULL || to == from)
2372                 return 0;
2373
2374         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2375                 return i915_gem_object_wait_rendering(obj, false);
2376
2377         idx = intel_ring_sync_index(from, to);
2378
2379         seqno = obj->last_read_seqno;
2380         if (seqno <= from->sync_seqno[idx])
2381                 return 0;
2382
2383         ret = i915_gem_check_olr(obj->ring, seqno);
2384         if (ret)
2385                 return ret;
2386
2387         ret = to->sync_to(to, from, seqno);
2388         if (!ret)
2389                 from->sync_seqno[idx] = seqno;
2390
2391         return ret;
2392 }
2393
2394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2395 {
2396         u32 old_write_domain, old_read_domains;
2397
2398         /* Act a barrier for all accesses through the GTT */
2399         mb();
2400
2401         /* Force a pagefault for domain tracking on next user access */
2402         i915_gem_release_mmap(obj);
2403
2404         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2405                 return;
2406
2407         old_read_domains = obj->base.read_domains;
2408         old_write_domain = obj->base.write_domain;
2409
2410         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2411         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2412
2413         trace_i915_gem_object_change_domain(obj,
2414                                             old_read_domains,
2415                                             old_write_domain);
2416 }
2417
2418 /**
2419  * Unbinds an object from the GTT aperture.
2420  */
2421 int
2422 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2423 {
2424         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2425         int ret = 0;
2426
2427         if (obj->gtt_space == NULL)
2428                 return 0;
2429
2430         if (obj->pin_count)
2431                 return -EBUSY;
2432
2433         BUG_ON(obj->pages == NULL);
2434
2435         ret = i915_gem_object_finish_gpu(obj);
2436         if (ret)
2437                 return ret;
2438         /* Continue on if we fail due to EIO, the GPU is hung so we
2439          * should be safe and we need to cleanup or else we might
2440          * cause memory corruption through use-after-free.
2441          */
2442
2443         i915_gem_object_finish_gtt(obj);
2444
2445         /* release the fence reg _after_ flushing */
2446         ret = i915_gem_object_put_fence(obj);
2447         if (ret)
2448                 return ret;
2449
2450         trace_i915_gem_object_unbind(obj);
2451
2452         if (obj->has_global_gtt_mapping)
2453                 i915_gem_gtt_unbind_object(obj);
2454         if (obj->has_aliasing_ppgtt_mapping) {
2455                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2456                 obj->has_aliasing_ppgtt_mapping = 0;
2457         }
2458         i915_gem_gtt_finish_object(obj);
2459
2460         list_del(&obj->mm_list);
2461         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2462         /* Avoid an unnecessary call to unbind on rebind. */
2463         obj->map_and_fenceable = true;
2464
2465         drm_mm_put_block(obj->gtt_space);
2466         obj->gtt_space = NULL;
2467         obj->gtt_offset = 0;
2468
2469         return 0;
2470 }
2471
2472 static int i915_ring_idle(struct intel_ring_buffer *ring)
2473 {
2474         if (list_empty(&ring->active_list))
2475                 return 0;
2476
2477         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2478 }
2479
2480 int i915_gpu_idle(struct drm_device *dev)
2481 {
2482         drm_i915_private_t *dev_priv = dev->dev_private;
2483         struct intel_ring_buffer *ring;
2484         int ret, i;
2485
2486         /* Flush everything onto the inactive list. */
2487         for_each_ring(ring, dev_priv, i) {
2488                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2489                 if (ret)
2490                         return ret;
2491
2492                 ret = i915_ring_idle(ring);
2493                 if (ret)
2494                         return ret;
2495         }
2496
2497         return 0;
2498 }
2499
2500 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501                                         struct drm_i915_gem_object *obj)
2502 {
2503         drm_i915_private_t *dev_priv = dev->dev_private;
2504         uint64_t val;
2505
2506         if (obj) {
2507                 u32 size = obj->gtt_space->size;
2508
2509                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510                                  0xfffff000) << 32;
2511                 val |= obj->gtt_offset & 0xfffff000;
2512                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2513                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2514
2515                 if (obj->tiling_mode == I915_TILING_Y)
2516                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517                 val |= I965_FENCE_REG_VALID;
2518         } else
2519                 val = 0;
2520
2521         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2522         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2523 }
2524
2525 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526                                  struct drm_i915_gem_object *obj)
2527 {
2528         drm_i915_private_t *dev_priv = dev->dev_private;
2529         uint64_t val;
2530
2531         if (obj) {
2532                 u32 size = obj->gtt_space->size;
2533
2534                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535                                  0xfffff000) << 32;
2536                 val |= obj->gtt_offset & 0xfffff000;
2537                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538                 if (obj->tiling_mode == I915_TILING_Y)
2539                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540                 val |= I965_FENCE_REG_VALID;
2541         } else
2542                 val = 0;
2543
2544         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2546 }
2547
2548 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549                                  struct drm_i915_gem_object *obj)
2550 {
2551         drm_i915_private_t *dev_priv = dev->dev_private;
2552         u32 val;
2553
2554         if (obj) {
2555                 u32 size = obj->gtt_space->size;
2556                 int pitch_val;
2557                 int tile_width;
2558
2559                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2560                      (size & -size) != size ||
2561                      (obj->gtt_offset & (size - 1)),
2562                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563                      obj->gtt_offset, obj->map_and_fenceable, size);
2564
2565                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566                         tile_width = 128;
2567                 else
2568                         tile_width = 512;
2569
2570                 /* Note: pitch better be a power of two tile widths */
2571                 pitch_val = obj->stride / tile_width;
2572                 pitch_val = ffs(pitch_val) - 1;
2573
2574                 val = obj->gtt_offset;
2575                 if (obj->tiling_mode == I915_TILING_Y)
2576                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577                 val |= I915_FENCE_SIZE_BITS(size);
2578                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579                 val |= I830_FENCE_REG_VALID;
2580         } else
2581                 val = 0;
2582
2583         if (reg < 8)
2584                 reg = FENCE_REG_830_0 + reg * 4;
2585         else
2586                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587
2588         I915_WRITE(reg, val);
2589         POSTING_READ(reg);
2590 }
2591
2592 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593                                 struct drm_i915_gem_object *obj)
2594 {
2595         drm_i915_private_t *dev_priv = dev->dev_private;
2596         uint32_t val;
2597
2598         if (obj) {
2599                 u32 size = obj->gtt_space->size;
2600                 uint32_t pitch_val;
2601
2602                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2603                      (size & -size) != size ||
2604                      (obj->gtt_offset & (size - 1)),
2605                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606                      obj->gtt_offset, size);
2607
2608                 pitch_val = obj->stride / 128;
2609                 pitch_val = ffs(pitch_val) - 1;
2610
2611                 val = obj->gtt_offset;
2612                 if (obj->tiling_mode == I915_TILING_Y)
2613                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614                 val |= I830_FENCE_SIZE_BITS(size);
2615                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616                 val |= I830_FENCE_REG_VALID;
2617         } else
2618                 val = 0;
2619
2620         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622 }
2623
2624 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625                                  struct drm_i915_gem_object *obj)
2626 {
2627         switch (INTEL_INFO(dev)->gen) {
2628         case 7:
2629         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630         case 5:
2631         case 4: i965_write_fence_reg(dev, reg, obj); break;
2632         case 3: i915_write_fence_reg(dev, reg, obj); break;
2633         case 2: i830_write_fence_reg(dev, reg, obj); break;
2634         default: break;
2635         }
2636 }
2637
2638 static inline int fence_number(struct drm_i915_private *dev_priv,
2639                                struct drm_i915_fence_reg *fence)
2640 {
2641         return fence - dev_priv->fence_regs;
2642 }
2643
2644 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645                                          struct drm_i915_fence_reg *fence,
2646                                          bool enable)
2647 {
2648         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649         int reg = fence_number(dev_priv, fence);
2650
2651         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652
2653         if (enable) {
2654                 obj->fence_reg = reg;
2655                 fence->obj = obj;
2656                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657         } else {
2658                 obj->fence_reg = I915_FENCE_REG_NONE;
2659                 fence->obj = NULL;
2660                 list_del_init(&fence->lru_list);
2661         }
2662 }
2663
2664 static int
2665 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2666 {
2667         if (obj->last_fenced_seqno) {
2668                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2669                 if (ret)
2670                         return ret;
2671
2672                 obj->last_fenced_seqno = 0;
2673         }
2674
2675         /* Ensure that all CPU reads are completed before installing a fence
2676          * and all writes before removing the fence.
2677          */
2678         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679                 mb();
2680
2681         obj->fenced_gpu_access = false;
2682         return 0;
2683 }
2684
2685 int
2686 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2687 {
2688         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2689         int ret;
2690
2691         ret = i915_gem_object_flush_fence(obj);
2692         if (ret)
2693                 return ret;
2694
2695         if (obj->fence_reg == I915_FENCE_REG_NONE)
2696                 return 0;
2697
2698         i915_gem_object_update_fence(obj,
2699                                      &dev_priv->fence_regs[obj->fence_reg],
2700                                      false);
2701         i915_gem_object_fence_lost(obj);
2702
2703         return 0;
2704 }
2705
2706 static struct drm_i915_fence_reg *
2707 i915_find_fence_reg(struct drm_device *dev)
2708 {
2709         struct drm_i915_private *dev_priv = dev->dev_private;
2710         struct drm_i915_fence_reg *reg, *avail;
2711         int i;
2712
2713         /* First try to find a free reg */
2714         avail = NULL;
2715         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716                 reg = &dev_priv->fence_regs[i];
2717                 if (!reg->obj)
2718                         return reg;
2719
2720                 if (!reg->pin_count)
2721                         avail = reg;
2722         }
2723
2724         if (avail == NULL)
2725                 return NULL;
2726
2727         /* None available, try to steal one or wait for a user to finish */
2728         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2729                 if (reg->pin_count)
2730                         continue;
2731
2732                 return reg;
2733         }
2734
2735         return NULL;
2736 }
2737
2738 /**
2739  * i915_gem_object_get_fence - set up fencing for an object
2740  * @obj: object to map through a fence reg
2741  *
2742  * When mapping objects through the GTT, userspace wants to be able to write
2743  * to them without having to worry about swizzling if the object is tiled.
2744  * This function walks the fence regs looking for a free one for @obj,
2745  * stealing one if it can't find any.
2746  *
2747  * It then sets up the reg based on the object's properties: address, pitch
2748  * and tiling format.
2749  *
2750  * For an untiled surface, this removes any existing fence.
2751  */
2752 int
2753 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2754 {
2755         struct drm_device *dev = obj->base.dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         bool enable = obj->tiling_mode != I915_TILING_NONE;
2758         struct drm_i915_fence_reg *reg;
2759         int ret;
2760
2761         /* Have we updated the tiling parameters upon the object and so
2762          * will need to serialise the write to the associated fence register?
2763          */
2764         if (obj->fence_dirty) {
2765                 ret = i915_gem_object_flush_fence(obj);
2766                 if (ret)
2767                         return ret;
2768         }
2769
2770         /* Just update our place in the LRU if our fence is getting reused. */
2771         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772                 reg = &dev_priv->fence_regs[obj->fence_reg];
2773                 if (!obj->fence_dirty) {
2774                         list_move_tail(&reg->lru_list,
2775                                        &dev_priv->mm.fence_list);
2776                         return 0;
2777                 }
2778         } else if (enable) {
2779                 reg = i915_find_fence_reg(dev);
2780                 if (reg == NULL)
2781                         return -EDEADLK;
2782
2783                 if (reg->obj) {
2784                         struct drm_i915_gem_object *old = reg->obj;
2785
2786                         ret = i915_gem_object_flush_fence(old);
2787                         if (ret)
2788                                 return ret;
2789
2790                         i915_gem_object_fence_lost(old);
2791                 }
2792         } else
2793                 return 0;
2794
2795         i915_gem_object_update_fence(obj, reg, enable);
2796         obj->fence_dirty = false;
2797
2798         return 0;
2799 }
2800
2801 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802                                      struct drm_mm_node *gtt_space,
2803                                      unsigned long cache_level)
2804 {
2805         struct drm_mm_node *other;
2806
2807         /* On non-LLC machines we have to be careful when putting differing
2808          * types of snoopable memory together to avoid the prefetcher
2809          * crossing memory domains and dieing.
2810          */
2811         if (HAS_LLC(dev))
2812                 return true;
2813
2814         if (gtt_space == NULL)
2815                 return true;
2816
2817         if (list_empty(&gtt_space->node_list))
2818                 return true;
2819
2820         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821         if (other->allocated && !other->hole_follows && other->color != cache_level)
2822                 return false;
2823
2824         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826                 return false;
2827
2828         return true;
2829 }
2830
2831 static void i915_gem_verify_gtt(struct drm_device *dev)
2832 {
2833 #if WATCH_GTT
2834         struct drm_i915_private *dev_priv = dev->dev_private;
2835         struct drm_i915_gem_object *obj;
2836         int err = 0;
2837
2838         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839                 if (obj->gtt_space == NULL) {
2840                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841                         err++;
2842                         continue;
2843                 }
2844
2845                 if (obj->cache_level != obj->gtt_space->color) {
2846                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847                                obj->gtt_space->start,
2848                                obj->gtt_space->start + obj->gtt_space->size,
2849                                obj->cache_level,
2850                                obj->gtt_space->color);
2851                         err++;
2852                         continue;
2853                 }
2854
2855                 if (!i915_gem_valid_gtt_space(dev,
2856                                               obj->gtt_space,
2857                                               obj->cache_level)) {
2858                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859                                obj->gtt_space->start,
2860                                obj->gtt_space->start + obj->gtt_space->size,
2861                                obj->cache_level);
2862                         err++;
2863                         continue;
2864                 }
2865         }
2866
2867         WARN_ON(err);
2868 #endif
2869 }
2870
2871 /**
2872  * Finds free space in the GTT aperture and binds the object there.
2873  */
2874 static int
2875 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2876                             unsigned alignment,
2877                             bool map_and_fenceable,
2878                             bool nonblocking)
2879 {
2880         struct drm_device *dev = obj->base.dev;
2881         drm_i915_private_t *dev_priv = dev->dev_private;
2882         struct drm_mm_node *free_space;
2883         u32 size, fence_size, fence_alignment, unfenced_alignment;
2884         bool mappable, fenceable;
2885         int ret;
2886
2887         if (obj->madv != I915_MADV_WILLNEED) {
2888                 DRM_ERROR("Attempting to bind a purgeable object\n");
2889                 return -EINVAL;
2890         }
2891
2892         fence_size = i915_gem_get_gtt_size(dev,
2893                                            obj->base.size,
2894                                            obj->tiling_mode);
2895         fence_alignment = i915_gem_get_gtt_alignment(dev,
2896                                                      obj->base.size,
2897                                                      obj->tiling_mode);
2898         unfenced_alignment =
2899                 i915_gem_get_unfenced_gtt_alignment(dev,
2900                                                     obj->base.size,
2901                                                     obj->tiling_mode);
2902
2903         if (alignment == 0)
2904                 alignment = map_and_fenceable ? fence_alignment :
2905                                                 unfenced_alignment;
2906         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2907                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908                 return -EINVAL;
2909         }
2910
2911         size = map_and_fenceable ? fence_size : obj->base.size;
2912
2913         /* If the object is bigger than the entire aperture, reject it early
2914          * before evicting everything in a vain attempt to find space.
2915          */
2916         if (obj->base.size >
2917             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2918                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919                 return -E2BIG;
2920         }
2921
2922         ret = i915_gem_object_get_pages(obj);
2923         if (ret)
2924                 return ret;
2925
2926  search_free:
2927         if (map_and_fenceable)
2928                 free_space =
2929                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2930                                                           size, alignment, obj->cache_level,
2931                                                           0, dev_priv->mm.gtt_mappable_end,
2932                                                           false);
2933         else
2934                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2935                                                       size, alignment, obj->cache_level,
2936                                                       false);
2937
2938         if (free_space != NULL) {
2939                 if (map_and_fenceable)
2940                         obj->gtt_space =
2941                                 drm_mm_get_block_range_generic(free_space,
2942                                                                size, alignment, obj->cache_level,
2943                                                                0, dev_priv->mm.gtt_mappable_end,
2944                                                                false);
2945                 else
2946                         obj->gtt_space =
2947                                 drm_mm_get_block_generic(free_space,
2948                                                          size, alignment, obj->cache_level,
2949                                                          false);
2950         }
2951         if (obj->gtt_space == NULL) {
2952                 ret = i915_gem_evict_something(dev, size, alignment,
2953                                                obj->cache_level,
2954                                                map_and_fenceable,
2955                                                nonblocking);
2956                 if (ret)
2957                         return ret;
2958
2959                 goto search_free;
2960         }
2961         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2962                                               obj->gtt_space,
2963                                               obj->cache_level))) {
2964                 drm_mm_put_block(obj->gtt_space);
2965                 obj->gtt_space = NULL;
2966                 return -EINVAL;
2967         }
2968
2969
2970         ret = i915_gem_gtt_prepare_object(obj);
2971         if (ret) {
2972                 drm_mm_put_block(obj->gtt_space);
2973                 obj->gtt_space = NULL;
2974                 return ret;
2975         }
2976
2977         if (!dev_priv->mm.aliasing_ppgtt)
2978                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2979
2980         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2981         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982
2983         obj->gtt_offset = obj->gtt_space->start;
2984
2985         fenceable =
2986                 obj->gtt_space->size == fence_size &&
2987                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2988
2989         mappable =
2990                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2991
2992         obj->map_and_fenceable = mappable && fenceable;
2993
2994         trace_i915_gem_object_bind(obj, map_and_fenceable);
2995         i915_gem_verify_gtt(dev);
2996         return 0;
2997 }
2998
2999 void
3000 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3001 {
3002         /* If we don't have a page list set up, then we're not pinned
3003          * to GPU, and we can ignore the cache flush because it'll happen
3004          * again at bind time.
3005          */
3006         if (obj->pages == NULL)
3007                 return;
3008
3009         /* If the GPU is snooping the contents of the CPU cache,
3010          * we do not need to manually clear the CPU cache lines.  However,
3011          * the caches are only snooped when the render cache is
3012          * flushed/invalidated.  As we always have to emit invalidations
3013          * and flushes when moving into and out of the RENDER domain, correct
3014          * snooping behaviour occurs naturally as the result of our domain
3015          * tracking.
3016          */
3017         if (obj->cache_level != I915_CACHE_NONE)
3018                 return;
3019
3020         trace_i915_gem_object_clflush(obj);
3021
3022         drm_clflush_sg(obj->pages);
3023 }
3024
3025 /** Flushes the GTT write domain for the object if it's dirty. */
3026 static void
3027 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3028 {
3029         uint32_t old_write_domain;
3030
3031         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3032                 return;
3033
3034         /* No actual flushing is required for the GTT write domain.  Writes
3035          * to it immediately go to main memory as far as we know, so there's
3036          * no chipset flush.  It also doesn't land in render cache.
3037          *
3038          * However, we do have to enforce the order so that all writes through
3039          * the GTT land before any writes to the device, such as updates to
3040          * the GATT itself.
3041          */
3042         wmb();
3043
3044         old_write_domain = obj->base.write_domain;
3045         obj->base.write_domain = 0;
3046
3047         trace_i915_gem_object_change_domain(obj,
3048                                             obj->base.read_domains,
3049                                             old_write_domain);
3050 }
3051
3052 /** Flushes the CPU write domain for the object if it's dirty. */
3053 static void
3054 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3055 {
3056         uint32_t old_write_domain;
3057
3058         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3059                 return;
3060
3061         i915_gem_clflush_object(obj);
3062         intel_gtt_chipset_flush();
3063         old_write_domain = obj->base.write_domain;
3064         obj->base.write_domain = 0;
3065
3066         trace_i915_gem_object_change_domain(obj,
3067                                             obj->base.read_domains,
3068                                             old_write_domain);
3069 }
3070
3071 /**
3072  * Moves a single object to the GTT read, and possibly write domain.
3073  *
3074  * This function returns when the move is complete, including waiting on
3075  * flushes to occur.
3076  */
3077 int
3078 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3079 {
3080         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3081         uint32_t old_write_domain, old_read_domains;
3082         int ret;
3083
3084         /* Not valid to be called on unbound objects. */
3085         if (obj->gtt_space == NULL)
3086                 return -EINVAL;
3087
3088         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089                 return 0;
3090
3091         ret = i915_gem_object_wait_rendering(obj, !write);
3092         if (ret)
3093                 return ret;
3094
3095         i915_gem_object_flush_cpu_write_domain(obj);
3096
3097         old_write_domain = obj->base.write_domain;
3098         old_read_domains = obj->base.read_domains;
3099
3100         /* It should now be out of any other write domains, and we can update
3101          * the domain values for our changes.
3102          */
3103         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105         if (write) {
3106                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108                 obj->dirty = 1;
3109         }
3110
3111         trace_i915_gem_object_change_domain(obj,
3112                                             old_read_domains,
3113                                             old_write_domain);
3114
3115         /* And bump the LRU for this access */
3116         if (i915_gem_object_is_inactive(obj))
3117                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118
3119         return 0;
3120 }
3121
3122 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3123                                     enum i915_cache_level cache_level)
3124 {
3125         struct drm_device *dev = obj->base.dev;
3126         drm_i915_private_t *dev_priv = dev->dev_private;
3127         int ret;
3128
3129         if (obj->cache_level == cache_level)
3130                 return 0;
3131
3132         if (obj->pin_count) {
3133                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3134                 return -EBUSY;
3135         }
3136
3137         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138                 ret = i915_gem_object_unbind(obj);
3139                 if (ret)
3140                         return ret;
3141         }
3142
3143         if (obj->gtt_space) {
3144                 ret = i915_gem_object_finish_gpu(obj);
3145                 if (ret)
3146                         return ret;
3147
3148                 i915_gem_object_finish_gtt(obj);
3149
3150                 /* Before SandyBridge, you could not use tiling or fence
3151                  * registers with snooped memory, so relinquish any fences
3152                  * currently pointing to our region in the aperture.
3153                  */
3154                 if (INTEL_INFO(dev)->gen < 6) {
3155                         ret = i915_gem_object_put_fence(obj);
3156                         if (ret)
3157                                 return ret;
3158                 }
3159
3160                 if (obj->has_global_gtt_mapping)
3161                         i915_gem_gtt_bind_object(obj, cache_level);
3162                 if (obj->has_aliasing_ppgtt_mapping)
3163                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164                                                obj, cache_level);
3165
3166                 obj->gtt_space->color = cache_level;
3167         }
3168
3169         if (cache_level == I915_CACHE_NONE) {
3170                 u32 old_read_domains, old_write_domain;
3171
3172                 /* If we're coming from LLC cached, then we haven't
3173                  * actually been tracking whether the data is in the
3174                  * CPU cache or not, since we only allow one bit set
3175                  * in obj->write_domain and have been skipping the clflushes.
3176                  * Just set it to the CPU cache for now.
3177                  */
3178                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180
3181                 old_read_domains = obj->base.read_domains;
3182                 old_write_domain = obj->base.write_domain;
3183
3184                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186
3187                 trace_i915_gem_object_change_domain(obj,
3188                                                     old_read_domains,
3189                                                     old_write_domain);
3190         }
3191
3192         obj->cache_level = cache_level;
3193         i915_gem_verify_gtt(dev);
3194         return 0;
3195 }
3196
3197 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3198                                struct drm_file *file)
3199 {
3200         struct drm_i915_gem_caching *args = data;
3201         struct drm_i915_gem_object *obj;
3202         int ret;
3203
3204         ret = i915_mutex_lock_interruptible(dev);
3205         if (ret)
3206                 return ret;
3207
3208         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209         if (&obj->base == NULL) {
3210                 ret = -ENOENT;
3211                 goto unlock;
3212         }
3213
3214         args->caching = obj->cache_level != I915_CACHE_NONE;
3215
3216         drm_gem_object_unreference(&obj->base);
3217 unlock:
3218         mutex_unlock(&dev->struct_mutex);
3219         return ret;
3220 }
3221
3222 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3223                                struct drm_file *file)
3224 {
3225         struct drm_i915_gem_caching *args = data;
3226         struct drm_i915_gem_object *obj;
3227         enum i915_cache_level level;
3228         int ret;
3229
3230         switch (args->caching) {
3231         case I915_CACHING_NONE:
3232                 level = I915_CACHE_NONE;
3233                 break;
3234         case I915_CACHING_CACHED:
3235                 level = I915_CACHE_LLC;
3236                 break;
3237         default:
3238                 return -EINVAL;
3239         }
3240
3241         ret = i915_mutex_lock_interruptible(dev);
3242         if (ret)
3243                 return ret;
3244
3245         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246         if (&obj->base == NULL) {
3247                 ret = -ENOENT;
3248                 goto unlock;
3249         }
3250
3251         ret = i915_gem_object_set_cache_level(obj, level);
3252
3253         drm_gem_object_unreference(&obj->base);
3254 unlock:
3255         mutex_unlock(&dev->struct_mutex);
3256         return ret;
3257 }
3258
3259 /*
3260  * Prepare buffer for display plane (scanout, cursors, etc).
3261  * Can be called from an uninterruptible phase (modesetting) and allows
3262  * any flushes to be pipelined (for pageflips).
3263  */
3264 int
3265 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3266                                      u32 alignment,
3267                                      struct intel_ring_buffer *pipelined)
3268 {
3269         u32 old_read_domains, old_write_domain;
3270         int ret;
3271
3272         if (pipelined != obj->ring) {
3273                 ret = i915_gem_object_sync(obj, pipelined);
3274                 if (ret)
3275                         return ret;
3276         }
3277
3278         /* The display engine is not coherent with the LLC cache on gen6.  As
3279          * a result, we make sure that the pinning that is about to occur is
3280          * done with uncached PTEs. This is lowest common denominator for all
3281          * chipsets.
3282          *
3283          * However for gen6+, we could do better by using the GFDT bit instead
3284          * of uncaching, which would allow us to flush all the LLC-cached data
3285          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286          */
3287         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3288         if (ret)
3289                 return ret;
3290
3291         /* As the user may map the buffer once pinned in the display plane
3292          * (e.g. libkms for the bootup splash), we have to ensure that we
3293          * always use map_and_fenceable for all scanout buffers.
3294          */
3295         ret = i915_gem_object_pin(obj, alignment, true, false);
3296         if (ret)
3297                 return ret;
3298
3299         i915_gem_object_flush_cpu_write_domain(obj);
3300
3301         old_write_domain = obj->base.write_domain;
3302         old_read_domains = obj->base.read_domains;
3303
3304         /* It should now be out of any other write domains, and we can update
3305          * the domain values for our changes.
3306          */
3307         obj->base.write_domain = 0;
3308         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3309
3310         trace_i915_gem_object_change_domain(obj,
3311                                             old_read_domains,
3312                                             old_write_domain);
3313
3314         return 0;
3315 }
3316
3317 int
3318 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3319 {
3320         int ret;
3321
3322         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3323                 return 0;
3324
3325         ret = i915_gem_object_wait_rendering(obj, false);
3326         if (ret)
3327                 return ret;
3328
3329         /* Ensure that we invalidate the GPU's caches and TLBs. */
3330         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3331         return 0;
3332 }
3333
3334 /**
3335  * Moves a single object to the CPU read, and possibly write domain.
3336  *
3337  * This function returns when the move is complete, including waiting on
3338  * flushes to occur.
3339  */
3340 int
3341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3342 {
3343         uint32_t old_write_domain, old_read_domains;
3344         int ret;
3345
3346         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347                 return 0;
3348
3349         ret = i915_gem_object_wait_rendering(obj, !write);
3350         if (ret)
3351                 return ret;
3352
3353         i915_gem_object_flush_gtt_write_domain(obj);
3354
3355         old_write_domain = obj->base.write_domain;
3356         old_read_domains = obj->base.read_domains;
3357
3358         /* Flush the CPU cache if it's still invalid. */
3359         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3360                 i915_gem_clflush_object(obj);
3361
3362                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3363         }
3364
3365         /* It should now be out of any other write domains, and we can update
3366          * the domain values for our changes.
3367          */
3368         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3369
3370         /* If we're writing through the CPU, then the GPU read domains will
3371          * need to be invalidated at next use.
3372          */
3373         if (write) {
3374                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3376         }
3377
3378         trace_i915_gem_object_change_domain(obj,
3379                                             old_read_domains,
3380                                             old_write_domain);
3381
3382         return 0;
3383 }
3384
3385 /* Throttle our rendering by waiting until the ring has completed our requests
3386  * emitted over 20 msec ago.
3387  *
3388  * Note that if we were to use the current jiffies each time around the loop,
3389  * we wouldn't escape the function with any frames outstanding if the time to
3390  * render a frame was over 20ms.
3391  *
3392  * This should get us reasonable parallelism between CPU and GPU but also
3393  * relatively low latency when blocking on a particular request to finish.
3394  */
3395 static int
3396 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         struct drm_i915_file_private *file_priv = file->driver_priv;
3400         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3401         struct drm_i915_gem_request *request;
3402         struct intel_ring_buffer *ring = NULL;
3403         u32 seqno = 0;
3404         int ret;
3405
3406         if (atomic_read(&dev_priv->mm.wedged))
3407                 return -EIO;
3408
3409         spin_lock(&file_priv->mm.lock);
3410         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3411                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3412                         break;
3413
3414                 ring = request->ring;
3415                 seqno = request->seqno;
3416         }
3417         spin_unlock(&file_priv->mm.lock);
3418
3419         if (seqno == 0)
3420                 return 0;
3421
3422         ret = __wait_seqno(ring, seqno, true, NULL);
3423         if (ret == 0)
3424                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3425
3426         return ret;
3427 }
3428
3429 int
3430 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3431                     uint32_t alignment,
3432                     bool map_and_fenceable,
3433                     bool nonblocking)
3434 {
3435         int ret;
3436
3437         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3438                 return -EBUSY;
3439
3440         if (obj->gtt_space != NULL) {
3441                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442                     (map_and_fenceable && !obj->map_and_fenceable)) {
3443                         WARN(obj->pin_count,
3444                              "bo is already pinned with incorrect alignment:"
3445                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446                              " obj->map_and_fenceable=%d\n",
3447                              obj->gtt_offset, alignment,
3448                              map_and_fenceable,
3449                              obj->map_and_fenceable);
3450                         ret = i915_gem_object_unbind(obj);
3451                         if (ret)
3452                                 return ret;
3453                 }
3454         }
3455
3456         if (obj->gtt_space == NULL) {
3457                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3458                                                   map_and_fenceable,
3459                                                   nonblocking);
3460                 if (ret)
3461                         return ret;
3462         }
3463
3464         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3465                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3466
3467         obj->pin_count++;
3468         obj->pin_mappable |= map_and_fenceable;
3469
3470         return 0;
3471 }
3472
3473 void
3474 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3475 {
3476         BUG_ON(obj->pin_count == 0);
3477         BUG_ON(obj->gtt_space == NULL);
3478
3479         if (--obj->pin_count == 0)
3480                 obj->pin_mappable = false;
3481 }
3482
3483 int
3484 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3485                    struct drm_file *file)
3486 {
3487         struct drm_i915_gem_pin *args = data;
3488         struct drm_i915_gem_object *obj;
3489         int ret;
3490
3491         ret = i915_mutex_lock_interruptible(dev);
3492         if (ret)
3493                 return ret;
3494
3495         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3496         if (&obj->base == NULL) {
3497                 ret = -ENOENT;
3498                 goto unlock;
3499         }
3500
3501         if (obj->madv != I915_MADV_WILLNEED) {
3502                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3503                 ret = -EINVAL;
3504                 goto out;
3505         }
3506
3507         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3508                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3509                           args->handle);
3510                 ret = -EINVAL;
3511                 goto out;
3512         }
3513
3514         obj->user_pin_count++;
3515         obj->pin_filp = file;
3516         if (obj->user_pin_count == 1) {
3517                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3518                 if (ret)
3519                         goto out;
3520         }
3521
3522         /* XXX - flush the CPU caches for pinned objects
3523          * as the X server doesn't manage domains yet
3524          */
3525         i915_gem_object_flush_cpu_write_domain(obj);
3526         args->offset = obj->gtt_offset;
3527 out:
3528         drm_gem_object_unreference(&obj->base);
3529 unlock:
3530         mutex_unlock(&dev->struct_mutex);
3531         return ret;
3532 }
3533
3534 int
3535 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3536                      struct drm_file *file)
3537 {
3538         struct drm_i915_gem_pin *args = data;
3539         struct drm_i915_gem_object *obj;
3540         int ret;
3541
3542         ret = i915_mutex_lock_interruptible(dev);
3543         if (ret)
3544                 return ret;
3545
3546         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3547         if (&obj->base == NULL) {
3548                 ret = -ENOENT;
3549                 goto unlock;
3550         }
3551
3552         if (obj->pin_filp != file) {
3553                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3554                           args->handle);
3555                 ret = -EINVAL;
3556                 goto out;
3557         }
3558         obj->user_pin_count--;
3559         if (obj->user_pin_count == 0) {
3560                 obj->pin_filp = NULL;
3561                 i915_gem_object_unpin(obj);
3562         }
3563
3564 out:
3565         drm_gem_object_unreference(&obj->base);
3566 unlock:
3567         mutex_unlock(&dev->struct_mutex);
3568         return ret;
3569 }
3570
3571 int
3572 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3573                     struct drm_file *file)
3574 {
3575         struct drm_i915_gem_busy *args = data;
3576         struct drm_i915_gem_object *obj;
3577         int ret;
3578
3579         ret = i915_mutex_lock_interruptible(dev);
3580         if (ret)
3581                 return ret;
3582
3583         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3584         if (&obj->base == NULL) {
3585                 ret = -ENOENT;
3586                 goto unlock;
3587         }
3588
3589         /* Count all active objects as busy, even if they are currently not used
3590          * by the gpu. Users of this interface expect objects to eventually
3591          * become non-busy without any further actions, therefore emit any
3592          * necessary flushes here.
3593          */
3594         ret = i915_gem_object_flush_active(obj);
3595
3596         args->busy = obj->active;
3597         if (obj->ring) {
3598                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3599                 args->busy |= intel_ring_flag(obj->ring) << 16;
3600         }
3601
3602         drm_gem_object_unreference(&obj->base);
3603 unlock:
3604         mutex_unlock(&dev->struct_mutex);
3605         return ret;
3606 }
3607
3608 int
3609 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3610                         struct drm_file *file_priv)
3611 {
3612         return i915_gem_ring_throttle(dev, file_priv);
3613 }
3614
3615 int
3616 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3617                        struct drm_file *file_priv)
3618 {
3619         struct drm_i915_gem_madvise *args = data;
3620         struct drm_i915_gem_object *obj;
3621         int ret;
3622
3623         switch (args->madv) {
3624         case I915_MADV_DONTNEED:
3625         case I915_MADV_WILLNEED:
3626             break;
3627         default:
3628             return -EINVAL;
3629         }
3630
3631         ret = i915_mutex_lock_interruptible(dev);
3632         if (ret)
3633                 return ret;
3634
3635         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3636         if (&obj->base == NULL) {
3637                 ret = -ENOENT;
3638                 goto unlock;
3639         }
3640
3641         if (obj->pin_count) {
3642                 ret = -EINVAL;
3643                 goto out;
3644         }
3645
3646         if (obj->madv != __I915_MADV_PURGED)
3647                 obj->madv = args->madv;
3648
3649         /* if the object is no longer attached, discard its backing storage */
3650         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3651                 i915_gem_object_truncate(obj);
3652
3653         args->retained = obj->madv != __I915_MADV_PURGED;
3654
3655 out:
3656         drm_gem_object_unreference(&obj->base);
3657 unlock:
3658         mutex_unlock(&dev->struct_mutex);
3659         return ret;
3660 }
3661
3662 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3663                           const struct drm_i915_gem_object_ops *ops)
3664 {
3665         INIT_LIST_HEAD(&obj->mm_list);
3666         INIT_LIST_HEAD(&obj->gtt_list);
3667         INIT_LIST_HEAD(&obj->ring_list);
3668         INIT_LIST_HEAD(&obj->exec_list);
3669
3670         obj->ops = ops;
3671
3672         obj->fence_reg = I915_FENCE_REG_NONE;
3673         obj->madv = I915_MADV_WILLNEED;
3674         /* Avoid an unnecessary call to unbind on the first bind. */
3675         obj->map_and_fenceable = true;
3676
3677         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3678 }
3679
3680 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3681         .get_pages = i915_gem_object_get_pages_gtt,
3682         .put_pages = i915_gem_object_put_pages_gtt,
3683 };
3684
3685 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3686                                                   size_t size)
3687 {
3688         struct drm_i915_gem_object *obj;
3689         struct address_space *mapping;
3690         u32 mask;
3691
3692         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3693         if (obj == NULL)
3694                 return NULL;
3695
3696         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3697                 kfree(obj);
3698                 return NULL;
3699         }
3700
3701         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3702         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3703                 /* 965gm cannot relocate objects above 4GiB. */
3704                 mask &= ~__GFP_HIGHMEM;
3705                 mask |= __GFP_DMA32;
3706         }
3707
3708         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3709         mapping_set_gfp_mask(mapping, mask);
3710
3711         i915_gem_object_init(obj, &i915_gem_object_ops);
3712
3713         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3715
3716         if (HAS_LLC(dev)) {
3717                 /* On some devices, we can have the GPU use the LLC (the CPU
3718                  * cache) for about a 10% performance improvement
3719                  * compared to uncached.  Graphics requests other than
3720                  * display scanout are coherent with the CPU in
3721                  * accessing this cache.  This means in this mode we
3722                  * don't need to clflush on the CPU side, and on the
3723                  * GPU side we only need to flush internal caches to
3724                  * get data visible to the CPU.
3725                  *
3726                  * However, we maintain the display planes as UC, and so
3727                  * need to rebind when first used as such.
3728                  */
3729                 obj->cache_level = I915_CACHE_LLC;
3730         } else
3731                 obj->cache_level = I915_CACHE_NONE;
3732
3733         return obj;
3734 }
3735
3736 int i915_gem_init_object(struct drm_gem_object *obj)
3737 {
3738         BUG();
3739
3740         return 0;
3741 }
3742
3743 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3744 {
3745         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3746         struct drm_device *dev = obj->base.dev;
3747         drm_i915_private_t *dev_priv = dev->dev_private;
3748
3749         trace_i915_gem_object_destroy(obj);
3750
3751         if (obj->phys_obj)
3752                 i915_gem_detach_phys_object(dev, obj);
3753
3754         obj->pin_count = 0;
3755         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3756                 bool was_interruptible;
3757
3758                 was_interruptible = dev_priv->mm.interruptible;
3759                 dev_priv->mm.interruptible = false;
3760
3761                 WARN_ON(i915_gem_object_unbind(obj));
3762
3763                 dev_priv->mm.interruptible = was_interruptible;
3764         }
3765
3766         obj->pages_pin_count = 0;
3767         i915_gem_object_put_pages(obj);
3768         i915_gem_object_free_mmap_offset(obj);
3769
3770         BUG_ON(obj->pages);
3771
3772         if (obj->base.import_attach)
3773                 drm_prime_gem_destroy(&obj->base, NULL);
3774
3775         drm_gem_object_release(&obj->base);
3776         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3777
3778         kfree(obj->bit_17);
3779         kfree(obj);
3780 }
3781
3782 int
3783 i915_gem_idle(struct drm_device *dev)
3784 {
3785         drm_i915_private_t *dev_priv = dev->dev_private;
3786         int ret;
3787
3788         mutex_lock(&dev->struct_mutex);
3789
3790         if (dev_priv->mm.suspended) {
3791                 mutex_unlock(&dev->struct_mutex);
3792                 return 0;
3793         }
3794
3795         ret = i915_gpu_idle(dev);
3796         if (ret) {
3797                 mutex_unlock(&dev->struct_mutex);
3798                 return ret;
3799         }
3800         i915_gem_retire_requests(dev);
3801
3802         /* Under UMS, be paranoid and evict. */
3803         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3804                 i915_gem_evict_everything(dev);
3805
3806         i915_gem_reset_fences(dev);
3807
3808         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3809          * We need to replace this with a semaphore, or something.
3810          * And not confound mm.suspended!
3811          */
3812         dev_priv->mm.suspended = 1;
3813         del_timer_sync(&dev_priv->hangcheck_timer);
3814
3815         i915_kernel_lost_context(dev);
3816         i915_gem_cleanup_ringbuffer(dev);
3817
3818         mutex_unlock(&dev->struct_mutex);
3819
3820         /* Cancel the retire work handler, which should be idle now. */
3821         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822
3823         return 0;
3824 }
3825
3826 void i915_gem_l3_remap(struct drm_device *dev)
3827 {
3828         drm_i915_private_t *dev_priv = dev->dev_private;
3829         u32 misccpctl;
3830         int i;
3831
3832         if (!IS_IVYBRIDGE(dev))
3833                 return;
3834
3835         if (!dev_priv->mm.l3_remap_info)
3836                 return;
3837
3838         misccpctl = I915_READ(GEN7_MISCCPCTL);
3839         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3840         POSTING_READ(GEN7_MISCCPCTL);
3841
3842         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3843                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3844                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3845                         DRM_DEBUG("0x%x was already programmed to %x\n",
3846                                   GEN7_L3LOG_BASE + i, remap);
3847                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3848                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3849                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3850         }
3851
3852         /* Make sure all the writes land before disabling dop clock gating */
3853         POSTING_READ(GEN7_L3LOG_BASE);
3854
3855         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3856 }
3857
3858 void i915_gem_init_swizzling(struct drm_device *dev)
3859 {
3860         drm_i915_private_t *dev_priv = dev->dev_private;
3861
3862         if (INTEL_INFO(dev)->gen < 5 ||
3863             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3864                 return;
3865
3866         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3867                                  DISP_TILE_SURFACE_SWIZZLING);
3868
3869         if (IS_GEN5(dev))
3870                 return;
3871
3872         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3873         if (IS_GEN6(dev))
3874                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3875         else
3876                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3877 }
3878
3879 void i915_gem_init_ppgtt(struct drm_device *dev)
3880 {
3881         drm_i915_private_t *dev_priv = dev->dev_private;
3882         uint32_t pd_offset;
3883         struct intel_ring_buffer *ring;
3884         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3885         uint32_t __iomem *pd_addr;
3886         uint32_t pd_entry;
3887         int i;
3888
3889         if (!dev_priv->mm.aliasing_ppgtt)
3890                 return;
3891
3892
3893         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3894         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3895                 dma_addr_t pt_addr;
3896
3897                 if (dev_priv->mm.gtt->needs_dmar)
3898                         pt_addr = ppgtt->pt_dma_addr[i];
3899                 else
3900                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3901
3902                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3903                 pd_entry |= GEN6_PDE_VALID;
3904
3905                 writel(pd_entry, pd_addr + i);
3906         }
3907         readl(pd_addr);
3908
3909         pd_offset = ppgtt->pd_offset;
3910         pd_offset /= 64; /* in cachelines, */
3911         pd_offset <<= 16;
3912
3913         if (INTEL_INFO(dev)->gen == 6) {
3914                 uint32_t ecochk, gab_ctl, ecobits;
3915
3916                 ecobits = I915_READ(GAC_ECO_BITS); 
3917                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3918
3919                 gab_ctl = I915_READ(GAB_CTL);
3920                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3921
3922                 ecochk = I915_READ(GAM_ECOCHK);
3923                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3924                                        ECOCHK_PPGTT_CACHE64B);
3925                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3926         } else if (INTEL_INFO(dev)->gen >= 7) {
3927                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3928                 /* GFX_MODE is per-ring on gen7+ */
3929         }
3930
3931         for_each_ring(ring, dev_priv, i) {
3932                 if (INTEL_INFO(dev)->gen >= 7)
3933                         I915_WRITE(RING_MODE_GEN7(ring),
3934                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3935
3936                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3937                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3938         }
3939 }
3940
3941 static bool
3942 intel_enable_blt(struct drm_device *dev)
3943 {
3944         if (!HAS_BLT(dev))
3945                 return false;
3946
3947         /* The blitter was dysfunctional on early prototypes */
3948         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3949                 DRM_INFO("BLT not supported on this pre-production hardware;"
3950                          " graphics performance will be degraded.\n");
3951                 return false;
3952         }
3953
3954         return true;
3955 }
3956
3957 int
3958 i915_gem_init_hw(struct drm_device *dev)
3959 {
3960         drm_i915_private_t *dev_priv = dev->dev_private;
3961         int ret;
3962
3963         if (!intel_enable_gtt())
3964                 return -EIO;
3965
3966         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3967                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3968
3969         i915_gem_l3_remap(dev);
3970
3971         i915_gem_init_swizzling(dev);
3972
3973         ret = intel_init_render_ring_buffer(dev);
3974         if (ret)
3975                 return ret;
3976
3977         if (HAS_BSD(dev)) {
3978                 ret = intel_init_bsd_ring_buffer(dev);
3979                 if (ret)
3980                         goto cleanup_render_ring;
3981         }
3982
3983         if (intel_enable_blt(dev)) {
3984                 ret = intel_init_blt_ring_buffer(dev);
3985                 if (ret)
3986                         goto cleanup_bsd_ring;
3987         }
3988
3989         dev_priv->next_seqno = 1;
3990
3991         /*
3992          * XXX: There was some w/a described somewhere suggesting loading
3993          * contexts before PPGTT.
3994          */
3995         i915_gem_context_init(dev);
3996         i915_gem_init_ppgtt(dev);
3997
3998         return 0;
3999
4000 cleanup_bsd_ring:
4001         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4002 cleanup_render_ring:
4003         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4004         return ret;
4005 }
4006
4007 static bool
4008 intel_enable_ppgtt(struct drm_device *dev)
4009 {
4010         if (i915_enable_ppgtt >= 0)
4011                 return i915_enable_ppgtt;
4012
4013 #ifdef CONFIG_INTEL_IOMMU
4014         /* Disable ppgtt on SNB if VT-d is on. */
4015         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4016                 return false;
4017 #endif
4018
4019         return true;
4020 }
4021
4022 int i915_gem_init(struct drm_device *dev)
4023 {
4024         struct drm_i915_private *dev_priv = dev->dev_private;
4025         unsigned long gtt_size, mappable_size;
4026         int ret;
4027
4028         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4029         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4030
4031         mutex_lock(&dev->struct_mutex);
4032         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4033                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4034                  * aperture accordingly when using aliasing ppgtt. */
4035                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4036
4037                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4038
4039                 ret = i915_gem_init_aliasing_ppgtt(dev);
4040                 if (ret) {
4041                         mutex_unlock(&dev->struct_mutex);
4042                         return ret;
4043                 }
4044         } else {
4045                 /* Let GEM Manage all of the aperture.
4046                  *
4047                  * However, leave one page at the end still bound to the scratch
4048                  * page.  There are a number of places where the hardware
4049                  * apparently prefetches past the end of the object, and we've
4050                  * seen multiple hangs with the GPU head pointer stuck in a
4051                  * batchbuffer bound at the last page of the aperture.  One page
4052                  * should be enough to keep any prefetching inside of the
4053                  * aperture.
4054                  */
4055                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4056                                          gtt_size);
4057         }
4058
4059         ret = i915_gem_init_hw(dev);
4060         mutex_unlock(&dev->struct_mutex);
4061         if (ret) {
4062                 i915_gem_cleanup_aliasing_ppgtt(dev);
4063                 return ret;
4064         }
4065
4066         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4067         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068                 dev_priv->dri1.allow_batchbuffer = 1;
4069         return 0;
4070 }
4071
4072 void
4073 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4074 {
4075         drm_i915_private_t *dev_priv = dev->dev_private;
4076         struct intel_ring_buffer *ring;
4077         int i;
4078
4079         for_each_ring(ring, dev_priv, i)
4080                 intel_cleanup_ring_buffer(ring);
4081 }
4082
4083 int
4084 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4085                        struct drm_file *file_priv)
4086 {
4087         drm_i915_private_t *dev_priv = dev->dev_private;
4088         int ret;
4089
4090         if (drm_core_check_feature(dev, DRIVER_MODESET))
4091                 return 0;
4092
4093         if (atomic_read(&dev_priv->mm.wedged)) {
4094                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4095                 atomic_set(&dev_priv->mm.wedged, 0);
4096         }
4097
4098         mutex_lock(&dev->struct_mutex);
4099         dev_priv->mm.suspended = 0;
4100
4101         ret = i915_gem_init_hw(dev);
4102         if (ret != 0) {
4103                 mutex_unlock(&dev->struct_mutex);
4104                 return ret;
4105         }
4106
4107         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4108         mutex_unlock(&dev->struct_mutex);
4109
4110         ret = drm_irq_install(dev);
4111         if (ret)
4112                 goto cleanup_ringbuffer;
4113
4114         return 0;
4115
4116 cleanup_ringbuffer:
4117         mutex_lock(&dev->struct_mutex);
4118         i915_gem_cleanup_ringbuffer(dev);
4119         dev_priv->mm.suspended = 1;
4120         mutex_unlock(&dev->struct_mutex);
4121
4122         return ret;
4123 }
4124
4125 int
4126 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4127                        struct drm_file *file_priv)
4128 {
4129         if (drm_core_check_feature(dev, DRIVER_MODESET))
4130                 return 0;
4131
4132         drm_irq_uninstall(dev);
4133         return i915_gem_idle(dev);
4134 }
4135
4136 void
4137 i915_gem_lastclose(struct drm_device *dev)
4138 {
4139         int ret;
4140
4141         if (drm_core_check_feature(dev, DRIVER_MODESET))
4142                 return;
4143
4144         ret = i915_gem_idle(dev);
4145         if (ret)
4146                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4147 }
4148
4149 static void
4150 init_ring_lists(struct intel_ring_buffer *ring)
4151 {
4152         INIT_LIST_HEAD(&ring->active_list);
4153         INIT_LIST_HEAD(&ring->request_list);
4154 }
4155
4156 void
4157 i915_gem_load(struct drm_device *dev)
4158 {
4159         int i;
4160         drm_i915_private_t *dev_priv = dev->dev_private;
4161
4162         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4163         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4164         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4165         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4166         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4167         for (i = 0; i < I915_NUM_RINGS; i++)
4168                 init_ring_lists(&dev_priv->ring[i]);
4169         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4170                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4171         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4172                           i915_gem_retire_work_handler);
4173         init_completion(&dev_priv->error_completion);
4174
4175         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4176         if (IS_GEN3(dev)) {
4177                 I915_WRITE(MI_ARB_STATE,
4178                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4179         }
4180
4181         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4182
4183         /* Old X drivers will take 0-2 for front, back, depth buffers */
4184         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4185                 dev_priv->fence_reg_start = 3;
4186
4187         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4188                 dev_priv->num_fence_regs = 16;
4189         else
4190                 dev_priv->num_fence_regs = 8;
4191
4192         /* Initialize fence registers to zero */
4193         i915_gem_reset_fences(dev);
4194
4195         i915_gem_detect_bit_6_swizzle(dev);
4196         init_waitqueue_head(&dev_priv->pending_flip_queue);
4197
4198         dev_priv->mm.interruptible = true;
4199
4200         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202         register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204
4205 /*
4206  * Create a physically contiguous memory object for this object
4207  * e.g. for cursor + overlay regs
4208  */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210                                      int id, int size, int align)
4211 {
4212         drm_i915_private_t *dev_priv = dev->dev_private;
4213         struct drm_i915_gem_phys_object *phys_obj;
4214         int ret;
4215
4216         if (dev_priv->mm.phys_objs[id - 1] || !size)
4217                 return 0;
4218
4219         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220         if (!phys_obj)
4221                 return -ENOMEM;
4222
4223         phys_obj->id = id;
4224
4225         phys_obj->handle = drm_pci_alloc(dev, size, align);
4226         if (!phys_obj->handle) {
4227                 ret = -ENOMEM;
4228                 goto kfree_obj;
4229         }
4230 #ifdef CONFIG_X86
4231         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233
4234         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235
4236         return 0;
4237 kfree_obj:
4238         kfree(phys_obj);
4239         return ret;
4240 }
4241
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244         drm_i915_private_t *dev_priv = dev->dev_private;
4245         struct drm_i915_gem_phys_object *phys_obj;
4246
4247         if (!dev_priv->mm.phys_objs[id - 1])
4248                 return;
4249
4250         phys_obj = dev_priv->mm.phys_objs[id - 1];
4251         if (phys_obj->cur_obj) {
4252                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253         }
4254
4255 #ifdef CONFIG_X86
4256         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258         drm_pci_free(dev, phys_obj->handle);
4259         kfree(phys_obj);
4260         dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262
4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265         int i;
4266
4267         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268                 i915_gem_free_phys_object(dev, i);
4269 }
4270
4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272                                  struct drm_i915_gem_object *obj)
4273 {
4274         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4275         char *vaddr;
4276         int i;
4277         int page_count;
4278
4279         if (!obj->phys_obj)
4280                 return;
4281         vaddr = obj->phys_obj->handle->vaddr;
4282
4283         page_count = obj->base.size / PAGE_SIZE;
4284         for (i = 0; i < page_count; i++) {
4285                 struct page *page = shmem_read_mapping_page(mapping, i);
4286                 if (!IS_ERR(page)) {
4287                         char *dst = kmap_atomic(page);
4288                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289                         kunmap_atomic(dst);
4290
4291                         drm_clflush_pages(&page, 1);
4292
4293                         set_page_dirty(page);
4294                         mark_page_accessed(page);
4295                         page_cache_release(page);
4296                 }
4297         }
4298         intel_gtt_chipset_flush();
4299
4300         obj->phys_obj->cur_obj = NULL;
4301         obj->phys_obj = NULL;
4302 }
4303
4304 int
4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306                             struct drm_i915_gem_object *obj,
4307                             int id,
4308                             int align)
4309 {
4310         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4311         drm_i915_private_t *dev_priv = dev->dev_private;
4312         int ret = 0;
4313         int page_count;
4314         int i;
4315
4316         if (id > I915_MAX_PHYS_OBJECT)
4317                 return -EINVAL;
4318
4319         if (obj->phys_obj) {
4320                 if (obj->phys_obj->id == id)
4321                         return 0;
4322                 i915_gem_detach_phys_object(dev, obj);
4323         }
4324
4325         /* create a new object */
4326         if (!dev_priv->mm.phys_objs[id - 1]) {
4327                 ret = i915_gem_init_phys_object(dev, id,
4328                                                 obj->base.size, align);
4329                 if (ret) {
4330                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4331                                   id, obj->base.size);
4332                         return ret;
4333                 }
4334         }
4335
4336         /* bind to the object */
4337         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338         obj->phys_obj->cur_obj = obj;
4339
4340         page_count = obj->base.size / PAGE_SIZE;
4341
4342         for (i = 0; i < page_count; i++) {
4343                 struct page *page;
4344                 char *dst, *src;
4345
4346                 page = shmem_read_mapping_page(mapping, i);
4347                 if (IS_ERR(page))
4348                         return PTR_ERR(page);
4349
4350                 src = kmap_atomic(page);
4351                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352                 memcpy(dst, src, PAGE_SIZE);
4353                 kunmap_atomic(src);
4354
4355                 mark_page_accessed(page);
4356                 page_cache_release(page);
4357         }
4358
4359         return 0;
4360 }
4361
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364                      struct drm_i915_gem_object *obj,
4365                      struct drm_i915_gem_pwrite *args,
4366                      struct drm_file *file_priv)
4367 {
4368         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4370
4371         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372                 unsigned long unwritten;
4373
4374                 /* The physical object once assigned is fixed for the lifetime
4375                  * of the obj, so we can safely drop the lock and continue
4376                  * to access vaddr.
4377                  */
4378                 mutex_unlock(&dev->struct_mutex);
4379                 unwritten = copy_from_user(vaddr, user_data, args->size);
4380                 mutex_lock(&dev->struct_mutex);
4381                 if (unwritten)
4382                         return -EFAULT;
4383         }
4384
4385         intel_gtt_chipset_flush();
4386         return 0;
4387 }
4388
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391         struct drm_i915_file_private *file_priv = file->driver_priv;
4392
4393         /* Clean up our request list when the client is going away, so that
4394          * later retire_requests won't dereference our soon-to-be-gone
4395          * file_priv.
4396          */
4397         spin_lock(&file_priv->mm.lock);
4398         while (!list_empty(&file_priv->mm.request_list)) {
4399                 struct drm_i915_gem_request *request;
4400
4401                 request = list_first_entry(&file_priv->mm.request_list,
4402                                            struct drm_i915_gem_request,
4403                                            client_list);
4404                 list_del(&request->client_list);
4405                 request->file_priv = NULL;
4406         }
4407         spin_unlock(&file_priv->mm.lock);
4408 }
4409
4410 static int
4411 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4412 {
4413         struct drm_i915_private *dev_priv =
4414                 container_of(shrinker,
4415                              struct drm_i915_private,
4416                              mm.inactive_shrinker);
4417         struct drm_device *dev = dev_priv->dev;
4418         struct drm_i915_gem_object *obj;
4419         int nr_to_scan = sc->nr_to_scan;
4420         int cnt;
4421
4422         if (!mutex_trylock(&dev->struct_mutex))
4423                 return 0;
4424
4425         if (nr_to_scan) {
4426                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4427                 if (nr_to_scan > 0)
4428                         i915_gem_shrink_all(dev_priv);
4429         }
4430
4431         cnt = 0;
4432         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4433                 if (obj->pages_pin_count == 0)
4434                         cnt += obj->base.size >> PAGE_SHIFT;
4435         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4436                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4437                         cnt += obj->base.size >> PAGE_SHIFT;
4438
4439         mutex_unlock(&dev->struct_mutex);
4440         return cnt;
4441 }