]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge branch 'for-4.4' into for-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_spt[HPD_NUM_PINS] = {
65         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
66         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
67         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
68         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
69 };
70
71 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
72         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
73         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
74         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
75         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
76         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
77         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
78 };
79
80 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
81         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
82         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
83         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
84         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
85         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
86         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
87 };
88
89 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
90         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
91         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
92         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
93         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
94         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
95         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
96 };
97
98 /* BXT hpd list */
99 static const u32 hpd_bxt[HPD_NUM_PINS] = {
100         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
101         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
102 };
103
104 /* IIR can theoretically queue up two events. Be paranoid. */
105 #define GEN8_IRQ_RESET_NDX(type, which) do { \
106         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
107         POSTING_READ(GEN8_##type##_IMR(which)); \
108         I915_WRITE(GEN8_##type##_IER(which), 0); \
109         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
110         POSTING_READ(GEN8_##type##_IIR(which)); \
111         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
112         POSTING_READ(GEN8_##type##_IIR(which)); \
113 } while (0)
114
115 #define GEN5_IRQ_RESET(type) do { \
116         I915_WRITE(type##IMR, 0xffffffff); \
117         POSTING_READ(type##IMR); \
118         I915_WRITE(type##IER, 0); \
119         I915_WRITE(type##IIR, 0xffffffff); \
120         POSTING_READ(type##IIR); \
121         I915_WRITE(type##IIR, 0xffffffff); \
122         POSTING_READ(type##IIR); \
123 } while (0)
124
125 /*
126  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
127  */
128 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
129         u32 val = I915_READ(reg); \
130         if (val) { \
131                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
132                      (reg), val); \
133                 I915_WRITE((reg), 0xffffffff); \
134                 POSTING_READ(reg); \
135                 I915_WRITE((reg), 0xffffffff); \
136                 POSTING_READ(reg); \
137         } \
138 } while (0)
139
140 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
141         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
142         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
143         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
144         POSTING_READ(GEN8_##type##_IMR(which)); \
145 } while (0)
146
147 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
148         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
149         I915_WRITE(type##IER, (ier_val)); \
150         I915_WRITE(type##IMR, (imr_val)); \
151         POSTING_READ(type##IMR); \
152 } while (0)
153
154 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
155
156 /* For display hotplug interrupt */
157 void
158 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
159 {
160         assert_spin_locked(&dev_priv->irq_lock);
161
162         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
163                 return;
164
165         if ((dev_priv->irq_mask & mask) != 0) {
166                 dev_priv->irq_mask &= ~mask;
167                 I915_WRITE(DEIMR, dev_priv->irq_mask);
168                 POSTING_READ(DEIMR);
169         }
170 }
171
172 void
173 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
174 {
175         assert_spin_locked(&dev_priv->irq_lock);
176
177         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
178                 return;
179
180         if ((dev_priv->irq_mask & mask) != mask) {
181                 dev_priv->irq_mask |= mask;
182                 I915_WRITE(DEIMR, dev_priv->irq_mask);
183                 POSTING_READ(DEIMR);
184         }
185 }
186
187 /**
188  * ilk_update_gt_irq - update GTIMR
189  * @dev_priv: driver private
190  * @interrupt_mask: mask of interrupt bits to update
191  * @enabled_irq_mask: mask of interrupt bits to enable
192  */
193 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
194                               uint32_t interrupt_mask,
195                               uint32_t enabled_irq_mask)
196 {
197         assert_spin_locked(&dev_priv->irq_lock);
198
199         WARN_ON(enabled_irq_mask & ~interrupt_mask);
200
201         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
202                 return;
203
204         dev_priv->gt_irq_mask &= ~interrupt_mask;
205         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
206         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
207         POSTING_READ(GTIMR);
208 }
209
210 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212         ilk_update_gt_irq(dev_priv, mask, mask);
213 }
214
215 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
216 {
217         ilk_update_gt_irq(dev_priv, mask, 0);
218 }
219
220 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
221 {
222         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
223 }
224
225 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
226 {
227         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
228 }
229
230 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
231 {
232         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
233 }
234
235 /**
236   * snb_update_pm_irq - update GEN6_PMIMR
237   * @dev_priv: driver private
238   * @interrupt_mask: mask of interrupt bits to update
239   * @enabled_irq_mask: mask of interrupt bits to enable
240   */
241 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
242                               uint32_t interrupt_mask,
243                               uint32_t enabled_irq_mask)
244 {
245         uint32_t new_val;
246
247         WARN_ON(enabled_irq_mask & ~interrupt_mask);
248
249         assert_spin_locked(&dev_priv->irq_lock);
250
251         new_val = dev_priv->pm_irq_mask;
252         new_val &= ~interrupt_mask;
253         new_val |= (~enabled_irq_mask & interrupt_mask);
254
255         if (new_val != dev_priv->pm_irq_mask) {
256                 dev_priv->pm_irq_mask = new_val;
257                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
258                 POSTING_READ(gen6_pm_imr(dev_priv));
259         }
260 }
261
262 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
263 {
264         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
265                 return;
266
267         snb_update_pm_irq(dev_priv, mask, mask);
268 }
269
270 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
271                                   uint32_t mask)
272 {
273         snb_update_pm_irq(dev_priv, mask, 0);
274 }
275
276 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
279                 return;
280
281         __gen6_disable_pm_irq(dev_priv, mask);
282 }
283
284 void gen6_reset_rps_interrupts(struct drm_device *dev)
285 {
286         struct drm_i915_private *dev_priv = dev->dev_private;
287         uint32_t reg = gen6_pm_iir(dev_priv);
288
289         spin_lock_irq(&dev_priv->irq_lock);
290         I915_WRITE(reg, dev_priv->pm_rps_events);
291         I915_WRITE(reg, dev_priv->pm_rps_events);
292         POSTING_READ(reg);
293         dev_priv->rps.pm_iir = 0;
294         spin_unlock_irq(&dev_priv->irq_lock);
295 }
296
297 void gen6_enable_rps_interrupts(struct drm_device *dev)
298 {
299         struct drm_i915_private *dev_priv = dev->dev_private;
300
301         spin_lock_irq(&dev_priv->irq_lock);
302
303         WARN_ON(dev_priv->rps.pm_iir);
304         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
305         dev_priv->rps.interrupts_enabled = true;
306         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
307                                 dev_priv->pm_rps_events);
308         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
309
310         spin_unlock_irq(&dev_priv->irq_lock);
311 }
312
313 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
314 {
315         /*
316          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
317          * if GEN6_PM_UP_EI_EXPIRED is masked.
318          *
319          * TODO: verify if this can be reproduced on VLV,CHV.
320          */
321         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
322                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
323
324         if (INTEL_INFO(dev_priv)->gen >= 8)
325                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
326
327         return mask;
328 }
329
330 void gen6_disable_rps_interrupts(struct drm_device *dev)
331 {
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         spin_lock_irq(&dev_priv->irq_lock);
335         dev_priv->rps.interrupts_enabled = false;
336         spin_unlock_irq(&dev_priv->irq_lock);
337
338         cancel_work_sync(&dev_priv->rps.work);
339
340         spin_lock_irq(&dev_priv->irq_lock);
341
342         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
343
344         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
345         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
346                                 ~dev_priv->pm_rps_events);
347
348         spin_unlock_irq(&dev_priv->irq_lock);
349
350         synchronize_irq(dev->irq);
351 }
352
353 /**
354  * ibx_display_interrupt_update - update SDEIMR
355  * @dev_priv: driver private
356  * @interrupt_mask: mask of interrupt bits to update
357  * @enabled_irq_mask: mask of interrupt bits to enable
358  */
359 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
360                                   uint32_t interrupt_mask,
361                                   uint32_t enabled_irq_mask)
362 {
363         uint32_t sdeimr = I915_READ(SDEIMR);
364         sdeimr &= ~interrupt_mask;
365         sdeimr |= (~enabled_irq_mask & interrupt_mask);
366
367         WARN_ON(enabled_irq_mask & ~interrupt_mask);
368
369         assert_spin_locked(&dev_priv->irq_lock);
370
371         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
372                 return;
373
374         I915_WRITE(SDEIMR, sdeimr);
375         POSTING_READ(SDEIMR);
376 }
377
378 static void
379 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
380                        u32 enable_mask, u32 status_mask)
381 {
382         u32 reg = PIPESTAT(pipe);
383         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
384
385         assert_spin_locked(&dev_priv->irq_lock);
386         WARN_ON(!intel_irqs_enabled(dev_priv));
387
388         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
389                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
390                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
391                       pipe_name(pipe), enable_mask, status_mask))
392                 return;
393
394         if ((pipestat & enable_mask) == enable_mask)
395                 return;
396
397         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
398
399         /* Enable the interrupt, clear any pending status */
400         pipestat |= enable_mask | status_mask;
401         I915_WRITE(reg, pipestat);
402         POSTING_READ(reg);
403 }
404
405 static void
406 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407                         u32 enable_mask, u32 status_mask)
408 {
409         u32 reg = PIPESTAT(pipe);
410         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
411
412         assert_spin_locked(&dev_priv->irq_lock);
413         WARN_ON(!intel_irqs_enabled(dev_priv));
414
415         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
416                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
417                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
418                       pipe_name(pipe), enable_mask, status_mask))
419                 return;
420
421         if ((pipestat & enable_mask) == 0)
422                 return;
423
424         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
425
426         pipestat &= ~enable_mask;
427         I915_WRITE(reg, pipestat);
428         POSTING_READ(reg);
429 }
430
431 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
432 {
433         u32 enable_mask = status_mask << 16;
434
435         /*
436          * On pipe A we don't support the PSR interrupt yet,
437          * on pipe B and C the same bit MBZ.
438          */
439         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
440                 return 0;
441         /*
442          * On pipe B and C we don't support the PSR interrupt yet, on pipe
443          * A the same bit is for perf counters which we don't use either.
444          */
445         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
446                 return 0;
447
448         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449                          SPRITE0_FLIP_DONE_INT_EN_VLV |
450                          SPRITE1_FLIP_DONE_INT_EN_VLV);
451         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455
456         return enable_mask;
457 }
458
459 void
460 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
461                      u32 status_mask)
462 {
463         u32 enable_mask;
464
465         if (IS_VALLEYVIEW(dev_priv->dev))
466                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
467                                                            status_mask);
468         else
469                 enable_mask = status_mask << 16;
470         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
471 }
472
473 void
474 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475                       u32 status_mask)
476 {
477         u32 enable_mask;
478
479         if (IS_VALLEYVIEW(dev_priv->dev))
480                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
481                                                            status_mask);
482         else
483                 enable_mask = status_mask << 16;
484         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
485 }
486
487 /**
488  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489  */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492         struct drm_i915_private *dev_priv = dev->dev_private;
493
494         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495                 return;
496
497         spin_lock_irq(&dev_priv->irq_lock);
498
499         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
500         if (INTEL_INFO(dev)->gen >= 4)
501                 i915_enable_pipestat(dev_priv, PIPE_A,
502                                      PIPE_LEGACY_BLC_EVENT_STATUS);
503
504         spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 /*
508  * This timing diagram depicts the video signal in and
509  * around the vertical blanking period.
510  *
511  * Assumptions about the fictitious mode used in this example:
512  *  vblank_start >= 3
513  *  vsync_start = vblank_start + 1
514  *  vsync_end = vblank_start + 2
515  *  vtotal = vblank_start + 3
516  *
517  *           start of vblank:
518  *           latch double buffered registers
519  *           increment frame counter (ctg+)
520  *           generate start of vblank interrupt (gen4+)
521  *           |
522  *           |          frame start:
523  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
524  *           |          may be shifted forward 1-3 extra lines via PIPECONF
525  *           |          |
526  *           |          |  start of vsync:
527  *           |          |  generate vsync interrupt
528  *           |          |  |
529  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
530  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
531  * ----va---> <-----------------vb--------------------> <--------va-------------
532  *       |          |       <----vs----->                     |
533  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
534  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
535  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
536  *       |          |                                         |
537  *       last visible pixel                                   first visible pixel
538  *                  |                                         increment frame counter (gen3/4)
539  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
540  *
541  * x  = horizontal active
542  * _  = horizontal blanking
543  * hs = horizontal sync
544  * va = vertical active
545  * vb = vertical blanking
546  * vs = vertical sync
547  * vbs = vblank_start (number)
548  *
549  * Summary:
550  * - most events happen at the start of horizontal sync
551  * - frame start happens at the start of horizontal blank, 1-4 lines
552  *   (depending on PIPECONF settings) after the start of vblank
553  * - gen3/4 pixel and frame counter are synchronized with the start
554  *   of horizontal active on the first line of vertical active
555  */
556
557 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559         /* Gen2 doesn't have a hardware frame counter */
560         return 0;
561 }
562
563 /* Called from drm generic code, passed a 'crtc', which
564  * we use as a pipe index
565  */
566 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
567 {
568         struct drm_i915_private *dev_priv = dev->dev_private;
569         unsigned long high_frame;
570         unsigned long low_frame;
571         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
572         struct intel_crtc *intel_crtc =
573                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
574         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
575
576         htotal = mode->crtc_htotal;
577         hsync_start = mode->crtc_hsync_start;
578         vbl_start = mode->crtc_vblank_start;
579         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
581
582         /* Convert to pixel count */
583         vbl_start *= htotal;
584
585         /* Start of vblank event occurs at start of hsync */
586         vbl_start -= htotal - hsync_start;
587
588         high_frame = PIPEFRAME(pipe);
589         low_frame = PIPEFRAMEPIXEL(pipe);
590
591         /*
592          * High & low register fields aren't synchronized, so make sure
593          * we get a low value that's stable across two reads of the high
594          * register.
595          */
596         do {
597                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598                 low   = I915_READ(low_frame);
599                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
600         } while (high1 != high2);
601
602         high1 >>= PIPE_FRAME_HIGH_SHIFT;
603         pixel = low & PIPE_PIXEL_MASK;
604         low >>= PIPE_FRAME_LOW_SHIFT;
605
606         /*
607          * The frame counter increments at beginning of active.
608          * Cook up a vblank counter by also checking the pixel
609          * counter against vblank start.
610          */
611         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
612 }
613
614 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         int reg = PIPE_FRMCOUNT_GM45(pipe);
618
619         return I915_READ(reg);
620 }
621
622 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
623 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
624
625 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
626 {
627         struct drm_device *dev = crtc->base.dev;
628         struct drm_i915_private *dev_priv = dev->dev_private;
629         const struct drm_display_mode *mode = &crtc->base.hwmode;
630         enum pipe pipe = crtc->pipe;
631         int position, vtotal;
632
633         vtotal = mode->crtc_vtotal;
634         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
635                 vtotal /= 2;
636
637         if (IS_GEN2(dev))
638                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
639         else
640                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
641
642         /*
643          * See update_scanline_offset() for the details on the
644          * scanline_offset adjustment.
645          */
646         return (position + crtc->scanline_offset) % vtotal;
647 }
648
649 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
650                                     unsigned int flags, int *vpos, int *hpos,
651                                     ktime_t *stime, ktime_t *etime)
652 {
653         struct drm_i915_private *dev_priv = dev->dev_private;
654         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
656         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
657         int position;
658         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
659         bool in_vbl = true;
660         int ret = 0;
661         unsigned long irqflags;
662
663         if (WARN_ON(!mode->crtc_clock)) {
664                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
665                                  "pipe %c\n", pipe_name(pipe));
666                 return 0;
667         }
668
669         htotal = mode->crtc_htotal;
670         hsync_start = mode->crtc_hsync_start;
671         vtotal = mode->crtc_vtotal;
672         vbl_start = mode->crtc_vblank_start;
673         vbl_end = mode->crtc_vblank_end;
674
675         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
676                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
677                 vbl_end /= 2;
678                 vtotal /= 2;
679         }
680
681         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
682
683         /*
684          * Lock uncore.lock, as we will do multiple timing critical raw
685          * register reads, potentially with preemption disabled, so the
686          * following code must not block on uncore.lock.
687          */
688         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
689
690         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
691
692         /* Get optional system timestamp before query. */
693         if (stime)
694                 *stime = ktime_get();
695
696         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
697                 /* No obvious pixelcount register. Only query vertical
698                  * scanout position from Display scan line register.
699                  */
700                 position = __intel_get_crtc_scanline(intel_crtc);
701         } else {
702                 /* Have access to pixelcount since start of frame.
703                  * We can split this into vertical and horizontal
704                  * scanout position.
705                  */
706                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
707
708                 /* convert to pixel counts */
709                 vbl_start *= htotal;
710                 vbl_end *= htotal;
711                 vtotal *= htotal;
712
713                 /*
714                  * In interlaced modes, the pixel counter counts all pixels,
715                  * so one field will have htotal more pixels. In order to avoid
716                  * the reported position from jumping backwards when the pixel
717                  * counter is beyond the length of the shorter field, just
718                  * clamp the position the length of the shorter field. This
719                  * matches how the scanline counter based position works since
720                  * the scanline counter doesn't count the two half lines.
721                  */
722                 if (position >= vtotal)
723                         position = vtotal - 1;
724
725                 /*
726                  * Start of vblank interrupt is triggered at start of hsync,
727                  * just prior to the first active line of vblank. However we
728                  * consider lines to start at the leading edge of horizontal
729                  * active. So, should we get here before we've crossed into
730                  * the horizontal active of the first line in vblank, we would
731                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
732                  * always add htotal-hsync_start to the current pixel position.
733                  */
734                 position = (position + htotal - hsync_start) % vtotal;
735         }
736
737         /* Get optional system timestamp after query. */
738         if (etime)
739                 *etime = ktime_get();
740
741         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
742
743         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
744
745         in_vbl = position >= vbl_start && position < vbl_end;
746
747         /*
748          * While in vblank, position will be negative
749          * counting up towards 0 at vbl_end. And outside
750          * vblank, position will be positive counting
751          * up since vbl_end.
752          */
753         if (position >= vbl_start)
754                 position -= vbl_end;
755         else
756                 position += vtotal - vbl_end;
757
758         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
759                 *vpos = position;
760                 *hpos = 0;
761         } else {
762                 *vpos = position / htotal;
763                 *hpos = position - (*vpos * htotal);
764         }
765
766         /* In vblank? */
767         if (in_vbl)
768                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
769
770         return ret;
771 }
772
773 int intel_get_crtc_scanline(struct intel_crtc *crtc)
774 {
775         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
776         unsigned long irqflags;
777         int position;
778
779         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
780         position = __intel_get_crtc_scanline(crtc);
781         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783         return position;
784 }
785
786 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
787                               int *max_error,
788                               struct timeval *vblank_time,
789                               unsigned flags)
790 {
791         struct drm_crtc *crtc;
792
793         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
794                 DRM_ERROR("Invalid crtc %d\n", pipe);
795                 return -EINVAL;
796         }
797
798         /* Get drm_crtc to timestamp: */
799         crtc = intel_get_crtc_for_pipe(dev, pipe);
800         if (crtc == NULL) {
801                 DRM_ERROR("Invalid crtc %d\n", pipe);
802                 return -EINVAL;
803         }
804
805         if (!crtc->hwmode.crtc_clock) {
806                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
807                 return -EBUSY;
808         }
809
810         /* Helper routine in DRM core does all the work: */
811         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
812                                                      vblank_time, flags,
813                                                      crtc,
814                                                      &crtc->hwmode);
815 }
816
817 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         u32 busy_up, busy_down, max_avg, min_avg;
821         u8 new_delay;
822
823         spin_lock(&mchdev_lock);
824
825         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
826
827         new_delay = dev_priv->ips.cur_delay;
828
829         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
830         busy_up = I915_READ(RCPREVBSYTUPAVG);
831         busy_down = I915_READ(RCPREVBSYTDNAVG);
832         max_avg = I915_READ(RCBMAXAVG);
833         min_avg = I915_READ(RCBMINAVG);
834
835         /* Handle RCS change request from hw */
836         if (busy_up > max_avg) {
837                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
838                         new_delay = dev_priv->ips.cur_delay - 1;
839                 if (new_delay < dev_priv->ips.max_delay)
840                         new_delay = dev_priv->ips.max_delay;
841         } else if (busy_down < min_avg) {
842                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
843                         new_delay = dev_priv->ips.cur_delay + 1;
844                 if (new_delay > dev_priv->ips.min_delay)
845                         new_delay = dev_priv->ips.min_delay;
846         }
847
848         if (ironlake_set_drps(dev, new_delay))
849                 dev_priv->ips.cur_delay = new_delay;
850
851         spin_unlock(&mchdev_lock);
852
853         return;
854 }
855
856 static void notify_ring(struct intel_engine_cs *ring)
857 {
858         if (!intel_ring_initialized(ring))
859                 return;
860
861         trace_i915_gem_request_notify(ring);
862
863         wake_up_all(&ring->irq_queue);
864 }
865
866 static void vlv_c0_read(struct drm_i915_private *dev_priv,
867                         struct intel_rps_ei *ei)
868 {
869         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
870         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
871         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
872 }
873
874 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
875                          const struct intel_rps_ei *old,
876                          const struct intel_rps_ei *now,
877                          int threshold)
878 {
879         u64 time, c0;
880
881         if (old->cz_clock == 0)
882                 return false;
883
884         time = now->cz_clock - old->cz_clock;
885         time *= threshold * dev_priv->mem_freq;
886
887         /* Workload can be split between render + media, e.g. SwapBuffers
888          * being blitted in X after being rendered in mesa. To account for
889          * this we need to combine both engines into our activity counter.
890          */
891         c0 = now->render_c0 - old->render_c0;
892         c0 += now->media_c0 - old->media_c0;
893         c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
894
895         return c0 >= time;
896 }
897
898 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
899 {
900         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
901         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
902 }
903
904 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
905 {
906         struct intel_rps_ei now;
907         u32 events = 0;
908
909         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
910                 return 0;
911
912         vlv_c0_read(dev_priv, &now);
913         if (now.cz_clock == 0)
914                 return 0;
915
916         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
917                 if (!vlv_c0_above(dev_priv,
918                                   &dev_priv->rps.down_ei, &now,
919                                   dev_priv->rps.down_threshold))
920                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
921                 dev_priv->rps.down_ei = now;
922         }
923
924         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
925                 if (vlv_c0_above(dev_priv,
926                                  &dev_priv->rps.up_ei, &now,
927                                  dev_priv->rps.up_threshold))
928                         events |= GEN6_PM_RP_UP_THRESHOLD;
929                 dev_priv->rps.up_ei = now;
930         }
931
932         return events;
933 }
934
935 static bool any_waiters(struct drm_i915_private *dev_priv)
936 {
937         struct intel_engine_cs *ring;
938         int i;
939
940         for_each_ring(ring, dev_priv, i)
941                 if (ring->irq_refcount)
942                         return true;
943
944         return false;
945 }
946
947 static void gen6_pm_rps_work(struct work_struct *work)
948 {
949         struct drm_i915_private *dev_priv =
950                 container_of(work, struct drm_i915_private, rps.work);
951         bool client_boost;
952         int new_delay, adj, min, max;
953         u32 pm_iir;
954
955         spin_lock_irq(&dev_priv->irq_lock);
956         /* Speed up work cancelation during disabling rps interrupts. */
957         if (!dev_priv->rps.interrupts_enabled) {
958                 spin_unlock_irq(&dev_priv->irq_lock);
959                 return;
960         }
961         pm_iir = dev_priv->rps.pm_iir;
962         dev_priv->rps.pm_iir = 0;
963         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
964         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
965         client_boost = dev_priv->rps.client_boost;
966         dev_priv->rps.client_boost = false;
967         spin_unlock_irq(&dev_priv->irq_lock);
968
969         /* Make sure we didn't queue anything we're not going to process. */
970         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
971
972         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
973                 return;
974
975         mutex_lock(&dev_priv->rps.hw_lock);
976
977         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
978
979         adj = dev_priv->rps.last_adj;
980         new_delay = dev_priv->rps.cur_freq;
981         min = dev_priv->rps.min_freq_softlimit;
982         max = dev_priv->rps.max_freq_softlimit;
983
984         if (client_boost) {
985                 new_delay = dev_priv->rps.max_freq_softlimit;
986                 adj = 0;
987         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
988                 if (adj > 0)
989                         adj *= 2;
990                 else /* CHV needs even encode values */
991                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
992                 /*
993                  * For better performance, jump directly
994                  * to RPe if we're below it.
995                  */
996                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
997                         new_delay = dev_priv->rps.efficient_freq;
998                         adj = 0;
999                 }
1000         } else if (any_waiters(dev_priv)) {
1001                 adj = 0;
1002         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1003                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1004                         new_delay = dev_priv->rps.efficient_freq;
1005                 else
1006                         new_delay = dev_priv->rps.min_freq_softlimit;
1007                 adj = 0;
1008         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1009                 if (adj < 0)
1010                         adj *= 2;
1011                 else /* CHV needs even encode values */
1012                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1013         } else { /* unknown event */
1014                 adj = 0;
1015         }
1016
1017         dev_priv->rps.last_adj = adj;
1018
1019         /* sysfs frequency interfaces may have snuck in while servicing the
1020          * interrupt
1021          */
1022         new_delay += adj;
1023         new_delay = clamp_t(int, new_delay, min, max);
1024
1025         intel_set_rps(dev_priv->dev, new_delay);
1026
1027         mutex_unlock(&dev_priv->rps.hw_lock);
1028 }
1029
1030
1031 /**
1032  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1033  * occurred.
1034  * @work: workqueue struct
1035  *
1036  * Doesn't actually do anything except notify userspace. As a consequence of
1037  * this event, userspace should try to remap the bad rows since statistically
1038  * it is likely the same row is more likely to go bad again.
1039  */
1040 static void ivybridge_parity_work(struct work_struct *work)
1041 {
1042         struct drm_i915_private *dev_priv =
1043                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1044         u32 error_status, row, bank, subbank;
1045         char *parity_event[6];
1046         uint32_t misccpctl;
1047         uint8_t slice = 0;
1048
1049         /* We must turn off DOP level clock gating to access the L3 registers.
1050          * In order to prevent a get/put style interface, acquire struct mutex
1051          * any time we access those registers.
1052          */
1053         mutex_lock(&dev_priv->dev->struct_mutex);
1054
1055         /* If we've screwed up tracking, just let the interrupt fire again */
1056         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1057                 goto out;
1058
1059         misccpctl = I915_READ(GEN7_MISCCPCTL);
1060         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1061         POSTING_READ(GEN7_MISCCPCTL);
1062
1063         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1064                 u32 reg;
1065
1066                 slice--;
1067                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1068                         break;
1069
1070                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1071
1072                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1073
1074                 error_status = I915_READ(reg);
1075                 row = GEN7_PARITY_ERROR_ROW(error_status);
1076                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1077                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1078
1079                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1080                 POSTING_READ(reg);
1081
1082                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1083                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1084                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1085                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1086                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1087                 parity_event[5] = NULL;
1088
1089                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1090                                    KOBJ_CHANGE, parity_event);
1091
1092                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1093                           slice, row, bank, subbank);
1094
1095                 kfree(parity_event[4]);
1096                 kfree(parity_event[3]);
1097                 kfree(parity_event[2]);
1098                 kfree(parity_event[1]);
1099         }
1100
1101         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1102
1103 out:
1104         WARN_ON(dev_priv->l3_parity.which_slice);
1105         spin_lock_irq(&dev_priv->irq_lock);
1106         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1107         spin_unlock_irq(&dev_priv->irq_lock);
1108
1109         mutex_unlock(&dev_priv->dev->struct_mutex);
1110 }
1111
1112 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1113 {
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115
1116         if (!HAS_L3_DPF(dev))
1117                 return;
1118
1119         spin_lock(&dev_priv->irq_lock);
1120         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1121         spin_unlock(&dev_priv->irq_lock);
1122
1123         iir &= GT_PARITY_ERROR(dev);
1124         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1125                 dev_priv->l3_parity.which_slice |= 1 << 1;
1126
1127         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1128                 dev_priv->l3_parity.which_slice |= 1 << 0;
1129
1130         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1131 }
1132
1133 static void ilk_gt_irq_handler(struct drm_device *dev,
1134                                struct drm_i915_private *dev_priv,
1135                                u32 gt_iir)
1136 {
1137         if (gt_iir &
1138             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1139                 notify_ring(&dev_priv->ring[RCS]);
1140         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1141                 notify_ring(&dev_priv->ring[VCS]);
1142 }
1143
1144 static void snb_gt_irq_handler(struct drm_device *dev,
1145                                struct drm_i915_private *dev_priv,
1146                                u32 gt_iir)
1147 {
1148
1149         if (gt_iir &
1150             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1151                 notify_ring(&dev_priv->ring[RCS]);
1152         if (gt_iir & GT_BSD_USER_INTERRUPT)
1153                 notify_ring(&dev_priv->ring[VCS]);
1154         if (gt_iir & GT_BLT_USER_INTERRUPT)
1155                 notify_ring(&dev_priv->ring[BCS]);
1156
1157         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1158                       GT_BSD_CS_ERROR_INTERRUPT |
1159                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1160                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1161
1162         if (gt_iir & GT_PARITY_ERROR(dev))
1163                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1164 }
1165
1166 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1167                                        u32 master_ctl)
1168 {
1169         irqreturn_t ret = IRQ_NONE;
1170
1171         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1172                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1173                 if (tmp) {
1174                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1175                         ret = IRQ_HANDLED;
1176
1177                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1178                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1179                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1180                                 notify_ring(&dev_priv->ring[RCS]);
1181
1182                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1183                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1184                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1185                                 notify_ring(&dev_priv->ring[BCS]);
1186                 } else
1187                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1188         }
1189
1190         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1191                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1192                 if (tmp) {
1193                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1194                         ret = IRQ_HANDLED;
1195
1196                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1197                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1198                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1199                                 notify_ring(&dev_priv->ring[VCS]);
1200
1201                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1202                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1203                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1204                                 notify_ring(&dev_priv->ring[VCS2]);
1205                 } else
1206                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1207         }
1208
1209         if (master_ctl & GEN8_GT_VECS_IRQ) {
1210                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1211                 if (tmp) {
1212                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1213                         ret = IRQ_HANDLED;
1214
1215                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1216                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1217                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1218                                 notify_ring(&dev_priv->ring[VECS]);
1219                 } else
1220                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1221         }
1222
1223         if (master_ctl & GEN8_GT_PM_IRQ) {
1224                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1225                 if (tmp & dev_priv->pm_rps_events) {
1226                         I915_WRITE_FW(GEN8_GT_IIR(2),
1227                                       tmp & dev_priv->pm_rps_events);
1228                         ret = IRQ_HANDLED;
1229                         gen6_rps_irq_handler(dev_priv, tmp);
1230                 } else
1231                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1232         }
1233
1234         return ret;
1235 }
1236
1237 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1238 {
1239         switch (port) {
1240         case PORT_A:
1241                 return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1242         case PORT_B:
1243                 return val & PORTB_HOTPLUG_LONG_DETECT;
1244         case PORT_C:
1245                 return val & PORTC_HOTPLUG_LONG_DETECT;
1246         case PORT_D:
1247                 return val & PORTD_HOTPLUG_LONG_DETECT;
1248         default:
1249                 return false;
1250         }
1251 }
1252
1253 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1254 {
1255         switch (port) {
1256         case PORT_B:
1257                 return val & PORTB_HOTPLUG_LONG_DETECT;
1258         case PORT_C:
1259                 return val & PORTC_HOTPLUG_LONG_DETECT;
1260         case PORT_D:
1261                 return val & PORTD_HOTPLUG_LONG_DETECT;
1262         case PORT_E:
1263                 return val & PORTE_HOTPLUG_LONG_DETECT;
1264         default:
1265                 return false;
1266         }
1267 }
1268
1269 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1270 {
1271         switch (port) {
1272         case PORT_B:
1273                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1274         case PORT_C:
1275                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1276         case PORT_D:
1277                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1278         default:
1279                 return false;
1280         }
1281 }
1282
1283 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1284 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1285                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1286                              const u32 hpd[HPD_NUM_PINS],
1287                              bool long_pulse_detect(enum port port, u32 val))
1288 {
1289         enum port port;
1290         int i;
1291
1292         *pin_mask = 0;
1293         *long_mask = 0;
1294
1295         for_each_hpd_pin(i) {
1296                 if ((hpd[i] & hotplug_trigger) == 0)
1297                         continue;
1298
1299                 *pin_mask |= BIT(i);
1300
1301                 if (!intel_hpd_pin_to_port(i, &port))
1302                         continue;
1303
1304                 if (long_pulse_detect(port, dig_hotplug_reg))
1305                         *long_mask |= BIT(i);
1306         }
1307
1308         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1309                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1310
1311 }
1312
1313 static void gmbus_irq_handler(struct drm_device *dev)
1314 {
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316
1317         wake_up_all(&dev_priv->gmbus_wait_queue);
1318 }
1319
1320 static void dp_aux_irq_handler(struct drm_device *dev)
1321 {
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323
1324         wake_up_all(&dev_priv->gmbus_wait_queue);
1325 }
1326
1327 #if defined(CONFIG_DEBUG_FS)
1328 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1329                                          uint32_t crc0, uint32_t crc1,
1330                                          uint32_t crc2, uint32_t crc3,
1331                                          uint32_t crc4)
1332 {
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1335         struct intel_pipe_crc_entry *entry;
1336         int head, tail;
1337
1338         spin_lock(&pipe_crc->lock);
1339
1340         if (!pipe_crc->entries) {
1341                 spin_unlock(&pipe_crc->lock);
1342                 DRM_DEBUG_KMS("spurious interrupt\n");
1343                 return;
1344         }
1345
1346         head = pipe_crc->head;
1347         tail = pipe_crc->tail;
1348
1349         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1350                 spin_unlock(&pipe_crc->lock);
1351                 DRM_ERROR("CRC buffer overflowing\n");
1352                 return;
1353         }
1354
1355         entry = &pipe_crc->entries[head];
1356
1357         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1358         entry->crc[0] = crc0;
1359         entry->crc[1] = crc1;
1360         entry->crc[2] = crc2;
1361         entry->crc[3] = crc3;
1362         entry->crc[4] = crc4;
1363
1364         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1365         pipe_crc->head = head;
1366
1367         spin_unlock(&pipe_crc->lock);
1368
1369         wake_up_interruptible(&pipe_crc->wq);
1370 }
1371 #else
1372 static inline void
1373 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1374                              uint32_t crc0, uint32_t crc1,
1375                              uint32_t crc2, uint32_t crc3,
1376                              uint32_t crc4) {}
1377 #endif
1378
1379
1380 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1381 {
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383
1384         display_pipe_crc_irq_handler(dev, pipe,
1385                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1386                                      0, 0, 0, 0);
1387 }
1388
1389 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1390 {
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392
1393         display_pipe_crc_irq_handler(dev, pipe,
1394                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1395                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1396                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1397                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1398                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1399 }
1400
1401 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1402 {
1403         struct drm_i915_private *dev_priv = dev->dev_private;
1404         uint32_t res1, res2;
1405
1406         if (INTEL_INFO(dev)->gen >= 3)
1407                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1408         else
1409                 res1 = 0;
1410
1411         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1412                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1413         else
1414                 res2 = 0;
1415
1416         display_pipe_crc_irq_handler(dev, pipe,
1417                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1418                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1419                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1420                                      res1, res2);
1421 }
1422
1423 /* The RPS events need forcewake, so we add them to a work queue and mask their
1424  * IMR bits until the work is done. Other interrupts can be processed without
1425  * the work queue. */
1426 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1427 {
1428         if (pm_iir & dev_priv->pm_rps_events) {
1429                 spin_lock(&dev_priv->irq_lock);
1430                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1431                 if (dev_priv->rps.interrupts_enabled) {
1432                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1433                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1434                 }
1435                 spin_unlock(&dev_priv->irq_lock);
1436         }
1437
1438         if (INTEL_INFO(dev_priv)->gen >= 8)
1439                 return;
1440
1441         if (HAS_VEBOX(dev_priv->dev)) {
1442                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1443                         notify_ring(&dev_priv->ring[VECS]);
1444
1445                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1446                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1447         }
1448 }
1449
1450 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1451 {
1452         if (!drm_handle_vblank(dev, pipe))
1453                 return false;
1454
1455         return true;
1456 }
1457
1458 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1459 {
1460         struct drm_i915_private *dev_priv = dev->dev_private;
1461         u32 pipe_stats[I915_MAX_PIPES] = { };
1462         int pipe;
1463
1464         spin_lock(&dev_priv->irq_lock);
1465         for_each_pipe(dev_priv, pipe) {
1466                 int reg;
1467                 u32 mask, iir_bit = 0;
1468
1469                 /*
1470                  * PIPESTAT bits get signalled even when the interrupt is
1471                  * disabled with the mask bits, and some of the status bits do
1472                  * not generate interrupts at all (like the underrun bit). Hence
1473                  * we need to be careful that we only handle what we want to
1474                  * handle.
1475                  */
1476
1477                 /* fifo underruns are filterered in the underrun handler. */
1478                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1479
1480                 switch (pipe) {
1481                 case PIPE_A:
1482                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1483                         break;
1484                 case PIPE_B:
1485                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1486                         break;
1487                 case PIPE_C:
1488                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1489                         break;
1490                 }
1491                 if (iir & iir_bit)
1492                         mask |= dev_priv->pipestat_irq_mask[pipe];
1493
1494                 if (!mask)
1495                         continue;
1496
1497                 reg = PIPESTAT(pipe);
1498                 mask |= PIPESTAT_INT_ENABLE_MASK;
1499                 pipe_stats[pipe] = I915_READ(reg) & mask;
1500
1501                 /*
1502                  * Clear the PIPE*STAT regs before the IIR
1503                  */
1504                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1505                                         PIPESTAT_INT_STATUS_MASK))
1506                         I915_WRITE(reg, pipe_stats[pipe]);
1507         }
1508         spin_unlock(&dev_priv->irq_lock);
1509
1510         for_each_pipe(dev_priv, pipe) {
1511                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1512                     intel_pipe_handle_vblank(dev, pipe))
1513                         intel_check_page_flip(dev, pipe);
1514
1515                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1516                         intel_prepare_page_flip(dev, pipe);
1517                         intel_finish_page_flip(dev, pipe);
1518                 }
1519
1520                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521                         i9xx_pipe_crc_irq_handler(dev, pipe);
1522
1523                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525         }
1526
1527         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1528                 gmbus_irq_handler(dev);
1529 }
1530
1531 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1535         u32 pin_mask, long_mask;
1536
1537         if (!hotplug_status)
1538                 return;
1539
1540         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1541         /*
1542          * Make sure hotplug status is cleared before we clear IIR, or else we
1543          * may miss hotplug events.
1544          */
1545         POSTING_READ(PORT_HOTPLUG_STAT);
1546
1547         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1548                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1549
1550                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1551                                    hotplug_trigger, hpd_status_g4x,
1552                                    i9xx_port_hotplug_long_detect);
1553                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1554
1555                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1556                         dp_aux_irq_handler(dev);
1557         } else {
1558                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1559
1560                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1561                                    hotplug_trigger, hpd_status_i915,
1562                                    i9xx_port_hotplug_long_detect);
1563                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1564         }
1565 }
1566
1567 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1568 {
1569         struct drm_device *dev = arg;
1570         struct drm_i915_private *dev_priv = dev->dev_private;
1571         u32 iir, gt_iir, pm_iir;
1572         irqreturn_t ret = IRQ_NONE;
1573
1574         if (!intel_irqs_enabled(dev_priv))
1575                 return IRQ_NONE;
1576
1577         while (true) {
1578                 /* Find, clear, then process each source of interrupt */
1579
1580                 gt_iir = I915_READ(GTIIR);
1581                 if (gt_iir)
1582                         I915_WRITE(GTIIR, gt_iir);
1583
1584                 pm_iir = I915_READ(GEN6_PMIIR);
1585                 if (pm_iir)
1586                         I915_WRITE(GEN6_PMIIR, pm_iir);
1587
1588                 iir = I915_READ(VLV_IIR);
1589                 if (iir) {
1590                         /* Consume port before clearing IIR or we'll miss events */
1591                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1592                                 i9xx_hpd_irq_handler(dev);
1593                         I915_WRITE(VLV_IIR, iir);
1594                 }
1595
1596                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1597                         goto out;
1598
1599                 ret = IRQ_HANDLED;
1600
1601                 if (gt_iir)
1602                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1603                 if (pm_iir)
1604                         gen6_rps_irq_handler(dev_priv, pm_iir);
1605                 /* Call regardless, as some status bits might not be
1606                  * signalled in iir */
1607                 valleyview_pipestat_irq_handler(dev, iir);
1608         }
1609
1610 out:
1611         return ret;
1612 }
1613
1614 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1615 {
1616         struct drm_device *dev = arg;
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 master_ctl, iir;
1619         irqreturn_t ret = IRQ_NONE;
1620
1621         if (!intel_irqs_enabled(dev_priv))
1622                 return IRQ_NONE;
1623
1624         for (;;) {
1625                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1626                 iir = I915_READ(VLV_IIR);
1627
1628                 if (master_ctl == 0 && iir == 0)
1629                         break;
1630
1631                 ret = IRQ_HANDLED;
1632
1633                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1634
1635                 /* Find, clear, then process each source of interrupt */
1636
1637                 if (iir) {
1638                         /* Consume port before clearing IIR or we'll miss events */
1639                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640                                 i9xx_hpd_irq_handler(dev);
1641                         I915_WRITE(VLV_IIR, iir);
1642                 }
1643
1644                 gen8_gt_irq_handler(dev_priv, master_ctl);
1645
1646                 /* Call regardless, as some status bits might not be
1647                  * signalled in iir */
1648                 valleyview_pipestat_irq_handler(dev, iir);
1649
1650                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1651                 POSTING_READ(GEN8_MASTER_IRQ);
1652         }
1653
1654         return ret;
1655 }
1656
1657 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660         int pipe;
1661         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1662
1663         if (hotplug_trigger) {
1664                 u32 dig_hotplug_reg, pin_mask, long_mask;
1665
1666                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1667                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1668
1669                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1670                                    dig_hotplug_reg, hpd_ibx,
1671                                    pch_port_hotplug_long_detect);
1672                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1673         }
1674
1675         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1676                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1677                                SDE_AUDIO_POWER_SHIFT);
1678                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1679                                  port_name(port));
1680         }
1681
1682         if (pch_iir & SDE_AUX_MASK)
1683                 dp_aux_irq_handler(dev);
1684
1685         if (pch_iir & SDE_GMBUS)
1686                 gmbus_irq_handler(dev);
1687
1688         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1689                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1690
1691         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1692                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1693
1694         if (pch_iir & SDE_POISON)
1695                 DRM_ERROR("PCH poison interrupt\n");
1696
1697         if (pch_iir & SDE_FDI_MASK)
1698                 for_each_pipe(dev_priv, pipe)
1699                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1700                                          pipe_name(pipe),
1701                                          I915_READ(FDI_RX_IIR(pipe)));
1702
1703         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1704                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1705
1706         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1707                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1708
1709         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1710                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1711
1712         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1713                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1714 }
1715
1716 static void ivb_err_int_handler(struct drm_device *dev)
1717 {
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         u32 err_int = I915_READ(GEN7_ERR_INT);
1720         enum pipe pipe;
1721
1722         if (err_int & ERR_INT_POISON)
1723                 DRM_ERROR("Poison interrupt\n");
1724
1725         for_each_pipe(dev_priv, pipe) {
1726                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1727                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1728
1729                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1730                         if (IS_IVYBRIDGE(dev))
1731                                 ivb_pipe_crc_irq_handler(dev, pipe);
1732                         else
1733                                 hsw_pipe_crc_irq_handler(dev, pipe);
1734                 }
1735         }
1736
1737         I915_WRITE(GEN7_ERR_INT, err_int);
1738 }
1739
1740 static void cpt_serr_int_handler(struct drm_device *dev)
1741 {
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         u32 serr_int = I915_READ(SERR_INT);
1744
1745         if (serr_int & SERR_INT_POISON)
1746                 DRM_ERROR("PCH poison interrupt\n");
1747
1748         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1749                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1750
1751         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1752                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1753
1754         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1755                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1756
1757         I915_WRITE(SERR_INT, serr_int);
1758 }
1759
1760 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1761 {
1762         struct drm_i915_private *dev_priv = dev->dev_private;
1763         int pipe;
1764         u32 hotplug_trigger;
1765
1766         if (HAS_PCH_SPT(dev))
1767                 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1768         else
1769                 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1770
1771         if (hotplug_trigger) {
1772                 u32 dig_hotplug_reg, pin_mask, long_mask;
1773
1774                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1775                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1776
1777                 if (HAS_PCH_SPT(dev)) {
1778                         intel_get_hpd_pins(&pin_mask, &long_mask,
1779                                            hotplug_trigger,
1780                                            dig_hotplug_reg, hpd_spt,
1781                                            pch_port_hotplug_long_detect);
1782
1783                         /* detect PORTE HP event */
1784                         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1785                         if (pch_port_hotplug_long_detect(PORT_E,
1786                                                          dig_hotplug_reg))
1787                                 long_mask |= 1 << HPD_PORT_E;
1788                 } else
1789                         intel_get_hpd_pins(&pin_mask, &long_mask,
1790                                            hotplug_trigger,
1791                                            dig_hotplug_reg, hpd_cpt,
1792                                            pch_port_hotplug_long_detect);
1793
1794                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1795         }
1796
1797         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1798                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1799                                SDE_AUDIO_POWER_SHIFT_CPT);
1800                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1801                                  port_name(port));
1802         }
1803
1804         if (pch_iir & SDE_AUX_MASK_CPT)
1805                 dp_aux_irq_handler(dev);
1806
1807         if (pch_iir & SDE_GMBUS_CPT)
1808                 gmbus_irq_handler(dev);
1809
1810         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1811                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1812
1813         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1814                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1815
1816         if (pch_iir & SDE_FDI_MASK_CPT)
1817                 for_each_pipe(dev_priv, pipe)
1818                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1819                                          pipe_name(pipe),
1820                                          I915_READ(FDI_RX_IIR(pipe)));
1821
1822         if (pch_iir & SDE_ERROR_CPT)
1823                 cpt_serr_int_handler(dev);
1824 }
1825
1826 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1827 {
1828         struct drm_i915_private *dev_priv = dev->dev_private;
1829         enum pipe pipe;
1830
1831         if (de_iir & DE_AUX_CHANNEL_A)
1832                 dp_aux_irq_handler(dev);
1833
1834         if (de_iir & DE_GSE)
1835                 intel_opregion_asle_intr(dev);
1836
1837         if (de_iir & DE_POISON)
1838                 DRM_ERROR("Poison interrupt\n");
1839
1840         for_each_pipe(dev_priv, pipe) {
1841                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
1842                     intel_pipe_handle_vblank(dev, pipe))
1843                         intel_check_page_flip(dev, pipe);
1844
1845                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1846                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1847
1848                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1849                         i9xx_pipe_crc_irq_handler(dev, pipe);
1850
1851                 /* plane/pipes map 1:1 on ilk+ */
1852                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1853                         intel_prepare_page_flip(dev, pipe);
1854                         intel_finish_page_flip_plane(dev, pipe);
1855                 }
1856         }
1857
1858         /* check event from PCH */
1859         if (de_iir & DE_PCH_EVENT) {
1860                 u32 pch_iir = I915_READ(SDEIIR);
1861
1862                 if (HAS_PCH_CPT(dev))
1863                         cpt_irq_handler(dev, pch_iir);
1864                 else
1865                         ibx_irq_handler(dev, pch_iir);
1866
1867                 /* should clear PCH hotplug event before clear CPU irq */
1868                 I915_WRITE(SDEIIR, pch_iir);
1869         }
1870
1871         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1872                 ironlake_rps_change_irq_handler(dev);
1873 }
1874
1875 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1876 {
1877         struct drm_i915_private *dev_priv = dev->dev_private;
1878         enum pipe pipe;
1879
1880         if (de_iir & DE_ERR_INT_IVB)
1881                 ivb_err_int_handler(dev);
1882
1883         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1884                 dp_aux_irq_handler(dev);
1885
1886         if (de_iir & DE_GSE_IVB)
1887                 intel_opregion_asle_intr(dev);
1888
1889         for_each_pipe(dev_priv, pipe) {
1890                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1891                     intel_pipe_handle_vblank(dev, pipe))
1892                         intel_check_page_flip(dev, pipe);
1893
1894                 /* plane/pipes map 1:1 on ilk+ */
1895                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1896                         intel_prepare_page_flip(dev, pipe);
1897                         intel_finish_page_flip_plane(dev, pipe);
1898                 }
1899         }
1900
1901         /* check event from PCH */
1902         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1903                 u32 pch_iir = I915_READ(SDEIIR);
1904
1905                 cpt_irq_handler(dev, pch_iir);
1906
1907                 /* clear PCH hotplug event before clear CPU irq */
1908                 I915_WRITE(SDEIIR, pch_iir);
1909         }
1910 }
1911
1912 /*
1913  * To handle irqs with the minimum potential races with fresh interrupts, we:
1914  * 1 - Disable Master Interrupt Control.
1915  * 2 - Find the source(s) of the interrupt.
1916  * 3 - Clear the Interrupt Identity bits (IIR).
1917  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1918  * 5 - Re-enable Master Interrupt Control.
1919  */
1920 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1921 {
1922         struct drm_device *dev = arg;
1923         struct drm_i915_private *dev_priv = dev->dev_private;
1924         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1925         irqreturn_t ret = IRQ_NONE;
1926
1927         if (!intel_irqs_enabled(dev_priv))
1928                 return IRQ_NONE;
1929
1930         /* We get interrupts on unclaimed registers, so check for this before we
1931          * do any I915_{READ,WRITE}. */
1932         intel_uncore_check_errors(dev);
1933
1934         /* disable master interrupt before clearing iir  */
1935         de_ier = I915_READ(DEIER);
1936         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1937         POSTING_READ(DEIER);
1938
1939         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1940          * interrupts will will be stored on its back queue, and then we'll be
1941          * able to process them after we restore SDEIER (as soon as we restore
1942          * it, we'll get an interrupt if SDEIIR still has something to process
1943          * due to its back queue). */
1944         if (!HAS_PCH_NOP(dev)) {
1945                 sde_ier = I915_READ(SDEIER);
1946                 I915_WRITE(SDEIER, 0);
1947                 POSTING_READ(SDEIER);
1948         }
1949
1950         /* Find, clear, then process each source of interrupt */
1951
1952         gt_iir = I915_READ(GTIIR);
1953         if (gt_iir) {
1954                 I915_WRITE(GTIIR, gt_iir);
1955                 ret = IRQ_HANDLED;
1956                 if (INTEL_INFO(dev)->gen >= 6)
1957                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1958                 else
1959                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1960         }
1961
1962         de_iir = I915_READ(DEIIR);
1963         if (de_iir) {
1964                 I915_WRITE(DEIIR, de_iir);
1965                 ret = IRQ_HANDLED;
1966                 if (INTEL_INFO(dev)->gen >= 7)
1967                         ivb_display_irq_handler(dev, de_iir);
1968                 else
1969                         ilk_display_irq_handler(dev, de_iir);
1970         }
1971
1972         if (INTEL_INFO(dev)->gen >= 6) {
1973                 u32 pm_iir = I915_READ(GEN6_PMIIR);
1974                 if (pm_iir) {
1975                         I915_WRITE(GEN6_PMIIR, pm_iir);
1976                         ret = IRQ_HANDLED;
1977                         gen6_rps_irq_handler(dev_priv, pm_iir);
1978                 }
1979         }
1980
1981         I915_WRITE(DEIER, de_ier);
1982         POSTING_READ(DEIER);
1983         if (!HAS_PCH_NOP(dev)) {
1984                 I915_WRITE(SDEIER, sde_ier);
1985                 POSTING_READ(SDEIER);
1986         }
1987
1988         return ret;
1989 }
1990
1991 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1992 {
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994         u32 hp_control, hp_trigger;
1995         u32 pin_mask, long_mask;
1996
1997         /* Get the status */
1998         hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
1999         hp_control = I915_READ(BXT_HOTPLUG_CTL);
2000
2001         /* Hotplug not enabled ? */
2002         if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2003                 DRM_ERROR("Interrupt when HPD disabled\n");
2004                 return;
2005         }
2006
2007         /* Clear sticky bits in hpd status */
2008         I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2009
2010         intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2011                            hpd_bxt, bxt_port_hotplug_long_detect);
2012         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2013 }
2014
2015 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2016 {
2017         struct drm_device *dev = arg;
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019         u32 master_ctl;
2020         irqreturn_t ret = IRQ_NONE;
2021         uint32_t tmp = 0;
2022         enum pipe pipe;
2023         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2024
2025         if (!intel_irqs_enabled(dev_priv))
2026                 return IRQ_NONE;
2027
2028         if (IS_GEN9(dev))
2029                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2030                         GEN9_AUX_CHANNEL_D;
2031
2032         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2033         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2034         if (!master_ctl)
2035                 return IRQ_NONE;
2036
2037         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2038
2039         /* Find, clear, then process each source of interrupt */
2040
2041         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2042
2043         if (master_ctl & GEN8_DE_MISC_IRQ) {
2044                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2045                 if (tmp) {
2046                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2047                         ret = IRQ_HANDLED;
2048                         if (tmp & GEN8_DE_MISC_GSE)
2049                                 intel_opregion_asle_intr(dev);
2050                         else
2051                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2052                 }
2053                 else
2054                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2055         }
2056
2057         if (master_ctl & GEN8_DE_PORT_IRQ) {
2058                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2059                 if (tmp) {
2060                         bool found = false;
2061
2062                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2063                         ret = IRQ_HANDLED;
2064
2065                         if (tmp & aux_mask) {
2066                                 dp_aux_irq_handler(dev);
2067                                 found = true;
2068                         }
2069
2070                         if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2071                                 bxt_hpd_handler(dev, tmp);
2072                                 found = true;
2073                         }
2074
2075                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2076                                 gmbus_irq_handler(dev);
2077                                 found = true;
2078                         }
2079
2080                         if (!found)
2081                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2082                 }
2083                 else
2084                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2085         }
2086
2087         for_each_pipe(dev_priv, pipe) {
2088                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2089
2090                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2091                         continue;
2092
2093                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2094                 if (pipe_iir) {
2095                         ret = IRQ_HANDLED;
2096                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2097
2098                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2099                             intel_pipe_handle_vblank(dev, pipe))
2100                                 intel_check_page_flip(dev, pipe);
2101
2102                         if (IS_GEN9(dev))
2103                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2104                         else
2105                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2106
2107                         if (flip_done) {
2108                                 intel_prepare_page_flip(dev, pipe);
2109                                 intel_finish_page_flip_plane(dev, pipe);
2110                         }
2111
2112                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2113                                 hsw_pipe_crc_irq_handler(dev, pipe);
2114
2115                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2116                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2117                                                                     pipe);
2118
2119
2120                         if (IS_GEN9(dev))
2121                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2122                         else
2123                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2124
2125                         if (fault_errors)
2126                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2127                                           pipe_name(pipe),
2128                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2129                 } else
2130                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2131         }
2132
2133         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2134             master_ctl & GEN8_DE_PCH_IRQ) {
2135                 /*
2136                  * FIXME(BDW): Assume for now that the new interrupt handling
2137                  * scheme also closed the SDE interrupt handling race we've seen
2138                  * on older pch-split platforms. But this needs testing.
2139                  */
2140                 u32 pch_iir = I915_READ(SDEIIR);
2141                 if (pch_iir) {
2142                         I915_WRITE(SDEIIR, pch_iir);
2143                         ret = IRQ_HANDLED;
2144                         cpt_irq_handler(dev, pch_iir);
2145                 } else
2146                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2147
2148         }
2149
2150         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2151         POSTING_READ_FW(GEN8_MASTER_IRQ);
2152
2153         return ret;
2154 }
2155
2156 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2157                                bool reset_completed)
2158 {
2159         struct intel_engine_cs *ring;
2160         int i;
2161
2162         /*
2163          * Notify all waiters for GPU completion events that reset state has
2164          * been changed, and that they need to restart their wait after
2165          * checking for potential errors (and bail out to drop locks if there is
2166          * a gpu reset pending so that i915_error_work_func can acquire them).
2167          */
2168
2169         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2170         for_each_ring(ring, dev_priv, i)
2171                 wake_up_all(&ring->irq_queue);
2172
2173         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2174         wake_up_all(&dev_priv->pending_flip_queue);
2175
2176         /*
2177          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2178          * reset state is cleared.
2179          */
2180         if (reset_completed)
2181                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2182 }
2183
2184 /**
2185  * i915_reset_and_wakeup - do process context error handling work
2186  *
2187  * Fire an error uevent so userspace can see that a hang or error
2188  * was detected.
2189  */
2190 static void i915_reset_and_wakeup(struct drm_device *dev)
2191 {
2192         struct drm_i915_private *dev_priv = to_i915(dev);
2193         struct i915_gpu_error *error = &dev_priv->gpu_error;
2194         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2195         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2196         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2197         int ret;
2198
2199         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2200
2201         /*
2202          * Note that there's only one work item which does gpu resets, so we
2203          * need not worry about concurrent gpu resets potentially incrementing
2204          * error->reset_counter twice. We only need to take care of another
2205          * racing irq/hangcheck declaring the gpu dead for a second time. A
2206          * quick check for that is good enough: schedule_work ensures the
2207          * correct ordering between hang detection and this work item, and since
2208          * the reset in-progress bit is only ever set by code outside of this
2209          * work we don't need to worry about any other races.
2210          */
2211         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2212                 DRM_DEBUG_DRIVER("resetting chip\n");
2213                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2214                                    reset_event);
2215
2216                 /*
2217                  * In most cases it's guaranteed that we get here with an RPM
2218                  * reference held, for example because there is a pending GPU
2219                  * request that won't finish until the reset is done. This
2220                  * isn't the case at least when we get here by doing a
2221                  * simulated reset via debugs, so get an RPM reference.
2222                  */
2223                 intel_runtime_pm_get(dev_priv);
2224
2225                 intel_prepare_reset(dev);
2226
2227                 /*
2228                  * All state reset _must_ be completed before we update the
2229                  * reset counter, for otherwise waiters might miss the reset
2230                  * pending state and not properly drop locks, resulting in
2231                  * deadlocks with the reset work.
2232                  */
2233                 ret = i915_reset(dev);
2234
2235                 intel_finish_reset(dev);
2236
2237                 intel_runtime_pm_put(dev_priv);
2238
2239                 if (ret == 0) {
2240                         /*
2241                          * After all the gem state is reset, increment the reset
2242                          * counter and wake up everyone waiting for the reset to
2243                          * complete.
2244                          *
2245                          * Since unlock operations are a one-sided barrier only,
2246                          * we need to insert a barrier here to order any seqno
2247                          * updates before
2248                          * the counter increment.
2249                          */
2250                         smp_mb__before_atomic();
2251                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2252
2253                         kobject_uevent_env(&dev->primary->kdev->kobj,
2254                                            KOBJ_CHANGE, reset_done_event);
2255                 } else {
2256                         atomic_or(I915_WEDGED, &error->reset_counter);
2257                 }
2258
2259                 /*
2260                  * Note: The wake_up also serves as a memory barrier so that
2261                  * waiters see the update value of the reset counter atomic_t.
2262                  */
2263                 i915_error_wake_up(dev_priv, true);
2264         }
2265 }
2266
2267 static void i915_report_and_clear_eir(struct drm_device *dev)
2268 {
2269         struct drm_i915_private *dev_priv = dev->dev_private;
2270         uint32_t instdone[I915_NUM_INSTDONE_REG];
2271         u32 eir = I915_READ(EIR);
2272         int pipe, i;
2273
2274         if (!eir)
2275                 return;
2276
2277         pr_err("render error detected, EIR: 0x%08x\n", eir);
2278
2279         i915_get_extra_instdone(dev, instdone);
2280
2281         if (IS_G4X(dev)) {
2282                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2283                         u32 ipeir = I915_READ(IPEIR_I965);
2284
2285                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2286                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2287                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2288                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2289                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2290                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2291                         I915_WRITE(IPEIR_I965, ipeir);
2292                         POSTING_READ(IPEIR_I965);
2293                 }
2294                 if (eir & GM45_ERROR_PAGE_TABLE) {
2295                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2296                         pr_err("page table error\n");
2297                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2298                         I915_WRITE(PGTBL_ER, pgtbl_err);
2299                         POSTING_READ(PGTBL_ER);
2300                 }
2301         }
2302
2303         if (!IS_GEN2(dev)) {
2304                 if (eir & I915_ERROR_PAGE_TABLE) {
2305                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2306                         pr_err("page table error\n");
2307                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2308                         I915_WRITE(PGTBL_ER, pgtbl_err);
2309                         POSTING_READ(PGTBL_ER);
2310                 }
2311         }
2312
2313         if (eir & I915_ERROR_MEMORY_REFRESH) {
2314                 pr_err("memory refresh error:\n");
2315                 for_each_pipe(dev_priv, pipe)
2316                         pr_err("pipe %c stat: 0x%08x\n",
2317                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2318                 /* pipestat has already been acked */
2319         }
2320         if (eir & I915_ERROR_INSTRUCTION) {
2321                 pr_err("instruction error\n");
2322                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2323                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2324                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2325                 if (INTEL_INFO(dev)->gen < 4) {
2326                         u32 ipeir = I915_READ(IPEIR);
2327
2328                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2329                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2330                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2331                         I915_WRITE(IPEIR, ipeir);
2332                         POSTING_READ(IPEIR);
2333                 } else {
2334                         u32 ipeir = I915_READ(IPEIR_I965);
2335
2336                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2337                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2338                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2339                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2340                         I915_WRITE(IPEIR_I965, ipeir);
2341                         POSTING_READ(IPEIR_I965);
2342                 }
2343         }
2344
2345         I915_WRITE(EIR, eir);
2346         POSTING_READ(EIR);
2347         eir = I915_READ(EIR);
2348         if (eir) {
2349                 /*
2350                  * some errors might have become stuck,
2351                  * mask them.
2352                  */
2353                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2354                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2355                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2356         }
2357 }
2358
2359 /**
2360  * i915_handle_error - handle a gpu error
2361  * @dev: drm device
2362  *
2363  * Do some basic checking of regsiter state at error time and
2364  * dump it to the syslog.  Also call i915_capture_error_state() to make
2365  * sure we get a record and make it available in debugfs.  Fire a uevent
2366  * so userspace knows something bad happened (should trigger collection
2367  * of a ring dump etc.).
2368  */
2369 void i915_handle_error(struct drm_device *dev, bool wedged,
2370                        const char *fmt, ...)
2371 {
2372         struct drm_i915_private *dev_priv = dev->dev_private;
2373         va_list args;
2374         char error_msg[80];
2375
2376         va_start(args, fmt);
2377         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2378         va_end(args);
2379
2380         i915_capture_error_state(dev, wedged, error_msg);
2381         i915_report_and_clear_eir(dev);
2382
2383         if (wedged) {
2384                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2385                                 &dev_priv->gpu_error.reset_counter);
2386
2387                 /*
2388                  * Wakeup waiting processes so that the reset function
2389                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2390                  * various locks. By bumping the reset counter first, the woken
2391                  * processes will see a reset in progress and back off,
2392                  * releasing their locks and then wait for the reset completion.
2393                  * We must do this for _all_ gpu waiters that might hold locks
2394                  * that the reset work needs to acquire.
2395                  *
2396                  * Note: The wake_up serves as the required memory barrier to
2397                  * ensure that the waiters see the updated value of the reset
2398                  * counter atomic_t.
2399                  */
2400                 i915_error_wake_up(dev_priv, false);
2401         }
2402
2403         i915_reset_and_wakeup(dev);
2404 }
2405
2406 /* Called from drm generic code, passed 'crtc' which
2407  * we use as a pipe index
2408  */
2409 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         unsigned long irqflags;
2413
2414         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2415         if (INTEL_INFO(dev)->gen >= 4)
2416                 i915_enable_pipestat(dev_priv, pipe,
2417                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2418         else
2419                 i915_enable_pipestat(dev_priv, pipe,
2420                                      PIPE_VBLANK_INTERRUPT_STATUS);
2421         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2422
2423         return 0;
2424 }
2425
2426 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2427 {
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         unsigned long irqflags;
2430         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2431                                                      DE_PIPE_VBLANK(pipe);
2432
2433         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2434         ironlake_enable_display_irq(dev_priv, bit);
2435         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2436
2437         return 0;
2438 }
2439
2440 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         unsigned long irqflags;
2444
2445         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2446         i915_enable_pipestat(dev_priv, pipe,
2447                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2448         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2449
2450         return 0;
2451 }
2452
2453 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         unsigned long irqflags;
2457
2458         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2459         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2460         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2461         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2462         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2463         return 0;
2464 }
2465
2466 /* Called from drm generic code, passed 'crtc' which
2467  * we use as a pipe index
2468  */
2469 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2470 {
2471         struct drm_i915_private *dev_priv = dev->dev_private;
2472         unsigned long irqflags;
2473
2474         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2475         i915_disable_pipestat(dev_priv, pipe,
2476                               PIPE_VBLANK_INTERRUPT_STATUS |
2477                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2478         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2479 }
2480
2481 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         unsigned long irqflags;
2485         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2486                                                      DE_PIPE_VBLANK(pipe);
2487
2488         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2489         ironlake_disable_display_irq(dev_priv, bit);
2490         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2491 }
2492
2493 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2494 {
2495         struct drm_i915_private *dev_priv = dev->dev_private;
2496         unsigned long irqflags;
2497
2498         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2499         i915_disable_pipestat(dev_priv, pipe,
2500                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2501         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2502 }
2503
2504 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2505 {
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507         unsigned long irqflags;
2508
2509         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2510         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2511         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2512         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2513         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2514 }
2515
2516 static bool
2517 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2518 {
2519         return (list_empty(&ring->request_list) ||
2520                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2521 }
2522
2523 static bool
2524 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2525 {
2526         if (INTEL_INFO(dev)->gen >= 8) {
2527                 return (ipehr >> 23) == 0x1c;
2528         } else {
2529                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2530                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2531                                  MI_SEMAPHORE_REGISTER);
2532         }
2533 }
2534
2535 static struct intel_engine_cs *
2536 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2537 {
2538         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2539         struct intel_engine_cs *signaller;
2540         int i;
2541
2542         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2543                 for_each_ring(signaller, dev_priv, i) {
2544                         if (ring == signaller)
2545                                 continue;
2546
2547                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2548                                 return signaller;
2549                 }
2550         } else {
2551                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2552
2553                 for_each_ring(signaller, dev_priv, i) {
2554                         if(ring == signaller)
2555                                 continue;
2556
2557                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2558                                 return signaller;
2559                 }
2560         }
2561
2562         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2563                   ring->id, ipehr, offset);
2564
2565         return NULL;
2566 }
2567
2568 static struct intel_engine_cs *
2569 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2570 {
2571         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2572         u32 cmd, ipehr, head;
2573         u64 offset = 0;
2574         int i, backwards;
2575
2576         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2577         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2578                 return NULL;
2579
2580         /*
2581          * HEAD is likely pointing to the dword after the actual command,
2582          * so scan backwards until we find the MBOX. But limit it to just 3
2583          * or 4 dwords depending on the semaphore wait command size.
2584          * Note that we don't care about ACTHD here since that might
2585          * point at at batch, and semaphores are always emitted into the
2586          * ringbuffer itself.
2587          */
2588         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2589         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2590
2591         for (i = backwards; i; --i) {
2592                 /*
2593                  * Be paranoid and presume the hw has gone off into the wild -
2594                  * our ring is smaller than what the hardware (and hence
2595                  * HEAD_ADDR) allows. Also handles wrap-around.
2596                  */
2597                 head &= ring->buffer->size - 1;
2598
2599                 /* This here seems to blow up */
2600                 cmd = ioread32(ring->buffer->virtual_start + head);
2601                 if (cmd == ipehr)
2602                         break;
2603
2604                 head -= 4;
2605         }
2606
2607         if (!i)
2608                 return NULL;
2609
2610         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2611         if (INTEL_INFO(ring->dev)->gen >= 8) {
2612                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2613                 offset <<= 32;
2614                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2615         }
2616         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2617 }
2618
2619 static int semaphore_passed(struct intel_engine_cs *ring)
2620 {
2621         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2622         struct intel_engine_cs *signaller;
2623         u32 seqno;
2624
2625         ring->hangcheck.deadlock++;
2626
2627         signaller = semaphore_waits_for(ring, &seqno);
2628         if (signaller == NULL)
2629                 return -1;
2630
2631         /* Prevent pathological recursion due to driver bugs */
2632         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2633                 return -1;
2634
2635         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2636                 return 1;
2637
2638         /* cursory check for an unkickable deadlock */
2639         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2640             semaphore_passed(signaller) < 0)
2641                 return -1;
2642
2643         return 0;
2644 }
2645
2646 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2647 {
2648         struct intel_engine_cs *ring;
2649         int i;
2650
2651         for_each_ring(ring, dev_priv, i)
2652                 ring->hangcheck.deadlock = 0;
2653 }
2654
2655 static enum intel_ring_hangcheck_action
2656 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2657 {
2658         struct drm_device *dev = ring->dev;
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         u32 tmp;
2661
2662         if (acthd != ring->hangcheck.acthd) {
2663                 if (acthd > ring->hangcheck.max_acthd) {
2664                         ring->hangcheck.max_acthd = acthd;
2665                         return HANGCHECK_ACTIVE;
2666                 }
2667
2668                 return HANGCHECK_ACTIVE_LOOP;
2669         }
2670
2671         if (IS_GEN2(dev))
2672                 return HANGCHECK_HUNG;
2673
2674         /* Is the chip hanging on a WAIT_FOR_EVENT?
2675          * If so we can simply poke the RB_WAIT bit
2676          * and break the hang. This should work on
2677          * all but the second generation chipsets.
2678          */
2679         tmp = I915_READ_CTL(ring);
2680         if (tmp & RING_WAIT) {
2681                 i915_handle_error(dev, false,
2682                                   "Kicking stuck wait on %s",
2683                                   ring->name);
2684                 I915_WRITE_CTL(ring, tmp);
2685                 return HANGCHECK_KICK;
2686         }
2687
2688         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2689                 switch (semaphore_passed(ring)) {
2690                 default:
2691                         return HANGCHECK_HUNG;
2692                 case 1:
2693                         i915_handle_error(dev, false,
2694                                           "Kicking stuck semaphore on %s",
2695                                           ring->name);
2696                         I915_WRITE_CTL(ring, tmp);
2697                         return HANGCHECK_KICK;
2698                 case 0:
2699                         return HANGCHECK_WAIT;
2700                 }
2701         }
2702
2703         return HANGCHECK_HUNG;
2704 }
2705
2706 /*
2707  * This is called when the chip hasn't reported back with completed
2708  * batchbuffers in a long time. We keep track per ring seqno progress and
2709  * if there are no progress, hangcheck score for that ring is increased.
2710  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2711  * we kick the ring. If we see no progress on three subsequent calls
2712  * we assume chip is wedged and try to fix it by resetting the chip.
2713  */
2714 static void i915_hangcheck_elapsed(struct work_struct *work)
2715 {
2716         struct drm_i915_private *dev_priv =
2717                 container_of(work, typeof(*dev_priv),
2718                              gpu_error.hangcheck_work.work);
2719         struct drm_device *dev = dev_priv->dev;
2720         struct intel_engine_cs *ring;
2721         int i;
2722         int busy_count = 0, rings_hung = 0;
2723         bool stuck[I915_NUM_RINGS] = { 0 };
2724 #define BUSY 1
2725 #define KICK 5
2726 #define HUNG 20
2727
2728         if (!i915.enable_hangcheck)
2729                 return;
2730
2731         for_each_ring(ring, dev_priv, i) {
2732                 u64 acthd;
2733                 u32 seqno;
2734                 bool busy = true;
2735
2736                 semaphore_clear_deadlocks(dev_priv);
2737
2738                 seqno = ring->get_seqno(ring, false);
2739                 acthd = intel_ring_get_active_head(ring);
2740
2741                 if (ring->hangcheck.seqno == seqno) {
2742                         if (ring_idle(ring, seqno)) {
2743                                 ring->hangcheck.action = HANGCHECK_IDLE;
2744
2745                                 if (waitqueue_active(&ring->irq_queue)) {
2746                                         /* Issue a wake-up to catch stuck h/w. */
2747                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2748                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2749                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2750                                                                   ring->name);
2751                                                 else
2752                                                         DRM_INFO("Fake missed irq on %s\n",
2753                                                                  ring->name);
2754                                                 wake_up_all(&ring->irq_queue);
2755                                         }
2756                                         /* Safeguard against driver failure */
2757                                         ring->hangcheck.score += BUSY;
2758                                 } else
2759                                         busy = false;
2760                         } else {
2761                                 /* We always increment the hangcheck score
2762                                  * if the ring is busy and still processing
2763                                  * the same request, so that no single request
2764                                  * can run indefinitely (such as a chain of
2765                                  * batches). The only time we do not increment
2766                                  * the hangcheck score on this ring, if this
2767                                  * ring is in a legitimate wait for another
2768                                  * ring. In that case the waiting ring is a
2769                                  * victim and we want to be sure we catch the
2770                                  * right culprit. Then every time we do kick
2771                                  * the ring, add a small increment to the
2772                                  * score so that we can catch a batch that is
2773                                  * being repeatedly kicked and so responsible
2774                                  * for stalling the machine.
2775                                  */
2776                                 ring->hangcheck.action = ring_stuck(ring,
2777                                                                     acthd);
2778
2779                                 switch (ring->hangcheck.action) {
2780                                 case HANGCHECK_IDLE:
2781                                 case HANGCHECK_WAIT:
2782                                 case HANGCHECK_ACTIVE:
2783                                         break;
2784                                 case HANGCHECK_ACTIVE_LOOP:
2785                                         ring->hangcheck.score += BUSY;
2786                                         break;
2787                                 case HANGCHECK_KICK:
2788                                         ring->hangcheck.score += KICK;
2789                                         break;
2790                                 case HANGCHECK_HUNG:
2791                                         ring->hangcheck.score += HUNG;
2792                                         stuck[i] = true;
2793                                         break;
2794                                 }
2795                         }
2796                 } else {
2797                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2798
2799                         /* Gradually reduce the count so that we catch DoS
2800                          * attempts across multiple batches.
2801                          */
2802                         if (ring->hangcheck.score > 0)
2803                                 ring->hangcheck.score--;
2804
2805                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2806                 }
2807
2808                 ring->hangcheck.seqno = seqno;
2809                 ring->hangcheck.acthd = acthd;
2810                 busy_count += busy;
2811         }
2812
2813         for_each_ring(ring, dev_priv, i) {
2814                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2815                         DRM_INFO("%s on %s\n",
2816                                  stuck[i] ? "stuck" : "no progress",
2817                                  ring->name);
2818                         rings_hung++;
2819                 }
2820         }
2821
2822         if (rings_hung)
2823                 return i915_handle_error(dev, true, "Ring hung");
2824
2825         if (busy_count)
2826                 /* Reset timer case chip hangs without another request
2827                  * being added */
2828                 i915_queue_hangcheck(dev);
2829 }
2830
2831 void i915_queue_hangcheck(struct drm_device *dev)
2832 {
2833         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2834
2835         if (!i915.enable_hangcheck)
2836                 return;
2837
2838         /* Don't continually defer the hangcheck so that it is always run at
2839          * least once after work has been scheduled on any ring. Otherwise,
2840          * we will ignore a hung ring if a second ring is kept busy.
2841          */
2842
2843         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2844                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2845 }
2846
2847 static void ibx_irq_reset(struct drm_device *dev)
2848 {
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851         if (HAS_PCH_NOP(dev))
2852                 return;
2853
2854         GEN5_IRQ_RESET(SDE);
2855
2856         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2857                 I915_WRITE(SERR_INT, 0xffffffff);
2858 }
2859
2860 /*
2861  * SDEIER is also touched by the interrupt handler to work around missed PCH
2862  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2863  * instead we unconditionally enable all PCH interrupt sources here, but then
2864  * only unmask them as needed with SDEIMR.
2865  *
2866  * This function needs to be called before interrupts are enabled.
2867  */
2868 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2869 {
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871
2872         if (HAS_PCH_NOP(dev))
2873                 return;
2874
2875         WARN_ON(I915_READ(SDEIER) != 0);
2876         I915_WRITE(SDEIER, 0xffffffff);
2877         POSTING_READ(SDEIER);
2878 }
2879
2880 static void gen5_gt_irq_reset(struct drm_device *dev)
2881 {
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883
2884         GEN5_IRQ_RESET(GT);
2885         if (INTEL_INFO(dev)->gen >= 6)
2886                 GEN5_IRQ_RESET(GEN6_PM);
2887 }
2888
2889 /* drm_dma.h hooks
2890 */
2891 static void ironlake_irq_reset(struct drm_device *dev)
2892 {
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895         I915_WRITE(HWSTAM, 0xffffffff);
2896
2897         GEN5_IRQ_RESET(DE);
2898         if (IS_GEN7(dev))
2899                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2900
2901         gen5_gt_irq_reset(dev);
2902
2903         ibx_irq_reset(dev);
2904 }
2905
2906 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2907 {
2908         enum pipe pipe;
2909
2910         I915_WRITE(PORT_HOTPLUG_EN, 0);
2911         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2912
2913         for_each_pipe(dev_priv, pipe)
2914                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2915
2916         GEN5_IRQ_RESET(VLV_);
2917 }
2918
2919 static void valleyview_irq_preinstall(struct drm_device *dev)
2920 {
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922
2923         /* VLV magic */
2924         I915_WRITE(VLV_IMR, 0);
2925         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2926         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2927         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2928
2929         gen5_gt_irq_reset(dev);
2930
2931         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2932
2933         vlv_display_irq_reset(dev_priv);
2934 }
2935
2936 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2937 {
2938         GEN8_IRQ_RESET_NDX(GT, 0);
2939         GEN8_IRQ_RESET_NDX(GT, 1);
2940         GEN8_IRQ_RESET_NDX(GT, 2);
2941         GEN8_IRQ_RESET_NDX(GT, 3);
2942 }
2943
2944 static void gen8_irq_reset(struct drm_device *dev)
2945 {
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947         int pipe;
2948
2949         I915_WRITE(GEN8_MASTER_IRQ, 0);
2950         POSTING_READ(GEN8_MASTER_IRQ);
2951
2952         gen8_gt_irq_reset(dev_priv);
2953
2954         for_each_pipe(dev_priv, pipe)
2955                 if (intel_display_power_is_enabled(dev_priv,
2956                                                    POWER_DOMAIN_PIPE(pipe)))
2957                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2958
2959         GEN5_IRQ_RESET(GEN8_DE_PORT_);
2960         GEN5_IRQ_RESET(GEN8_DE_MISC_);
2961         GEN5_IRQ_RESET(GEN8_PCU_);
2962
2963         if (HAS_PCH_SPLIT(dev))
2964                 ibx_irq_reset(dev);
2965 }
2966
2967 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2968                                      unsigned int pipe_mask)
2969 {
2970         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2971
2972         spin_lock_irq(&dev_priv->irq_lock);
2973         if (pipe_mask & 1 << PIPE_A)
2974                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2975                                   dev_priv->de_irq_mask[PIPE_A],
2976                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2977         if (pipe_mask & 1 << PIPE_B)
2978                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2979                                   dev_priv->de_irq_mask[PIPE_B],
2980                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2981         if (pipe_mask & 1 << PIPE_C)
2982                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2983                                   dev_priv->de_irq_mask[PIPE_C],
2984                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2985         spin_unlock_irq(&dev_priv->irq_lock);
2986 }
2987
2988 static void cherryview_irq_preinstall(struct drm_device *dev)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991
2992         I915_WRITE(GEN8_MASTER_IRQ, 0);
2993         POSTING_READ(GEN8_MASTER_IRQ);
2994
2995         gen8_gt_irq_reset(dev_priv);
2996
2997         GEN5_IRQ_RESET(GEN8_PCU_);
2998
2999         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3000
3001         vlv_display_irq_reset(dev_priv);
3002 }
3003
3004 static void ibx_hpd_irq_setup(struct drm_device *dev)
3005 {
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_encoder *intel_encoder;
3008         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3009
3010         if (HAS_PCH_IBX(dev)) {
3011                 hotplug_irqs = SDE_HOTPLUG_MASK;
3012                 for_each_intel_encoder(dev, intel_encoder)
3013                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3014                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3015         } else if (HAS_PCH_SPT(dev)) {
3016                 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3017                 for_each_intel_encoder(dev, intel_encoder)
3018                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3019                                 enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3020         } else {
3021                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3022                 for_each_intel_encoder(dev, intel_encoder)
3023                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3024                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3025         }
3026
3027         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3028
3029         /*
3030          * Enable digital hotplug on the PCH, and configure the DP short pulse
3031          * duration to 2ms (which is the minimum in the Display Port spec)
3032          *
3033          * This register is the same on all known PCH chips.
3034          */
3035         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3036         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3037         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3038         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3039         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3040         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3041
3042         /* enable SPT PORTE hot plug */
3043         if (HAS_PCH_SPT(dev)) {
3044                 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3045                 hotplug |= PORTE_HOTPLUG_ENABLE;
3046                 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3047         }
3048 }
3049
3050 static void bxt_hpd_irq_setup(struct drm_device *dev)
3051 {
3052         struct drm_i915_private *dev_priv = dev->dev_private;
3053         struct intel_encoder *intel_encoder;
3054         u32 hotplug_port = 0;
3055         u32 hotplug_ctrl;
3056
3057         /* Now, enable HPD */
3058         for_each_intel_encoder(dev, intel_encoder) {
3059                 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3060                                 == HPD_ENABLED)
3061                         hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3062         }
3063
3064         /* Mask all HPD control bits */
3065         hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3066
3067         /* Enable requested port in hotplug control */
3068         /* TODO: implement (short) HPD support on port A */
3069         WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3070         if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3071                 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3072         if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3073                 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3074         I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3075
3076         /* Unmask DDI hotplug in IMR */
3077         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3078         I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3079
3080         /* Enable DDI hotplug in IER */
3081         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3082         I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3083         POSTING_READ(GEN8_DE_PORT_IER);
3084 }
3085
3086 static void ibx_irq_postinstall(struct drm_device *dev)
3087 {
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         u32 mask;
3090
3091         if (HAS_PCH_NOP(dev))
3092                 return;
3093
3094         if (HAS_PCH_IBX(dev))
3095                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3096         else
3097                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3098
3099         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3100         I915_WRITE(SDEIMR, ~mask);
3101 }
3102
3103 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3104 {
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106         u32 pm_irqs, gt_irqs;
3107
3108         pm_irqs = gt_irqs = 0;
3109
3110         dev_priv->gt_irq_mask = ~0;
3111         if (HAS_L3_DPF(dev)) {
3112                 /* L3 parity interrupt is always unmasked. */
3113                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3114                 gt_irqs |= GT_PARITY_ERROR(dev);
3115         }
3116
3117         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3118         if (IS_GEN5(dev)) {
3119                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3120                            ILK_BSD_USER_INTERRUPT;
3121         } else {
3122                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3123         }
3124
3125         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3126
3127         if (INTEL_INFO(dev)->gen >= 6) {
3128                 /*
3129                  * RPS interrupts will get enabled/disabled on demand when RPS
3130                  * itself is enabled/disabled.
3131                  */
3132                 if (HAS_VEBOX(dev))
3133                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3134
3135                 dev_priv->pm_irq_mask = 0xffffffff;
3136                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3137         }
3138 }
3139
3140 static int ironlake_irq_postinstall(struct drm_device *dev)
3141 {
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         u32 display_mask, extra_mask;
3144
3145         if (INTEL_INFO(dev)->gen >= 7) {
3146                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3147                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3148                                 DE_PLANEB_FLIP_DONE_IVB |
3149                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3150                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3151                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3152         } else {
3153                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3154                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3155                                 DE_AUX_CHANNEL_A |
3156                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3157                                 DE_POISON);
3158                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3159                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3160         }
3161
3162         dev_priv->irq_mask = ~display_mask;
3163
3164         I915_WRITE(HWSTAM, 0xeffe);
3165
3166         ibx_irq_pre_postinstall(dev);
3167
3168         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3169
3170         gen5_gt_irq_postinstall(dev);
3171
3172         ibx_irq_postinstall(dev);
3173
3174         if (IS_IRONLAKE_M(dev)) {
3175                 /* Enable PCU event interrupts
3176                  *
3177                  * spinlocking not required here for correctness since interrupt
3178                  * setup is guaranteed to run in single-threaded context. But we
3179                  * need it to make the assert_spin_locked happy. */
3180                 spin_lock_irq(&dev_priv->irq_lock);
3181                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3182                 spin_unlock_irq(&dev_priv->irq_lock);
3183         }
3184
3185         return 0;
3186 }
3187
3188 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3189 {
3190         u32 pipestat_mask;
3191         u32 iir_mask;
3192         enum pipe pipe;
3193
3194         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3195                         PIPE_FIFO_UNDERRUN_STATUS;
3196
3197         for_each_pipe(dev_priv, pipe)
3198                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3199         POSTING_READ(PIPESTAT(PIPE_A));
3200
3201         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3202                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3203
3204         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3205         for_each_pipe(dev_priv, pipe)
3206                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3207
3208         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3209                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3210                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3211         if (IS_CHERRYVIEW(dev_priv))
3212                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3213         dev_priv->irq_mask &= ~iir_mask;
3214
3215         I915_WRITE(VLV_IIR, iir_mask);
3216         I915_WRITE(VLV_IIR, iir_mask);
3217         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3218         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3219         POSTING_READ(VLV_IMR);
3220 }
3221
3222 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3223 {
3224         u32 pipestat_mask;
3225         u32 iir_mask;
3226         enum pipe pipe;
3227
3228         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3229                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3230                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3231         if (IS_CHERRYVIEW(dev_priv))
3232                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3233
3234         dev_priv->irq_mask |= iir_mask;
3235         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3236         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3237         I915_WRITE(VLV_IIR, iir_mask);
3238         I915_WRITE(VLV_IIR, iir_mask);
3239         POSTING_READ(VLV_IIR);
3240
3241         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3242                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3243
3244         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3245         for_each_pipe(dev_priv, pipe)
3246                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3247
3248         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3249                         PIPE_FIFO_UNDERRUN_STATUS;
3250
3251         for_each_pipe(dev_priv, pipe)
3252                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3253         POSTING_READ(PIPESTAT(PIPE_A));
3254 }
3255
3256 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3257 {
3258         assert_spin_locked(&dev_priv->irq_lock);
3259
3260         if (dev_priv->display_irqs_enabled)
3261                 return;
3262
3263         dev_priv->display_irqs_enabled = true;
3264
3265         if (intel_irqs_enabled(dev_priv))
3266                 valleyview_display_irqs_install(dev_priv);
3267 }
3268
3269 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3270 {
3271         assert_spin_locked(&dev_priv->irq_lock);
3272
3273         if (!dev_priv->display_irqs_enabled)
3274                 return;
3275
3276         dev_priv->display_irqs_enabled = false;
3277
3278         if (intel_irqs_enabled(dev_priv))
3279                 valleyview_display_irqs_uninstall(dev_priv);
3280 }
3281
3282 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284         dev_priv->irq_mask = ~0;
3285
3286         I915_WRITE(PORT_HOTPLUG_EN, 0);
3287         POSTING_READ(PORT_HOTPLUG_EN);
3288
3289         I915_WRITE(VLV_IIR, 0xffffffff);
3290         I915_WRITE(VLV_IIR, 0xffffffff);
3291         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3292         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3293         POSTING_READ(VLV_IMR);
3294
3295         /* Interrupt setup is already guaranteed to be single-threaded, this is
3296          * just to make the assert_spin_locked check happy. */
3297         spin_lock_irq(&dev_priv->irq_lock);
3298         if (dev_priv->display_irqs_enabled)
3299                 valleyview_display_irqs_install(dev_priv);
3300         spin_unlock_irq(&dev_priv->irq_lock);
3301 }
3302
3303 static int valleyview_irq_postinstall(struct drm_device *dev)
3304 {
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307         vlv_display_irq_postinstall(dev_priv);
3308
3309         gen5_gt_irq_postinstall(dev);
3310
3311         /* ack & enable invalid PTE error interrupts */
3312 #if 0 /* FIXME: add support to irq handler for checking these bits */
3313         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3314         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3315 #endif
3316
3317         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3318
3319         return 0;
3320 }
3321
3322 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3323 {
3324         /* These are interrupts we'll toggle with the ring mask register */
3325         uint32_t gt_interrupts[] = {
3326                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3327                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3328                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3329                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3330                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3331                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3332                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3333                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3334                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3335                 0,
3336                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3337                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3338                 };
3339
3340         dev_priv->pm_irq_mask = 0xffffffff;
3341         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3342         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3343         /*
3344          * RPS interrupts will get enabled/disabled on demand when RPS itself
3345          * is enabled/disabled.
3346          */
3347         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3348         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3349 }
3350
3351 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3352 {
3353         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3354         uint32_t de_pipe_enables;
3355         int pipe;
3356         u32 de_port_en = GEN8_AUX_CHANNEL_A;
3357
3358         if (IS_GEN9(dev_priv)) {
3359                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3360                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3361                 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3362                         GEN9_AUX_CHANNEL_D;
3363
3364                 if (IS_BROXTON(dev_priv))
3365                         de_port_en |= BXT_DE_PORT_GMBUS;
3366         } else
3367                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3368                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3369
3370         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3371                                            GEN8_PIPE_FIFO_UNDERRUN;
3372
3373         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3374         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3375         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3376
3377         for_each_pipe(dev_priv, pipe)
3378                 if (intel_display_power_is_enabled(dev_priv,
3379                                 POWER_DOMAIN_PIPE(pipe)))
3380                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3381                                           dev_priv->de_irq_mask[pipe],
3382                                           de_pipe_enables);
3383
3384         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3385 }
3386
3387 static int gen8_irq_postinstall(struct drm_device *dev)
3388 {
3389         struct drm_i915_private *dev_priv = dev->dev_private;
3390
3391         if (HAS_PCH_SPLIT(dev))
3392                 ibx_irq_pre_postinstall(dev);
3393
3394         gen8_gt_irq_postinstall(dev_priv);
3395         gen8_de_irq_postinstall(dev_priv);
3396
3397         if (HAS_PCH_SPLIT(dev))
3398                 ibx_irq_postinstall(dev);
3399
3400         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3401         POSTING_READ(GEN8_MASTER_IRQ);
3402
3403         return 0;
3404 }
3405
3406 static int cherryview_irq_postinstall(struct drm_device *dev)
3407 {
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409
3410         vlv_display_irq_postinstall(dev_priv);
3411
3412         gen8_gt_irq_postinstall(dev_priv);
3413
3414         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3415         POSTING_READ(GEN8_MASTER_IRQ);
3416
3417         return 0;
3418 }
3419
3420 static void gen8_irq_uninstall(struct drm_device *dev)
3421 {
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423
3424         if (!dev_priv)
3425                 return;
3426
3427         gen8_irq_reset(dev);
3428 }
3429
3430 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432         /* Interrupt setup is already guaranteed to be single-threaded, this is
3433          * just to make the assert_spin_locked check happy. */
3434         spin_lock_irq(&dev_priv->irq_lock);
3435         if (dev_priv->display_irqs_enabled)
3436                 valleyview_display_irqs_uninstall(dev_priv);
3437         spin_unlock_irq(&dev_priv->irq_lock);
3438
3439         vlv_display_irq_reset(dev_priv);
3440
3441         dev_priv->irq_mask = ~0;
3442 }
3443
3444 static void valleyview_irq_uninstall(struct drm_device *dev)
3445 {
3446         struct drm_i915_private *dev_priv = dev->dev_private;
3447
3448         if (!dev_priv)
3449                 return;
3450
3451         I915_WRITE(VLV_MASTER_IER, 0);
3452
3453         gen5_gt_irq_reset(dev);
3454
3455         I915_WRITE(HWSTAM, 0xffffffff);
3456
3457         vlv_display_irq_uninstall(dev_priv);
3458 }
3459
3460 static void cherryview_irq_uninstall(struct drm_device *dev)
3461 {
3462         struct drm_i915_private *dev_priv = dev->dev_private;
3463
3464         if (!dev_priv)
3465                 return;
3466
3467         I915_WRITE(GEN8_MASTER_IRQ, 0);
3468         POSTING_READ(GEN8_MASTER_IRQ);
3469
3470         gen8_gt_irq_reset(dev_priv);
3471
3472         GEN5_IRQ_RESET(GEN8_PCU_);
3473
3474         vlv_display_irq_uninstall(dev_priv);
3475 }
3476
3477 static void ironlake_irq_uninstall(struct drm_device *dev)
3478 {
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480
3481         if (!dev_priv)
3482                 return;
3483
3484         ironlake_irq_reset(dev);
3485 }
3486
3487 static void i8xx_irq_preinstall(struct drm_device * dev)
3488 {
3489         struct drm_i915_private *dev_priv = dev->dev_private;
3490         int pipe;
3491
3492         for_each_pipe(dev_priv, pipe)
3493                 I915_WRITE(PIPESTAT(pipe), 0);
3494         I915_WRITE16(IMR, 0xffff);
3495         I915_WRITE16(IER, 0x0);
3496         POSTING_READ16(IER);
3497 }
3498
3499 static int i8xx_irq_postinstall(struct drm_device *dev)
3500 {
3501         struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503         I915_WRITE16(EMR,
3504                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3505
3506         /* Unmask the interrupts that we always want on. */
3507         dev_priv->irq_mask =
3508                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3509                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3510                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3511                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3512         I915_WRITE16(IMR, dev_priv->irq_mask);
3513
3514         I915_WRITE16(IER,
3515                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3516                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3517                      I915_USER_INTERRUPT);
3518         POSTING_READ16(IER);
3519
3520         /* Interrupt setup is already guaranteed to be single-threaded, this is
3521          * just to make the assert_spin_locked check happy. */
3522         spin_lock_irq(&dev_priv->irq_lock);
3523         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3524         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3525         spin_unlock_irq(&dev_priv->irq_lock);
3526
3527         return 0;
3528 }
3529
3530 /*
3531  * Returns true when a page flip has completed.
3532  */
3533 static bool i8xx_handle_vblank(struct drm_device *dev,
3534                                int plane, int pipe, u32 iir)
3535 {
3536         struct drm_i915_private *dev_priv = dev->dev_private;
3537         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3538
3539         if (!intel_pipe_handle_vblank(dev, pipe))
3540                 return false;
3541
3542         if ((iir & flip_pending) == 0)
3543                 goto check_page_flip;
3544
3545         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3546          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3547          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3548          * the flip is completed (no longer pending). Since this doesn't raise
3549          * an interrupt per se, we watch for the change at vblank.
3550          */
3551         if (I915_READ16(ISR) & flip_pending)
3552                 goto check_page_flip;
3553
3554         intel_prepare_page_flip(dev, plane);
3555         intel_finish_page_flip(dev, pipe);
3556         return true;
3557
3558 check_page_flip:
3559         intel_check_page_flip(dev, pipe);
3560         return false;
3561 }
3562
3563 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3564 {
3565         struct drm_device *dev = arg;
3566         struct drm_i915_private *dev_priv = dev->dev_private;
3567         u16 iir, new_iir;
3568         u32 pipe_stats[2];
3569         int pipe;
3570         u16 flip_mask =
3571                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3572                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3573
3574         if (!intel_irqs_enabled(dev_priv))
3575                 return IRQ_NONE;
3576
3577         iir = I915_READ16(IIR);
3578         if (iir == 0)
3579                 return IRQ_NONE;
3580
3581         while (iir & ~flip_mask) {
3582                 /* Can't rely on pipestat interrupt bit in iir as it might
3583                  * have been cleared after the pipestat interrupt was received.
3584                  * It doesn't set the bit in iir again, but it still produces
3585                  * interrupts (for non-MSI).
3586                  */
3587                 spin_lock(&dev_priv->irq_lock);
3588                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3589                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3590
3591                 for_each_pipe(dev_priv, pipe) {
3592                         int reg = PIPESTAT(pipe);
3593                         pipe_stats[pipe] = I915_READ(reg);
3594
3595                         /*
3596                          * Clear the PIPE*STAT regs before the IIR
3597                          */
3598                         if (pipe_stats[pipe] & 0x8000ffff)
3599                                 I915_WRITE(reg, pipe_stats[pipe]);
3600                 }
3601                 spin_unlock(&dev_priv->irq_lock);
3602
3603                 I915_WRITE16(IIR, iir & ~flip_mask);
3604                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3605
3606                 if (iir & I915_USER_INTERRUPT)
3607                         notify_ring(&dev_priv->ring[RCS]);
3608
3609                 for_each_pipe(dev_priv, pipe) {
3610                         int plane = pipe;
3611                         if (HAS_FBC(dev))
3612                                 plane = !plane;
3613
3614                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3615                             i8xx_handle_vblank(dev, plane, pipe, iir))
3616                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3617
3618                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3619                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3620
3621                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3622                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3623                                                                     pipe);
3624                 }
3625
3626                 iir = new_iir;
3627         }
3628
3629         return IRQ_HANDLED;
3630 }
3631
3632 static void i8xx_irq_uninstall(struct drm_device * dev)
3633 {
3634         struct drm_i915_private *dev_priv = dev->dev_private;
3635         int pipe;
3636
3637         for_each_pipe(dev_priv, pipe) {
3638                 /* Clear enable bits; then clear status bits */
3639                 I915_WRITE(PIPESTAT(pipe), 0);
3640                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3641         }
3642         I915_WRITE16(IMR, 0xffff);
3643         I915_WRITE16(IER, 0x0);
3644         I915_WRITE16(IIR, I915_READ16(IIR));
3645 }
3646
3647 static void i915_irq_preinstall(struct drm_device * dev)
3648 {
3649         struct drm_i915_private *dev_priv = dev->dev_private;
3650         int pipe;
3651
3652         if (I915_HAS_HOTPLUG(dev)) {
3653                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3654                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3655         }
3656
3657         I915_WRITE16(HWSTAM, 0xeffe);
3658         for_each_pipe(dev_priv, pipe)
3659                 I915_WRITE(PIPESTAT(pipe), 0);
3660         I915_WRITE(IMR, 0xffffffff);
3661         I915_WRITE(IER, 0x0);
3662         POSTING_READ(IER);
3663 }
3664
3665 static int i915_irq_postinstall(struct drm_device *dev)
3666 {
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         u32 enable_mask;
3669
3670         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3671
3672         /* Unmask the interrupts that we always want on. */
3673         dev_priv->irq_mask =
3674                 ~(I915_ASLE_INTERRUPT |
3675                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3677                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3678                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3679
3680         enable_mask =
3681                 I915_ASLE_INTERRUPT |
3682                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3683                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3684                 I915_USER_INTERRUPT;
3685
3686         if (I915_HAS_HOTPLUG(dev)) {
3687                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3688                 POSTING_READ(PORT_HOTPLUG_EN);
3689
3690                 /* Enable in IER... */
3691                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3692                 /* and unmask in IMR */
3693                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3694         }
3695
3696         I915_WRITE(IMR, dev_priv->irq_mask);
3697         I915_WRITE(IER, enable_mask);
3698         POSTING_READ(IER);
3699
3700         i915_enable_asle_pipestat(dev);
3701
3702         /* Interrupt setup is already guaranteed to be single-threaded, this is
3703          * just to make the assert_spin_locked check happy. */
3704         spin_lock_irq(&dev_priv->irq_lock);
3705         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3707         spin_unlock_irq(&dev_priv->irq_lock);
3708
3709         return 0;
3710 }
3711
3712 /*
3713  * Returns true when a page flip has completed.
3714  */
3715 static bool i915_handle_vblank(struct drm_device *dev,
3716                                int plane, int pipe, u32 iir)
3717 {
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3720
3721         if (!intel_pipe_handle_vblank(dev, pipe))
3722                 return false;
3723
3724         if ((iir & flip_pending) == 0)
3725                 goto check_page_flip;
3726
3727         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3728          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3729          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3730          * the flip is completed (no longer pending). Since this doesn't raise
3731          * an interrupt per se, we watch for the change at vblank.
3732          */
3733         if (I915_READ(ISR) & flip_pending)
3734                 goto check_page_flip;
3735
3736         intel_prepare_page_flip(dev, plane);
3737         intel_finish_page_flip(dev, pipe);
3738         return true;
3739
3740 check_page_flip:
3741         intel_check_page_flip(dev, pipe);
3742         return false;
3743 }
3744
3745 static irqreturn_t i915_irq_handler(int irq, void *arg)
3746 {
3747         struct drm_device *dev = arg;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3750         u32 flip_mask =
3751                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753         int pipe, ret = IRQ_NONE;
3754
3755         if (!intel_irqs_enabled(dev_priv))
3756                 return IRQ_NONE;
3757
3758         iir = I915_READ(IIR);
3759         do {
3760                 bool irq_received = (iir & ~flip_mask) != 0;
3761                 bool blc_event = false;
3762
3763                 /* Can't rely on pipestat interrupt bit in iir as it might
3764                  * have been cleared after the pipestat interrupt was received.
3765                  * It doesn't set the bit in iir again, but it still produces
3766                  * interrupts (for non-MSI).
3767                  */
3768                 spin_lock(&dev_priv->irq_lock);
3769                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3770                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3771
3772                 for_each_pipe(dev_priv, pipe) {
3773                         int reg = PIPESTAT(pipe);
3774                         pipe_stats[pipe] = I915_READ(reg);
3775
3776                         /* Clear the PIPE*STAT regs before the IIR */
3777                         if (pipe_stats[pipe] & 0x8000ffff) {
3778                                 I915_WRITE(reg, pipe_stats[pipe]);
3779                                 irq_received = true;
3780                         }
3781                 }
3782                 spin_unlock(&dev_priv->irq_lock);
3783
3784                 if (!irq_received)
3785                         break;
3786
3787                 /* Consume port.  Then clear IIR or we'll miss events */
3788                 if (I915_HAS_HOTPLUG(dev) &&
3789                     iir & I915_DISPLAY_PORT_INTERRUPT)
3790                         i9xx_hpd_irq_handler(dev);
3791
3792                 I915_WRITE(IIR, iir & ~flip_mask);
3793                 new_iir = I915_READ(IIR); /* Flush posted writes */
3794
3795                 if (iir & I915_USER_INTERRUPT)
3796                         notify_ring(&dev_priv->ring[RCS]);
3797
3798                 for_each_pipe(dev_priv, pipe) {
3799                         int plane = pipe;
3800                         if (HAS_FBC(dev))
3801                                 plane = !plane;
3802
3803                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3804                             i915_handle_vblank(dev, plane, pipe, iir))
3805                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3806
3807                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3808                                 blc_event = true;
3809
3810                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3811                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3812
3813                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3814                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3815                                                                     pipe);
3816                 }
3817
3818                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3819                         intel_opregion_asle_intr(dev);
3820
3821                 /* With MSI, interrupts are only generated when iir
3822                  * transitions from zero to nonzero.  If another bit got
3823                  * set while we were handling the existing iir bits, then
3824                  * we would never get another interrupt.
3825                  *
3826                  * This is fine on non-MSI as well, as if we hit this path
3827                  * we avoid exiting the interrupt handler only to generate
3828                  * another one.
3829                  *
3830                  * Note that for MSI this could cause a stray interrupt report
3831                  * if an interrupt landed in the time between writing IIR and
3832                  * the posting read.  This should be rare enough to never
3833                  * trigger the 99% of 100,000 interrupts test for disabling
3834                  * stray interrupts.
3835                  */
3836                 ret = IRQ_HANDLED;
3837                 iir = new_iir;
3838         } while (iir & ~flip_mask);
3839
3840         return ret;
3841 }
3842
3843 static void i915_irq_uninstall(struct drm_device * dev)
3844 {
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         int pipe;
3847
3848         if (I915_HAS_HOTPLUG(dev)) {
3849                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3850                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3851         }
3852
3853         I915_WRITE16(HWSTAM, 0xffff);
3854         for_each_pipe(dev_priv, pipe) {
3855                 /* Clear enable bits; then clear status bits */
3856                 I915_WRITE(PIPESTAT(pipe), 0);
3857                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3858         }
3859         I915_WRITE(IMR, 0xffffffff);
3860         I915_WRITE(IER, 0x0);
3861
3862         I915_WRITE(IIR, I915_READ(IIR));
3863 }
3864
3865 static void i965_irq_preinstall(struct drm_device * dev)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868         int pipe;
3869
3870         I915_WRITE(PORT_HOTPLUG_EN, 0);
3871         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3872
3873         I915_WRITE(HWSTAM, 0xeffe);
3874         for_each_pipe(dev_priv, pipe)
3875                 I915_WRITE(PIPESTAT(pipe), 0);
3876         I915_WRITE(IMR, 0xffffffff);
3877         I915_WRITE(IER, 0x0);
3878         POSTING_READ(IER);
3879 }
3880
3881 static int i965_irq_postinstall(struct drm_device *dev)
3882 {
3883         struct drm_i915_private *dev_priv = dev->dev_private;
3884         u32 enable_mask;
3885         u32 error_mask;
3886
3887         /* Unmask the interrupts that we always want on. */
3888         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3889                                I915_DISPLAY_PORT_INTERRUPT |
3890                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3891                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3892                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3893                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3894                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3895
3896         enable_mask = ~dev_priv->irq_mask;
3897         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3898                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3899         enable_mask |= I915_USER_INTERRUPT;
3900
3901         if (IS_G4X(dev))
3902                 enable_mask |= I915_BSD_USER_INTERRUPT;
3903
3904         /* Interrupt setup is already guaranteed to be single-threaded, this is
3905          * just to make the assert_spin_locked check happy. */
3906         spin_lock_irq(&dev_priv->irq_lock);
3907         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3908         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3909         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910         spin_unlock_irq(&dev_priv->irq_lock);
3911
3912         /*
3913          * Enable some error detection, note the instruction error mask
3914          * bit is reserved, so we leave it masked.
3915          */
3916         if (IS_G4X(dev)) {
3917                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3918                                GM45_ERROR_MEM_PRIV |
3919                                GM45_ERROR_CP_PRIV |
3920                                I915_ERROR_MEMORY_REFRESH);
3921         } else {
3922                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3923                                I915_ERROR_MEMORY_REFRESH);
3924         }
3925         I915_WRITE(EMR, error_mask);
3926
3927         I915_WRITE(IMR, dev_priv->irq_mask);
3928         I915_WRITE(IER, enable_mask);
3929         POSTING_READ(IER);
3930
3931         I915_WRITE(PORT_HOTPLUG_EN, 0);
3932         POSTING_READ(PORT_HOTPLUG_EN);
3933
3934         i915_enable_asle_pipestat(dev);
3935
3936         return 0;
3937 }
3938
3939 static void i915_hpd_irq_setup(struct drm_device *dev)
3940 {
3941         struct drm_i915_private *dev_priv = dev->dev_private;
3942         struct intel_encoder *intel_encoder;
3943         u32 hotplug_en;
3944
3945         assert_spin_locked(&dev_priv->irq_lock);
3946
3947         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3948         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3949         /* Note HDMI and DP share hotplug bits */
3950         /* enable bits are the same for all generations */
3951         for_each_intel_encoder(dev, intel_encoder)
3952                 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3953                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3954         /* Programming the CRT detection parameters tends
3955            to generate a spurious hotplug event about three
3956            seconds later.  So just do it once.
3957         */
3958         if (IS_G4X(dev))
3959                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3960         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3961         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3962
3963         /* Ignore TV since it's buggy */
3964         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3965 }
3966
3967 static irqreturn_t i965_irq_handler(int irq, void *arg)
3968 {
3969         struct drm_device *dev = arg;
3970         struct drm_i915_private *dev_priv = dev->dev_private;
3971         u32 iir, new_iir;
3972         u32 pipe_stats[I915_MAX_PIPES];
3973         int ret = IRQ_NONE, pipe;
3974         u32 flip_mask =
3975                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3976                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3977
3978         if (!intel_irqs_enabled(dev_priv))
3979                 return IRQ_NONE;
3980
3981         iir = I915_READ(IIR);
3982
3983         for (;;) {
3984                 bool irq_received = (iir & ~flip_mask) != 0;
3985                 bool blc_event = false;
3986
3987                 /* Can't rely on pipestat interrupt bit in iir as it might
3988                  * have been cleared after the pipestat interrupt was received.
3989                  * It doesn't set the bit in iir again, but it still produces
3990                  * interrupts (for non-MSI).
3991                  */
3992                 spin_lock(&dev_priv->irq_lock);
3993                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3994                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3995
3996                 for_each_pipe(dev_priv, pipe) {
3997                         int reg = PIPESTAT(pipe);
3998                         pipe_stats[pipe] = I915_READ(reg);
3999
4000                         /*
4001                          * Clear the PIPE*STAT regs before the IIR
4002                          */
4003                         if (pipe_stats[pipe] & 0x8000ffff) {
4004                                 I915_WRITE(reg, pipe_stats[pipe]);
4005                                 irq_received = true;
4006                         }
4007                 }
4008                 spin_unlock(&dev_priv->irq_lock);
4009
4010                 if (!irq_received)
4011                         break;
4012
4013                 ret = IRQ_HANDLED;
4014
4015                 /* Consume port.  Then clear IIR or we'll miss events */
4016                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4017                         i9xx_hpd_irq_handler(dev);
4018
4019                 I915_WRITE(IIR, iir & ~flip_mask);
4020                 new_iir = I915_READ(IIR); /* Flush posted writes */
4021
4022                 if (iir & I915_USER_INTERRUPT)
4023                         notify_ring(&dev_priv->ring[RCS]);
4024                 if (iir & I915_BSD_USER_INTERRUPT)
4025                         notify_ring(&dev_priv->ring[VCS]);
4026
4027                 for_each_pipe(dev_priv, pipe) {
4028                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4029                             i915_handle_vblank(dev, pipe, pipe, iir))
4030                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4031
4032                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4033                                 blc_event = true;
4034
4035                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4036                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4037
4038                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4039                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4040                 }
4041
4042                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4043                         intel_opregion_asle_intr(dev);
4044
4045                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4046                         gmbus_irq_handler(dev);
4047
4048                 /* With MSI, interrupts are only generated when iir
4049                  * transitions from zero to nonzero.  If another bit got
4050                  * set while we were handling the existing iir bits, then
4051                  * we would never get another interrupt.
4052                  *
4053                  * This is fine on non-MSI as well, as if we hit this path
4054                  * we avoid exiting the interrupt handler only to generate
4055                  * another one.
4056                  *
4057                  * Note that for MSI this could cause a stray interrupt report
4058                  * if an interrupt landed in the time between writing IIR and
4059                  * the posting read.  This should be rare enough to never
4060                  * trigger the 99% of 100,000 interrupts test for disabling
4061                  * stray interrupts.
4062                  */
4063                 iir = new_iir;
4064         }
4065
4066         return ret;
4067 }
4068
4069 static void i965_irq_uninstall(struct drm_device * dev)
4070 {
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072         int pipe;
4073
4074         if (!dev_priv)
4075                 return;
4076
4077         I915_WRITE(PORT_HOTPLUG_EN, 0);
4078         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4079
4080         I915_WRITE(HWSTAM, 0xffffffff);
4081         for_each_pipe(dev_priv, pipe)
4082                 I915_WRITE(PIPESTAT(pipe), 0);
4083         I915_WRITE(IMR, 0xffffffff);
4084         I915_WRITE(IER, 0x0);
4085
4086         for_each_pipe(dev_priv, pipe)
4087                 I915_WRITE(PIPESTAT(pipe),
4088                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4089         I915_WRITE(IIR, I915_READ(IIR));
4090 }
4091
4092 /**
4093  * intel_irq_init - initializes irq support
4094  * @dev_priv: i915 device instance
4095  *
4096  * This function initializes all the irq support including work items, timers
4097  * and all the vtables. It does not setup the interrupt itself though.
4098  */
4099 void intel_irq_init(struct drm_i915_private *dev_priv)
4100 {
4101         struct drm_device *dev = dev_priv->dev;
4102
4103         intel_hpd_init_work(dev_priv);
4104
4105         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4106         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4107
4108         /* Let's track the enabled rps events */
4109         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4110                 /* WaGsvRC0ResidencyMethod:vlv */
4111                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4112         else
4113                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4114
4115         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4116                           i915_hangcheck_elapsed);
4117
4118         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4119
4120         if (IS_GEN2(dev_priv)) {
4121                 dev->max_vblank_count = 0;
4122                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4123         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4124                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4125                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4126         } else {
4127                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4128                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4129         }
4130
4131         /*
4132          * Opt out of the vblank disable timer on everything except gen2.
4133          * Gen2 doesn't have a hardware frame counter and so depends on
4134          * vblank interrupts to produce sane vblank seuquence numbers.
4135          */
4136         if (!IS_GEN2(dev_priv))
4137                 dev->vblank_disable_immediate = true;
4138
4139         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4140         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4141
4142         if (IS_CHERRYVIEW(dev_priv)) {
4143                 dev->driver->irq_handler = cherryview_irq_handler;
4144                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4145                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4146                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4147                 dev->driver->enable_vblank = valleyview_enable_vblank;
4148                 dev->driver->disable_vblank = valleyview_disable_vblank;
4149                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4150         } else if (IS_VALLEYVIEW(dev_priv)) {
4151                 dev->driver->irq_handler = valleyview_irq_handler;
4152                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4153                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4154                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4155                 dev->driver->enable_vblank = valleyview_enable_vblank;
4156                 dev->driver->disable_vblank = valleyview_disable_vblank;
4157                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4158         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4159                 dev->driver->irq_handler = gen8_irq_handler;
4160                 dev->driver->irq_preinstall = gen8_irq_reset;
4161                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4162                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4163                 dev->driver->enable_vblank = gen8_enable_vblank;
4164                 dev->driver->disable_vblank = gen8_disable_vblank;
4165                 if (HAS_PCH_SPLIT(dev))
4166                         dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4167                 else
4168                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4169         } else if (HAS_PCH_SPLIT(dev)) {
4170                 dev->driver->irq_handler = ironlake_irq_handler;
4171                 dev->driver->irq_preinstall = ironlake_irq_reset;
4172                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4173                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4174                 dev->driver->enable_vblank = ironlake_enable_vblank;
4175                 dev->driver->disable_vblank = ironlake_disable_vblank;
4176                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4177         } else {
4178                 if (INTEL_INFO(dev_priv)->gen == 2) {
4179                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4180                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4181                         dev->driver->irq_handler = i8xx_irq_handler;
4182                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4183                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4184                         dev->driver->irq_preinstall = i915_irq_preinstall;
4185                         dev->driver->irq_postinstall = i915_irq_postinstall;
4186                         dev->driver->irq_uninstall = i915_irq_uninstall;
4187                         dev->driver->irq_handler = i915_irq_handler;
4188                 } else {
4189                         dev->driver->irq_preinstall = i965_irq_preinstall;
4190                         dev->driver->irq_postinstall = i965_irq_postinstall;
4191                         dev->driver->irq_uninstall = i965_irq_uninstall;
4192                         dev->driver->irq_handler = i965_irq_handler;
4193                 }
4194                 if (I915_HAS_HOTPLUG(dev_priv))
4195                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4196                 dev->driver->enable_vblank = i915_enable_vblank;
4197                 dev->driver->disable_vblank = i915_disable_vblank;
4198         }
4199 }
4200
4201 /**
4202  * intel_irq_install - enables the hardware interrupt
4203  * @dev_priv: i915 device instance
4204  *
4205  * This function enables the hardware interrupt handling, but leaves the hotplug
4206  * handling still disabled. It is called after intel_irq_init().
4207  *
4208  * In the driver load and resume code we need working interrupts in a few places
4209  * but don't want to deal with the hassle of concurrent probe and hotplug
4210  * workers. Hence the split into this two-stage approach.
4211  */
4212 int intel_irq_install(struct drm_i915_private *dev_priv)
4213 {
4214         /*
4215          * We enable some interrupt sources in our postinstall hooks, so mark
4216          * interrupts as enabled _before_ actually enabling them to avoid
4217          * special cases in our ordering checks.
4218          */
4219         dev_priv->pm.irqs_enabled = true;
4220
4221         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4222 }
4223
4224 /**
4225  * intel_irq_uninstall - finilizes all irq handling
4226  * @dev_priv: i915 device instance
4227  *
4228  * This stops interrupt and hotplug handling and unregisters and frees all
4229  * resources acquired in the init functions.
4230  */
4231 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4232 {
4233         drm_irq_uninstall(dev_priv->dev);
4234         intel_hpd_cancel_work(dev_priv);
4235         dev_priv->pm.irqs_enabled = false;
4236 }
4237
4238 /**
4239  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4240  * @dev_priv: i915 device instance
4241  *
4242  * This function is used to disable interrupts at runtime, both in the runtime
4243  * pm and the system suspend/resume code.
4244  */
4245 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4246 {
4247         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4248         dev_priv->pm.irqs_enabled = false;
4249         synchronize_irq(dev_priv->dev->irq);
4250 }
4251
4252 /**
4253  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4254  * @dev_priv: i915 device instance
4255  *
4256  * This function is used to enable interrupts at runtime, both in the runtime
4257  * pm and the system suspend/resume code.
4258  */
4259 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4260 {
4261         dev_priv->pm.irqs_enabled = true;
4262         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4263         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4264 }