]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branch 'airlied/drm-next' into HEAD
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         obj->has_dma_mapping = true;
217         return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223         int ret;
224
225         BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227         ret = i915_gem_object_set_to_cpu_domain(obj, true);
228         if (ret) {
229                 /* In the event of a disaster, abandon all caches and
230                  * hope for the best.
231                  */
232                 WARN_ON(ret != -EIO);
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         page_cache_release(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268
269         obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(dev);
372
373 out:
374         intel_fb_obj_flush(obj, false);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_alloc_object(dev, size);
406         if (obj == NULL)
407                 return -ENOMEM;
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436                       struct drm_file *file)
437 {
438         struct drm_i915_gem_create *args = data;
439
440         return i915_gem_create(file, dev,
441                                args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446                         const char *gpu_vaddr, int gpu_offset,
447                         int length)
448 {
449         int ret, cpu_offset = 0;
450
451         while (length > 0) {
452                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453                 int this_length = min(cacheline_end - gpu_offset, length);
454                 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457                                      gpu_vaddr + swizzled_gpu_offset,
458                                      this_length);
459                 if (ret)
460                         return ret + length;
461
462                 cpu_offset += this_length;
463                 gpu_offset += this_length;
464                 length -= this_length;
465         }
466
467         return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472                           const char __user *cpu_vaddr,
473                           int length)
474 {
475         int ret, cpu_offset = 0;
476
477         while (length > 0) {
478                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479                 int this_length = min(cacheline_end - gpu_offset, length);
480                 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483                                        cpu_vaddr + cpu_offset,
484                                        this_length);
485                 if (ret)
486                         return ret + length;
487
488                 cpu_offset += this_length;
489                 gpu_offset += this_length;
490                 length -= this_length;
491         }
492
493         return 0;
494 }
495
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502                                     int *needs_clflush)
503 {
504         int ret;
505
506         *needs_clflush = 0;
507
508         if (!obj->base.filp)
509                 return -EINVAL;
510
511         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512                 /* If we're not in the cpu read domain, set ourself into the gtt
513                  * read domain and manually flush cachelines (if required). This
514                  * optimizes for the case when the gpu will dirty the data
515                  * anyway again before the next pread happens. */
516                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517                                                         obj->cache_level);
518                 ret = i915_gem_object_wait_rendering(obj, true);
519                 if (ret)
520                         return ret;
521         }
522
523         ret = i915_gem_object_get_pages(obj);
524         if (ret)
525                 return ret;
526
527         i915_gem_object_pin_pages(obj);
528
529         return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533  * Flushes invalid cachelines before reading the target if
534  * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537                  char __user *user_data,
538                  bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540         char *vaddr;
541         int ret;
542
543         if (unlikely(page_do_bit17_swizzling))
544                 return -EINVAL;
545
546         vaddr = kmap_atomic(page);
547         if (needs_clflush)
548                 drm_clflush_virt_range(vaddr + shmem_page_offset,
549                                        page_length);
550         ret = __copy_to_user_inatomic(user_data,
551                                       vaddr + shmem_page_offset,
552                                       page_length);
553         kunmap_atomic(vaddr);
554
555         return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560                              bool swizzled)
561 {
562         if (unlikely(swizzled)) {
563                 unsigned long start = (unsigned long) addr;
564                 unsigned long end = (unsigned long) addr + length;
565
566                 /* For swizzling simply ensure that we always flush both
567                  * channels. Lame, but simple and it works. Swizzled
568                  * pwrite/pread is far from a hotpath - current userspace
569                  * doesn't use it at all. */
570                 start = round_down(start, 128);
571                 end = round_up(end, 128);
572
573                 drm_clflush_virt_range((void *)start, end - start);
574         } else {
575                 drm_clflush_virt_range(addr, length);
576         }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581  * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584                  char __user *user_data,
585                  bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587         char *vaddr;
588         int ret;
589
590         vaddr = kmap(page);
591         if (needs_clflush)
592                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593                                              page_length,
594                                              page_do_bit17_swizzling);
595
596         if (page_do_bit17_swizzling)
597                 ret = __copy_to_user_swizzled(user_data,
598                                               vaddr, shmem_page_offset,
599                                               page_length);
600         else
601                 ret = __copy_to_user(user_data,
602                                      vaddr + shmem_page_offset,
603                                      page_length);
604         kunmap(page);
605
606         return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611                      struct drm_i915_gem_object *obj,
612                      struct drm_i915_gem_pread *args,
613                      struct drm_file *file)
614 {
615         char __user *user_data;
616         ssize_t remain;
617         loff_t offset;
618         int shmem_page_offset, page_length, ret = 0;
619         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620         int prefaulted = 0;
621         int needs_clflush = 0;
622         struct sg_page_iter sg_iter;
623
624         user_data = to_user_ptr(args->data_ptr);
625         remain = args->size;
626
627         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630         if (ret)
631                 return ret;
632
633         offset = args->offset;
634
635         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636                          offset >> PAGE_SHIFT) {
637                 struct page *page = sg_page_iter_page(&sg_iter);
638
639                 if (remain <= 0)
640                         break;
641
642                 /* Operation in this page
643                  *
644                  * shmem_page_offset = offset within page in shmem file
645                  * page_length = bytes to copy for this page
646                  */
647                 shmem_page_offset = offset_in_page(offset);
648                 page_length = remain;
649                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650                         page_length = PAGE_SIZE - shmem_page_offset;
651
652                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653                         (page_to_phys(page) & (1 << 17)) != 0;
654
655                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656                                        user_data, page_do_bit17_swizzling,
657                                        needs_clflush);
658                 if (ret == 0)
659                         goto next_page;
660
661                 mutex_unlock(&dev->struct_mutex);
662
663                 if (likely(!i915.prefault_disable) && !prefaulted) {
664                         ret = fault_in_multipages_writeable(user_data, remain);
665                         /* Userspace is tricking us, but we've already clobbered
666                          * its pages with the prefault and promised to write the
667                          * data up to the first fault. Hence ignore any errors
668                          * and just continue. */
669                         (void)ret;
670                         prefaulted = 1;
671                 }
672
673                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674                                        user_data, page_do_bit17_swizzling,
675                                        needs_clflush);
676
677                 mutex_lock(&dev->struct_mutex);
678
679                 if (ret)
680                         goto out;
681
682 next_page:
683                 remain -= page_length;
684                 user_data += page_length;
685                 offset += page_length;
686         }
687
688 out:
689         i915_gem_object_unpin_pages(obj);
690
691         return ret;
692 }
693
694 /**
695  * Reads data from the object referenced by handle.
696  *
697  * On error, the contents of *data are undefined.
698  */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701                      struct drm_file *file)
702 {
703         struct drm_i915_gem_pread *args = data;
704         struct drm_i915_gem_object *obj;
705         int ret = 0;
706
707         if (args->size == 0)
708                 return 0;
709
710         if (!access_ok(VERIFY_WRITE,
711                        to_user_ptr(args->data_ptr),
712                        args->size))
713                 return -EFAULT;
714
715         ret = i915_mutex_lock_interruptible(dev);
716         if (ret)
717                 return ret;
718
719         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720         if (&obj->base == NULL) {
721                 ret = -ENOENT;
722                 goto unlock;
723         }
724
725         /* Bounds check source.  */
726         if (args->offset > obj->base.size ||
727             args->size > obj->base.size - args->offset) {
728                 ret = -EINVAL;
729                 goto out;
730         }
731
732         /* prime objects have no backing filp to GEM pread/pwrite
733          * pages from.
734          */
735         if (!obj->base.filp) {
736                 ret = -EINVAL;
737                 goto out;
738         }
739
740         trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742         ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745         drm_gem_object_unreference(&obj->base);
746 unlock:
747         mutex_unlock(&dev->struct_mutex);
748         return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752  * page faults in the source data
753  */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757                 loff_t page_base, int page_offset,
758                 char __user *user_data,
759                 int length)
760 {
761         void __iomem *vaddr_atomic;
762         void *vaddr;
763         unsigned long unwritten;
764
765         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766         /* We can use the cpu mem copy function because this is X86. */
767         vaddr = (void __force*)vaddr_atomic + page_offset;
768         unwritten = __copy_from_user_inatomic_nocache(vaddr,
769                                                       user_data, length);
770         io_mapping_unmap_atomic(vaddr_atomic);
771         return unwritten;
772 }
773
774 /**
775  * This is the fast pwrite path, where we copy the data directly from the
776  * user into the GTT, uncached.
777  */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780                          struct drm_i915_gem_object *obj,
781                          struct drm_i915_gem_pwrite *args,
782                          struct drm_file *file)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         ssize_t remain;
786         loff_t offset, page_base;
787         char __user *user_data;
788         int page_offset, page_length, ret;
789
790         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791         if (ret)
792                 goto out;
793
794         ret = i915_gem_object_set_to_gtt_domain(obj, true);
795         if (ret)
796                 goto out_unpin;
797
798         ret = i915_gem_object_put_fence(obj);
799         if (ret)
800                 goto out_unpin;
801
802         user_data = to_user_ptr(args->data_ptr);
803         remain = args->size;
804
805         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809         while (remain > 0) {
810                 /* Operation in this page
811                  *
812                  * page_base = page offset within aperture
813                  * page_offset = offset within page
814                  * page_length = bytes to copy for this page
815                  */
816                 page_base = offset & PAGE_MASK;
817                 page_offset = offset_in_page(offset);
818                 page_length = remain;
819                 if ((page_offset + remain) > PAGE_SIZE)
820                         page_length = PAGE_SIZE - page_offset;
821
822                 /* If we get a fault while copying data, then (presumably) our
823                  * source page isn't available.  Return the error and we'll
824                  * retry in the slow path.
825                  */
826                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827                                     page_offset, user_data, page_length)) {
828                         ret = -EFAULT;
829                         goto out_flush;
830                 }
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out_flush:
838         intel_fb_obj_flush(obj, false);
839 out_unpin:
840         i915_gem_object_ggtt_unpin(obj);
841 out:
842         return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846  * Flushes invalid cachelines before writing to the target if
847  * needs_clflush_before is set and flushes out any written cachelines after
848  * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851                   char __user *user_data,
852                   bool page_do_bit17_swizzling,
853                   bool needs_clflush_before,
854                   bool needs_clflush_after)
855 {
856         char *vaddr;
857         int ret;
858
859         if (unlikely(page_do_bit17_swizzling))
860                 return -EINVAL;
861
862         vaddr = kmap_atomic(page);
863         if (needs_clflush_before)
864                 drm_clflush_virt_range(vaddr + shmem_page_offset,
865                                        page_length);
866         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867                                         user_data, page_length);
868         if (needs_clflush_after)
869                 drm_clflush_virt_range(vaddr + shmem_page_offset,
870                                        page_length);
871         kunmap_atomic(vaddr);
872
873         return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877  * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880                   char __user *user_data,
881                   bool page_do_bit17_swizzling,
882                   bool needs_clflush_before,
883                   bool needs_clflush_after)
884 {
885         char *vaddr;
886         int ret;
887
888         vaddr = kmap(page);
889         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891                                              page_length,
892                                              page_do_bit17_swizzling);
893         if (page_do_bit17_swizzling)
894                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895                                                 user_data,
896                                                 page_length);
897         else
898                 ret = __copy_from_user(vaddr + shmem_page_offset,
899                                        user_data,
900                                        page_length);
901         if (needs_clflush_after)
902                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903                                              page_length,
904                                              page_do_bit17_swizzling);
905         kunmap(page);
906
907         return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912                       struct drm_i915_gem_object *obj,
913                       struct drm_i915_gem_pwrite *args,
914                       struct drm_file *file)
915 {
916         ssize_t remain;
917         loff_t offset;
918         char __user *user_data;
919         int shmem_page_offset, page_length, ret = 0;
920         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921         int hit_slowpath = 0;
922         int needs_clflush_after = 0;
923         int needs_clflush_before = 0;
924         struct sg_page_iter sg_iter;
925
926         user_data = to_user_ptr(args->data_ptr);
927         remain = args->size;
928
929         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932                 /* If we're not in the cpu write domain, set ourself into the gtt
933                  * write domain and manually flush cachelines (if required). This
934                  * optimizes for the case when the gpu will use the data
935                  * right away and we therefore have to clflush anyway. */
936                 needs_clflush_after = cpu_write_needs_clflush(obj);
937                 ret = i915_gem_object_wait_rendering(obj, false);
938                 if (ret)
939                         return ret;
940         }
941         /* Same trick applies to invalidate partially written cachelines read
942          * before writing. */
943         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944                 needs_clflush_before =
945                         !cpu_cache_is_coherent(dev, obj->cache_level);
946
947         ret = i915_gem_object_get_pages(obj);
948         if (ret)
949                 return ret;
950
951         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953         i915_gem_object_pin_pages(obj);
954
955         offset = args->offset;
956         obj->dirty = 1;
957
958         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959                          offset >> PAGE_SHIFT) {
960                 struct page *page = sg_page_iter_page(&sg_iter);
961                 int partial_cacheline_write;
962
963                 if (remain <= 0)
964                         break;
965
966                 /* Operation in this page
967                  *
968                  * shmem_page_offset = offset within page in shmem file
969                  * page_length = bytes to copy for this page
970                  */
971                 shmem_page_offset = offset_in_page(offset);
972
973                 page_length = remain;
974                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975                         page_length = PAGE_SIZE - shmem_page_offset;
976
977                 /* If we don't overwrite a cacheline completely we need to be
978                  * careful to have up-to-date data by first clflushing. Don't
979                  * overcomplicate things and flush the entire patch. */
980                 partial_cacheline_write = needs_clflush_before &&
981                         ((shmem_page_offset | page_length)
982                                 & (boot_cpu_data.x86_clflush_size - 1));
983
984                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985                         (page_to_phys(page) & (1 << 17)) != 0;
986
987                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988                                         user_data, page_do_bit17_swizzling,
989                                         partial_cacheline_write,
990                                         needs_clflush_after);
991                 if (ret == 0)
992                         goto next_page;
993
994                 hit_slowpath = 1;
995                 mutex_unlock(&dev->struct_mutex);
996                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997                                         user_data, page_do_bit17_swizzling,
998                                         partial_cacheline_write,
999                                         needs_clflush_after);
1000
1001                 mutex_lock(&dev->struct_mutex);
1002
1003                 if (ret)
1004                         goto out;
1005
1006 next_page:
1007                 remain -= page_length;
1008                 user_data += page_length;
1009                 offset += page_length;
1010         }
1011
1012 out:
1013         i915_gem_object_unpin_pages(obj);
1014
1015         if (hit_slowpath) {
1016                 /*
1017                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1018                  * cachelines in-line while writing and the object moved
1019                  * out of the cpu write domain while we've dropped the lock.
1020                  */
1021                 if (!needs_clflush_after &&
1022                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023                         if (i915_gem_clflush_object(obj, obj->pin_display))
1024                                 i915_gem_chipset_flush(dev);
1025                 }
1026         }
1027
1028         if (needs_clflush_after)
1029                 i915_gem_chipset_flush(dev);
1030
1031         intel_fb_obj_flush(obj, false);
1032         return ret;
1033 }
1034
1035 /**
1036  * Writes data to the object referenced by handle.
1037  *
1038  * On error, the contents of the buffer that were to be modified are undefined.
1039  */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042                       struct drm_file *file)
1043 {
1044         struct drm_i915_private *dev_priv = dev->dev_private;
1045         struct drm_i915_gem_pwrite *args = data;
1046         struct drm_i915_gem_object *obj;
1047         int ret;
1048
1049         if (args->size == 0)
1050                 return 0;
1051
1052         if (!access_ok(VERIFY_READ,
1053                        to_user_ptr(args->data_ptr),
1054                        args->size))
1055                 return -EFAULT;
1056
1057         if (likely(!i915.prefault_disable)) {
1058                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059                                                    args->size);
1060                 if (ret)
1061                         return -EFAULT;
1062         }
1063
1064         intel_runtime_pm_get(dev_priv);
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret)
1068                 goto put_rpm;
1069
1070         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071         if (&obj->base == NULL) {
1072                 ret = -ENOENT;
1073                 goto unlock;
1074         }
1075
1076         /* Bounds check destination. */
1077         if (args->offset > obj->base.size ||
1078             args->size > obj->base.size - args->offset) {
1079                 ret = -EINVAL;
1080                 goto out;
1081         }
1082
1083         /* prime objects have no backing filp to GEM pread/pwrite
1084          * pages from.
1085          */
1086         if (!obj->base.filp) {
1087                 ret = -EINVAL;
1088                 goto out;
1089         }
1090
1091         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093         ret = -EFAULT;
1094         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095          * it would end up going through the fenced access, and we'll get
1096          * different detiling behavior between reading and writing.
1097          * pread/pwrite currently are reading and writing from the CPU
1098          * perspective, requiring manual detiling by the client.
1099          */
1100         if (obj->tiling_mode == I915_TILING_NONE &&
1101             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102             cpu_write_needs_clflush(obj)) {
1103                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104                 /* Note that the gtt paths might fail with non-page-backed user
1105                  * pointers (e.g. gtt mappings when moving data between
1106                  * textures). Fallback to the shmem path in that case. */
1107         }
1108
1109         if (ret == -EFAULT || ret == -ENOSPC) {
1110                 if (obj->phys_handle)
1111                         ret = i915_gem_phys_pwrite(obj, args, file);
1112                 else
1113                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114         }
1115
1116 out:
1117         drm_gem_object_unreference(&obj->base);
1118 unlock:
1119         mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121         intel_runtime_pm_put(dev_priv);
1122
1123         return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128                      bool interruptible)
1129 {
1130         if (i915_reset_in_progress(error)) {
1131                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132                  * -EIO unconditionally for these. */
1133                 if (!interruptible)
1134                         return -EIO;
1135
1136                 /* Recovery complete, but the reset failed ... */
1137                 if (i915_terminally_wedged(error))
1138                         return -EIO;
1139
1140                 /*
1141                  * Check if GPU Reset is in progress - we need intel_ring_begin
1142                  * to work properly to reinit the hw state while the gpu is
1143                  * still marked as reset-in-progress. Handle this with a flag.
1144                  */
1145                 if (!error->reload_in_reset)
1146                         return -EAGAIN;
1147         }
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * Compare arbitrary request against outstanding lazy request. Emit on match.
1154  */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158         int ret;
1159
1160         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162         ret = 0;
1163         if (req == req->ring->outstanding_lazy_request)
1164                 ret = i915_add_request(req->ring);
1165
1166         return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171         wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175                        struct intel_engine_cs *ring)
1176 {
1177         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static int __i915_spin_request(struct drm_i915_gem_request *req)
1181 {
1182         unsigned long timeout;
1183
1184         if (i915_gem_request_get_ring(req)->irq_refcount)
1185                 return -EBUSY;
1186
1187         timeout = jiffies + 1;
1188         while (!need_resched()) {
1189                 if (i915_gem_request_completed(req, true))
1190                         return 0;
1191
1192                 if (time_after_eq(jiffies, timeout))
1193                         break;
1194
1195                 cpu_relax_lowlatency();
1196         }
1197         if (i915_gem_request_completed(req, false))
1198                 return 0;
1199
1200         return -EAGAIN;
1201 }
1202
1203 /**
1204  * __i915_wait_request - wait until execution of request has finished
1205  * @req: duh!
1206  * @reset_counter: reset sequence associated with the given request
1207  * @interruptible: do an interruptible wait (normally yes)
1208  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209  *
1210  * Note: It is of utmost importance that the passed in seqno and reset_counter
1211  * values have been read by the caller in an smp safe manner. Where read-side
1212  * locks are involved, it is sufficient to read the reset_counter before
1213  * unlocking the lock that protects the seqno. For lockless tricks, the
1214  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215  * inserted.
1216  *
1217  * Returns 0 if the request was found within the alloted time. Else returns the
1218  * errno with remaining time filled in timeout argument.
1219  */
1220 int __i915_wait_request(struct drm_i915_gem_request *req,
1221                         unsigned reset_counter,
1222                         bool interruptible,
1223                         s64 *timeout,
1224                         struct intel_rps_client *rps)
1225 {
1226         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227         struct drm_device *dev = ring->dev;
1228         struct drm_i915_private *dev_priv = dev->dev_private;
1229         const bool irq_test_in_progress =
1230                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231         DEFINE_WAIT(wait);
1232         unsigned long timeout_expire;
1233         s64 before, now;
1234         int ret;
1235
1236         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237
1238         if (list_empty(&req->list))
1239                 return 0;
1240
1241         if (i915_gem_request_completed(req, true))
1242                 return 0;
1243
1244         timeout_expire = timeout ?
1245                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246
1247         if (INTEL_INFO(dev_priv)->gen >= 6)
1248                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249
1250         /* Record current time in case interrupted by signal, or wedged */
1251         trace_i915_gem_request_wait_begin(req);
1252         before = ktime_get_raw_ns();
1253
1254         /* Optimistic spin for the next jiffie before touching IRQs */
1255         ret = __i915_spin_request(req);
1256         if (ret == 0)
1257                 goto out;
1258
1259         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260                 ret = -ENODEV;
1261                 goto out;
1262         }
1263
1264         for (;;) {
1265                 struct timer_list timer;
1266
1267                 prepare_to_wait(&ring->irq_queue, &wait,
1268                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269
1270                 /* We need to check whether any gpu reset happened in between
1271                  * the caller grabbing the seqno and now ... */
1272                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274                          * is truely gone. */
1275                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276                         if (ret == 0)
1277                                 ret = -EAGAIN;
1278                         break;
1279                 }
1280
1281                 if (i915_gem_request_completed(req, false)) {
1282                         ret = 0;
1283                         break;
1284                 }
1285
1286                 if (interruptible && signal_pending(current)) {
1287                         ret = -ERESTARTSYS;
1288                         break;
1289                 }
1290
1291                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292                         ret = -ETIME;
1293                         break;
1294                 }
1295
1296                 timer.function = NULL;
1297                 if (timeout || missed_irq(dev_priv, ring)) {
1298                         unsigned long expire;
1299
1300                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302                         mod_timer(&timer, expire);
1303                 }
1304
1305                 io_schedule();
1306
1307                 if (timer.function) {
1308                         del_singleshot_timer_sync(&timer);
1309                         destroy_timer_on_stack(&timer);
1310                 }
1311         }
1312         if (!irq_test_in_progress)
1313                 ring->irq_put(ring);
1314
1315         finish_wait(&ring->irq_queue, &wait);
1316
1317 out:
1318         now = ktime_get_raw_ns();
1319         trace_i915_gem_request_wait_end(req);
1320
1321         if (timeout) {
1322                 s64 tres = *timeout - (now - before);
1323
1324                 *timeout = tres < 0 ? 0 : tres;
1325
1326                 /*
1327                  * Apparently ktime isn't accurate enough and occasionally has a
1328                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329                  * things up to make the test happy. We allow up to 1 jiffy.
1330                  *
1331                  * This is a regrssion from the timespec->ktime conversion.
1332                  */
1333                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334                         *timeout = 0;
1335         }
1336
1337         return ret;
1338 }
1339
1340 static inline void
1341 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342 {
1343         struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345         if (!file_priv)
1346                 return;
1347
1348         spin_lock(&file_priv->mm.lock);
1349         list_del(&request->client_list);
1350         request->file_priv = NULL;
1351         spin_unlock(&file_priv->mm.lock);
1352 }
1353
1354 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355 {
1356         trace_i915_gem_request_retire(request);
1357
1358         /* We know the GPU must have read the request to have
1359          * sent us the seqno + interrupt, so use the position
1360          * of tail of the request to update the last known position
1361          * of the GPU head.
1362          *
1363          * Note this requires that we are always called in request
1364          * completion order.
1365          */
1366         request->ringbuf->last_retired_head = request->postfix;
1367
1368         list_del_init(&request->list);
1369         i915_gem_request_remove_from_client(request);
1370
1371         put_pid(request->pid);
1372
1373         i915_gem_request_unreference(request);
1374 }
1375
1376 static void
1377 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378 {
1379         struct intel_engine_cs *engine = req->ring;
1380         struct drm_i915_gem_request *tmp;
1381
1382         lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384         if (list_empty(&req->list))
1385                 return;
1386
1387         do {
1388                 tmp = list_first_entry(&engine->request_list,
1389                                        typeof(*tmp), list);
1390
1391                 i915_gem_request_retire(tmp);
1392         } while (tmp != req);
1393
1394         WARN_ON(i915_verify_lists(engine->dev));
1395 }
1396
1397 /**
1398  * Waits for a request to be signaled, and cleans up the
1399  * request and object lists appropriately for that event.
1400  */
1401 int
1402 i915_wait_request(struct drm_i915_gem_request *req)
1403 {
1404         struct drm_device *dev;
1405         struct drm_i915_private *dev_priv;
1406         bool interruptible;
1407         int ret;
1408
1409         BUG_ON(req == NULL);
1410
1411         dev = req->ring->dev;
1412         dev_priv = dev->dev_private;
1413         interruptible = dev_priv->mm.interruptible;
1414
1415         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1416
1417         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418         if (ret)
1419                 return ret;
1420
1421         ret = i915_gem_check_olr(req);
1422         if (ret)
1423                 return ret;
1424
1425         ret = __i915_wait_request(req,
1426                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1427                                   interruptible, NULL, NULL);
1428         if (ret)
1429                 return ret;
1430
1431         __i915_gem_request_retire__upto(req);
1432         return 0;
1433 }
1434
1435 /**
1436  * Ensures that all rendering to the object has completed and the object is
1437  * safe to unbind from the GTT or access from the CPU.
1438  */
1439 int
1440 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441                                bool readonly)
1442 {
1443         int ret, i;
1444
1445         if (!obj->active)
1446                 return 0;
1447
1448         if (readonly) {
1449                 if (obj->last_write_req != NULL) {
1450                         ret = i915_wait_request(obj->last_write_req);
1451                         if (ret)
1452                                 return ret;
1453
1454                         i = obj->last_write_req->ring->id;
1455                         if (obj->last_read_req[i] == obj->last_write_req)
1456                                 i915_gem_object_retire__read(obj, i);
1457                         else
1458                                 i915_gem_object_retire__write(obj);
1459                 }
1460         } else {
1461                 for (i = 0; i < I915_NUM_RINGS; i++) {
1462                         if (obj->last_read_req[i] == NULL)
1463                                 continue;
1464
1465                         ret = i915_wait_request(obj->last_read_req[i]);
1466                         if (ret)
1467                                 return ret;
1468
1469                         i915_gem_object_retire__read(obj, i);
1470                 }
1471                 RQ_BUG_ON(obj->active);
1472         }
1473
1474         return 0;
1475 }
1476
1477 static void
1478 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479                                struct drm_i915_gem_request *req)
1480 {
1481         int ring = req->ring->id;
1482
1483         if (obj->last_read_req[ring] == req)
1484                 i915_gem_object_retire__read(obj, ring);
1485         else if (obj->last_write_req == req)
1486                 i915_gem_object_retire__write(obj);
1487
1488         __i915_gem_request_retire__upto(req);
1489 }
1490
1491 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1492  * as the object state may change during this call.
1493  */
1494 static __must_check int
1495 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496                                             struct intel_rps_client *rps,
1497                                             bool readonly)
1498 {
1499         struct drm_device *dev = obj->base.dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502         unsigned reset_counter;
1503         int ret, i, n = 0;
1504
1505         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506         BUG_ON(!dev_priv->mm.interruptible);
1507
1508         if (!obj->active)
1509                 return 0;
1510
1511         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512         if (ret)
1513                 return ret;
1514
1515         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516
1517         if (readonly) {
1518                 struct drm_i915_gem_request *req;
1519
1520                 req = obj->last_write_req;
1521                 if (req == NULL)
1522                         return 0;
1523
1524                 ret = i915_gem_check_olr(req);
1525                 if (ret)
1526                         goto err;
1527
1528                 requests[n++] = i915_gem_request_reference(req);
1529         } else {
1530                 for (i = 0; i < I915_NUM_RINGS; i++) {
1531                         struct drm_i915_gem_request *req;
1532
1533                         req = obj->last_read_req[i];
1534                         if (req == NULL)
1535                                 continue;
1536
1537                         ret = i915_gem_check_olr(req);
1538                         if (ret)
1539                                 goto err;
1540
1541                         requests[n++] = i915_gem_request_reference(req);
1542                 }
1543         }
1544
1545         mutex_unlock(&dev->struct_mutex);
1546         for (i = 0; ret == 0 && i < n; i++)
1547                 ret = __i915_wait_request(requests[i], reset_counter, true,
1548                                           NULL, rps);
1549         mutex_lock(&dev->struct_mutex);
1550
1551 err:
1552         for (i = 0; i < n; i++) {
1553                 if (ret == 0)
1554                         i915_gem_object_retire_request(obj, requests[i]);
1555                 i915_gem_request_unreference(requests[i]);
1556         }
1557
1558         return ret;
1559 }
1560
1561 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1562 {
1563         struct drm_i915_file_private *fpriv = file->driver_priv;
1564         return &fpriv->rps;
1565 }
1566
1567 /**
1568  * Called when user space prepares to use an object with the CPU, either
1569  * through the mmap ioctl's mapping or a GTT mapping.
1570  */
1571 int
1572 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573                           struct drm_file *file)
1574 {
1575         struct drm_i915_gem_set_domain *args = data;
1576         struct drm_i915_gem_object *obj;
1577         uint32_t read_domains = args->read_domains;
1578         uint32_t write_domain = args->write_domain;
1579         int ret;
1580
1581         /* Only handle setting domains to types used by the CPU. */
1582         if (write_domain & I915_GEM_GPU_DOMAINS)
1583                 return -EINVAL;
1584
1585         if (read_domains & I915_GEM_GPU_DOMAINS)
1586                 return -EINVAL;
1587
1588         /* Having something in the write domain implies it's in the read
1589          * domain, and only that read domain.  Enforce that in the request.
1590          */
1591         if (write_domain != 0 && read_domains != write_domain)
1592                 return -EINVAL;
1593
1594         ret = i915_mutex_lock_interruptible(dev);
1595         if (ret)
1596                 return ret;
1597
1598         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599         if (&obj->base == NULL) {
1600                 ret = -ENOENT;
1601                 goto unlock;
1602         }
1603
1604         /* Try to flush the object off the GPU without holding the lock.
1605          * We will repeat the flush holding the lock in the normal manner
1606          * to catch cases where we are gazumped.
1607          */
1608         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609                                                           to_rps_client(file),
1610                                                           !write_domain);
1611         if (ret)
1612                 goto unref;
1613
1614         if (read_domains & I915_GEM_DOMAIN_GTT)
1615                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616         else
1617                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618
1619 unref:
1620         drm_gem_object_unreference(&obj->base);
1621 unlock:
1622         mutex_unlock(&dev->struct_mutex);
1623         return ret;
1624 }
1625
1626 /**
1627  * Called when user space has done writes to this buffer
1628  */
1629 int
1630 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631                          struct drm_file *file)
1632 {
1633         struct drm_i915_gem_sw_finish *args = data;
1634         struct drm_i915_gem_object *obj;
1635         int ret = 0;
1636
1637         ret = i915_mutex_lock_interruptible(dev);
1638         if (ret)
1639                 return ret;
1640
1641         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642         if (&obj->base == NULL) {
1643                 ret = -ENOENT;
1644                 goto unlock;
1645         }
1646
1647         /* Pinned buffers may be scanout, so flush the cache */
1648         if (obj->pin_display)
1649                 i915_gem_object_flush_cpu_write_domain(obj);
1650
1651         drm_gem_object_unreference(&obj->base);
1652 unlock:
1653         mutex_unlock(&dev->struct_mutex);
1654         return ret;
1655 }
1656
1657 /**
1658  * Maps the contents of an object, returning the address it is mapped
1659  * into.
1660  *
1661  * While the mapping holds a reference on the contents of the object, it doesn't
1662  * imply a ref on the object itself.
1663  *
1664  * IMPORTANT:
1665  *
1666  * DRM driver writers who look a this function as an example for how to do GEM
1667  * mmap support, please don't implement mmap support like here. The modern way
1668  * to implement DRM mmap support is with an mmap offset ioctl (like
1669  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670  * That way debug tooling like valgrind will understand what's going on, hiding
1671  * the mmap call in a driver private ioctl will break that. The i915 driver only
1672  * does cpu mmaps this way because we didn't know better.
1673  */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676                     struct drm_file *file)
1677 {
1678         struct drm_i915_gem_mmap *args = data;
1679         struct drm_gem_object *obj;
1680         unsigned long addr;
1681
1682         if (args->flags & ~(I915_MMAP_WC))
1683                 return -EINVAL;
1684
1685         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686                 return -ENODEV;
1687
1688         obj = drm_gem_object_lookup(dev, file, args->handle);
1689         if (obj == NULL)
1690                 return -ENOENT;
1691
1692         /* prime objects have no backing filp to GEM mmap
1693          * pages from.
1694          */
1695         if (!obj->filp) {
1696                 drm_gem_object_unreference_unlocked(obj);
1697                 return -EINVAL;
1698         }
1699
1700         addr = vm_mmap(obj->filp, 0, args->size,
1701                        PROT_READ | PROT_WRITE, MAP_SHARED,
1702                        args->offset);
1703         if (args->flags & I915_MMAP_WC) {
1704                 struct mm_struct *mm = current->mm;
1705                 struct vm_area_struct *vma;
1706
1707                 down_write(&mm->mmap_sem);
1708                 vma = find_vma(mm, addr);
1709                 if (vma)
1710                         vma->vm_page_prot =
1711                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712                 else
1713                         addr = -ENOMEM;
1714                 up_write(&mm->mmap_sem);
1715         }
1716         drm_gem_object_unreference_unlocked(obj);
1717         if (IS_ERR((void *)addr))
1718                 return addr;
1719
1720         args->addr_ptr = (uint64_t) addr;
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * i915_gem_fault - fault a page into the GTT
1727  * vma: VMA in question
1728  * vmf: fault info
1729  *
1730  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731  * from userspace.  The fault handler takes care of binding the object to
1732  * the GTT (if needed), allocating and programming a fence register (again,
1733  * only if needed based on whether the old reg is still valid or the object
1734  * is tiled) and inserting a new PTE into the faulting process.
1735  *
1736  * Note that the faulting process may involve evicting existing objects
1737  * from the GTT and/or fence registers to make room.  So performance may
1738  * suffer if the GTT working set is large or there are few fence registers
1739  * left.
1740  */
1741 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 {
1743         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744         struct drm_device *dev = obj->base.dev;
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         struct i915_ggtt_view view = i915_ggtt_view_normal;
1747         pgoff_t page_offset;
1748         unsigned long pfn;
1749         int ret = 0;
1750         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751
1752         intel_runtime_pm_get(dev_priv);
1753
1754         /* We don't use vmf->pgoff since that has the fake offset */
1755         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756                 PAGE_SHIFT;
1757
1758         ret = i915_mutex_lock_interruptible(dev);
1759         if (ret)
1760                 goto out;
1761
1762         trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
1764         /* Try to flush the object off the GPU first without holding the lock.
1765          * Upon reacquiring the lock, we will perform our sanity checks and then
1766          * repeat the flush holding the lock in the normal manner to catch cases
1767          * where we are gazumped.
1768          */
1769         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770         if (ret)
1771                 goto unlock;
1772
1773         /* Access to snoopable pages through the GTT is incoherent. */
1774         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775                 ret = -EFAULT;
1776                 goto unlock;
1777         }
1778
1779         /* Use a partial view if the object is bigger than the aperture. */
1780         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781             obj->tiling_mode == I915_TILING_NONE) {
1782                 static const unsigned int chunk_size = 256; // 1 MiB
1783
1784                 memset(&view, 0, sizeof(view));
1785                 view.type = I915_GGTT_VIEW_PARTIAL;
1786                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787                 view.params.partial.size =
1788                         min_t(unsigned int,
1789                               chunk_size,
1790                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791                               view.params.partial.offset);
1792         }
1793
1794         /* Now pin it into the GTT if needed */
1795         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796         if (ret)
1797                 goto unlock;
1798
1799         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800         if (ret)
1801                 goto unpin;
1802
1803         ret = i915_gem_object_get_fence(obj);
1804         if (ret)
1805                 goto unpin;
1806
1807         /* Finally, remap it using the new GTT offset */
1808         pfn = dev_priv->gtt.mappable_base +
1809                 i915_gem_obj_ggtt_offset_view(obj, &view);
1810         pfn >>= PAGE_SHIFT;
1811
1812         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813                 /* Overriding existing pages in partial view does not cause
1814                  * us any trouble as TLBs are still valid because the fault
1815                  * is due to userspace losing part of the mapping or never
1816                  * having accessed it before (at this partials' range).
1817                  */
1818                 unsigned long base = vma->vm_start +
1819                                      (view.params.partial.offset << PAGE_SHIFT);
1820                 unsigned int i;
1821
1822                 for (i = 0; i < view.params.partial.size; i++) {
1823                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824                         if (ret)
1825                                 break;
1826                 }
1827
1828                 obj->fault_mappable = true;
1829         } else {
1830                 if (!obj->fault_mappable) {
1831                         unsigned long size = min_t(unsigned long,
1832                                                    vma->vm_end - vma->vm_start,
1833                                                    obj->base.size);
1834                         int i;
1835
1836                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837                                 ret = vm_insert_pfn(vma,
1838                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839                                                     pfn + i);
1840                                 if (ret)
1841                                         break;
1842                         }
1843
1844                         obj->fault_mappable = true;
1845                 } else
1846                         ret = vm_insert_pfn(vma,
1847                                             (unsigned long)vmf->virtual_address,
1848                                             pfn + page_offset);
1849         }
1850 unpin:
1851         i915_gem_object_ggtt_unpin_view(obj, &view);
1852 unlock:
1853         mutex_unlock(&dev->struct_mutex);
1854 out:
1855         switch (ret) {
1856         case -EIO:
1857                 /*
1858                  * We eat errors when the gpu is terminally wedged to avoid
1859                  * userspace unduly crashing (gl has no provisions for mmaps to
1860                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861                  * and so needs to be reported.
1862                  */
1863                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864                         ret = VM_FAULT_SIGBUS;
1865                         break;
1866                 }
1867         case -EAGAIN:
1868                 /*
1869                  * EAGAIN means the gpu is hung and we'll wait for the error
1870                  * handler to reset everything when re-faulting in
1871                  * i915_mutex_lock_interruptible.
1872                  */
1873         case 0:
1874         case -ERESTARTSYS:
1875         case -EINTR:
1876         case -EBUSY:
1877                 /*
1878                  * EBUSY is ok: this just means that another thread
1879                  * already did the job.
1880                  */
1881                 ret = VM_FAULT_NOPAGE;
1882                 break;
1883         case -ENOMEM:
1884                 ret = VM_FAULT_OOM;
1885                 break;
1886         case -ENOSPC:
1887         case -EFAULT:
1888                 ret = VM_FAULT_SIGBUS;
1889                 break;
1890         default:
1891                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892                 ret = VM_FAULT_SIGBUS;
1893                 break;
1894         }
1895
1896         intel_runtime_pm_put(dev_priv);
1897         return ret;
1898 }
1899
1900 /**
1901  * i915_gem_release_mmap - remove physical page mappings
1902  * @obj: obj in question
1903  *
1904  * Preserve the reservation of the mmapping with the DRM core code, but
1905  * relinquish ownership of the pages back to the system.
1906  *
1907  * It is vital that we remove the page mapping if we have mapped a tiled
1908  * object through the GTT and then lose the fence register due to
1909  * resource pressure. Similarly if the object has been moved out of the
1910  * aperture, than pages mapped into userspace must be revoked. Removing the
1911  * mapping will then trigger a page fault on the next user access, allowing
1912  * fixup by i915_gem_fault().
1913  */
1914 void
1915 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916 {
1917         if (!obj->fault_mappable)
1918                 return;
1919
1920         drm_vma_node_unmap(&obj->base.vma_node,
1921                            obj->base.dev->anon_inode->i_mapping);
1922         obj->fault_mappable = false;
1923 }
1924
1925 void
1926 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927 {
1928         struct drm_i915_gem_object *obj;
1929
1930         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931                 i915_gem_release_mmap(obj);
1932 }
1933
1934 uint32_t
1935 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936 {
1937         uint32_t gtt_size;
1938
1939         if (INTEL_INFO(dev)->gen >= 4 ||
1940             tiling_mode == I915_TILING_NONE)
1941                 return size;
1942
1943         /* Previous chips need a power-of-two fence region when tiling */
1944         if (INTEL_INFO(dev)->gen == 3)
1945                 gtt_size = 1024*1024;
1946         else
1947                 gtt_size = 512*1024;
1948
1949         while (gtt_size < size)
1950                 gtt_size <<= 1;
1951
1952         return gtt_size;
1953 }
1954
1955 /**
1956  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957  * @obj: object to check
1958  *
1959  * Return the required GTT alignment for an object, taking into account
1960  * potential fence register mapping.
1961  */
1962 uint32_t
1963 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964                            int tiling_mode, bool fenced)
1965 {
1966         /*
1967          * Minimum alignment is 4k (GTT page size), but might be greater
1968          * if a fence register is needed for the object.
1969          */
1970         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971             tiling_mode == I915_TILING_NONE)
1972                 return 4096;
1973
1974         /*
1975          * Previous chips need to be aligned to the size of the smallest
1976          * fence register that can contain the object.
1977          */
1978         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 }
1980
1981 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982 {
1983         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984         int ret;
1985
1986         if (drm_vma_node_has_offset(&obj->base.vma_node))
1987                 return 0;
1988
1989         dev_priv->mm.shrinker_no_lock_stealing = true;
1990
1991         ret = drm_gem_create_mmap_offset(&obj->base);
1992         if (ret != -ENOSPC)
1993                 goto out;
1994
1995         /* Badly fragmented mmap space? The only way we can recover
1996          * space is by destroying unwanted objects. We can't randomly release
1997          * mmap_offsets as userspace expects them to be persistent for the
1998          * lifetime of the objects. The closest we can is to release the
1999          * offsets on purgeable objects by truncating it and marking it purged,
2000          * which prevents userspace from ever using that object again.
2001          */
2002         i915_gem_shrink(dev_priv,
2003                         obj->base.size >> PAGE_SHIFT,
2004                         I915_SHRINK_BOUND |
2005                         I915_SHRINK_UNBOUND |
2006                         I915_SHRINK_PURGEABLE);
2007         ret = drm_gem_create_mmap_offset(&obj->base);
2008         if (ret != -ENOSPC)
2009                 goto out;
2010
2011         i915_gem_shrink_all(dev_priv);
2012         ret = drm_gem_create_mmap_offset(&obj->base);
2013 out:
2014         dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016         return ret;
2017 }
2018
2019 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020 {
2021         drm_gem_free_mmap_offset(&obj->base);
2022 }
2023
2024 int
2025 i915_gem_mmap_gtt(struct drm_file *file,
2026                   struct drm_device *dev,
2027                   uint32_t handle,
2028                   uint64_t *offset)
2029 {
2030         struct drm_i915_gem_object *obj;
2031         int ret;
2032
2033         ret = i915_mutex_lock_interruptible(dev);
2034         if (ret)
2035                 return ret;
2036
2037         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038         if (&obj->base == NULL) {
2039                 ret = -ENOENT;
2040                 goto unlock;
2041         }
2042
2043         if (obj->madv != I915_MADV_WILLNEED) {
2044                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045                 ret = -EFAULT;
2046                 goto out;
2047         }
2048
2049         ret = i915_gem_object_create_mmap_offset(obj);
2050         if (ret)
2051                 goto out;
2052
2053         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054
2055 out:
2056         drm_gem_object_unreference(&obj->base);
2057 unlock:
2058         mutex_unlock(&dev->struct_mutex);
2059         return ret;
2060 }
2061
2062 /**
2063  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064  * @dev: DRM device
2065  * @data: GTT mapping ioctl data
2066  * @file: GEM object info
2067  *
2068  * Simply returns the fake offset to userspace so it can mmap it.
2069  * The mmap call will end up in drm_gem_mmap(), which will set things
2070  * up so we can get faults in the handler above.
2071  *
2072  * The fault handler will take care of binding the object into the GTT
2073  * (since it may have been evicted to make room for something), allocating
2074  * a fence register, and mapping the appropriate aperture address into
2075  * userspace.
2076  */
2077 int
2078 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079                         struct drm_file *file)
2080 {
2081         struct drm_i915_gem_mmap_gtt *args = data;
2082
2083         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 }
2085
2086 /* Immediately discard the backing storage */
2087 static void
2088 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089 {
2090         i915_gem_object_free_mmap_offset(obj);
2091
2092         if (obj->base.filp == NULL)
2093                 return;
2094
2095         /* Our goal here is to return as much of the memory as
2096          * is possible back to the system as we are called from OOM.
2097          * To do this we must instruct the shmfs to drop all of its
2098          * backing pages, *now*.
2099          */
2100         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2101         obj->madv = __I915_MADV_PURGED;
2102 }
2103
2104 /* Try to discard unwanted pages */
2105 static void
2106 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2107 {
2108         struct address_space *mapping;
2109
2110         switch (obj->madv) {
2111         case I915_MADV_DONTNEED:
2112                 i915_gem_object_truncate(obj);
2113         case __I915_MADV_PURGED:
2114                 return;
2115         }
2116
2117         if (obj->base.filp == NULL)
2118                 return;
2119
2120         mapping = file_inode(obj->base.filp)->i_mapping,
2121         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 }
2123
2124 static void
2125 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126 {
2127         struct sg_page_iter sg_iter;
2128         int ret;
2129
2130         BUG_ON(obj->madv == __I915_MADV_PURGED);
2131
2132         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133         if (ret) {
2134                 /* In the event of a disaster, abandon all caches and
2135                  * hope for the best.
2136                  */
2137                 WARN_ON(ret != -EIO);
2138                 i915_gem_clflush_object(obj, true);
2139                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140         }
2141
2142         if (i915_gem_object_needs_bit17_swizzle(obj))
2143                 i915_gem_object_save_bit_17_swizzle(obj);
2144
2145         if (obj->madv == I915_MADV_DONTNEED)
2146                 obj->dirty = 0;
2147
2148         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149                 struct page *page = sg_page_iter_page(&sg_iter);
2150
2151                 if (obj->dirty)
2152                         set_page_dirty(page);
2153
2154                 if (obj->madv == I915_MADV_WILLNEED)
2155                         mark_page_accessed(page);
2156
2157                 page_cache_release(page);
2158         }
2159         obj->dirty = 0;
2160
2161         sg_free_table(obj->pages);
2162         kfree(obj->pages);
2163 }
2164
2165 int
2166 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2167 {
2168         const struct drm_i915_gem_object_ops *ops = obj->ops;
2169
2170         if (obj->pages == NULL)
2171                 return 0;
2172
2173         if (obj->pages_pin_count)
2174                 return -EBUSY;
2175
2176         BUG_ON(i915_gem_obj_bound_any(obj));
2177
2178         /* ->put_pages might need to allocate memory for the bit17 swizzle
2179          * array, hence protect them from being reaped by removing them from gtt
2180          * lists early. */
2181         list_del(&obj->global_list);
2182
2183         ops->put_pages(obj);
2184         obj->pages = NULL;
2185
2186         i915_gem_object_invalidate(obj);
2187
2188         return 0;
2189 }
2190
2191 static int
2192 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193 {
2194         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195         int page_count, i;
2196         struct address_space *mapping;
2197         struct sg_table *st;
2198         struct scatterlist *sg;
2199         struct sg_page_iter sg_iter;
2200         struct page *page;
2201         unsigned long last_pfn = 0;     /* suppress gcc warning */
2202         gfp_t gfp;
2203
2204         /* Assert that the object is not currently in any GPU domain. As it
2205          * wasn't in the GTT, there shouldn't be any way it could have been in
2206          * a GPU cache
2207          */
2208         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211         st = kmalloc(sizeof(*st), GFP_KERNEL);
2212         if (st == NULL)
2213                 return -ENOMEM;
2214
2215         page_count = obj->base.size / PAGE_SIZE;
2216         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217                 kfree(st);
2218                 return -ENOMEM;
2219         }
2220
2221         /* Get the list of pages out of our struct file.  They'll be pinned
2222          * at this point until we release them.
2223          *
2224          * Fail silently without starting the shrinker
2225          */
2226         mapping = file_inode(obj->base.filp)->i_mapping;
2227         gfp = mapping_gfp_mask(mapping);
2228         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2229         gfp &= ~(__GFP_IO | __GFP_WAIT);
2230         sg = st->sgl;
2231         st->nents = 0;
2232         for (i = 0; i < page_count; i++) {
2233                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234                 if (IS_ERR(page)) {
2235                         i915_gem_shrink(dev_priv,
2236                                         page_count,
2237                                         I915_SHRINK_BOUND |
2238                                         I915_SHRINK_UNBOUND |
2239                                         I915_SHRINK_PURGEABLE);
2240                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241                 }
2242                 if (IS_ERR(page)) {
2243                         /* We've tried hard to allocate the memory by reaping
2244                          * our own buffer, now let the real VM do its job and
2245                          * go down in flames if truly OOM.
2246                          */
2247                         i915_gem_shrink_all(dev_priv);
2248                         page = shmem_read_mapping_page(mapping, i);
2249                         if (IS_ERR(page))
2250                                 goto err_pages;
2251                 }
2252 #ifdef CONFIG_SWIOTLB
2253                 if (swiotlb_nr_tbl()) {
2254                         st->nents++;
2255                         sg_set_page(sg, page, PAGE_SIZE, 0);
2256                         sg = sg_next(sg);
2257                         continue;
2258                 }
2259 #endif
2260                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2261                         if (i)
2262                                 sg = sg_next(sg);
2263                         st->nents++;
2264                         sg_set_page(sg, page, PAGE_SIZE, 0);
2265                 } else {
2266                         sg->length += PAGE_SIZE;
2267                 }
2268                 last_pfn = page_to_pfn(page);
2269
2270                 /* Check that the i965g/gm workaround works. */
2271                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272         }
2273 #ifdef CONFIG_SWIOTLB
2274         if (!swiotlb_nr_tbl())
2275 #endif
2276                 sg_mark_end(sg);
2277         obj->pages = st;
2278
2279         if (i915_gem_object_needs_bit17_swizzle(obj))
2280                 i915_gem_object_do_bit_17_swizzle(obj);
2281
2282         if (obj->tiling_mode != I915_TILING_NONE &&
2283             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2284                 i915_gem_object_pin_pages(obj);
2285
2286         return 0;
2287
2288 err_pages:
2289         sg_mark_end(sg);
2290         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291                 page_cache_release(sg_page_iter_page(&sg_iter));
2292         sg_free_table(st);
2293         kfree(st);
2294
2295         /* shmemfs first checks if there is enough memory to allocate the page
2296          * and reports ENOSPC should there be insufficient, along with the usual
2297          * ENOMEM for a genuine allocation failure.
2298          *
2299          * We use ENOSPC in our driver to mean that we have run out of aperture
2300          * space and so want to translate the error from shmemfs back to our
2301          * usual understanding of ENOMEM.
2302          */
2303         if (PTR_ERR(page) == -ENOSPC)
2304                 return -ENOMEM;
2305         else
2306                 return PTR_ERR(page);
2307 }
2308
2309 /* Ensure that the associated pages are gathered from the backing storage
2310  * and pinned into our object. i915_gem_object_get_pages() may be called
2311  * multiple times before they are released by a single call to
2312  * i915_gem_object_put_pages() - once the pages are no longer referenced
2313  * either as a result of memory pressure (reaping pages under the shrinker)
2314  * or as the object is itself released.
2315  */
2316 int
2317 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2318 {
2319         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2320         const struct drm_i915_gem_object_ops *ops = obj->ops;
2321         int ret;
2322
2323         if (obj->pages)
2324                 return 0;
2325
2326         if (obj->madv != I915_MADV_WILLNEED) {
2327                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328                 return -EFAULT;
2329         }
2330
2331         BUG_ON(obj->pages_pin_count);
2332
2333         ret = ops->get_pages(obj);
2334         if (ret)
2335                 return ret;
2336
2337         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338
2339         obj->get_page.sg = obj->pages->sgl;
2340         obj->get_page.last = 0;
2341
2342         return 0;
2343 }
2344
2345 void i915_vma_move_to_active(struct i915_vma *vma,
2346                              struct intel_engine_cs *ring)
2347 {
2348         struct drm_i915_gem_object *obj = vma->obj;
2349
2350         /* Add a reference if we're newly entering the active list. */
2351         if (obj->active == 0)
2352                 drm_gem_object_reference(&obj->base);
2353         obj->active |= intel_ring_flag(ring);
2354
2355         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356         i915_gem_request_assign(&obj->last_read_req[ring->id],
2357                                 intel_ring_get_request(ring));
2358
2359         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365         RQ_BUG_ON(obj->last_write_req == NULL);
2366         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368         i915_gem_request_assign(&obj->last_write_req, NULL);
2369         intel_fb_obj_flush(obj, true);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375         struct i915_vma *vma;
2376
2377         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378         RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380         list_del_init(&obj->ring_list[ring]);
2381         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384                 i915_gem_object_retire__write(obj);
2385
2386         obj->active &= ~(1 << ring);
2387         if (obj->active)
2388                 return;
2389
2390         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2391                 if (!list_empty(&vma->mm_list))
2392                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393         }
2394
2395         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396         drm_gem_object_unreference(&obj->base);
2397 }
2398
2399 static int
2400 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401 {
2402         struct drm_i915_private *dev_priv = dev->dev_private;
2403         struct intel_engine_cs *ring;
2404         int ret, i, j;
2405
2406         /* Carefully retire all requests without writing to the rings */
2407         for_each_ring(ring, dev_priv, i) {
2408                 ret = intel_ring_idle(ring);
2409                 if (ret)
2410                         return ret;
2411         }
2412         i915_gem_retire_requests(dev);
2413
2414         /* Finally reset hw state */
2415         for_each_ring(ring, dev_priv, i) {
2416                 intel_ring_init_seqno(ring, seqno);
2417
2418                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2419                         ring->semaphore.sync_seqno[j] = 0;
2420         }
2421
2422         return 0;
2423 }
2424
2425 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2426 {
2427         struct drm_i915_private *dev_priv = dev->dev_private;
2428         int ret;
2429
2430         if (seqno == 0)
2431                 return -EINVAL;
2432
2433         /* HWS page needs to be set less than what we
2434          * will inject to ring
2435          */
2436         ret = i915_gem_init_seqno(dev, seqno - 1);
2437         if (ret)
2438                 return ret;
2439
2440         /* Carefully set the last_seqno value so that wrap
2441          * detection still works
2442          */
2443         dev_priv->next_seqno = seqno;
2444         dev_priv->last_seqno = seqno - 1;
2445         if (dev_priv->last_seqno == 0)
2446                 dev_priv->last_seqno--;
2447
2448         return 0;
2449 }
2450
2451 int
2452 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453 {
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455
2456         /* reserve 0 for non-seqno */
2457         if (dev_priv->next_seqno == 0) {
2458                 int ret = i915_gem_init_seqno(dev, 0);
2459                 if (ret)
2460                         return ret;
2461
2462                 dev_priv->next_seqno = 1;
2463         }
2464
2465         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466         return 0;
2467 }
2468
2469 int __i915_add_request(struct intel_engine_cs *ring,
2470                        struct drm_file *file,
2471                        struct drm_i915_gem_object *obj)
2472 {
2473         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474         struct drm_i915_gem_request *request;
2475         struct intel_ringbuffer *ringbuf;
2476         u32 request_start;
2477         int ret;
2478
2479         request = ring->outstanding_lazy_request;
2480         if (WARN_ON(request == NULL))
2481                 return -ENOMEM;
2482
2483         if (i915.enable_execlists) {
2484                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2485         } else
2486                 ringbuf = ring->buffer;
2487
2488         request_start = intel_ring_get_tail(ringbuf);
2489         /*
2490          * Emit any outstanding flushes - execbuf can fail to emit the flush
2491          * after having emitted the batchbuffer command. Hence we need to fix
2492          * things up similar to emitting the lazy request. The difference here
2493          * is that the flush _must_ happen before the next request, no matter
2494          * what.
2495          */
2496         if (i915.enable_execlists) {
2497                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2498                 if (ret)
2499                         return ret;
2500         } else {
2501                 ret = intel_ring_flush_all_caches(ring);
2502                 if (ret)
2503                         return ret;
2504         }
2505
2506         /* Record the position of the start of the request so that
2507          * should we detect the updated seqno part-way through the
2508          * GPU processing the request, we never over-estimate the
2509          * position of the head.
2510          */
2511         request->postfix = intel_ring_get_tail(ringbuf);
2512
2513         if (i915.enable_execlists) {
2514                 ret = ring->emit_request(ringbuf, request);
2515                 if (ret)
2516                         return ret;
2517         } else {
2518                 ret = ring->add_request(ring);
2519                 if (ret)
2520                         return ret;
2521
2522                 request->tail = intel_ring_get_tail(ringbuf);
2523         }
2524
2525         request->head = request_start;
2526
2527         /* Whilst this request exists, batch_obj will be on the
2528          * active_list, and so will hold the active reference. Only when this
2529          * request is retired will the the batch_obj be moved onto the
2530          * inactive_list and lose its active reference. Hence we do not need
2531          * to explicitly hold another reference here.
2532          */
2533         request->batch_obj = obj;
2534
2535         if (!i915.enable_execlists) {
2536                 /* Hold a reference to the current context so that we can inspect
2537                  * it later in case a hangcheck error event fires.
2538                  */
2539                 request->ctx = ring->last_context;
2540                 if (request->ctx)
2541                         i915_gem_context_reference(request->ctx);
2542         }
2543
2544         request->emitted_jiffies = jiffies;
2545         list_add_tail(&request->list, &ring->request_list);
2546         request->file_priv = NULL;
2547
2548         if (file) {
2549                 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
2551                 spin_lock(&file_priv->mm.lock);
2552                 request->file_priv = file_priv;
2553                 list_add_tail(&request->client_list,
2554                               &file_priv->mm.request_list);
2555                 spin_unlock(&file_priv->mm.lock);
2556
2557                 request->pid = get_pid(task_pid(current));
2558         }
2559
2560         trace_i915_gem_request_add(request);
2561         ring->outstanding_lazy_request = NULL;
2562
2563         i915_queue_hangcheck(ring->dev);
2564
2565         queue_delayed_work(dev_priv->wq,
2566                            &dev_priv->mm.retire_work,
2567                            round_jiffies_up_relative(HZ));
2568         intel_mark_busy(dev_priv->dev);
2569
2570         return 0;
2571 }
2572
2573 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574                                    const struct intel_context *ctx)
2575 {
2576         unsigned long elapsed;
2577
2578         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580         if (ctx->hang_stats.banned)
2581                 return true;
2582
2583         if (ctx->hang_stats.ban_period_seconds &&
2584             elapsed <= ctx->hang_stats.ban_period_seconds) {
2585                 if (!i915_gem_context_is_default(ctx)) {
2586                         DRM_DEBUG("context hanging too fast, banning!\n");
2587                         return true;
2588                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589                         if (i915_stop_ring_allow_warn(dev_priv))
2590                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2591                         return true;
2592                 }
2593         }
2594
2595         return false;
2596 }
2597
2598 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599                                   struct intel_context *ctx,
2600                                   const bool guilty)
2601 {
2602         struct i915_ctx_hang_stats *hs;
2603
2604         if (WARN_ON(!ctx))
2605                 return;
2606
2607         hs = &ctx->hang_stats;
2608
2609         if (guilty) {
2610                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2611                 hs->batch_active++;
2612                 hs->guilty_ts = get_seconds();
2613         } else {
2614                 hs->batch_pending++;
2615         }
2616 }
2617
2618 void i915_gem_request_free(struct kref *req_ref)
2619 {
2620         struct drm_i915_gem_request *req = container_of(req_ref,
2621                                                  typeof(*req), ref);
2622         struct intel_context *ctx = req->ctx;
2623
2624         if (ctx) {
2625                 if (i915.enable_execlists) {
2626                         struct intel_engine_cs *ring = req->ring;
2627
2628                         if (ctx != ring->default_context)
2629                                 intel_lr_context_unpin(ring, ctx);
2630                 }
2631
2632                 i915_gem_context_unreference(ctx);
2633         }
2634
2635         kmem_cache_free(req->i915->requests, req);
2636 }
2637
2638 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2639                            struct intel_context *ctx)
2640 {
2641         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2642         struct drm_i915_gem_request *req;
2643         int ret;
2644
2645         if (ring->outstanding_lazy_request)
2646                 return 0;
2647
2648         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2649         if (req == NULL)
2650                 return -ENOMEM;
2651
2652         kref_init(&req->ref);
2653         req->i915 = dev_priv;
2654
2655         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2656         if (ret)
2657                 goto err;
2658
2659         req->ring = ring;
2660
2661         if (i915.enable_execlists)
2662                 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2663         else
2664                 ret = intel_ring_alloc_request_extras(req);
2665         if (ret)
2666                 goto err;
2667
2668         ring->outstanding_lazy_request = req;
2669         return 0;
2670
2671 err:
2672         kmem_cache_free(dev_priv->requests, req);
2673         return ret;
2674 }
2675
2676 struct drm_i915_gem_request *
2677 i915_gem_find_active_request(struct intel_engine_cs *ring)
2678 {
2679         struct drm_i915_gem_request *request;
2680
2681         list_for_each_entry(request, &ring->request_list, list) {
2682                 if (i915_gem_request_completed(request, false))
2683                         continue;
2684
2685                 return request;
2686         }
2687
2688         return NULL;
2689 }
2690
2691 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2692                                        struct intel_engine_cs *ring)
2693 {
2694         struct drm_i915_gem_request *request;
2695         bool ring_hung;
2696
2697         request = i915_gem_find_active_request(ring);
2698
2699         if (request == NULL)
2700                 return;
2701
2702         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2703
2704         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2705
2706         list_for_each_entry_continue(request, &ring->request_list, list)
2707                 i915_set_reset_status(dev_priv, request->ctx, false);
2708 }
2709
2710 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2711                                         struct intel_engine_cs *ring)
2712 {
2713         while (!list_empty(&ring->active_list)) {
2714                 struct drm_i915_gem_object *obj;
2715
2716                 obj = list_first_entry(&ring->active_list,
2717                                        struct drm_i915_gem_object,
2718                                        ring_list[ring->id]);
2719
2720                 i915_gem_object_retire__read(obj, ring->id);
2721         }
2722
2723         /*
2724          * Clear the execlists queue up before freeing the requests, as those
2725          * are the ones that keep the context and ringbuffer backing objects
2726          * pinned in place.
2727          */
2728         while (!list_empty(&ring->execlist_queue)) {
2729                 struct drm_i915_gem_request *submit_req;
2730
2731                 submit_req = list_first_entry(&ring->execlist_queue,
2732                                 struct drm_i915_gem_request,
2733                                 execlist_link);
2734                 list_del(&submit_req->execlist_link);
2735
2736                 if (submit_req->ctx != ring->default_context)
2737                         intel_lr_context_unpin(ring, submit_req->ctx);
2738
2739                 i915_gem_request_unreference(submit_req);
2740         }
2741
2742         /*
2743          * We must free the requests after all the corresponding objects have
2744          * been moved off active lists. Which is the same order as the normal
2745          * retire_requests function does. This is important if object hold
2746          * implicit references on things like e.g. ppgtt address spaces through
2747          * the request.
2748          */
2749         while (!list_empty(&ring->request_list)) {
2750                 struct drm_i915_gem_request *request;
2751
2752                 request = list_first_entry(&ring->request_list,
2753                                            struct drm_i915_gem_request,
2754                                            list);
2755
2756                 i915_gem_request_retire(request);
2757         }
2758
2759         /* This may not have been flushed before the reset, so clean it now */
2760         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2761 }
2762
2763 void i915_gem_restore_fences(struct drm_device *dev)
2764 {
2765         struct drm_i915_private *dev_priv = dev->dev_private;
2766         int i;
2767
2768         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2769                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2770
2771                 /*
2772                  * Commit delayed tiling changes if we have an object still
2773                  * attached to the fence, otherwise just clear the fence.
2774                  */
2775                 if (reg->obj) {
2776                         i915_gem_object_update_fence(reg->obj, reg,
2777                                                      reg->obj->tiling_mode);
2778                 } else {
2779                         i915_gem_write_fence(dev, i, NULL);
2780                 }
2781         }
2782 }
2783
2784 void i915_gem_reset(struct drm_device *dev)
2785 {
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         struct intel_engine_cs *ring;
2788         int i;
2789
2790         /*
2791          * Before we free the objects from the requests, we need to inspect
2792          * them for finding the guilty party. As the requests only borrow
2793          * their reference to the objects, the inspection must be done first.
2794          */
2795         for_each_ring(ring, dev_priv, i)
2796                 i915_gem_reset_ring_status(dev_priv, ring);
2797
2798         for_each_ring(ring, dev_priv, i)
2799                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2800
2801         i915_gem_context_reset(dev);
2802
2803         i915_gem_restore_fences(dev);
2804
2805         WARN_ON(i915_verify_lists(dev));
2806 }
2807
2808 /**
2809  * This function clears the request list as sequence numbers are passed.
2810  */
2811 void
2812 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2813 {
2814         WARN_ON(i915_verify_lists(ring->dev));
2815
2816         /* Retire requests first as we use it above for the early return.
2817          * If we retire requests last, we may use a later seqno and so clear
2818          * the requests lists without clearing the active list, leading to
2819          * confusion.
2820          */
2821         while (!list_empty(&ring->request_list)) {
2822                 struct drm_i915_gem_request *request;
2823
2824                 request = list_first_entry(&ring->request_list,
2825                                            struct drm_i915_gem_request,
2826                                            list);
2827
2828                 if (!i915_gem_request_completed(request, true))
2829                         break;
2830
2831                 i915_gem_request_retire(request);
2832         }
2833
2834         /* Move any buffers on the active list that are no longer referenced
2835          * by the ringbuffer to the flushing/inactive lists as appropriate,
2836          * before we free the context associated with the requests.
2837          */
2838         while (!list_empty(&ring->active_list)) {
2839                 struct drm_i915_gem_object *obj;
2840
2841                 obj = list_first_entry(&ring->active_list,
2842                                       struct drm_i915_gem_object,
2843                                       ring_list[ring->id]);
2844
2845                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2846                         break;
2847
2848                 i915_gem_object_retire__read(obj, ring->id);
2849         }
2850
2851         if (unlikely(ring->trace_irq_req &&
2852                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2853                 ring->irq_put(ring);
2854                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2855         }
2856
2857         WARN_ON(i915_verify_lists(ring->dev));
2858 }
2859
2860 bool
2861 i915_gem_retire_requests(struct drm_device *dev)
2862 {
2863         struct drm_i915_private *dev_priv = dev->dev_private;
2864         struct intel_engine_cs *ring;
2865         bool idle = true;
2866         int i;
2867
2868         for_each_ring(ring, dev_priv, i) {
2869                 i915_gem_retire_requests_ring(ring);
2870                 idle &= list_empty(&ring->request_list);
2871                 if (i915.enable_execlists) {
2872                         unsigned long flags;
2873
2874                         spin_lock_irqsave(&ring->execlist_lock, flags);
2875                         idle &= list_empty(&ring->execlist_queue);
2876                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2877
2878                         intel_execlists_retire_requests(ring);
2879                 }
2880         }
2881
2882         if (idle)
2883                 mod_delayed_work(dev_priv->wq,
2884                                    &dev_priv->mm.idle_work,
2885                                    msecs_to_jiffies(100));
2886
2887         return idle;
2888 }
2889
2890 static void
2891 i915_gem_retire_work_handler(struct work_struct *work)
2892 {
2893         struct drm_i915_private *dev_priv =
2894                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2895         struct drm_device *dev = dev_priv->dev;
2896         bool idle;
2897
2898         /* Come back later if the device is busy... */
2899         idle = false;
2900         if (mutex_trylock(&dev->struct_mutex)) {
2901                 idle = i915_gem_retire_requests(dev);
2902                 mutex_unlock(&dev->struct_mutex);
2903         }
2904         if (!idle)
2905                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2906                                    round_jiffies_up_relative(HZ));
2907 }
2908
2909 static void
2910 i915_gem_idle_work_handler(struct work_struct *work)
2911 {
2912         struct drm_i915_private *dev_priv =
2913                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2914         struct drm_device *dev = dev_priv->dev;
2915         struct intel_engine_cs *ring;
2916         int i;
2917
2918         for_each_ring(ring, dev_priv, i)
2919                 if (!list_empty(&ring->request_list))
2920                         return;
2921
2922         intel_mark_idle(dev);
2923
2924         if (mutex_trylock(&dev->struct_mutex)) {
2925                 struct intel_engine_cs *ring;
2926                 int i;
2927
2928                 for_each_ring(ring, dev_priv, i)
2929                         i915_gem_batch_pool_fini(&ring->batch_pool);
2930
2931                 mutex_unlock(&dev->struct_mutex);
2932         }
2933 }
2934
2935 /**
2936  * Ensures that an object will eventually get non-busy by flushing any required
2937  * write domains, emitting any outstanding lazy request and retiring and
2938  * completed requests.
2939  */
2940 static int
2941 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2942 {
2943         int ret, i;
2944
2945         if (!obj->active)
2946                 return 0;
2947
2948         for (i = 0; i < I915_NUM_RINGS; i++) {
2949                 struct drm_i915_gem_request *req;
2950
2951                 req = obj->last_read_req[i];
2952                 if (req == NULL)
2953                         continue;
2954
2955                 if (list_empty(&req->list))
2956                         goto retire;
2957
2958                 ret = i915_gem_check_olr(req);
2959                 if (ret)
2960                         return ret;
2961
2962                 if (i915_gem_request_completed(req, true)) {
2963                         __i915_gem_request_retire__upto(req);
2964 retire:
2965                         i915_gem_object_retire__read(obj, i);
2966                 }
2967         }
2968
2969         return 0;
2970 }
2971
2972 /**
2973  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2974  * @DRM_IOCTL_ARGS: standard ioctl arguments
2975  *
2976  * Returns 0 if successful, else an error is returned with the remaining time in
2977  * the timeout parameter.
2978  *  -ETIME: object is still busy after timeout
2979  *  -ERESTARTSYS: signal interrupted the wait
2980  *  -ENONENT: object doesn't exist
2981  * Also possible, but rare:
2982  *  -EAGAIN: GPU wedged
2983  *  -ENOMEM: damn
2984  *  -ENODEV: Internal IRQ fail
2985  *  -E?: The add request failed
2986  *
2987  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2988  * non-zero timeout parameter the wait ioctl will wait for the given number of
2989  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2990  * without holding struct_mutex the object may become re-busied before this
2991  * function completes. A similar but shorter * race condition exists in the busy
2992  * ioctl
2993  */
2994 int
2995 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998         struct drm_i915_gem_wait *args = data;
2999         struct drm_i915_gem_object *obj;
3000         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3001         unsigned reset_counter;
3002         int i, n = 0;
3003         int ret;
3004
3005         if (args->flags != 0)
3006                 return -EINVAL;
3007
3008         ret = i915_mutex_lock_interruptible(dev);
3009         if (ret)
3010                 return ret;
3011
3012         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3013         if (&obj->base == NULL) {
3014                 mutex_unlock(&dev->struct_mutex);
3015                 return -ENOENT;
3016         }
3017
3018         /* Need to make sure the object gets inactive eventually. */
3019         ret = i915_gem_object_flush_active(obj);
3020         if (ret)
3021                 goto out;
3022
3023         if (!obj->active)
3024                 goto out;
3025
3026         /* Do this after OLR check to make sure we make forward progress polling
3027          * on this IOCTL with a timeout == 0 (like busy ioctl)
3028          */
3029         if (args->timeout_ns == 0) {
3030                 ret = -ETIME;
3031                 goto out;
3032         }
3033
3034         drm_gem_object_unreference(&obj->base);
3035         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3036
3037         for (i = 0; i < I915_NUM_RINGS; i++) {
3038                 if (obj->last_read_req[i] == NULL)
3039                         continue;
3040
3041                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3042         }
3043
3044         mutex_unlock(&dev->struct_mutex);
3045
3046         for (i = 0; i < n; i++) {
3047                 if (ret == 0)
3048                         ret = __i915_wait_request(req[i], reset_counter, true,
3049                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3050                                                   file->driver_priv);
3051                 i915_gem_request_unreference__unlocked(req[i]);
3052         }
3053         return ret;
3054
3055 out:
3056         drm_gem_object_unreference(&obj->base);
3057         mutex_unlock(&dev->struct_mutex);
3058         return ret;
3059 }
3060
3061 static int
3062 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3063                        struct intel_engine_cs *to,
3064                        struct drm_i915_gem_request *req)
3065 {
3066         struct intel_engine_cs *from;
3067         int ret;
3068
3069         from = i915_gem_request_get_ring(req);
3070         if (to == from)
3071                 return 0;
3072
3073         if (i915_gem_request_completed(req, true))
3074                 return 0;
3075
3076         ret = i915_gem_check_olr(req);
3077         if (ret)
3078                 return ret;
3079
3080         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3081                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3082                 ret = __i915_wait_request(req,
3083                                           atomic_read(&i915->gpu_error.reset_counter),
3084                                           i915->mm.interruptible,
3085                                           NULL,
3086                                           &i915->rps.semaphores);
3087                 if (ret)
3088                         return ret;
3089
3090                 i915_gem_object_retire_request(obj, req);
3091         } else {
3092                 int idx = intel_ring_sync_index(from, to);
3093                 u32 seqno = i915_gem_request_get_seqno(req);
3094
3095                 if (seqno <= from->semaphore.sync_seqno[idx])
3096                         return 0;
3097
3098                 trace_i915_gem_ring_sync_to(from, to, req);
3099                 ret = to->semaphore.sync_to(to, from, seqno);
3100                 if (ret)
3101                         return ret;
3102
3103                 /* We use last_read_req because sync_to()
3104                  * might have just caused seqno wrap under
3105                  * the radar.
3106                  */
3107                 from->semaphore.sync_seqno[idx] =
3108                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3109         }
3110
3111         return 0;
3112 }
3113
3114 /**
3115  * i915_gem_object_sync - sync an object to a ring.
3116  *
3117  * @obj: object which may be in use on another ring.
3118  * @to: ring we wish to use the object on. May be NULL.
3119  *
3120  * This code is meant to abstract object synchronization with the GPU.
3121  * Calling with NULL implies synchronizing the object with the CPU
3122  * rather than a particular GPU ring. Conceptually we serialise writes
3123  * between engines inside the GPU. We only allow on engine to write
3124  * into a buffer at any time, but multiple readers. To ensure each has
3125  * a coherent view of memory, we must:
3126  *
3127  * - If there is an outstanding write request to the object, the new
3128  *   request must wait for it to complete (either CPU or in hw, requests
3129  *   on the same ring will be naturally ordered).
3130  *
3131  * - If we are a write request (pending_write_domain is set), the new
3132  *   request must wait for outstanding read requests to complete.
3133  *
3134  * Returns 0 if successful, else propagates up the lower layer error.
3135  */
3136 int
3137 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138                      struct intel_engine_cs *to)
3139 {
3140         const bool readonly = obj->base.pending_write_domain == 0;
3141         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3142         int ret, i, n;
3143
3144         if (!obj->active)
3145                 return 0;
3146
3147         if (to == NULL)
3148                 return i915_gem_object_wait_rendering(obj, readonly);
3149
3150         n = 0;
3151         if (readonly) {
3152                 if (obj->last_write_req)
3153                         req[n++] = obj->last_write_req;
3154         } else {
3155                 for (i = 0; i < I915_NUM_RINGS; i++)
3156                         if (obj->last_read_req[i])
3157                                 req[n++] = obj->last_read_req[i];
3158         }
3159         for (i = 0; i < n; i++) {
3160                 ret = __i915_gem_object_sync(obj, to, req[i]);
3161                 if (ret)
3162                         return ret;
3163         }
3164
3165         return 0;
3166 }
3167
3168 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3169 {
3170         u32 old_write_domain, old_read_domains;
3171
3172         /* Force a pagefault for domain tracking on next user access */
3173         i915_gem_release_mmap(obj);
3174
3175         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3176                 return;
3177
3178         /* Wait for any direct GTT access to complete */
3179         mb();
3180
3181         old_read_domains = obj->base.read_domains;
3182         old_write_domain = obj->base.write_domain;
3183
3184         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3185         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3186
3187         trace_i915_gem_object_change_domain(obj,
3188                                             old_read_domains,
3189                                             old_write_domain);
3190 }
3191
3192 int i915_vma_unbind(struct i915_vma *vma)
3193 {
3194         struct drm_i915_gem_object *obj = vma->obj;
3195         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3196         int ret;
3197
3198         if (list_empty(&vma->vma_link))
3199                 return 0;
3200
3201         if (!drm_mm_node_allocated(&vma->node)) {
3202                 i915_gem_vma_destroy(vma);
3203                 return 0;
3204         }
3205
3206         if (vma->pin_count)
3207                 return -EBUSY;
3208
3209         BUG_ON(obj->pages == NULL);
3210
3211         ret = i915_gem_object_wait_rendering(obj, false);
3212         if (ret)
3213                 return ret;
3214         /* Continue on if we fail due to EIO, the GPU is hung so we
3215          * should be safe and we need to cleanup or else we might
3216          * cause memory corruption through use-after-free.
3217          */
3218
3219         if (i915_is_ggtt(vma->vm) &&
3220             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3221                 i915_gem_object_finish_gtt(obj);
3222
3223                 /* release the fence reg _after_ flushing */
3224                 ret = i915_gem_object_put_fence(obj);
3225                 if (ret)
3226                         return ret;
3227         }
3228
3229         trace_i915_vma_unbind(vma);
3230
3231         vma->vm->unbind_vma(vma);
3232         vma->bound = 0;
3233
3234         list_del_init(&vma->mm_list);
3235         if (i915_is_ggtt(vma->vm)) {
3236                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3237                         obj->map_and_fenceable = false;
3238                 } else if (vma->ggtt_view.pages) {
3239                         sg_free_table(vma->ggtt_view.pages);
3240                         kfree(vma->ggtt_view.pages);
3241                         vma->ggtt_view.pages = NULL;
3242                 }
3243         }
3244
3245         drm_mm_remove_node(&vma->node);
3246         i915_gem_vma_destroy(vma);
3247
3248         /* Since the unbound list is global, only move to that list if
3249          * no more VMAs exist. */
3250         if (list_empty(&obj->vma_list)) {
3251                 i915_gem_gtt_finish_object(obj);
3252                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3253         }
3254
3255         /* And finally now the object is completely decoupled from this vma,
3256          * we can drop its hold on the backing storage and allow it to be
3257          * reaped by the shrinker.
3258          */
3259         i915_gem_object_unpin_pages(obj);
3260
3261         return 0;
3262 }
3263
3264 int i915_gpu_idle(struct drm_device *dev)
3265 {
3266         struct drm_i915_private *dev_priv = dev->dev_private;
3267         struct intel_engine_cs *ring;
3268         int ret, i;
3269
3270         /* Flush everything onto the inactive list. */
3271         for_each_ring(ring, dev_priv, i) {
3272                 if (!i915.enable_execlists) {
3273                         ret = i915_switch_context(ring, ring->default_context);
3274                         if (ret)
3275                                 return ret;
3276                 }
3277
3278                 ret = intel_ring_idle(ring);
3279                 if (ret)
3280                         return ret;
3281         }
3282
3283         WARN_ON(i915_verify_lists(dev));
3284         return 0;
3285 }
3286
3287 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3288                                  struct drm_i915_gem_object *obj)
3289 {
3290         struct drm_i915_private *dev_priv = dev->dev_private;
3291         int fence_reg;
3292         int fence_pitch_shift;
3293
3294         if (INTEL_INFO(dev)->gen >= 6) {
3295                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3296                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3297         } else {
3298                 fence_reg = FENCE_REG_965_0;
3299                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3300         }
3301
3302         fence_reg += reg * 8;
3303
3304         /* To w/a incoherency with non-atomic 64-bit register updates,
3305          * we split the 64-bit update into two 32-bit writes. In order
3306          * for a partial fence not to be evaluated between writes, we
3307          * precede the update with write to turn off the fence register,
3308          * and only enable the fence as the last step.
3309          *
3310          * For extra levels of paranoia, we make sure each step lands
3311          * before applying the next step.
3312          */
3313         I915_WRITE(fence_reg, 0);
3314         POSTING_READ(fence_reg);
3315
3316         if (obj) {
3317                 u32 size = i915_gem_obj_ggtt_size(obj);
3318                 uint64_t val;
3319
3320                 /* Adjust fence size to match tiled area */
3321                 if (obj->tiling_mode != I915_TILING_NONE) {
3322                         uint32_t row_size = obj->stride *
3323                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3324                         size = (size / row_size) * row_size;
3325                 }
3326
3327                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3328                                  0xfffff000) << 32;
3329                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3330                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3331                 if (obj->tiling_mode == I915_TILING_Y)
3332                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3333                 val |= I965_FENCE_REG_VALID;
3334
3335                 I915_WRITE(fence_reg + 4, val >> 32);
3336                 POSTING_READ(fence_reg + 4);
3337
3338                 I915_WRITE(fence_reg + 0, val);
3339                 POSTING_READ(fence_reg);
3340         } else {
3341                 I915_WRITE(fence_reg + 4, 0);
3342                 POSTING_READ(fence_reg + 4);
3343         }
3344 }
3345
3346 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3347                                  struct drm_i915_gem_object *obj)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         u32 val;
3351
3352         if (obj) {
3353                 u32 size = i915_gem_obj_ggtt_size(obj);
3354                 int pitch_val;
3355                 int tile_width;
3356
3357                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3358                      (size & -size) != size ||
3359                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3360                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3361                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3362
3363                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3364                         tile_width = 128;
3365                 else
3366                         tile_width = 512;
3367
3368                 /* Note: pitch better be a power of two tile widths */
3369                 pitch_val = obj->stride / tile_width;
3370                 pitch_val = ffs(pitch_val) - 1;
3371
3372                 val = i915_gem_obj_ggtt_offset(obj);
3373                 if (obj->tiling_mode == I915_TILING_Y)
3374                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3375                 val |= I915_FENCE_SIZE_BITS(size);
3376                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3377                 val |= I830_FENCE_REG_VALID;
3378         } else
3379                 val = 0;
3380
3381         if (reg < 8)
3382                 reg = FENCE_REG_830_0 + reg * 4;
3383         else
3384                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3385
3386         I915_WRITE(reg, val);
3387         POSTING_READ(reg);
3388 }
3389
3390 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3391                                 struct drm_i915_gem_object *obj)
3392 {
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394         uint32_t val;
3395
3396         if (obj) {
3397                 u32 size = i915_gem_obj_ggtt_size(obj);
3398                 uint32_t pitch_val;
3399
3400                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3401                      (size & -size) != size ||
3402                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3403                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3404                      i915_gem_obj_ggtt_offset(obj), size);
3405
3406                 pitch_val = obj->stride / 128;
3407                 pitch_val = ffs(pitch_val) - 1;
3408
3409                 val = i915_gem_obj_ggtt_offset(obj);
3410                 if (obj->tiling_mode == I915_TILING_Y)
3411                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3412                 val |= I830_FENCE_SIZE_BITS(size);
3413                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3414                 val |= I830_FENCE_REG_VALID;
3415         } else
3416                 val = 0;
3417
3418         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3419         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3420 }
3421
3422 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3423 {
3424         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3425 }
3426
3427 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3428                                  struct drm_i915_gem_object *obj)
3429 {
3430         struct drm_i915_private *dev_priv = dev->dev_private;
3431
3432         /* Ensure that all CPU reads are completed before installing a fence
3433          * and all writes before removing the fence.
3434          */
3435         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3436                 mb();
3437
3438         WARN(obj && (!obj->stride || !obj->tiling_mode),
3439              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3440              obj->stride, obj->tiling_mode);
3441
3442         if (IS_GEN2(dev))
3443                 i830_write_fence_reg(dev, reg, obj);
3444         else if (IS_GEN3(dev))
3445                 i915_write_fence_reg(dev, reg, obj);
3446         else if (INTEL_INFO(dev)->gen >= 4)
3447                 i965_write_fence_reg(dev, reg, obj);
3448
3449         /* And similarly be paranoid that no direct access to this region
3450          * is reordered to before the fence is installed.
3451          */
3452         if (i915_gem_object_needs_mb(obj))
3453                 mb();
3454 }
3455
3456 static inline int fence_number(struct drm_i915_private *dev_priv,
3457                                struct drm_i915_fence_reg *fence)
3458 {
3459         return fence - dev_priv->fence_regs;
3460 }
3461
3462 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3463                                          struct drm_i915_fence_reg *fence,
3464                                          bool enable)
3465 {
3466         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3467         int reg = fence_number(dev_priv, fence);
3468
3469         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3470
3471         if (enable) {
3472                 obj->fence_reg = reg;
3473                 fence->obj = obj;
3474                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3475         } else {
3476                 obj->fence_reg = I915_FENCE_REG_NONE;
3477                 fence->obj = NULL;
3478                 list_del_init(&fence->lru_list);
3479         }
3480         obj->fence_dirty = false;
3481 }
3482
3483 static int
3484 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3485 {
3486         if (obj->last_fenced_req) {
3487                 int ret = i915_wait_request(obj->last_fenced_req);
3488                 if (ret)
3489                         return ret;
3490
3491                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3492         }
3493
3494         return 0;
3495 }
3496
3497 int
3498 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3499 {
3500         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3501         struct drm_i915_fence_reg *fence;
3502         int ret;
3503
3504         ret = i915_gem_object_wait_fence(obj);
3505         if (ret)
3506                 return ret;
3507
3508         if (obj->fence_reg == I915_FENCE_REG_NONE)
3509                 return 0;
3510
3511         fence = &dev_priv->fence_regs[obj->fence_reg];
3512
3513         if (WARN_ON(fence->pin_count))
3514                 return -EBUSY;
3515
3516         i915_gem_object_fence_lost(obj);
3517         i915_gem_object_update_fence(obj, fence, false);
3518
3519         return 0;
3520 }
3521
3522 static struct drm_i915_fence_reg *
3523 i915_find_fence_reg(struct drm_device *dev)
3524 {
3525         struct drm_i915_private *dev_priv = dev->dev_private;
3526         struct drm_i915_fence_reg *reg, *avail;
3527         int i;
3528
3529         /* First try to find a free reg */
3530         avail = NULL;
3531         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3532                 reg = &dev_priv->fence_regs[i];
3533                 if (!reg->obj)
3534                         return reg;
3535
3536                 if (!reg->pin_count)
3537                         avail = reg;
3538         }
3539
3540         if (avail == NULL)
3541                 goto deadlock;
3542
3543         /* None available, try to steal one or wait for a user to finish */
3544         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3545                 if (reg->pin_count)
3546                         continue;
3547
3548                 return reg;
3549         }
3550
3551 deadlock:
3552         /* Wait for completion of pending flips which consume fences */
3553         if (intel_has_pending_fb_unpin(dev))
3554                 return ERR_PTR(-EAGAIN);
3555
3556         return ERR_PTR(-EDEADLK);
3557 }
3558
3559 /**
3560  * i915_gem_object_get_fence - set up fencing for an object
3561  * @obj: object to map through a fence reg
3562  *
3563  * When mapping objects through the GTT, userspace wants to be able to write
3564  * to them without having to worry about swizzling if the object is tiled.
3565  * This function walks the fence regs looking for a free one for @obj,
3566  * stealing one if it can't find any.
3567  *
3568  * It then sets up the reg based on the object's properties: address, pitch
3569  * and tiling format.
3570  *
3571  * For an untiled surface, this removes any existing fence.
3572  */
3573 int
3574 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3575 {
3576         struct drm_device *dev = obj->base.dev;
3577         struct drm_i915_private *dev_priv = dev->dev_private;
3578         bool enable = obj->tiling_mode != I915_TILING_NONE;
3579         struct drm_i915_fence_reg *reg;
3580         int ret;
3581
3582         /* Have we updated the tiling parameters upon the object and so
3583          * will need to serialise the write to the associated fence register?
3584          */
3585         if (obj->fence_dirty) {
3586                 ret = i915_gem_object_wait_fence(obj);
3587                 if (ret)
3588                         return ret;
3589         }
3590
3591         /* Just update our place in the LRU if our fence is getting reused. */
3592         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3593                 reg = &dev_priv->fence_regs[obj->fence_reg];
3594                 if (!obj->fence_dirty) {
3595                         list_move_tail(&reg->lru_list,
3596                                        &dev_priv->mm.fence_list);
3597                         return 0;
3598                 }
3599         } else if (enable) {
3600                 if (WARN_ON(!obj->map_and_fenceable))
3601                         return -EINVAL;
3602
3603                 reg = i915_find_fence_reg(dev);
3604                 if (IS_ERR(reg))
3605                         return PTR_ERR(reg);
3606
3607                 if (reg->obj) {
3608                         struct drm_i915_gem_object *old = reg->obj;
3609
3610                         ret = i915_gem_object_wait_fence(old);
3611                         if (ret)
3612                                 return ret;
3613
3614                         i915_gem_object_fence_lost(old);
3615                 }
3616         } else
3617                 return 0;
3618
3619         i915_gem_object_update_fence(obj, reg, enable);
3620
3621         return 0;
3622 }
3623
3624 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3625                                      unsigned long cache_level)
3626 {
3627         struct drm_mm_node *gtt_space = &vma->node;
3628         struct drm_mm_node *other;
3629
3630         /*
3631          * On some machines we have to be careful when putting differing types
3632          * of snoopable memory together to avoid the prefetcher crossing memory
3633          * domains and dying. During vm initialisation, we decide whether or not
3634          * these constraints apply and set the drm_mm.color_adjust
3635          * appropriately.
3636          */
3637         if (vma->vm->mm.color_adjust == NULL)
3638                 return true;
3639
3640         if (!drm_mm_node_allocated(gtt_space))
3641                 return true;
3642
3643         if (list_empty(&gtt_space->node_list))
3644                 return true;
3645
3646         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3647         if (other->allocated && !other->hole_follows && other->color != cache_level)
3648                 return false;
3649
3650         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3651         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3652                 return false;
3653
3654         return true;
3655 }
3656
3657 /**
3658  * Finds free space in the GTT aperture and binds the object or a view of it
3659  * there.
3660  */
3661 static struct i915_vma *
3662 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3663                            struct i915_address_space *vm,
3664                            const struct i915_ggtt_view *ggtt_view,
3665                            unsigned alignment,
3666                            uint64_t flags)
3667 {
3668         struct drm_device *dev = obj->base.dev;
3669         struct drm_i915_private *dev_priv = dev->dev_private;
3670         u32 size, fence_size, fence_alignment, unfenced_alignment;
3671         unsigned long start =
3672                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3673         unsigned long end =
3674                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3675         struct i915_vma *vma;
3676         int ret;
3677
3678         if (i915_is_ggtt(vm)) {
3679                 u32 view_size;
3680
3681                 if (WARN_ON(!ggtt_view))
3682                         return ERR_PTR(-EINVAL);
3683
3684                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3685
3686                 fence_size = i915_gem_get_gtt_size(dev,
3687                                                    view_size,
3688                                                    obj->tiling_mode);
3689                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3690                                                              view_size,
3691                                                              obj->tiling_mode,
3692                                                              true);
3693                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3694                                                                 view_size,
3695                                                                 obj->tiling_mode,
3696                                                                 false);
3697                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3698         } else {
3699                 fence_size = i915_gem_get_gtt_size(dev,
3700                                                    obj->base.size,
3701                                                    obj->tiling_mode);
3702                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3703                                                              obj->base.size,
3704                                                              obj->tiling_mode,
3705                                                              true);
3706                 unfenced_alignment =
3707                         i915_gem_get_gtt_alignment(dev,
3708                                                    obj->base.size,
3709                                                    obj->tiling_mode,
3710                                                    false);
3711                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3712         }
3713
3714         if (alignment == 0)
3715                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3716                                                 unfenced_alignment;
3717         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3718                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3719                           ggtt_view ? ggtt_view->type : 0,
3720                           alignment);
3721                 return ERR_PTR(-EINVAL);
3722         }
3723
3724         /* If binding the object/GGTT view requires more space than the entire
3725          * aperture has, reject it early before evicting everything in a vain
3726          * attempt to find space.
3727          */
3728         if (size > end) {
3729                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3730                           ggtt_view ? ggtt_view->type : 0,
3731                           size,
3732                           flags & PIN_MAPPABLE ? "mappable" : "total",
3733                           end);
3734                 return ERR_PTR(-E2BIG);
3735         }
3736
3737         ret = i915_gem_object_get_pages(obj);
3738         if (ret)
3739                 return ERR_PTR(ret);
3740
3741         i915_gem_object_pin_pages(obj);
3742
3743         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3744                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3745
3746         if (IS_ERR(vma))
3747                 goto err_unpin;
3748
3749 search_free:
3750         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3751                                                   size, alignment,
3752                                                   obj->cache_level,
3753                                                   start, end,
3754                                                   DRM_MM_SEARCH_DEFAULT,
3755                                                   DRM_MM_CREATE_DEFAULT);
3756         if (ret) {
3757                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3758                                                obj->cache_level,
3759                                                start, end,
3760                                                flags);
3761                 if (ret == 0)
3762                         goto search_free;
3763
3764                 goto err_free_vma;
3765         }
3766         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3767                 ret = -EINVAL;
3768                 goto err_remove_node;
3769         }
3770
3771         ret = i915_gem_gtt_prepare_object(obj);
3772         if (ret)
3773                 goto err_remove_node;
3774
3775         trace_i915_vma_bind(vma, flags);
3776         ret = i915_vma_bind(vma, obj->cache_level, flags);
3777         if (ret)
3778                 goto err_finish_gtt;
3779
3780         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3781         list_add_tail(&vma->mm_list, &vm->inactive_list);
3782
3783         return vma;
3784
3785 err_finish_gtt:
3786         i915_gem_gtt_finish_object(obj);
3787 err_remove_node:
3788         drm_mm_remove_node(&vma->node);
3789 err_free_vma:
3790         i915_gem_vma_destroy(vma);
3791         vma = ERR_PTR(ret);
3792 err_unpin:
3793         i915_gem_object_unpin_pages(obj);
3794         return vma;
3795 }
3796
3797 bool
3798 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3799                         bool force)
3800 {
3801         /* If we don't have a page list set up, then we're not pinned
3802          * to GPU, and we can ignore the cache flush because it'll happen
3803          * again at bind time.
3804          */
3805         if (obj->pages == NULL)
3806                 return false;
3807
3808         /*
3809          * Stolen memory is always coherent with the GPU as it is explicitly
3810          * marked as wc by the system, or the system is cache-coherent.
3811          */
3812         if (obj->stolen || obj->phys_handle)
3813                 return false;
3814
3815         /* If the GPU is snooping the contents of the CPU cache,
3816          * we do not need to manually clear the CPU cache lines.  However,
3817          * the caches are only snooped when the render cache is
3818          * flushed/invalidated.  As we always have to emit invalidations
3819          * and flushes when moving into and out of the RENDER domain, correct
3820          * snooping behaviour occurs naturally as the result of our domain
3821          * tracking.
3822          */
3823         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3824                 obj->cache_dirty = true;
3825                 return false;
3826         }
3827
3828         trace_i915_gem_object_clflush(obj);
3829         drm_clflush_sg(obj->pages);
3830         obj->cache_dirty = false;
3831
3832         return true;
3833 }
3834
3835 /** Flushes the GTT write domain for the object if it's dirty. */
3836 static void
3837 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3838 {
3839         uint32_t old_write_domain;
3840
3841         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3842                 return;
3843
3844         /* No actual flushing is required for the GTT write domain.  Writes
3845          * to it immediately go to main memory as far as we know, so there's
3846          * no chipset flush.  It also doesn't land in render cache.
3847          *
3848          * However, we do have to enforce the order so that all writes through
3849          * the GTT land before any writes to the device, such as updates to
3850          * the GATT itself.
3851          */
3852         wmb();
3853
3854         old_write_domain = obj->base.write_domain;
3855         obj->base.write_domain = 0;
3856
3857         intel_fb_obj_flush(obj, false);
3858
3859         trace_i915_gem_object_change_domain(obj,
3860                                             obj->base.read_domains,
3861                                             old_write_domain);
3862 }
3863
3864 /** Flushes the CPU write domain for the object if it's dirty. */
3865 static void
3866 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3867 {
3868         uint32_t old_write_domain;
3869
3870         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3871                 return;
3872
3873         if (i915_gem_clflush_object(obj, obj->pin_display))
3874                 i915_gem_chipset_flush(obj->base.dev);
3875
3876         old_write_domain = obj->base.write_domain;
3877         obj->base.write_domain = 0;
3878
3879         intel_fb_obj_flush(obj, false);
3880
3881         trace_i915_gem_object_change_domain(obj,
3882                                             obj->base.read_domains,
3883                                             old_write_domain);
3884 }
3885
3886 /**
3887  * Moves a single object to the GTT read, and possibly write domain.
3888  *
3889  * This function returns when the move is complete, including waiting on
3890  * flushes to occur.
3891  */
3892 int
3893 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3894 {
3895         uint32_t old_write_domain, old_read_domains;
3896         struct i915_vma *vma;
3897         int ret;
3898
3899         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3900                 return 0;
3901
3902         ret = i915_gem_object_wait_rendering(obj, !write);
3903         if (ret)
3904                 return ret;
3905
3906         /* Flush and acquire obj->pages so that we are coherent through
3907          * direct access in memory with previous cached writes through
3908          * shmemfs and that our cache domain tracking remains valid.
3909          * For example, if the obj->filp was moved to swap without us
3910          * being notified and releasing the pages, we would mistakenly
3911          * continue to assume that the obj remained out of the CPU cached
3912          * domain.
3913          */
3914         ret = i915_gem_object_get_pages(obj);
3915         if (ret)
3916                 return ret;
3917
3918         i915_gem_object_flush_cpu_write_domain(obj);
3919
3920         /* Serialise direct access to this object with the barriers for
3921          * coherent writes from the GPU, by effectively invalidating the
3922          * GTT domain upon first access.
3923          */
3924         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3925                 mb();
3926
3927         old_write_domain = obj->base.write_domain;
3928         old_read_domains = obj->base.read_domains;
3929
3930         /* It should now be out of any other write domains, and we can update
3931          * the domain values for our changes.
3932          */
3933         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3934         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3935         if (write) {
3936                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3937                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3938                 obj->dirty = 1;
3939         }
3940
3941         if (write)
3942                 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3943
3944         trace_i915_gem_object_change_domain(obj,
3945                                             old_read_domains,
3946                                             old_write_domain);
3947
3948         /* And bump the LRU for this access */
3949         vma = i915_gem_obj_to_ggtt(obj);
3950         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3951                 list_move_tail(&vma->mm_list,
3952                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3953
3954         return 0;
3955 }
3956
3957 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3958                                     enum i915_cache_level cache_level)
3959 {
3960         struct drm_device *dev = obj->base.dev;
3961         struct i915_vma *vma, *next;
3962         int ret;
3963
3964         if (obj->cache_level == cache_level)
3965                 return 0;
3966
3967         if (i915_gem_obj_is_pinned(obj)) {
3968                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3969                 return -EBUSY;
3970         }
3971
3972         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3973                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3974                         ret = i915_vma_unbind(vma);
3975                         if (ret)
3976                                 return ret;
3977                 }
3978         }
3979
3980         if (i915_gem_obj_bound_any(obj)) {
3981                 ret = i915_gem_object_wait_rendering(obj, false);
3982                 if (ret)
3983                         return ret;
3984
3985                 i915_gem_object_finish_gtt(obj);
3986
3987                 /* Before SandyBridge, you could not use tiling or fence
3988                  * registers with snooped memory, so relinquish any fences
3989                  * currently pointing to our region in the aperture.
3990                  */
3991                 if (INTEL_INFO(dev)->gen < 6) {
3992                         ret = i915_gem_object_put_fence(obj);
3993                         if (ret)
3994                                 return ret;
3995                 }
3996
3997                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3998                         if (drm_mm_node_allocated(&vma->node)) {
3999                                 ret = i915_vma_bind(vma, cache_level,
4000                                                     PIN_UPDATE);
4001                                 if (ret)
4002                                         return ret;
4003                         }
4004         }
4005
4006         list_for_each_entry(vma, &obj->vma_list, vma_link)
4007                 vma->node.color = cache_level;
4008         obj->cache_level = cache_level;
4009
4010         if (obj->cache_dirty &&
4011             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4012             cpu_write_needs_clflush(obj)) {
4013                 if (i915_gem_clflush_object(obj, true))
4014                         i915_gem_chipset_flush(obj->base.dev);
4015         }
4016
4017         return 0;
4018 }
4019
4020 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4021                                struct drm_file *file)
4022 {
4023         struct drm_i915_gem_caching *args = data;
4024         struct drm_i915_gem_object *obj;
4025
4026         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4027         if (&obj->base == NULL)
4028                 return -ENOENT;
4029
4030         switch (obj->cache_level) {
4031         case I915_CACHE_LLC:
4032         case I915_CACHE_L3_LLC:
4033                 args->caching = I915_CACHING_CACHED;
4034                 break;
4035
4036         case I915_CACHE_WT:
4037                 args->caching = I915_CACHING_DISPLAY;
4038                 break;
4039
4040         default:
4041                 args->caching = I915_CACHING_NONE;
4042                 break;
4043         }
4044
4045         drm_gem_object_unreference_unlocked(&obj->base);
4046         return 0;
4047 }
4048
4049 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4050                                struct drm_file *file)
4051 {
4052         struct drm_i915_gem_caching *args = data;
4053         struct drm_i915_gem_object *obj;
4054         enum i915_cache_level level;
4055         int ret;
4056
4057         switch (args->caching) {
4058         case I915_CACHING_NONE:
4059                 level = I915_CACHE_NONE;
4060                 break;
4061         case I915_CACHING_CACHED:
4062                 level = I915_CACHE_LLC;
4063                 break;
4064         case I915_CACHING_DISPLAY:
4065                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4066                 break;
4067         default:
4068                 return -EINVAL;
4069         }
4070
4071         ret = i915_mutex_lock_interruptible(dev);
4072         if (ret)
4073                 return ret;
4074
4075         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4076         if (&obj->base == NULL) {
4077                 ret = -ENOENT;
4078                 goto unlock;
4079         }
4080
4081         ret = i915_gem_object_set_cache_level(obj, level);
4082
4083         drm_gem_object_unreference(&obj->base);
4084 unlock:
4085         mutex_unlock(&dev->struct_mutex);
4086         return ret;
4087 }
4088
4089 /*
4090  * Prepare buffer for display plane (scanout, cursors, etc).
4091  * Can be called from an uninterruptible phase (modesetting) and allows
4092  * any flushes to be pipelined (for pageflips).
4093  */
4094 int
4095 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4096                                      u32 alignment,
4097                                      struct intel_engine_cs *pipelined,
4098                                      const struct i915_ggtt_view *view)
4099 {
4100         u32 old_read_domains, old_write_domain;
4101         int ret;
4102
4103         ret = i915_gem_object_sync(obj, pipelined);
4104         if (ret)
4105                 return ret;
4106
4107         /* Mark the pin_display early so that we account for the
4108          * display coherency whilst setting up the cache domains.
4109          */
4110         obj->pin_display++;
4111
4112         /* The display engine is not coherent with the LLC cache on gen6.  As
4113          * a result, we make sure that the pinning that is about to occur is
4114          * done with uncached PTEs. This is lowest common denominator for all
4115          * chipsets.
4116          *
4117          * However for gen6+, we could do better by using the GFDT bit instead
4118          * of uncaching, which would allow us to flush all the LLC-cached data
4119          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4120          */
4121         ret = i915_gem_object_set_cache_level(obj,
4122                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4123         if (ret)
4124                 goto err_unpin_display;
4125
4126         /* As the user may map the buffer once pinned in the display plane
4127          * (e.g. libkms for the bootup splash), we have to ensure that we
4128          * always use map_and_fenceable for all scanout buffers.
4129          */
4130         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4131                                        view->type == I915_GGTT_VIEW_NORMAL ?
4132                                        PIN_MAPPABLE : 0);
4133         if (ret)
4134                 goto err_unpin_display;
4135
4136         i915_gem_object_flush_cpu_write_domain(obj);
4137
4138         old_write_domain = obj->base.write_domain;
4139         old_read_domains = obj->base.read_domains;
4140
4141         /* It should now be out of any other write domains, and we can update
4142          * the domain values for our changes.
4143          */
4144         obj->base.write_domain = 0;
4145         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4146
4147         trace_i915_gem_object_change_domain(obj,
4148                                             old_read_domains,
4149                                             old_write_domain);
4150
4151         return 0;
4152
4153 err_unpin_display:
4154         obj->pin_display--;
4155         return ret;
4156 }
4157
4158 void
4159 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4160                                          const struct i915_ggtt_view *view)
4161 {
4162         if (WARN_ON(obj->pin_display == 0))
4163                 return;
4164
4165         i915_gem_object_ggtt_unpin_view(obj, view);
4166
4167         obj->pin_display--;
4168 }
4169
4170 /**
4171  * Moves a single object to the CPU read, and possibly write domain.
4172  *
4173  * This function returns when the move is complete, including waiting on
4174  * flushes to occur.
4175  */
4176 int
4177 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4178 {
4179         uint32_t old_write_domain, old_read_domains;
4180         int ret;
4181
4182         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4183                 return 0;
4184
4185         ret = i915_gem_object_wait_rendering(obj, !write);
4186         if (ret)
4187                 return ret;
4188
4189         i915_gem_object_flush_gtt_write_domain(obj);
4190
4191         old_write_domain = obj->base.write_domain;
4192         old_read_domains = obj->base.read_domains;
4193
4194         /* Flush the CPU cache if it's still invalid. */
4195         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4196                 i915_gem_clflush_object(obj, false);
4197
4198                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4199         }
4200
4201         /* It should now be out of any other write domains, and we can update
4202          * the domain values for our changes.
4203          */
4204         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4205
4206         /* If we're writing through the CPU, then the GPU read domains will
4207          * need to be invalidated at next use.
4208          */
4209         if (write) {
4210                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4211                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4212         }
4213
4214         if (write)
4215                 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4216
4217         trace_i915_gem_object_change_domain(obj,
4218                                             old_read_domains,
4219                                             old_write_domain);
4220
4221         return 0;
4222 }
4223
4224 /* Throttle our rendering by waiting until the ring has completed our requests
4225  * emitted over 20 msec ago.
4226  *
4227  * Note that if we were to use the current jiffies each time around the loop,
4228  * we wouldn't escape the function with any frames outstanding if the time to
4229  * render a frame was over 20ms.
4230  *
4231  * This should get us reasonable parallelism between CPU and GPU but also
4232  * relatively low latency when blocking on a particular request to finish.
4233  */
4234 static int
4235 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4236 {
4237         struct drm_i915_private *dev_priv = dev->dev_private;
4238         struct drm_i915_file_private *file_priv = file->driver_priv;
4239         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4240         struct drm_i915_gem_request *request, *target = NULL;
4241         unsigned reset_counter;
4242         int ret;
4243
4244         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4245         if (ret)
4246                 return ret;
4247
4248         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4249         if (ret)
4250                 return ret;
4251
4252         spin_lock(&file_priv->mm.lock);
4253         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4254                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4255                         break;
4256
4257                 target = request;
4258         }
4259         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4260         if (target)
4261                 i915_gem_request_reference(target);
4262         spin_unlock(&file_priv->mm.lock);
4263
4264         if (target == NULL)
4265                 return 0;
4266
4267         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4268         if (ret == 0)
4269                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4270
4271         i915_gem_request_unreference__unlocked(target);
4272
4273         return ret;
4274 }
4275
4276 static bool
4277 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4278 {
4279         struct drm_i915_gem_object *obj = vma->obj;
4280
4281         if (alignment &&
4282             vma->node.start & (alignment - 1))
4283                 return true;
4284
4285         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4286                 return true;
4287
4288         if (flags & PIN_OFFSET_BIAS &&
4289             vma->node.start < (flags & PIN_OFFSET_MASK))
4290                 return true;
4291
4292         return false;
4293 }
4294
4295 static int
4296 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4297                        struct i915_address_space *vm,
4298                        const struct i915_ggtt_view *ggtt_view,
4299                        uint32_t alignment,
4300                        uint64_t flags)
4301 {
4302         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4303         struct i915_vma *vma;
4304         unsigned bound;
4305         int ret;
4306
4307         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4308                 return -ENODEV;
4309
4310         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4311                 return -EINVAL;
4312
4313         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4314                 return -EINVAL;
4315
4316         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4317                 return -EINVAL;
4318
4319         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4320                           i915_gem_obj_to_vma(obj, vm);
4321
4322         if (IS_ERR(vma))
4323                 return PTR_ERR(vma);
4324
4325         if (vma) {
4326                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4327                         return -EBUSY;
4328
4329                 if (i915_vma_misplaced(vma, alignment, flags)) {
4330                         unsigned long offset;
4331                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4332                                              i915_gem_obj_offset(obj, vm);
4333                         WARN(vma->pin_count,
4334                              "bo is already pinned in %s with incorrect alignment:"
4335                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4336                              " obj->map_and_fenceable=%d\n",
4337                              ggtt_view ? "ggtt" : "ppgtt",
4338                              offset,
4339                              alignment,
4340                              !!(flags & PIN_MAPPABLE),
4341                              obj->map_and_fenceable);
4342                         ret = i915_vma_unbind(vma);
4343                         if (ret)
4344                                 return ret;
4345
4346                         vma = NULL;
4347                 }
4348         }
4349
4350         bound = vma ? vma->bound : 0;
4351         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4352                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4353                                                  flags);
4354                 if (IS_ERR(vma))
4355                         return PTR_ERR(vma);
4356         } else {
4357                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4358                 if (ret)
4359                         return ret;
4360         }
4361
4362         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4363             (bound ^ vma->bound) & GLOBAL_BIND) {
4364                 bool mappable, fenceable;
4365                 u32 fence_size, fence_alignment;
4366
4367                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4368                                                    obj->base.size,
4369                                                    obj->tiling_mode);
4370                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4371                                                              obj->base.size,
4372                                                              obj->tiling_mode,
4373                                                              true);
4374
4375                 fenceable = (vma->node.size == fence_size &&
4376                              (vma->node.start & (fence_alignment - 1)) == 0);
4377
4378                 mappable = (vma->node.start + fence_size <=
4379                             dev_priv->gtt.mappable_end);
4380
4381                 obj->map_and_fenceable = mappable && fenceable;
4382
4383                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4384         }
4385
4386         vma->pin_count++;
4387         return 0;
4388 }
4389
4390 int
4391 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4392                     struct i915_address_space *vm,
4393                     uint32_t alignment,
4394                     uint64_t flags)
4395 {
4396         return i915_gem_object_do_pin(obj, vm,
4397                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4398                                       alignment, flags);
4399 }
4400
4401 int
4402 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4403                          const struct i915_ggtt_view *view,
4404                          uint32_t alignment,
4405                          uint64_t flags)
4406 {
4407         if (WARN_ONCE(!view, "no view specified"))
4408                 return -EINVAL;
4409
4410         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4411                                       alignment, flags | PIN_GLOBAL);
4412 }
4413
4414 void
4415 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4416                                 const struct i915_ggtt_view *view)
4417 {
4418         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4419
4420         BUG_ON(!vma);
4421         WARN_ON(vma->pin_count == 0);
4422         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4423
4424         --vma->pin_count;
4425 }
4426
4427 bool
4428 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4429 {
4430         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4431                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4432                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4433
4434                 WARN_ON(!ggtt_vma ||
4435                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4436                         ggtt_vma->pin_count);
4437                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4438                 return true;
4439         } else
4440                 return false;
4441 }
4442
4443 void
4444 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4445 {
4446         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4447                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4448                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4449                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4450         }
4451 }
4452
4453 int
4454 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4455                     struct drm_file *file)
4456 {
4457         struct drm_i915_gem_busy *args = data;
4458         struct drm_i915_gem_object *obj;
4459         int ret;
4460
4461         ret = i915_mutex_lock_interruptible(dev);
4462         if (ret)
4463                 return ret;
4464
4465         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4466         if (&obj->base == NULL) {
4467                 ret = -ENOENT;
4468                 goto unlock;
4469         }
4470
4471         /* Count all active objects as busy, even if they are currently not used
4472          * by the gpu. Users of this interface expect objects to eventually
4473          * become non-busy without any further actions, therefore emit any
4474          * necessary flushes here.
4475          */
4476         ret = i915_gem_object_flush_active(obj);
4477         if (ret)
4478                 goto unref;
4479
4480         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4481         args->busy = obj->active << 16;
4482         if (obj->last_write_req)
4483                 args->busy |= obj->last_write_req->ring->id;
4484
4485 unref:
4486         drm_gem_object_unreference(&obj->base);
4487 unlock:
4488         mutex_unlock(&dev->struct_mutex);
4489         return ret;
4490 }
4491
4492 int
4493 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4494                         struct drm_file *file_priv)
4495 {
4496         return i915_gem_ring_throttle(dev, file_priv);
4497 }
4498
4499 int
4500 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4501                        struct drm_file *file_priv)
4502 {
4503         struct drm_i915_private *dev_priv = dev->dev_private;
4504         struct drm_i915_gem_madvise *args = data;
4505         struct drm_i915_gem_object *obj;
4506         int ret;
4507
4508         switch (args->madv) {
4509         case I915_MADV_DONTNEED:
4510         case I915_MADV_WILLNEED:
4511             break;
4512         default:
4513             return -EINVAL;
4514         }
4515
4516         ret = i915_mutex_lock_interruptible(dev);
4517         if (ret)
4518                 return ret;
4519
4520         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4521         if (&obj->base == NULL) {
4522                 ret = -ENOENT;
4523                 goto unlock;
4524         }
4525
4526         if (i915_gem_obj_is_pinned(obj)) {
4527                 ret = -EINVAL;
4528                 goto out;
4529         }
4530
4531         if (obj->pages &&
4532             obj->tiling_mode != I915_TILING_NONE &&
4533             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4534                 if (obj->madv == I915_MADV_WILLNEED)
4535                         i915_gem_object_unpin_pages(obj);
4536                 if (args->madv == I915_MADV_WILLNEED)
4537                         i915_gem_object_pin_pages(obj);
4538         }
4539
4540         if (obj->madv != __I915_MADV_PURGED)
4541                 obj->madv = args->madv;
4542
4543         /* if the object is no longer attached, discard its backing storage */
4544         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4545                 i915_gem_object_truncate(obj);
4546
4547         args->retained = obj->madv != __I915_MADV_PURGED;
4548
4549 out:
4550         drm_gem_object_unreference(&obj->base);
4551 unlock:
4552         mutex_unlock(&dev->struct_mutex);
4553         return ret;
4554 }
4555
4556 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4557                           const struct drm_i915_gem_object_ops *ops)
4558 {
4559         int i;
4560
4561         INIT_LIST_HEAD(&obj->global_list);
4562         for (i = 0; i < I915_NUM_RINGS; i++)
4563                 INIT_LIST_HEAD(&obj->ring_list[i]);
4564         INIT_LIST_HEAD(&obj->obj_exec_link);
4565         INIT_LIST_HEAD(&obj->vma_list);
4566         INIT_LIST_HEAD(&obj->batch_pool_link);
4567
4568         obj->ops = ops;
4569
4570         obj->fence_reg = I915_FENCE_REG_NONE;
4571         obj->madv = I915_MADV_WILLNEED;
4572
4573         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4574 }
4575
4576 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4577         .get_pages = i915_gem_object_get_pages_gtt,
4578         .put_pages = i915_gem_object_put_pages_gtt,
4579 };
4580
4581 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4582                                                   size_t size)
4583 {
4584         struct drm_i915_gem_object *obj;
4585         struct address_space *mapping;
4586         gfp_t mask;
4587
4588         obj = i915_gem_object_alloc(dev);
4589         if (obj == NULL)
4590                 return NULL;
4591
4592         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4593                 i915_gem_object_free(obj);
4594                 return NULL;
4595         }
4596
4597         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4598         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4599                 /* 965gm cannot relocate objects above 4GiB. */
4600                 mask &= ~__GFP_HIGHMEM;
4601                 mask |= __GFP_DMA32;
4602         }
4603
4604         mapping = file_inode(obj->base.filp)->i_mapping;
4605         mapping_set_gfp_mask(mapping, mask);
4606
4607         i915_gem_object_init(obj, &i915_gem_object_ops);
4608
4609         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4610         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4611
4612         if (HAS_LLC(dev)) {
4613                 /* On some devices, we can have the GPU use the LLC (the CPU
4614                  * cache) for about a 10% performance improvement
4615                  * compared to uncached.  Graphics requests other than
4616                  * display scanout are coherent with the CPU in
4617                  * accessing this cache.  This means in this mode we
4618                  * don't need to clflush on the CPU side, and on the
4619                  * GPU side we only need to flush internal caches to
4620                  * get data visible to the CPU.
4621                  *
4622                  * However, we maintain the display planes as UC, and so
4623                  * need to rebind when first used as such.
4624                  */
4625                 obj->cache_level = I915_CACHE_LLC;
4626         } else
4627                 obj->cache_level = I915_CACHE_NONE;
4628
4629         trace_i915_gem_object_create(obj);
4630
4631         return obj;
4632 }
4633
4634 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4635 {
4636         /* If we are the last user of the backing storage (be it shmemfs
4637          * pages or stolen etc), we know that the pages are going to be
4638          * immediately released. In this case, we can then skip copying
4639          * back the contents from the GPU.
4640          */
4641
4642         if (obj->madv != I915_MADV_WILLNEED)
4643                 return false;
4644
4645         if (obj->base.filp == NULL)
4646                 return true;
4647
4648         /* At first glance, this looks racy, but then again so would be
4649          * userspace racing mmap against close. However, the first external
4650          * reference to the filp can only be obtained through the
4651          * i915_gem_mmap_ioctl() which safeguards us against the user
4652          * acquiring such a reference whilst we are in the middle of
4653          * freeing the object.
4654          */
4655         return atomic_long_read(&obj->base.filp->f_count) == 1;
4656 }
4657
4658 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4659 {
4660         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4661         struct drm_device *dev = obj->base.dev;
4662         struct drm_i915_private *dev_priv = dev->dev_private;
4663         struct i915_vma *vma, *next;
4664
4665         intel_runtime_pm_get(dev_priv);
4666
4667         trace_i915_gem_object_destroy(obj);
4668
4669         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4670                 int ret;
4671
4672                 vma->pin_count = 0;
4673                 ret = i915_vma_unbind(vma);
4674                 if (WARN_ON(ret == -ERESTARTSYS)) {
4675                         bool was_interruptible;
4676
4677                         was_interruptible = dev_priv->mm.interruptible;
4678                         dev_priv->mm.interruptible = false;
4679
4680                         WARN_ON(i915_vma_unbind(vma));
4681
4682                         dev_priv->mm.interruptible = was_interruptible;
4683                 }
4684         }
4685
4686         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4687          * before progressing. */
4688         if (obj->stolen)
4689                 i915_gem_object_unpin_pages(obj);
4690
4691         WARN_ON(obj->frontbuffer_bits);
4692
4693         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4694             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4695             obj->tiling_mode != I915_TILING_NONE)
4696                 i915_gem_object_unpin_pages(obj);
4697
4698         if (WARN_ON(obj->pages_pin_count))
4699                 obj->pages_pin_count = 0;
4700         if (discard_backing_storage(obj))
4701                 obj->madv = I915_MADV_DONTNEED;
4702         i915_gem_object_put_pages(obj);
4703         i915_gem_object_free_mmap_offset(obj);
4704
4705         BUG_ON(obj->pages);
4706
4707         if (obj->base.import_attach)
4708                 drm_prime_gem_destroy(&obj->base, NULL);
4709
4710         if (obj->ops->release)
4711                 obj->ops->release(obj);
4712
4713         drm_gem_object_release(&obj->base);
4714         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4715
4716         kfree(obj->bit_17);
4717         i915_gem_object_free(obj);
4718
4719         intel_runtime_pm_put(dev_priv);
4720 }
4721
4722 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4723                                      struct i915_address_space *vm)
4724 {
4725         struct i915_vma *vma;
4726         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4727                 if (i915_is_ggtt(vma->vm) &&
4728                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4729                         continue;
4730                 if (vma->vm == vm)
4731                         return vma;
4732         }
4733         return NULL;
4734 }
4735
4736 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4737                                            const struct i915_ggtt_view *view)
4738 {
4739         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4740         struct i915_vma *vma;
4741
4742         if (WARN_ONCE(!view, "no view specified"))
4743                 return ERR_PTR(-EINVAL);
4744
4745         list_for_each_entry(vma, &obj->vma_list, vma_link)
4746                 if (vma->vm == ggtt &&
4747                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4748                         return vma;
4749         return NULL;
4750 }
4751
4752 void i915_gem_vma_destroy(struct i915_vma *vma)
4753 {
4754         struct i915_address_space *vm = NULL;
4755         WARN_ON(vma->node.allocated);
4756
4757         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4758         if (!list_empty(&vma->exec_list))
4759                 return;
4760
4761         vm = vma->vm;
4762
4763         if (!i915_is_ggtt(vm))
4764                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4765
4766         list_del(&vma->vma_link);
4767
4768         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4769 }
4770
4771 static void
4772 i915_gem_stop_ringbuffers(struct drm_device *dev)
4773 {
4774         struct drm_i915_private *dev_priv = dev->dev_private;
4775         struct intel_engine_cs *ring;
4776         int i;
4777
4778         for_each_ring(ring, dev_priv, i)
4779                 dev_priv->gt.stop_ring(ring);
4780 }
4781
4782 int
4783 i915_gem_suspend(struct drm_device *dev)
4784 {
4785         struct drm_i915_private *dev_priv = dev->dev_private;
4786         int ret = 0;
4787
4788         mutex_lock(&dev->struct_mutex);
4789         ret = i915_gpu_idle(dev);
4790         if (ret)
4791                 goto err;
4792
4793         i915_gem_retire_requests(dev);
4794
4795         i915_gem_stop_ringbuffers(dev);
4796         mutex_unlock(&dev->struct_mutex);
4797
4798         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4799         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4800         flush_delayed_work(&dev_priv->mm.idle_work);
4801
4802         /* Assert that we sucessfully flushed all the work and
4803          * reset the GPU back to its idle, low power state.
4804          */
4805         WARN_ON(dev_priv->mm.busy);
4806
4807         return 0;
4808
4809 err:
4810         mutex_unlock(&dev->struct_mutex);
4811         return ret;
4812 }
4813
4814 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4815 {
4816         struct drm_device *dev = ring->dev;
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4819         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4820         int i, ret;
4821
4822         if (!HAS_L3_DPF(dev) || !remap_info)
4823                 return 0;
4824
4825         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4826         if (ret)
4827                 return ret;
4828
4829         /*
4830          * Note: We do not worry about the concurrent register cacheline hang
4831          * here because no other code should access these registers other than
4832          * at initialization time.
4833          */
4834         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4835                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4836                 intel_ring_emit(ring, reg_base + i);
4837                 intel_ring_emit(ring, remap_info[i/4]);
4838         }
4839
4840         intel_ring_advance(ring);
4841
4842         return ret;
4843 }
4844
4845 void i915_gem_init_swizzling(struct drm_device *dev)
4846 {
4847         struct drm_i915_private *dev_priv = dev->dev_private;
4848
4849         if (INTEL_INFO(dev)->gen < 5 ||
4850             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4851                 return;
4852
4853         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4854                                  DISP_TILE_SURFACE_SWIZZLING);
4855
4856         if (IS_GEN5(dev))
4857                 return;
4858
4859         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4860         if (IS_GEN6(dev))
4861                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4862         else if (IS_GEN7(dev))
4863                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4864         else if (IS_GEN8(dev))
4865                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4866         else
4867                 BUG();
4868 }
4869
4870 static bool
4871 intel_enable_blt(struct drm_device *dev)
4872 {
4873         if (!HAS_BLT(dev))
4874                 return false;
4875
4876         /* The blitter was dysfunctional on early prototypes */
4877         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4878                 DRM_INFO("BLT not supported on this pre-production hardware;"
4879                          " graphics performance will be degraded.\n");
4880                 return false;
4881         }
4882
4883         return true;
4884 }
4885
4886 static void init_unused_ring(struct drm_device *dev, u32 base)
4887 {
4888         struct drm_i915_private *dev_priv = dev->dev_private;
4889
4890         I915_WRITE(RING_CTL(base), 0);
4891         I915_WRITE(RING_HEAD(base), 0);
4892         I915_WRITE(RING_TAIL(base), 0);
4893         I915_WRITE(RING_START(base), 0);
4894 }
4895
4896 static void init_unused_rings(struct drm_device *dev)
4897 {
4898         if (IS_I830(dev)) {
4899                 init_unused_ring(dev, PRB1_BASE);
4900                 init_unused_ring(dev, SRB0_BASE);
4901                 init_unused_ring(dev, SRB1_BASE);
4902                 init_unused_ring(dev, SRB2_BASE);
4903                 init_unused_ring(dev, SRB3_BASE);
4904         } else if (IS_GEN2(dev)) {
4905                 init_unused_ring(dev, SRB0_BASE);
4906                 init_unused_ring(dev, SRB1_BASE);
4907         } else if (IS_GEN3(dev)) {
4908                 init_unused_ring(dev, PRB1_BASE);
4909                 init_unused_ring(dev, PRB2_BASE);
4910         }
4911 }
4912
4913 int i915_gem_init_rings(struct drm_device *dev)
4914 {
4915         struct drm_i915_private *dev_priv = dev->dev_private;
4916         int ret;
4917
4918         ret = intel_init_render_ring_buffer(dev);
4919         if (ret)
4920                 return ret;
4921
4922         if (HAS_BSD(dev)) {
4923                 ret = intel_init_bsd_ring_buffer(dev);
4924                 if (ret)
4925                         goto cleanup_render_ring;
4926         }
4927
4928         if (intel_enable_blt(dev)) {
4929                 ret = intel_init_blt_ring_buffer(dev);
4930                 if (ret)
4931                         goto cleanup_bsd_ring;
4932         }
4933
4934         if (HAS_VEBOX(dev)) {
4935                 ret = intel_init_vebox_ring_buffer(dev);
4936                 if (ret)
4937                         goto cleanup_blt_ring;
4938         }
4939
4940         if (HAS_BSD2(dev)) {
4941                 ret = intel_init_bsd2_ring_buffer(dev);
4942                 if (ret)
4943                         goto cleanup_vebox_ring;
4944         }
4945
4946         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4947         if (ret)
4948                 goto cleanup_bsd2_ring;
4949
4950         return 0;
4951
4952 cleanup_bsd2_ring:
4953         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4954 cleanup_vebox_ring:
4955         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4956 cleanup_blt_ring:
4957         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4958 cleanup_bsd_ring:
4959         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4960 cleanup_render_ring:
4961         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4962
4963         return ret;
4964 }
4965
4966 int
4967 i915_gem_init_hw(struct drm_device *dev)
4968 {
4969         struct drm_i915_private *dev_priv = dev->dev_private;
4970         struct intel_engine_cs *ring;
4971         int ret, i;
4972
4973         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4974                 return -EIO;
4975
4976         /* Double layer security blanket, see i915_gem_init() */
4977         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4978
4979         if (dev_priv->ellc_size)
4980                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4981
4982         if (IS_HASWELL(dev))
4983                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4984                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4985
4986         if (HAS_PCH_NOP(dev)) {
4987                 if (IS_IVYBRIDGE(dev)) {
4988                         u32 temp = I915_READ(GEN7_MSG_CTL);
4989                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4990                         I915_WRITE(GEN7_MSG_CTL, temp);
4991                 } else if (INTEL_INFO(dev)->gen >= 7) {
4992                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4993                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4994                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4995                 }
4996         }
4997
4998         i915_gem_init_swizzling(dev);
4999
5000         /*
5001          * At least 830 can leave some of the unused rings
5002          * "active" (ie. head != tail) after resume which
5003          * will prevent c3 entry. Makes sure all unused rings
5004          * are totally idle.
5005          */
5006         init_unused_rings(dev);
5007
5008         for_each_ring(ring, dev_priv, i) {
5009                 ret = ring->init_hw(ring);
5010                 if (ret)
5011                         goto out;
5012         }
5013
5014         for (i = 0; i < NUM_L3_SLICES(dev); i++)
5015                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5016
5017         ret = i915_ppgtt_init_hw(dev);
5018         if (ret && ret != -EIO) {
5019                 DRM_ERROR("PPGTT enable failed %d\n", ret);
5020                 i915_gem_cleanup_ringbuffer(dev);
5021         }
5022
5023         ret = i915_gem_context_enable(dev_priv);
5024         if (ret && ret != -EIO) {
5025                 DRM_ERROR("Context enable failed %d\n", ret);
5026                 i915_gem_cleanup_ringbuffer(dev);
5027
5028                 goto out;
5029         }
5030
5031 out:
5032         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5033         return ret;
5034 }
5035
5036 int i915_gem_init(struct drm_device *dev)
5037 {
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         int ret;
5040
5041         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5042                         i915.enable_execlists);
5043
5044         mutex_lock(&dev->struct_mutex);
5045
5046         if (IS_VALLEYVIEW(dev)) {
5047                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5048                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5049                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5050                               VLV_GTLC_ALLOWWAKEACK), 10))
5051                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5052         }
5053
5054         if (!i915.enable_execlists) {
5055                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5056                 dev_priv->gt.init_rings = i915_gem_init_rings;
5057                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5058                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5059         } else {
5060                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5061                 dev_priv->gt.init_rings = intel_logical_rings_init;
5062                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5063                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5064         }
5065
5066         /* This is just a security blanket to placate dragons.
5067          * On some systems, we very sporadically observe that the first TLBs
5068          * used by the CS may be stale, despite us poking the TLB reset. If
5069          * we hold the forcewake during initialisation these problems
5070          * just magically go away.
5071          */
5072         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5073
5074         ret = i915_gem_init_userptr(dev);
5075         if (ret)
5076                 goto out_unlock;
5077
5078         i915_gem_init_global_gtt(dev);
5079
5080         ret = i915_gem_context_init(dev);
5081         if (ret)
5082                 goto out_unlock;
5083
5084         ret = dev_priv->gt.init_rings(dev);
5085         if (ret)
5086                 goto out_unlock;
5087
5088         ret = i915_gem_init_hw(dev);
5089         if (ret == -EIO) {
5090                 /* Allow ring initialisation to fail by marking the GPU as
5091                  * wedged. But we only want to do this where the GPU is angry,
5092                  * for all other failure, such as an allocation failure, bail.
5093                  */
5094                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5095                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5096                 ret = 0;
5097         }
5098
5099 out_unlock:
5100         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5101         mutex_unlock(&dev->struct_mutex);
5102
5103         return ret;
5104 }
5105
5106 void
5107 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5108 {
5109         struct drm_i915_private *dev_priv = dev->dev_private;
5110         struct intel_engine_cs *ring;
5111         int i;
5112
5113         for_each_ring(ring, dev_priv, i)
5114                 dev_priv->gt.cleanup_ring(ring);
5115 }
5116
5117 static void
5118 init_ring_lists(struct intel_engine_cs *ring)
5119 {
5120         INIT_LIST_HEAD(&ring->active_list);
5121         INIT_LIST_HEAD(&ring->request_list);
5122 }
5123
5124 void i915_init_vm(struct drm_i915_private *dev_priv,
5125                   struct i915_address_space *vm)
5126 {
5127         if (!i915_is_ggtt(vm))
5128                 drm_mm_init(&vm->mm, vm->start, vm->total);
5129         vm->dev = dev_priv->dev;
5130         INIT_LIST_HEAD(&vm->active_list);
5131         INIT_LIST_HEAD(&vm->inactive_list);
5132         INIT_LIST_HEAD(&vm->global_link);
5133         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5134 }
5135
5136 void
5137 i915_gem_load(struct drm_device *dev)
5138 {
5139         struct drm_i915_private *dev_priv = dev->dev_private;
5140         int i;
5141
5142         dev_priv->objects =
5143                 kmem_cache_create("i915_gem_object",
5144                                   sizeof(struct drm_i915_gem_object), 0,
5145                                   SLAB_HWCACHE_ALIGN,
5146                                   NULL);
5147         dev_priv->vmas =
5148                 kmem_cache_create("i915_gem_vma",
5149                                   sizeof(struct i915_vma), 0,
5150                                   SLAB_HWCACHE_ALIGN,
5151                                   NULL);
5152         dev_priv->requests =
5153                 kmem_cache_create("i915_gem_request",
5154                                   sizeof(struct drm_i915_gem_request), 0,
5155                                   SLAB_HWCACHE_ALIGN,
5156                                   NULL);
5157
5158         INIT_LIST_HEAD(&dev_priv->vm_list);
5159         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5160
5161         INIT_LIST_HEAD(&dev_priv->context_list);
5162         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5163         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5164         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5165         for (i = 0; i < I915_NUM_RINGS; i++)
5166                 init_ring_lists(&dev_priv->ring[i]);
5167         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5168                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5169         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5170                           i915_gem_retire_work_handler);
5171         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5172                           i915_gem_idle_work_handler);
5173         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5174
5175         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5176
5177         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5178                 dev_priv->num_fence_regs = 32;
5179         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5180                 dev_priv->num_fence_regs = 16;
5181         else
5182                 dev_priv->num_fence_regs = 8;
5183
5184         if (intel_vgpu_active(dev))
5185                 dev_priv->num_fence_regs =
5186                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5187
5188         /* Initialize fence registers to zero */
5189         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5190         i915_gem_restore_fences(dev);
5191
5192         i915_gem_detect_bit_6_swizzle(dev);
5193         init_waitqueue_head(&dev_priv->pending_flip_queue);
5194
5195         dev_priv->mm.interruptible = true;
5196
5197         i915_gem_shrinker_init(dev_priv);
5198
5199         mutex_init(&dev_priv->fb_tracking.lock);
5200 }
5201
5202 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5203 {
5204         struct drm_i915_file_private *file_priv = file->driver_priv;
5205
5206         /* Clean up our request list when the client is going away, so that
5207          * later retire_requests won't dereference our soon-to-be-gone
5208          * file_priv.
5209          */
5210         spin_lock(&file_priv->mm.lock);
5211         while (!list_empty(&file_priv->mm.request_list)) {
5212                 struct drm_i915_gem_request *request;
5213
5214                 request = list_first_entry(&file_priv->mm.request_list,
5215                                            struct drm_i915_gem_request,
5216                                            client_list);
5217                 list_del(&request->client_list);
5218                 request->file_priv = NULL;
5219         }
5220         spin_unlock(&file_priv->mm.lock);
5221
5222         if (!list_empty(&file_priv->rps.link)) {
5223                 spin_lock(&to_i915(dev)->rps.client_lock);
5224                 list_del(&file_priv->rps.link);
5225                 spin_unlock(&to_i915(dev)->rps.client_lock);
5226         }
5227 }
5228
5229 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5230 {
5231         struct drm_i915_file_private *file_priv;
5232         int ret;
5233
5234         DRM_DEBUG_DRIVER("\n");
5235
5236         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5237         if (!file_priv)
5238                 return -ENOMEM;
5239
5240         file->driver_priv = file_priv;
5241         file_priv->dev_priv = dev->dev_private;
5242         file_priv->file = file;
5243         INIT_LIST_HEAD(&file_priv->rps.link);
5244
5245         spin_lock_init(&file_priv->mm.lock);
5246         INIT_LIST_HEAD(&file_priv->mm.request_list);
5247
5248         ret = i915_gem_context_open(dev, file);
5249         if (ret)
5250                 kfree(file_priv);
5251
5252         return ret;
5253 }
5254
5255 /**
5256  * i915_gem_track_fb - update frontbuffer tracking
5257  * old: current GEM buffer for the frontbuffer slots
5258  * new: new GEM buffer for the frontbuffer slots
5259  * frontbuffer_bits: bitmask of frontbuffer slots
5260  *
5261  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5262  * from @old and setting them in @new. Both @old and @new can be NULL.
5263  */
5264 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5265                        struct drm_i915_gem_object *new,
5266                        unsigned frontbuffer_bits)
5267 {
5268         if (old) {
5269                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5270                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5271                 old->frontbuffer_bits &= ~frontbuffer_bits;
5272         }
5273
5274         if (new) {
5275                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5276                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5277                 new->frontbuffer_bits |= frontbuffer_bits;
5278         }
5279 }
5280
5281 /* All the new VM stuff */
5282 unsigned long
5283 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5284                     struct i915_address_space *vm)
5285 {
5286         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5287         struct i915_vma *vma;
5288
5289         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5290
5291         list_for_each_entry(vma, &o->vma_list, vma_link) {
5292                 if (i915_is_ggtt(vma->vm) &&
5293                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5294                         continue;
5295                 if (vma->vm == vm)
5296                         return vma->node.start;
5297         }
5298
5299         WARN(1, "%s vma for this object not found.\n",
5300              i915_is_ggtt(vm) ? "global" : "ppgtt");
5301         return -1;
5302 }
5303
5304 unsigned long
5305 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5306                               const struct i915_ggtt_view *view)
5307 {
5308         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5309         struct i915_vma *vma;
5310
5311         list_for_each_entry(vma, &o->vma_list, vma_link)
5312                 if (vma->vm == ggtt &&
5313                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5314                         return vma->node.start;
5315
5316         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5317         return -1;
5318 }
5319
5320 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5321                         struct i915_address_space *vm)
5322 {
5323         struct i915_vma *vma;
5324
5325         list_for_each_entry(vma, &o->vma_list, vma_link) {
5326                 if (i915_is_ggtt(vma->vm) &&
5327                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5328                         continue;
5329                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5330                         return true;
5331         }
5332
5333         return false;
5334 }
5335
5336 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5337                                   const struct i915_ggtt_view *view)
5338 {
5339         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5340         struct i915_vma *vma;
5341
5342         list_for_each_entry(vma, &o->vma_list, vma_link)
5343                 if (vma->vm == ggtt &&
5344                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5345                     drm_mm_node_allocated(&vma->node))
5346                         return true;
5347
5348         return false;
5349 }
5350
5351 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5352 {
5353         struct i915_vma *vma;
5354
5355         list_for_each_entry(vma, &o->vma_list, vma_link)
5356                 if (drm_mm_node_allocated(&vma->node))
5357                         return true;
5358
5359         return false;
5360 }
5361
5362 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5363                                 struct i915_address_space *vm)
5364 {
5365         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5366         struct i915_vma *vma;
5367
5368         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5369
5370         BUG_ON(list_empty(&o->vma_list));
5371
5372         list_for_each_entry(vma, &o->vma_list, vma_link) {
5373                 if (i915_is_ggtt(vma->vm) &&
5374                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5375                         continue;
5376                 if (vma->vm == vm)
5377                         return vma->node.size;
5378         }
5379         return 0;
5380 }
5381
5382 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5383 {
5384         struct i915_vma *vma;
5385         list_for_each_entry(vma, &obj->vma_list, vma_link)
5386                 if (vma->pin_count > 0)
5387                         return true;
5388
5389         return false;
5390 }
5391