]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge remote-tracking branch 'drm-intel/for-linux-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static int
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
408
409         /* dp aux is extremely sensitive to irq latency, hence request the
410          * lowest possible wakeup latency and so prevent the cpu from going into
411          * deep sleep states.
412          */
413         pm_qos_update_request(&dev_priv->pm_qos, 0);
414
415         intel_dp_check_edp(intel_dp);
416
417         if (IS_GEN6(dev))
418                 precharge = 3;
419         else
420                 precharge = 5;
421
422         intel_aux_display_runtime_get(dev_priv);
423
424         /* Try to wait for any previous AUX channel activity */
425         for (try = 0; try < 3; try++) {
426                 status = I915_READ_NOTRACE(ch_ctl);
427                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428                         break;
429                 msleep(1);
430         }
431
432         if (try == 3) {
433                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
434                      I915_READ(ch_ctl));
435                 ret = -EBUSY;
436                 goto out;
437         }
438
439         /* Only 5 data registers! */
440         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
441                 ret = -E2BIG;
442                 goto out;
443         }
444
445         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
446                 /* Must try at least 3 times according to DP spec */
447                 for (try = 0; try < 5; try++) {
448                         /* Load the send data into the aux channel data registers */
449                         for (i = 0; i < send_bytes; i += 4)
450                                 I915_WRITE(ch_data + i,
451                                            pack_aux(send + i, send_bytes - i));
452
453                         /* Send the command and wait for it to complete */
454                         I915_WRITE(ch_ctl,
455                                    DP_AUX_CH_CTL_SEND_BUSY |
456                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
457                                    DP_AUX_CH_CTL_TIME_OUT_400us |
458                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
459                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
460                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
461                                    DP_AUX_CH_CTL_DONE |
462                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
463                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
464
465                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
466
467                         /* Clear done status and any errors */
468                         I915_WRITE(ch_ctl,
469                                    status |
470                                    DP_AUX_CH_CTL_DONE |
471                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
472                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
475                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
476                                 continue;
477                         if (status & DP_AUX_CH_CTL_DONE)
478                                 break;
479                 }
480                 if (status & DP_AUX_CH_CTL_DONE)
481                         break;
482         }
483
484         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
485                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
486                 ret = -EBUSY;
487                 goto out;
488         }
489
490         /* Check for timeout or receive error.
491          * Timeouts occur when the sink is not connected
492          */
493         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
494                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
495                 ret = -EIO;
496                 goto out;
497         }
498
499         /* Timeouts occur when the device isn't connected, so they're
500          * "normal" -- don't fill the kernel log with these */
501         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
502                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
503                 ret = -ETIMEDOUT;
504                 goto out;
505         }
506
507         /* Unload any bytes sent back from the other side */
508         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
509                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
510         if (recv_bytes > recv_size)
511                 recv_bytes = recv_size;
512
513         for (i = 0; i < recv_bytes; i += 4)
514                 unpack_aux(I915_READ(ch_data + i),
515                            recv + i, recv_bytes - i);
516
517         ret = recv_bytes;
518 out:
519         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
520         intel_aux_display_runtime_put(dev_priv);
521
522         return ret;
523 }
524
525 /* Write data to the aux channel in native mode */
526 static int
527 intel_dp_aux_native_write(struct intel_dp *intel_dp,
528                           uint16_t address, uint8_t *send, int send_bytes)
529 {
530         int ret;
531         uint8_t msg[20];
532         int msg_bytes;
533         uint8_t ack;
534
535         if (WARN_ON(send_bytes > 16))
536                 return -E2BIG;
537
538         intel_dp_check_edp(intel_dp);
539         msg[0] = AUX_NATIVE_WRITE << 4;
540         msg[1] = address >> 8;
541         msg[2] = address & 0xff;
542         msg[3] = send_bytes - 1;
543         memcpy(&msg[4], send, send_bytes);
544         msg_bytes = send_bytes + 4;
545         for (;;) {
546                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
547                 if (ret < 0)
548                         return ret;
549                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
550                         break;
551                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552                         udelay(100);
553                 else
554                         return -EIO;
555         }
556         return send_bytes;
557 }
558
559 /* Write a single byte to the aux channel in native mode */
560 static int
561 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
562                             uint16_t address, uint8_t byte)
563 {
564         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
565 }
566
567 /* read bytes from a native aux channel */
568 static int
569 intel_dp_aux_native_read(struct intel_dp *intel_dp,
570                          uint16_t address, uint8_t *recv, int recv_bytes)
571 {
572         uint8_t msg[4];
573         int msg_bytes;
574         uint8_t reply[20];
575         int reply_bytes;
576         uint8_t ack;
577         int ret;
578
579         if (WARN_ON(recv_bytes > 19))
580                 return -E2BIG;
581
582         intel_dp_check_edp(intel_dp);
583         msg[0] = AUX_NATIVE_READ << 4;
584         msg[1] = address >> 8;
585         msg[2] = address & 0xff;
586         msg[3] = recv_bytes - 1;
587
588         msg_bytes = 4;
589         reply_bytes = recv_bytes + 1;
590
591         for (;;) {
592                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
593                                       reply, reply_bytes);
594                 if (ret == 0)
595                         return -EPROTO;
596                 if (ret < 0)
597                         return ret;
598                 ack = reply[0];
599                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
600                         memcpy(recv, reply + 1, ret - 1);
601                         return ret - 1;
602                 }
603                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
604                         udelay(100);
605                 else
606                         return -EIO;
607         }
608 }
609
610 static int
611 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
612                     uint8_t write_byte, uint8_t *read_byte)
613 {
614         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
615         struct intel_dp *intel_dp = container_of(adapter,
616                                                 struct intel_dp,
617                                                 adapter);
618         uint16_t address = algo_data->address;
619         uint8_t msg[5];
620         uint8_t reply[2];
621         unsigned retry;
622         int msg_bytes;
623         int reply_bytes;
624         int ret;
625
626         intel_dp_check_edp(intel_dp);
627         /* Set up the command byte */
628         if (mode & MODE_I2C_READ)
629                 msg[0] = AUX_I2C_READ << 4;
630         else
631                 msg[0] = AUX_I2C_WRITE << 4;
632
633         if (!(mode & MODE_I2C_STOP))
634                 msg[0] |= AUX_I2C_MOT << 4;
635
636         msg[1] = address >> 8;
637         msg[2] = address;
638
639         switch (mode) {
640         case MODE_I2C_WRITE:
641                 msg[3] = 0;
642                 msg[4] = write_byte;
643                 msg_bytes = 5;
644                 reply_bytes = 1;
645                 break;
646         case MODE_I2C_READ:
647                 msg[3] = 0;
648                 msg_bytes = 4;
649                 reply_bytes = 2;
650                 break;
651         default:
652                 msg_bytes = 3;
653                 reply_bytes = 1;
654                 break;
655         }
656
657         /*
658          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
659          * required to retry at least seven times upon receiving AUX_DEFER
660          * before giving up the AUX transaction.
661          */
662         for (retry = 0; retry < 7; retry++) {
663                 ret = intel_dp_aux_ch(intel_dp,
664                                       msg, msg_bytes,
665                                       reply, reply_bytes);
666                 if (ret < 0) {
667                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
668                         return ret;
669                 }
670
671                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
672                 case AUX_NATIVE_REPLY_ACK:
673                         /* I2C-over-AUX Reply field is only valid
674                          * when paired with AUX ACK.
675                          */
676                         break;
677                 case AUX_NATIVE_REPLY_NACK:
678                         DRM_DEBUG_KMS("aux_ch native nack\n");
679                         return -EREMOTEIO;
680                 case AUX_NATIVE_REPLY_DEFER:
681                         /*
682                          * For now, just give more slack to branch devices. We
683                          * could check the DPCD for I2C bit rate capabilities,
684                          * and if available, adjust the interval. We could also
685                          * be more careful with DP-to-Legacy adapters where a
686                          * long legacy cable may force very low I2C bit rates.
687                          */
688                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
689                             DP_DWN_STRM_PORT_PRESENT)
690                                 usleep_range(500, 600);
691                         else
692                                 usleep_range(300, 400);
693                         continue;
694                 default:
695                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
696                                   reply[0]);
697                         return -EREMOTEIO;
698                 }
699
700                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
701                 case AUX_I2C_REPLY_ACK:
702                         if (mode == MODE_I2C_READ) {
703                                 *read_byte = reply[1];
704                         }
705                         return reply_bytes - 1;
706                 case AUX_I2C_REPLY_NACK:
707                         DRM_DEBUG_KMS("aux_i2c nack\n");
708                         return -EREMOTEIO;
709                 case AUX_I2C_REPLY_DEFER:
710                         DRM_DEBUG_KMS("aux_i2c defer\n");
711                         udelay(100);
712                         break;
713                 default:
714                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
715                         return -EREMOTEIO;
716                 }
717         }
718
719         DRM_ERROR("too many retries, giving up\n");
720         return -EREMOTEIO;
721 }
722
723 static int
724 intel_dp_i2c_init(struct intel_dp *intel_dp,
725                   struct intel_connector *intel_connector, const char *name)
726 {
727         int     ret;
728
729         DRM_DEBUG_KMS("i2c_init %s\n", name);
730         intel_dp->algo.running = false;
731         intel_dp->algo.address = 0;
732         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
733
734         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
735         intel_dp->adapter.owner = THIS_MODULE;
736         intel_dp->adapter.class = I2C_CLASS_DDC;
737         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
738         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
739         intel_dp->adapter.algo_data = &intel_dp->algo;
740         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
741
742         ironlake_edp_panel_vdd_on(intel_dp);
743         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
744         ironlake_edp_panel_vdd_off(intel_dp, false);
745         return ret;
746 }
747
748 static void
749 intel_dp_set_clock(struct intel_encoder *encoder,
750                    struct intel_crtc_config *pipe_config, int link_bw)
751 {
752         struct drm_device *dev = encoder->base.dev;
753         const struct dp_link_dpll *divisor = NULL;
754         int i, count = 0;
755
756         if (IS_G4X(dev)) {
757                 divisor = gen4_dpll;
758                 count = ARRAY_SIZE(gen4_dpll);
759         } else if (IS_HASWELL(dev)) {
760                 /* Haswell has special-purpose DP DDI clocks. */
761         } else if (HAS_PCH_SPLIT(dev)) {
762                 divisor = pch_dpll;
763                 count = ARRAY_SIZE(pch_dpll);
764         } else if (IS_VALLEYVIEW(dev)) {
765                 divisor = vlv_dpll;
766                 count = ARRAY_SIZE(vlv_dpll);
767         }
768
769         if (divisor && count) {
770                 for (i = 0; i < count; i++) {
771                         if (link_bw == divisor[i].link_bw) {
772                                 pipe_config->dpll = divisor[i].dpll;
773                                 pipe_config->clock_set = true;
774                                 break;
775                         }
776                 }
777         }
778 }
779
780 bool
781 intel_dp_compute_config(struct intel_encoder *encoder,
782                         struct intel_crtc_config *pipe_config)
783 {
784         struct drm_device *dev = encoder->base.dev;
785         struct drm_i915_private *dev_priv = dev->dev_private;
786         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788         enum port port = dp_to_dig_port(intel_dp)->port;
789         struct intel_crtc *intel_crtc = encoder->new_crtc;
790         struct intel_connector *intel_connector = intel_dp->attached_connector;
791         int lane_count, clock;
792         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
794         int bpp, mode_rate;
795         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
796         int link_avail, link_clock;
797
798         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
799                 pipe_config->has_pch_encoder = true;
800
801         pipe_config->has_dp_encoder = true;
802
803         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
804                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
805                                        adjusted_mode);
806                 if (!HAS_PCH_SPLIT(dev))
807                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
808                                                  intel_connector->panel.fitting_mode);
809                 else
810                         intel_pch_panel_fitting(intel_crtc, pipe_config,
811                                                 intel_connector->panel.fitting_mode);
812         }
813
814         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
815                 return false;
816
817         DRM_DEBUG_KMS("DP link computation with max lane count %i "
818                       "max bw %02x pixel clock %iKHz\n",
819                       max_lane_count, bws[max_clock],
820                       adjusted_mode->crtc_clock);
821
822         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
823          * bpc in between. */
824         bpp = pipe_config->pipe_bpp;
825         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
826             dev_priv->vbt.edp_bpp < bpp) {
827                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
828                               dev_priv->vbt.edp_bpp);
829                 bpp = dev_priv->vbt.edp_bpp;
830         }
831
832         for (; bpp >= 6*3; bpp -= 2*3) {
833                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
834                                                    bpp);
835
836                 for (clock = 0; clock <= max_clock; clock++) {
837                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
838                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
839                                 link_avail = intel_dp_max_data_rate(link_clock,
840                                                                     lane_count);
841
842                                 if (mode_rate <= link_avail) {
843                                         goto found;
844                                 }
845                         }
846                 }
847         }
848
849         return false;
850
851 found:
852         if (intel_dp->color_range_auto) {
853                 /*
854                  * See:
855                  * CEA-861-E - 5.1 Default Encoding Parameters
856                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
857                  */
858                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
859                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
860                 else
861                         intel_dp->color_range = 0;
862         }
863
864         if (intel_dp->color_range)
865                 pipe_config->limited_color_range = true;
866
867         intel_dp->link_bw = bws[clock];
868         intel_dp->lane_count = lane_count;
869         pipe_config->pipe_bpp = bpp;
870         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
871
872         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
873                       intel_dp->link_bw, intel_dp->lane_count,
874                       pipe_config->port_clock, bpp);
875         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
876                       mode_rate, link_avail);
877
878         intel_link_compute_m_n(bpp, lane_count,
879                                adjusted_mode->crtc_clock,
880                                pipe_config->port_clock,
881                                &pipe_config->dp_m_n);
882
883         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
884
885         return true;
886 }
887
888 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
889 {
890         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
891         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
892         struct drm_device *dev = crtc->base.dev;
893         struct drm_i915_private *dev_priv = dev->dev_private;
894         u32 dpa_ctl;
895
896         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
897         dpa_ctl = I915_READ(DP_A);
898         dpa_ctl &= ~DP_PLL_FREQ_MASK;
899
900         if (crtc->config.port_clock == 162000) {
901                 /* For a long time we've carried around a ILK-DevA w/a for the
902                  * 160MHz clock. If we're really unlucky, it's still required.
903                  */
904                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
905                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
906                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
907         } else {
908                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
909                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910         }
911
912         I915_WRITE(DP_A, dpa_ctl);
913
914         POSTING_READ(DP_A);
915         udelay(500);
916 }
917
918 static void intel_dp_mode_set(struct intel_encoder *encoder)
919 {
920         struct drm_device *dev = encoder->base.dev;
921         struct drm_i915_private *dev_priv = dev->dev_private;
922         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
923         enum port port = dp_to_dig_port(intel_dp)->port;
924         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
925         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
926
927         /*
928          * There are four kinds of DP registers:
929          *
930          *      IBX PCH
931          *      SNB CPU
932          *      IVB CPU
933          *      CPT PCH
934          *
935          * IBX PCH and CPU are the same for almost everything,
936          * except that the CPU DP PLL is configured in this
937          * register
938          *
939          * CPT PCH is quite different, having many bits moved
940          * to the TRANS_DP_CTL register instead. That
941          * configuration happens (oddly) in ironlake_pch_enable
942          */
943
944         /* Preserve the BIOS-computed detected bit. This is
945          * supposed to be read-only.
946          */
947         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
948
949         /* Handle DP bits in common between all three register formats */
950         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
951         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
952
953         if (intel_dp->has_audio) {
954                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
955                                  pipe_name(crtc->pipe));
956                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
957                 intel_write_eld(&encoder->base, adjusted_mode);
958         }
959
960         /* Split out the IBX/CPU vs CPT settings */
961
962         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
963                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
964                         intel_dp->DP |= DP_SYNC_HS_HIGH;
965                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
966                         intel_dp->DP |= DP_SYNC_VS_HIGH;
967                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
968
969                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
970                         intel_dp->DP |= DP_ENHANCED_FRAMING;
971
972                 intel_dp->DP |= crtc->pipe << 29;
973         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
974                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
975                         intel_dp->DP |= intel_dp->color_range;
976
977                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978                         intel_dp->DP |= DP_SYNC_HS_HIGH;
979                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980                         intel_dp->DP |= DP_SYNC_VS_HIGH;
981                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
982
983                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984                         intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986                 if (crtc->pipe == 1)
987                         intel_dp->DP |= DP_PIPEB_SELECT;
988         } else {
989                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990         }
991
992         if (port == PORT_A && !IS_VALLEYVIEW(dev))
993                 ironlake_set_pll_cpu_edp(intel_dp);
994 }
995
996 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
997 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
998
999 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1000 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1001
1002 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1006                                        u32 mask,
1007                                        u32 value)
1008 {
1009         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 pp_stat_reg, pp_ctrl_reg;
1012
1013         pp_stat_reg = _pp_stat_reg(intel_dp);
1014         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1015
1016         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017                         mask, value,
1018                         I915_READ(pp_stat_reg),
1019                         I915_READ(pp_ctrl_reg));
1020
1021         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023                                 I915_READ(pp_stat_reg),
1024                                 I915_READ(pp_ctrl_reg));
1025         }
1026 }
1027
1028 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1029 {
1030         DRM_DEBUG_KMS("Wait for panel power on\n");
1031         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1032 }
1033
1034 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1035 {
1036         DRM_DEBUG_KMS("Wait for panel power off time\n");
1037         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1038 }
1039
1040 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1041 {
1042         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1043         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1044 }
1045
1046
1047 /* Read the current pp_control value, unlocking the register if it
1048  * is locked
1049  */
1050
1051 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1052 {
1053         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055         u32 control;
1056
1057         control = I915_READ(_pp_ctrl_reg(intel_dp));
1058         control &= ~PANEL_UNLOCK_MASK;
1059         control |= PANEL_UNLOCK_REGS;
1060         return control;
1061 }
1062
1063 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1064 {
1065         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         u32 pp;
1068         u32 pp_stat_reg, pp_ctrl_reg;
1069
1070         if (!is_edp(intel_dp))
1071                 return;
1072         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1073
1074         WARN(intel_dp->want_panel_vdd,
1075              "eDP VDD already requested on\n");
1076
1077         intel_dp->want_panel_vdd = true;
1078
1079         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1080                 DRM_DEBUG_KMS("eDP VDD already on\n");
1081                 return;
1082         }
1083
1084         if (!ironlake_edp_have_panel_power(intel_dp))
1085                 ironlake_wait_panel_power_cycle(intel_dp);
1086
1087         pp = ironlake_get_pp_control(intel_dp);
1088         pp |= EDP_FORCE_VDD;
1089
1090         pp_stat_reg = _pp_stat_reg(intel_dp);
1091         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1092
1093         I915_WRITE(pp_ctrl_reg, pp);
1094         POSTING_READ(pp_ctrl_reg);
1095         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1096                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1097         /*
1098          * If the panel wasn't on, delay before accessing aux channel
1099          */
1100         if (!ironlake_edp_have_panel_power(intel_dp)) {
1101                 DRM_DEBUG_KMS("eDP was not running\n");
1102                 msleep(intel_dp->panel_power_up_delay);
1103         }
1104 }
1105
1106 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1107 {
1108         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1109         struct drm_i915_private *dev_priv = dev->dev_private;
1110         u32 pp;
1111         u32 pp_stat_reg, pp_ctrl_reg;
1112
1113         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1114
1115         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1116                 pp = ironlake_get_pp_control(intel_dp);
1117                 pp &= ~EDP_FORCE_VDD;
1118
1119                 pp_stat_reg = _pp_ctrl_reg(intel_dp);
1120                 pp_ctrl_reg = _pp_stat_reg(intel_dp);
1121
1122                 I915_WRITE(pp_ctrl_reg, pp);
1123                 POSTING_READ(pp_ctrl_reg);
1124
1125                 /* Make sure sequencer is idle before allowing subsequent activity */
1126                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1127                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1128                 msleep(intel_dp->panel_power_down_delay);
1129         }
1130 }
1131
1132 static void ironlake_panel_vdd_work(struct work_struct *__work)
1133 {
1134         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1135                                                  struct intel_dp, panel_vdd_work);
1136         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1137
1138         mutex_lock(&dev->mode_config.mutex);
1139         ironlake_panel_vdd_off_sync(intel_dp);
1140         mutex_unlock(&dev->mode_config.mutex);
1141 }
1142
1143 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1144 {
1145         if (!is_edp(intel_dp))
1146                 return;
1147
1148         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1149         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1150
1151         intel_dp->want_panel_vdd = false;
1152
1153         if (sync) {
1154                 ironlake_panel_vdd_off_sync(intel_dp);
1155         } else {
1156                 /*
1157                  * Queue the timer to fire a long
1158                  * time from now (relative to the power down delay)
1159                  * to keep the panel power up across a sequence of operations
1160                  */
1161                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1162                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1163         }
1164 }
1165
1166 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1167 {
1168         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         u32 pp;
1171         u32 pp_ctrl_reg;
1172
1173         if (!is_edp(intel_dp))
1174                 return;
1175
1176         DRM_DEBUG_KMS("Turn eDP power on\n");
1177
1178         if (ironlake_edp_have_panel_power(intel_dp)) {
1179                 DRM_DEBUG_KMS("eDP power already on\n");
1180                 return;
1181         }
1182
1183         ironlake_wait_panel_power_cycle(intel_dp);
1184
1185         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1186         pp = ironlake_get_pp_control(intel_dp);
1187         if (IS_GEN5(dev)) {
1188                 /* ILK workaround: disable reset around power sequence */
1189                 pp &= ~PANEL_POWER_RESET;
1190                 I915_WRITE(pp_ctrl_reg, pp);
1191                 POSTING_READ(pp_ctrl_reg);
1192         }
1193
1194         pp |= POWER_TARGET_ON;
1195         if (!IS_GEN5(dev))
1196                 pp |= PANEL_POWER_RESET;
1197
1198         I915_WRITE(pp_ctrl_reg, pp);
1199         POSTING_READ(pp_ctrl_reg);
1200
1201         ironlake_wait_panel_on(intel_dp);
1202
1203         if (IS_GEN5(dev)) {
1204                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1205                 I915_WRITE(pp_ctrl_reg, pp);
1206                 POSTING_READ(pp_ctrl_reg);
1207         }
1208 }
1209
1210 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1211 {
1212         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         u32 pp;
1215         u32 pp_ctrl_reg;
1216
1217         if (!is_edp(intel_dp))
1218                 return;
1219
1220         DRM_DEBUG_KMS("Turn eDP power off\n");
1221
1222         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1223
1224         pp = ironlake_get_pp_control(intel_dp);
1225         /* We need to switch off panel power _and_ force vdd, for otherwise some
1226          * panels get very unhappy and cease to work. */
1227         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1228
1229         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1230
1231         I915_WRITE(pp_ctrl_reg, pp);
1232         POSTING_READ(pp_ctrl_reg);
1233
1234         intel_dp->want_panel_vdd = false;
1235
1236         ironlake_wait_panel_off(intel_dp);
1237 }
1238
1239 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1240 {
1241         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242         struct drm_device *dev = intel_dig_port->base.base.dev;
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1245         u32 pp;
1246         u32 pp_ctrl_reg;
1247
1248         if (!is_edp(intel_dp))
1249                 return;
1250
1251         DRM_DEBUG_KMS("\n");
1252         /*
1253          * If we enable the backlight right away following a panel power
1254          * on, we may see slight flicker as the panel syncs with the eDP
1255          * link.  So delay a bit to make sure the image is solid before
1256          * allowing it to appear.
1257          */
1258         msleep(intel_dp->backlight_on_delay);
1259         pp = ironlake_get_pp_control(intel_dp);
1260         pp |= EDP_BLC_ENABLE;
1261
1262         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1263
1264         I915_WRITE(pp_ctrl_reg, pp);
1265         POSTING_READ(pp_ctrl_reg);
1266
1267         intel_panel_enable_backlight(dev, pipe);
1268 }
1269
1270 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1271 {
1272         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         u32 pp;
1275         u32 pp_ctrl_reg;
1276
1277         if (!is_edp(intel_dp))
1278                 return;
1279
1280         intel_panel_disable_backlight(dev);
1281
1282         DRM_DEBUG_KMS("\n");
1283         pp = ironlake_get_pp_control(intel_dp);
1284         pp &= ~EDP_BLC_ENABLE;
1285
1286         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1287
1288         I915_WRITE(pp_ctrl_reg, pp);
1289         POSTING_READ(pp_ctrl_reg);
1290         msleep(intel_dp->backlight_off_delay);
1291 }
1292
1293 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1297         struct drm_device *dev = crtc->dev;
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299         u32 dpa_ctl;
1300
1301         assert_pipe_disabled(dev_priv,
1302                              to_intel_crtc(crtc)->pipe);
1303
1304         DRM_DEBUG_KMS("\n");
1305         dpa_ctl = I915_READ(DP_A);
1306         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1307         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1308
1309         /* We don't adjust intel_dp->DP while tearing down the link, to
1310          * facilitate link retraining (e.g. after hotplug). Hence clear all
1311          * enable bits here to ensure that we don't enable too much. */
1312         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1313         intel_dp->DP |= DP_PLL_ENABLE;
1314         I915_WRITE(DP_A, intel_dp->DP);
1315         POSTING_READ(DP_A);
1316         udelay(200);
1317 }
1318
1319 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1320 {
1321         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1322         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1323         struct drm_device *dev = crtc->dev;
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         u32 dpa_ctl;
1326
1327         assert_pipe_disabled(dev_priv,
1328                              to_intel_crtc(crtc)->pipe);
1329
1330         dpa_ctl = I915_READ(DP_A);
1331         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1332              "dp pll off, should be on\n");
1333         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1334
1335         /* We can't rely on the value tracked for the DP register in
1336          * intel_dp->DP because link_down must not change that (otherwise link
1337          * re-training will fail. */
1338         dpa_ctl &= ~DP_PLL_ENABLE;
1339         I915_WRITE(DP_A, dpa_ctl);
1340         POSTING_READ(DP_A);
1341         udelay(200);
1342 }
1343
1344 /* If the sink supports it, try to set the power state appropriately */
1345 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1346 {
1347         int ret, i;
1348
1349         /* Should have a valid DPCD by this point */
1350         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1351                 return;
1352
1353         if (mode != DRM_MODE_DPMS_ON) {
1354                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1355                                                   DP_SET_POWER_D3);
1356                 if (ret != 1)
1357                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1358         } else {
1359                 /*
1360                  * When turning on, we need to retry for 1ms to give the sink
1361                  * time to wake up.
1362                  */
1363                 for (i = 0; i < 3; i++) {
1364                         ret = intel_dp_aux_native_write_1(intel_dp,
1365                                                           DP_SET_POWER,
1366                                                           DP_SET_POWER_D0);
1367                         if (ret == 1)
1368                                 break;
1369                         msleep(1);
1370                 }
1371         }
1372 }
1373
1374 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1375                                   enum pipe *pipe)
1376 {
1377         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1378         enum port port = dp_to_dig_port(intel_dp)->port;
1379         struct drm_device *dev = encoder->base.dev;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         u32 tmp = I915_READ(intel_dp->output_reg);
1382
1383         if (!(tmp & DP_PORT_EN))
1384                 return false;
1385
1386         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1387                 *pipe = PORT_TO_PIPE_CPT(tmp);
1388         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1389                 *pipe = PORT_TO_PIPE(tmp);
1390         } else {
1391                 u32 trans_sel;
1392                 u32 trans_dp;
1393                 int i;
1394
1395                 switch (intel_dp->output_reg) {
1396                 case PCH_DP_B:
1397                         trans_sel = TRANS_DP_PORT_SEL_B;
1398                         break;
1399                 case PCH_DP_C:
1400                         trans_sel = TRANS_DP_PORT_SEL_C;
1401                         break;
1402                 case PCH_DP_D:
1403                         trans_sel = TRANS_DP_PORT_SEL_D;
1404                         break;
1405                 default:
1406                         return true;
1407                 }
1408
1409                 for_each_pipe(i) {
1410                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1411                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1412                                 *pipe = i;
1413                                 return true;
1414                         }
1415                 }
1416
1417                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1418                               intel_dp->output_reg);
1419         }
1420
1421         return true;
1422 }
1423
1424 static void intel_dp_get_config(struct intel_encoder *encoder,
1425                                 struct intel_crtc_config *pipe_config)
1426 {
1427         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1428         u32 tmp, flags = 0;
1429         struct drm_device *dev = encoder->base.dev;
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         enum port port = dp_to_dig_port(intel_dp)->port;
1432         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1433         int dotclock;
1434
1435         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1436                 tmp = I915_READ(intel_dp->output_reg);
1437                 if (tmp & DP_SYNC_HS_HIGH)
1438                         flags |= DRM_MODE_FLAG_PHSYNC;
1439                 else
1440                         flags |= DRM_MODE_FLAG_NHSYNC;
1441
1442                 if (tmp & DP_SYNC_VS_HIGH)
1443                         flags |= DRM_MODE_FLAG_PVSYNC;
1444                 else
1445                         flags |= DRM_MODE_FLAG_NVSYNC;
1446         } else {
1447                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1448                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1449                         flags |= DRM_MODE_FLAG_PHSYNC;
1450                 else
1451                         flags |= DRM_MODE_FLAG_NHSYNC;
1452
1453                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1454                         flags |= DRM_MODE_FLAG_PVSYNC;
1455                 else
1456                         flags |= DRM_MODE_FLAG_NVSYNC;
1457         }
1458
1459         pipe_config->adjusted_mode.flags |= flags;
1460
1461         pipe_config->has_dp_encoder = true;
1462
1463         intel_dp_get_m_n(crtc, pipe_config);
1464
1465         if (port == PORT_A) {
1466                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1467                         pipe_config->port_clock = 162000;
1468                 else
1469                         pipe_config->port_clock = 270000;
1470         }
1471
1472         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1473             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1474                 /*
1475                  * This is a big fat ugly hack.
1476                  *
1477                  * Some machines in UEFI boot mode provide us a VBT that has 18
1478                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1479                  * unknown we fail to light up. Yet the same BIOS boots up with
1480                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1481                  * max, not what it tells us to use.
1482                  *
1483                  * Note: This will still be broken if the eDP panel is not lit
1484                  * up by the BIOS, and thus we can't get the mode at module
1485                  * load.
1486                  */
1487                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1488                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1489                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1490         }
1491
1492         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1493                                             &pipe_config->dp_m_n);
1494
1495         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1496                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1497
1498         pipe_config->adjusted_mode.crtc_clock = dotclock;
1499 }
1500
1501 static bool is_edp_psr(struct drm_device *dev)
1502 {
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505         return dev_priv->psr.sink_support;
1506 }
1507
1508 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1509 {
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511
1512         if (!HAS_PSR(dev))
1513                 return false;
1514
1515         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1516 }
1517
1518 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1519                                     struct edp_vsc_psr *vsc_psr)
1520 {
1521         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1522         struct drm_device *dev = dig_port->base.base.dev;
1523         struct drm_i915_private *dev_priv = dev->dev_private;
1524         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1525         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1526         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1527         uint32_t *data = (uint32_t *) vsc_psr;
1528         unsigned int i;
1529
1530         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1531            the video DIP being updated before program video DIP data buffer
1532            registers for DIP being updated. */
1533         I915_WRITE(ctl_reg, 0);
1534         POSTING_READ(ctl_reg);
1535
1536         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1537                 if (i < sizeof(struct edp_vsc_psr))
1538                         I915_WRITE(data_reg + i, *data++);
1539                 else
1540                         I915_WRITE(data_reg + i, 0);
1541         }
1542
1543         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1544         POSTING_READ(ctl_reg);
1545 }
1546
1547 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1548 {
1549         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         struct edp_vsc_psr psr_vsc;
1552
1553         if (intel_dp->psr_setup_done)
1554                 return;
1555
1556         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1557         memset(&psr_vsc, 0, sizeof(psr_vsc));
1558         psr_vsc.sdp_header.HB0 = 0;
1559         psr_vsc.sdp_header.HB1 = 0x7;
1560         psr_vsc.sdp_header.HB2 = 0x2;
1561         psr_vsc.sdp_header.HB3 = 0x8;
1562         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1563
1564         /* Avoid continuous PSR exit by masking memup and hpd */
1565         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1566                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1567
1568         intel_dp->psr_setup_done = true;
1569 }
1570
1571 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1572 {
1573         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1574         struct drm_i915_private *dev_priv = dev->dev_private;
1575         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1576         int precharge = 0x3;
1577         int msg_size = 5;       /* Header(4) + Message(1) */
1578
1579         /* Enable PSR in sink */
1580         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1581                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1582                                             DP_PSR_ENABLE &
1583                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1584         else
1585                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1586                                             DP_PSR_ENABLE |
1587                                             DP_PSR_MAIN_LINK_ACTIVE);
1588
1589         /* Setup AUX registers */
1590         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1591         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1592         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1593                    DP_AUX_CH_CTL_TIME_OUT_400us |
1594                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1595                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1596                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1597 }
1598
1599 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1600 {
1601         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         uint32_t max_sleep_time = 0x1f;
1604         uint32_t idle_frames = 1;
1605         uint32_t val = 0x0;
1606
1607         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1608                 val |= EDP_PSR_LINK_STANDBY;
1609                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1610                 val |= EDP_PSR_TP1_TIME_0us;
1611                 val |= EDP_PSR_SKIP_AUX_EXIT;
1612         } else
1613                 val |= EDP_PSR_LINK_DISABLE;
1614
1615         I915_WRITE(EDP_PSR_CTL(dev), val |
1616                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1617                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1618                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1619                    EDP_PSR_ENABLE);
1620 }
1621
1622 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1623 {
1624         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1625         struct drm_device *dev = dig_port->base.base.dev;
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         struct drm_crtc *crtc = dig_port->base.base.crtc;
1628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1629         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1630         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1631
1632         dev_priv->psr.source_ok = false;
1633
1634         if (!HAS_PSR(dev)) {
1635                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1636                 return false;
1637         }
1638
1639         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1640             (dig_port->port != PORT_A)) {
1641                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1642                 return false;
1643         }
1644
1645         if (!i915_enable_psr) {
1646                 DRM_DEBUG_KMS("PSR disable by flag\n");
1647                 return false;
1648         }
1649
1650         crtc = dig_port->base.base.crtc;
1651         if (crtc == NULL) {
1652                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1653                 return false;
1654         }
1655
1656         intel_crtc = to_intel_crtc(crtc);
1657         if (!intel_crtc_active(crtc)) {
1658                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1659                 return false;
1660         }
1661
1662         obj = to_intel_framebuffer(crtc->fb)->obj;
1663         if (obj->tiling_mode != I915_TILING_X ||
1664             obj->fence_reg == I915_FENCE_REG_NONE) {
1665                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1666                 return false;
1667         }
1668
1669         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1670                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1671                 return false;
1672         }
1673
1674         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1675             S3D_ENABLE) {
1676                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1677                 return false;
1678         }
1679
1680         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1681                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1682                 return false;
1683         }
1684
1685         dev_priv->psr.source_ok = true;
1686         return true;
1687 }
1688
1689 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1690 {
1691         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1692
1693         if (!intel_edp_psr_match_conditions(intel_dp) ||
1694             intel_edp_is_psr_enabled(dev))
1695                 return;
1696
1697         /* Setup PSR once */
1698         intel_edp_psr_setup(intel_dp);
1699
1700         /* Enable PSR on the panel */
1701         intel_edp_psr_enable_sink(intel_dp);
1702
1703         /* Enable PSR on the host */
1704         intel_edp_psr_enable_source(intel_dp);
1705 }
1706
1707 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1708 {
1709         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1710
1711         if (intel_edp_psr_match_conditions(intel_dp) &&
1712             !intel_edp_is_psr_enabled(dev))
1713                 intel_edp_psr_do_enable(intel_dp);
1714 }
1715
1716 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1717 {
1718         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721         if (!intel_edp_is_psr_enabled(dev))
1722                 return;
1723
1724         I915_WRITE(EDP_PSR_CTL(dev),
1725                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1726
1727         /* Wait till PSR is idle */
1728         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1729                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1730                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1731 }
1732
1733 void intel_edp_psr_update(struct drm_device *dev)
1734 {
1735         struct intel_encoder *encoder;
1736         struct intel_dp *intel_dp = NULL;
1737
1738         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1739                 if (encoder->type == INTEL_OUTPUT_EDP) {
1740                         intel_dp = enc_to_intel_dp(&encoder->base);
1741
1742                         if (!is_edp_psr(dev))
1743                                 return;
1744
1745                         if (!intel_edp_psr_match_conditions(intel_dp))
1746                                 intel_edp_psr_disable(intel_dp);
1747                         else
1748                                 if (!intel_edp_is_psr_enabled(dev))
1749                                         intel_edp_psr_do_enable(intel_dp);
1750                 }
1751 }
1752
1753 static void intel_disable_dp(struct intel_encoder *encoder)
1754 {
1755         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1756         enum port port = dp_to_dig_port(intel_dp)->port;
1757         struct drm_device *dev = encoder->base.dev;
1758
1759         /* Make sure the panel is off before trying to change the mode. But also
1760          * ensure that we have vdd while we switch off the panel. */
1761         ironlake_edp_panel_vdd_on(intel_dp);
1762         ironlake_edp_backlight_off(intel_dp);
1763         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1764         ironlake_edp_panel_off(intel_dp);
1765
1766         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1767         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1768                 intel_dp_link_down(intel_dp);
1769 }
1770
1771 static void intel_post_disable_dp(struct intel_encoder *encoder)
1772 {
1773         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1774         enum port port = dp_to_dig_port(intel_dp)->port;
1775         struct drm_device *dev = encoder->base.dev;
1776
1777         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1778                 intel_dp_link_down(intel_dp);
1779                 if (!IS_VALLEYVIEW(dev))
1780                         ironlake_edp_pll_off(intel_dp);
1781         }
1782 }
1783
1784 static void intel_enable_dp(struct intel_encoder *encoder)
1785 {
1786         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1787         struct drm_device *dev = encoder->base.dev;
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1790
1791         if (WARN_ON(dp_reg & DP_PORT_EN))
1792                 return;
1793
1794         ironlake_edp_panel_vdd_on(intel_dp);
1795         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1796         intel_dp_start_link_train(intel_dp);
1797         ironlake_edp_panel_on(intel_dp);
1798         ironlake_edp_panel_vdd_off(intel_dp, true);
1799         intel_dp_complete_link_train(intel_dp);
1800         intel_dp_stop_link_train(intel_dp);
1801 }
1802
1803 static void g4x_enable_dp(struct intel_encoder *encoder)
1804 {
1805         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1806
1807         intel_enable_dp(encoder);
1808         ironlake_edp_backlight_on(intel_dp);
1809 }
1810
1811 static void vlv_enable_dp(struct intel_encoder *encoder)
1812 {
1813         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1814
1815         ironlake_edp_backlight_on(intel_dp);
1816 }
1817
1818 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1819 {
1820         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1821         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1822
1823         if (dport->port == PORT_A)
1824                 ironlake_edp_pll_on(intel_dp);
1825 }
1826
1827 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1828 {
1829         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1830         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1831         struct drm_device *dev = encoder->base.dev;
1832         struct drm_i915_private *dev_priv = dev->dev_private;
1833         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1834         int port = vlv_dport_to_channel(dport);
1835         int pipe = intel_crtc->pipe;
1836         struct edp_power_seq power_seq;
1837         u32 val;
1838
1839         mutex_lock(&dev_priv->dpio_lock);
1840
1841         val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1842         val = 0;
1843         if (pipe)
1844                 val |= (1<<21);
1845         else
1846                 val &= ~(1<<21);
1847         val |= 0x001000c4;
1848         vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1849         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1850         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1851
1852         mutex_unlock(&dev_priv->dpio_lock);
1853
1854         /* init power sequencer on this pipe and port */
1855         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1856         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1857                                                       &power_seq);
1858
1859         intel_enable_dp(encoder);
1860
1861         vlv_wait_port_ready(dev_priv, port);
1862 }
1863
1864 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1865 {
1866         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1867         struct drm_device *dev = encoder->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         struct intel_crtc *intel_crtc =
1870                 to_intel_crtc(encoder->base.crtc);
1871         int port = vlv_dport_to_channel(dport);
1872         int pipe = intel_crtc->pipe;
1873
1874         /* Program Tx lane resets to default */
1875         mutex_lock(&dev_priv->dpio_lock);
1876         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1877                          DPIO_PCS_TX_LANE2_RESET |
1878                          DPIO_PCS_TX_LANE1_RESET);
1879         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1880                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1881                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1882                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1883                                  DPIO_PCS_CLK_SOFT_RESET);
1884
1885         /* Fix up inter-pair skew failure */
1886         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1887         vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1888         vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1889         mutex_unlock(&dev_priv->dpio_lock);
1890 }
1891
1892 /*
1893  * Native read with retry for link status and receiver capability reads for
1894  * cases where the sink may still be asleep.
1895  */
1896 static bool
1897 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1898                                uint8_t *recv, int recv_bytes)
1899 {
1900         int ret, i;
1901
1902         /*
1903          * Sinks are *supposed* to come up within 1ms from an off state,
1904          * but we're also supposed to retry 3 times per the spec.
1905          */
1906         for (i = 0; i < 3; i++) {
1907                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1908                                                recv_bytes);
1909                 if (ret == recv_bytes)
1910                         return true;
1911                 msleep(1);
1912         }
1913
1914         return false;
1915 }
1916
1917 /*
1918  * Fetch AUX CH registers 0x202 - 0x207 which contain
1919  * link status information
1920  */
1921 static bool
1922 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1923 {
1924         return intel_dp_aux_native_read_retry(intel_dp,
1925                                               DP_LANE0_1_STATUS,
1926                                               link_status,
1927                                               DP_LINK_STATUS_SIZE);
1928 }
1929
1930 #if 0
1931 static char     *voltage_names[] = {
1932         "0.4V", "0.6V", "0.8V", "1.2V"
1933 };
1934 static char     *pre_emph_names[] = {
1935         "0dB", "3.5dB", "6dB", "9.5dB"
1936 };
1937 static char     *link_train_names[] = {
1938         "pattern 1", "pattern 2", "idle", "off"
1939 };
1940 #endif
1941
1942 /*
1943  * These are source-specific values; current Intel hardware supports
1944  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1945  */
1946
1947 static uint8_t
1948 intel_dp_voltage_max(struct intel_dp *intel_dp)
1949 {
1950         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1951         enum port port = dp_to_dig_port(intel_dp)->port;
1952
1953         if (IS_VALLEYVIEW(dev))
1954                 return DP_TRAIN_VOLTAGE_SWING_1200;
1955         else if (IS_GEN7(dev) && port == PORT_A)
1956                 return DP_TRAIN_VOLTAGE_SWING_800;
1957         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1958                 return DP_TRAIN_VOLTAGE_SWING_1200;
1959         else
1960                 return DP_TRAIN_VOLTAGE_SWING_800;
1961 }
1962
1963 static uint8_t
1964 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1965 {
1966         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1967         enum port port = dp_to_dig_port(intel_dp)->port;
1968
1969         if (HAS_DDI(dev)) {
1970                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1971                 case DP_TRAIN_VOLTAGE_SWING_400:
1972                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1973                 case DP_TRAIN_VOLTAGE_SWING_600:
1974                         return DP_TRAIN_PRE_EMPHASIS_6;
1975                 case DP_TRAIN_VOLTAGE_SWING_800:
1976                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1977                 case DP_TRAIN_VOLTAGE_SWING_1200:
1978                 default:
1979                         return DP_TRAIN_PRE_EMPHASIS_0;
1980                 }
1981         } else if (IS_VALLEYVIEW(dev)) {
1982                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1983                 case DP_TRAIN_VOLTAGE_SWING_400:
1984                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1985                 case DP_TRAIN_VOLTAGE_SWING_600:
1986                         return DP_TRAIN_PRE_EMPHASIS_6;
1987                 case DP_TRAIN_VOLTAGE_SWING_800:
1988                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1989                 case DP_TRAIN_VOLTAGE_SWING_1200:
1990                 default:
1991                         return DP_TRAIN_PRE_EMPHASIS_0;
1992                 }
1993         } else if (IS_GEN7(dev) && port == PORT_A) {
1994                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1995                 case DP_TRAIN_VOLTAGE_SWING_400:
1996                         return DP_TRAIN_PRE_EMPHASIS_6;
1997                 case DP_TRAIN_VOLTAGE_SWING_600:
1998                 case DP_TRAIN_VOLTAGE_SWING_800:
1999                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2000                 default:
2001                         return DP_TRAIN_PRE_EMPHASIS_0;
2002                 }
2003         } else {
2004                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2005                 case DP_TRAIN_VOLTAGE_SWING_400:
2006                         return DP_TRAIN_PRE_EMPHASIS_6;
2007                 case DP_TRAIN_VOLTAGE_SWING_600:
2008                         return DP_TRAIN_PRE_EMPHASIS_6;
2009                 case DP_TRAIN_VOLTAGE_SWING_800:
2010                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2011                 case DP_TRAIN_VOLTAGE_SWING_1200:
2012                 default:
2013                         return DP_TRAIN_PRE_EMPHASIS_0;
2014                 }
2015         }
2016 }
2017
2018 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2019 {
2020         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2021         struct drm_i915_private *dev_priv = dev->dev_private;
2022         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2023         struct intel_crtc *intel_crtc =
2024                 to_intel_crtc(dport->base.base.crtc);
2025         unsigned long demph_reg_value, preemph_reg_value,
2026                 uniqtranscale_reg_value;
2027         uint8_t train_set = intel_dp->train_set[0];
2028         int port = vlv_dport_to_channel(dport);
2029         int pipe = intel_crtc->pipe;
2030
2031         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2032         case DP_TRAIN_PRE_EMPHASIS_0:
2033                 preemph_reg_value = 0x0004000;
2034                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2035                 case DP_TRAIN_VOLTAGE_SWING_400:
2036                         demph_reg_value = 0x2B405555;
2037                         uniqtranscale_reg_value = 0x552AB83A;
2038                         break;
2039                 case DP_TRAIN_VOLTAGE_SWING_600:
2040                         demph_reg_value = 0x2B404040;
2041                         uniqtranscale_reg_value = 0x5548B83A;
2042                         break;
2043                 case DP_TRAIN_VOLTAGE_SWING_800:
2044                         demph_reg_value = 0x2B245555;
2045                         uniqtranscale_reg_value = 0x5560B83A;
2046                         break;
2047                 case DP_TRAIN_VOLTAGE_SWING_1200:
2048                         demph_reg_value = 0x2B405555;
2049                         uniqtranscale_reg_value = 0x5598DA3A;
2050                         break;
2051                 default:
2052                         return 0;
2053                 }
2054                 break;
2055         case DP_TRAIN_PRE_EMPHASIS_3_5:
2056                 preemph_reg_value = 0x0002000;
2057                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2058                 case DP_TRAIN_VOLTAGE_SWING_400:
2059                         demph_reg_value = 0x2B404040;
2060                         uniqtranscale_reg_value = 0x5552B83A;
2061                         break;
2062                 case DP_TRAIN_VOLTAGE_SWING_600:
2063                         demph_reg_value = 0x2B404848;
2064                         uniqtranscale_reg_value = 0x5580B83A;
2065                         break;
2066                 case DP_TRAIN_VOLTAGE_SWING_800:
2067                         demph_reg_value = 0x2B404040;
2068                         uniqtranscale_reg_value = 0x55ADDA3A;
2069                         break;
2070                 default:
2071                         return 0;
2072                 }
2073                 break;
2074         case DP_TRAIN_PRE_EMPHASIS_6:
2075                 preemph_reg_value = 0x0000000;
2076                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2077                 case DP_TRAIN_VOLTAGE_SWING_400:
2078                         demph_reg_value = 0x2B305555;
2079                         uniqtranscale_reg_value = 0x5570B83A;
2080                         break;
2081                 case DP_TRAIN_VOLTAGE_SWING_600:
2082                         demph_reg_value = 0x2B2B4040;
2083                         uniqtranscale_reg_value = 0x55ADDA3A;
2084                         break;
2085                 default:
2086                         return 0;
2087                 }
2088                 break;
2089         case DP_TRAIN_PRE_EMPHASIS_9_5:
2090                 preemph_reg_value = 0x0006000;
2091                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2092                 case DP_TRAIN_VOLTAGE_SWING_400:
2093                         demph_reg_value = 0x1B405555;
2094                         uniqtranscale_reg_value = 0x55ADDA3A;
2095                         break;
2096                 default:
2097                         return 0;
2098                 }
2099                 break;
2100         default:
2101                 return 0;
2102         }
2103
2104         mutex_lock(&dev_priv->dpio_lock);
2105         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2106         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2107         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2108                          uniqtranscale_reg_value);
2109         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2110         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2111         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2112         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2113         mutex_unlock(&dev_priv->dpio_lock);
2114
2115         return 0;
2116 }
2117
2118 static void
2119 intel_get_adjust_train(struct intel_dp *intel_dp,
2120                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2121 {
2122         uint8_t v = 0;
2123         uint8_t p = 0;
2124         int lane;
2125         uint8_t voltage_max;
2126         uint8_t preemph_max;
2127
2128         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2129                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2130                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2131
2132                 if (this_v > v)
2133                         v = this_v;
2134                 if (this_p > p)
2135                         p = this_p;
2136         }
2137
2138         voltage_max = intel_dp_voltage_max(intel_dp);
2139         if (v >= voltage_max)
2140                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2141
2142         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2143         if (p >= preemph_max)
2144                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2145
2146         for (lane = 0; lane < 4; lane++)
2147                 intel_dp->train_set[lane] = v | p;
2148 }
2149
2150 static uint32_t
2151 intel_gen4_signal_levels(uint8_t train_set)
2152 {
2153         uint32_t        signal_levels = 0;
2154
2155         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2156         case DP_TRAIN_VOLTAGE_SWING_400:
2157         default:
2158                 signal_levels |= DP_VOLTAGE_0_4;
2159                 break;
2160         case DP_TRAIN_VOLTAGE_SWING_600:
2161                 signal_levels |= DP_VOLTAGE_0_6;
2162                 break;
2163         case DP_TRAIN_VOLTAGE_SWING_800:
2164                 signal_levels |= DP_VOLTAGE_0_8;
2165                 break;
2166         case DP_TRAIN_VOLTAGE_SWING_1200:
2167                 signal_levels |= DP_VOLTAGE_1_2;
2168                 break;
2169         }
2170         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2171         case DP_TRAIN_PRE_EMPHASIS_0:
2172         default:
2173                 signal_levels |= DP_PRE_EMPHASIS_0;
2174                 break;
2175         case DP_TRAIN_PRE_EMPHASIS_3_5:
2176                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2177                 break;
2178         case DP_TRAIN_PRE_EMPHASIS_6:
2179                 signal_levels |= DP_PRE_EMPHASIS_6;
2180                 break;
2181         case DP_TRAIN_PRE_EMPHASIS_9_5:
2182                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2183                 break;
2184         }
2185         return signal_levels;
2186 }
2187
2188 /* Gen6's DP voltage swing and pre-emphasis control */
2189 static uint32_t
2190 intel_gen6_edp_signal_levels(uint8_t train_set)
2191 {
2192         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2193                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2194         switch (signal_levels) {
2195         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2196         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2197                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2198         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2199                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2200         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2201         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2202                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2203         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2204         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2205                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2206         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2207         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2208                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2209         default:
2210                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2211                               "0x%x\n", signal_levels);
2212                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2213         }
2214 }
2215
2216 /* Gen7's DP voltage swing and pre-emphasis control */
2217 static uint32_t
2218 intel_gen7_edp_signal_levels(uint8_t train_set)
2219 {
2220         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2221                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2222         switch (signal_levels) {
2223         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2224                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2225         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2226                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2227         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2228                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2229
2230         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2231                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2232         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2233                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2234
2235         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2236                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2237         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2238                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2239
2240         default:
2241                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2242                               "0x%x\n", signal_levels);
2243                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2244         }
2245 }
2246
2247 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2248 static uint32_t
2249 intel_hsw_signal_levels(uint8_t train_set)
2250 {
2251         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2252                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2253         switch (signal_levels) {
2254         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2255                 return DDI_BUF_EMP_400MV_0DB_HSW;
2256         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2257                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2258         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2259                 return DDI_BUF_EMP_400MV_6DB_HSW;
2260         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2261                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2262
2263         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2264                 return DDI_BUF_EMP_600MV_0DB_HSW;
2265         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2266                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2267         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2268                 return DDI_BUF_EMP_600MV_6DB_HSW;
2269
2270         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2271                 return DDI_BUF_EMP_800MV_0DB_HSW;
2272         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2273                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2274         default:
2275                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2276                               "0x%x\n", signal_levels);
2277                 return DDI_BUF_EMP_400MV_0DB_HSW;
2278         }
2279 }
2280
2281 /* Properly updates "DP" with the correct signal levels. */
2282 static void
2283 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2284 {
2285         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2286         enum port port = intel_dig_port->port;
2287         struct drm_device *dev = intel_dig_port->base.base.dev;
2288         uint32_t signal_levels, mask;
2289         uint8_t train_set = intel_dp->train_set[0];
2290
2291         if (HAS_DDI(dev)) {
2292                 signal_levels = intel_hsw_signal_levels(train_set);
2293                 mask = DDI_BUF_EMP_MASK;
2294         } else if (IS_VALLEYVIEW(dev)) {
2295                 signal_levels = intel_vlv_signal_levels(intel_dp);
2296                 mask = 0;
2297         } else if (IS_GEN7(dev) && port == PORT_A) {
2298                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2299                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2300         } else if (IS_GEN6(dev) && port == PORT_A) {
2301                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2302                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2303         } else {
2304                 signal_levels = intel_gen4_signal_levels(train_set);
2305                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2306         }
2307
2308         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2309
2310         *DP = (*DP & ~mask) | signal_levels;
2311 }
2312
2313 static bool
2314 intel_dp_set_link_train(struct intel_dp *intel_dp,
2315                         uint32_t *DP,
2316                         uint8_t dp_train_pat)
2317 {
2318         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2319         struct drm_device *dev = intel_dig_port->base.base.dev;
2320         struct drm_i915_private *dev_priv = dev->dev_private;
2321         enum port port = intel_dig_port->port;
2322         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2323         int ret, len;
2324
2325         if (HAS_DDI(dev)) {
2326                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2327
2328                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2329                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2330                 else
2331                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2332
2333                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2334                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2335                 case DP_TRAINING_PATTERN_DISABLE:
2336                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2337
2338                         break;
2339                 case DP_TRAINING_PATTERN_1:
2340                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2341                         break;
2342                 case DP_TRAINING_PATTERN_2:
2343                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2344                         break;
2345                 case DP_TRAINING_PATTERN_3:
2346                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2347                         break;
2348                 }
2349                 I915_WRITE(DP_TP_CTL(port), temp);
2350
2351         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2352                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2353
2354                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2355                 case DP_TRAINING_PATTERN_DISABLE:
2356                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2357                         break;
2358                 case DP_TRAINING_PATTERN_1:
2359                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2360                         break;
2361                 case DP_TRAINING_PATTERN_2:
2362                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2363                         break;
2364                 case DP_TRAINING_PATTERN_3:
2365                         DRM_ERROR("DP training pattern 3 not supported\n");
2366                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2367                         break;
2368                 }
2369
2370         } else {
2371                 *DP &= ~DP_LINK_TRAIN_MASK;
2372
2373                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2374                 case DP_TRAINING_PATTERN_DISABLE:
2375                         *DP |= DP_LINK_TRAIN_OFF;
2376                         break;
2377                 case DP_TRAINING_PATTERN_1:
2378                         *DP |= DP_LINK_TRAIN_PAT_1;
2379                         break;
2380                 case DP_TRAINING_PATTERN_2:
2381                         *DP |= DP_LINK_TRAIN_PAT_2;
2382                         break;
2383                 case DP_TRAINING_PATTERN_3:
2384                         DRM_ERROR("DP training pattern 3 not supported\n");
2385                         *DP |= DP_LINK_TRAIN_PAT_2;
2386                         break;
2387                 }
2388         }
2389
2390         I915_WRITE(intel_dp->output_reg, *DP);
2391         POSTING_READ(intel_dp->output_reg);
2392
2393         buf[0] = dp_train_pat;
2394         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2395             DP_TRAINING_PATTERN_DISABLE) {
2396                 /* don't write DP_TRAINING_LANEx_SET on disable */
2397                 len = 1;
2398         } else {
2399                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2400                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2401                 len = intel_dp->lane_count + 1;
2402         }
2403
2404         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2405                                         buf, len);
2406
2407         return ret == len;
2408 }
2409
2410 static bool
2411 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2412                         uint8_t dp_train_pat)
2413 {
2414         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2415         intel_dp_set_signal_levels(intel_dp, DP);
2416         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2417 }
2418
2419 static bool
2420 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2421                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2422 {
2423         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2424         struct drm_device *dev = intel_dig_port->base.base.dev;
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         int ret;
2427
2428         intel_get_adjust_train(intel_dp, link_status);
2429         intel_dp_set_signal_levels(intel_dp, DP);
2430
2431         I915_WRITE(intel_dp->output_reg, *DP);
2432         POSTING_READ(intel_dp->output_reg);
2433
2434         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2435                                         intel_dp->train_set,
2436                                         intel_dp->lane_count);
2437
2438         return ret == intel_dp->lane_count;
2439 }
2440
2441 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2442 {
2443         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2444         struct drm_device *dev = intel_dig_port->base.base.dev;
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         enum port port = intel_dig_port->port;
2447         uint32_t val;
2448
2449         if (!HAS_DDI(dev))
2450                 return;
2451
2452         val = I915_READ(DP_TP_CTL(port));
2453         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2454         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2455         I915_WRITE(DP_TP_CTL(port), val);
2456
2457         /*
2458          * On PORT_A we can have only eDP in SST mode. There the only reason
2459          * we need to set idle transmission mode is to work around a HW issue
2460          * where we enable the pipe while not in idle link-training mode.
2461          * In this case there is requirement to wait for a minimum number of
2462          * idle patterns to be sent.
2463          */
2464         if (port == PORT_A)
2465                 return;
2466
2467         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2468                      1))
2469                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2470 }
2471
2472 /* Enable corresponding port and start training pattern 1 */
2473 void
2474 intel_dp_start_link_train(struct intel_dp *intel_dp)
2475 {
2476         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2477         struct drm_device *dev = encoder->dev;
2478         int i;
2479         uint8_t voltage;
2480         int voltage_tries, loop_tries;
2481         uint32_t DP = intel_dp->DP;
2482         uint8_t link_config[2];
2483
2484         if (HAS_DDI(dev))
2485                 intel_ddi_prepare_link_retrain(encoder);
2486
2487         /* Write the link configuration data */
2488         link_config[0] = intel_dp->link_bw;
2489         link_config[1] = intel_dp->lane_count;
2490         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2491                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2492         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2493
2494         link_config[0] = 0;
2495         link_config[1] = DP_SET_ANSI_8B10B;
2496         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2497
2498         DP |= DP_PORT_EN;
2499
2500         /* clock recovery */
2501         if (!intel_dp_reset_link_train(intel_dp, &DP,
2502                                        DP_TRAINING_PATTERN_1 |
2503                                        DP_LINK_SCRAMBLING_DISABLE)) {
2504                 DRM_ERROR("failed to enable link training\n");
2505                 return;
2506         }
2507
2508         voltage = 0xff;
2509         voltage_tries = 0;
2510         loop_tries = 0;
2511         for (;;) {
2512                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2513
2514                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2515                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2516                         DRM_ERROR("failed to get link status\n");
2517                         break;
2518                 }
2519
2520                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2521                         DRM_DEBUG_KMS("clock recovery OK\n");
2522                         break;
2523                 }
2524
2525                 /* Check to see if we've tried the max voltage */
2526                 for (i = 0; i < intel_dp->lane_count; i++)
2527                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2528                                 break;
2529                 if (i == intel_dp->lane_count) {
2530                         ++loop_tries;
2531                         if (loop_tries == 5) {
2532                                 DRM_ERROR("too many full retries, give up\n");
2533                                 break;
2534                         }
2535                         intel_dp_reset_link_train(intel_dp, &DP,
2536                                                   DP_TRAINING_PATTERN_1 |
2537                                                   DP_LINK_SCRAMBLING_DISABLE);
2538                         voltage_tries = 0;
2539                         continue;
2540                 }
2541
2542                 /* Check to see if we've tried the same voltage 5 times */
2543                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2544                         ++voltage_tries;
2545                         if (voltage_tries == 5) {
2546                                 DRM_ERROR("too many voltage retries, give up\n");
2547                                 break;
2548                         }
2549                 } else
2550                         voltage_tries = 0;
2551                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2552
2553                 /* Update training set as requested by target */
2554                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2555                         DRM_ERROR("failed to update link training\n");
2556                         break;
2557                 }
2558         }
2559
2560         intel_dp->DP = DP;
2561 }
2562
2563 void
2564 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2565 {
2566         bool channel_eq = false;
2567         int tries, cr_tries;
2568         uint32_t DP = intel_dp->DP;
2569
2570         /* channel equalization */
2571         if (!intel_dp_set_link_train(intel_dp, &DP,
2572                                      DP_TRAINING_PATTERN_2 |
2573                                      DP_LINK_SCRAMBLING_DISABLE)) {
2574                 DRM_ERROR("failed to start channel equalization\n");
2575                 return;
2576         }
2577
2578         tries = 0;
2579         cr_tries = 0;
2580         channel_eq = false;
2581         for (;;) {
2582                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2583
2584                 if (cr_tries > 5) {
2585                         DRM_ERROR("failed to train DP, aborting\n");
2586                         intel_dp_link_down(intel_dp);
2587                         break;
2588                 }
2589
2590                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2591                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2592                         DRM_ERROR("failed to get link status\n");
2593                         break;
2594                 }
2595
2596                 /* Make sure clock is still ok */
2597                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2598                         intel_dp_start_link_train(intel_dp);
2599                         intel_dp_set_link_train(intel_dp, &DP,
2600                                                 DP_TRAINING_PATTERN_2 |
2601                                                 DP_LINK_SCRAMBLING_DISABLE);
2602                         cr_tries++;
2603                         continue;
2604                 }
2605
2606                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2607                         channel_eq = true;
2608                         break;
2609                 }
2610
2611                 /* Try 5 times, then try clock recovery if that fails */
2612                 if (tries > 5) {
2613                         intel_dp_link_down(intel_dp);
2614                         intel_dp_start_link_train(intel_dp);
2615                         intel_dp_set_link_train(intel_dp, &DP,
2616                                                 DP_TRAINING_PATTERN_2 |
2617                                                 DP_LINK_SCRAMBLING_DISABLE);
2618                         tries = 0;
2619                         cr_tries++;
2620                         continue;
2621                 }
2622
2623                 /* Update training set as requested by target */
2624                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2625                         DRM_ERROR("failed to update link training\n");
2626                         break;
2627                 }
2628                 ++tries;
2629         }
2630
2631         intel_dp_set_idle_link_train(intel_dp);
2632
2633         intel_dp->DP = DP;
2634
2635         if (channel_eq)
2636                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2637
2638 }
2639
2640 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2641 {
2642         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2643                                 DP_TRAINING_PATTERN_DISABLE);
2644 }
2645
2646 static void
2647 intel_dp_link_down(struct intel_dp *intel_dp)
2648 {
2649         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2650         enum port port = intel_dig_port->port;
2651         struct drm_device *dev = intel_dig_port->base.base.dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct intel_crtc *intel_crtc =
2654                 to_intel_crtc(intel_dig_port->base.base.crtc);
2655         uint32_t DP = intel_dp->DP;
2656
2657         /*
2658          * DDI code has a strict mode set sequence and we should try to respect
2659          * it, otherwise we might hang the machine in many different ways. So we
2660          * really should be disabling the port only on a complete crtc_disable
2661          * sequence. This function is just called under two conditions on DDI
2662          * code:
2663          * - Link train failed while doing crtc_enable, and on this case we
2664          *   really should respect the mode set sequence and wait for a
2665          *   crtc_disable.
2666          * - Someone turned the monitor off and intel_dp_check_link_status
2667          *   called us. We don't need to disable the whole port on this case, so
2668          *   when someone turns the monitor on again,
2669          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2670          *   train.
2671          */
2672         if (HAS_DDI(dev))
2673                 return;
2674
2675         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2676                 return;
2677
2678         DRM_DEBUG_KMS("\n");
2679
2680         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2681                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2682                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2683         } else {
2684                 DP &= ~DP_LINK_TRAIN_MASK;
2685                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2686         }
2687         POSTING_READ(intel_dp->output_reg);
2688
2689         /* We don't really know why we're doing this */
2690         intel_wait_for_vblank(dev, intel_crtc->pipe);
2691
2692         if (HAS_PCH_IBX(dev) &&
2693             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2694                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2695
2696                 /* Hardware workaround: leaving our transcoder select
2697                  * set to transcoder B while it's off will prevent the
2698                  * corresponding HDMI output on transcoder A.
2699                  *
2700                  * Combine this with another hardware workaround:
2701                  * transcoder select bit can only be cleared while the
2702                  * port is enabled.
2703                  */
2704                 DP &= ~DP_PIPEB_SELECT;
2705                 I915_WRITE(intel_dp->output_reg, DP);
2706
2707                 /* Changes to enable or select take place the vblank
2708                  * after being written.
2709                  */
2710                 if (WARN_ON(crtc == NULL)) {
2711                         /* We should never try to disable a port without a crtc
2712                          * attached. For paranoia keep the code around for a
2713                          * bit. */
2714                         POSTING_READ(intel_dp->output_reg);
2715                         msleep(50);
2716                 } else
2717                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2718         }
2719
2720         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2721         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2722         POSTING_READ(intel_dp->output_reg);
2723         msleep(intel_dp->panel_power_down_delay);
2724 }
2725
2726 static bool
2727 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2728 {
2729         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2730         struct drm_device *dev = dig_port->base.base.dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732
2733         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2734
2735         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2736                                            sizeof(intel_dp->dpcd)) == 0)
2737                 return false; /* aux transfer failed */
2738
2739         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2740                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2741         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2742
2743         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2744                 return false; /* DPCD not present */
2745
2746         /* Check if the panel supports PSR */
2747         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2748         if (is_edp(intel_dp)) {
2749                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2750                                                intel_dp->psr_dpcd,
2751                                                sizeof(intel_dp->psr_dpcd));
2752                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2753                         dev_priv->psr.sink_support = true;
2754                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2755                 }
2756         }
2757
2758         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2759               DP_DWN_STRM_PORT_PRESENT))
2760                 return true; /* native DP sink */
2761
2762         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2763                 return true; /* no per-port downstream info */
2764
2765         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2766                                            intel_dp->downstream_ports,
2767                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2768                 return false; /* downstream port status fetch failed */
2769
2770         return true;
2771 }
2772
2773 static void
2774 intel_dp_probe_oui(struct intel_dp *intel_dp)
2775 {
2776         u8 buf[3];
2777
2778         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2779                 return;
2780
2781         ironlake_edp_panel_vdd_on(intel_dp);
2782
2783         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2784                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2785                               buf[0], buf[1], buf[2]);
2786
2787         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2788                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2789                               buf[0], buf[1], buf[2]);
2790
2791         ironlake_edp_panel_vdd_off(intel_dp, false);
2792 }
2793
2794 static bool
2795 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2796 {
2797         int ret;
2798
2799         ret = intel_dp_aux_native_read_retry(intel_dp,
2800                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2801                                              sink_irq_vector, 1);
2802         if (!ret)
2803                 return false;
2804
2805         return true;
2806 }
2807
2808 static void
2809 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2810 {
2811         /* NAK by default */
2812         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2813 }
2814
2815 /*
2816  * According to DP spec
2817  * 5.1.2:
2818  *  1. Read DPCD
2819  *  2. Configure link according to Receiver Capabilities
2820  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2821  *  4. Check link status on receipt of hot-plug interrupt
2822  */
2823
2824 void
2825 intel_dp_check_link_status(struct intel_dp *intel_dp)
2826 {
2827         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2828         u8 sink_irq_vector;
2829         u8 link_status[DP_LINK_STATUS_SIZE];
2830
2831         if (!intel_encoder->connectors_active)
2832                 return;
2833
2834         if (WARN_ON(!intel_encoder->base.crtc))
2835                 return;
2836
2837         /* Try to read receiver status if the link appears to be up */
2838         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2839                 intel_dp_link_down(intel_dp);
2840                 return;
2841         }
2842
2843         /* Now read the DPCD to see if it's actually running */
2844         if (!intel_dp_get_dpcd(intel_dp)) {
2845                 intel_dp_link_down(intel_dp);
2846                 return;
2847         }
2848
2849         /* Try to read the source of the interrupt */
2850         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2851             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2852                 /* Clear interrupt source */
2853                 intel_dp_aux_native_write_1(intel_dp,
2854                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2855                                             sink_irq_vector);
2856
2857                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2858                         intel_dp_handle_test_request(intel_dp);
2859                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2860                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2861         }
2862
2863         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2864                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2865                               drm_get_encoder_name(&intel_encoder->base));
2866                 intel_dp_start_link_train(intel_dp);
2867                 intel_dp_complete_link_train(intel_dp);
2868                 intel_dp_stop_link_train(intel_dp);
2869         }
2870 }
2871
2872 /* XXX this is probably wrong for multiple downstream ports */
2873 static enum drm_connector_status
2874 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2875 {
2876         uint8_t *dpcd = intel_dp->dpcd;
2877         uint8_t type;
2878
2879         if (!intel_dp_get_dpcd(intel_dp))
2880                 return connector_status_disconnected;
2881
2882         /* if there's no downstream port, we're done */
2883         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2884                 return connector_status_connected;
2885
2886         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2887         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2888             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2889                 uint8_t reg;
2890                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2891                                                     &reg, 1))
2892                         return connector_status_unknown;
2893                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2894                                               : connector_status_disconnected;
2895         }
2896
2897         /* If no HPD, poke DDC gently */
2898         if (drm_probe_ddc(&intel_dp->adapter))
2899                 return connector_status_connected;
2900
2901         /* Well we tried, say unknown for unreliable port types */
2902         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2903                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2904                 if (type == DP_DS_PORT_TYPE_VGA ||
2905                     type == DP_DS_PORT_TYPE_NON_EDID)
2906                         return connector_status_unknown;
2907         } else {
2908                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2909                         DP_DWN_STRM_PORT_TYPE_MASK;
2910                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2911                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2912                         return connector_status_unknown;
2913         }
2914
2915         /* Anything else is out of spec, warn and ignore */
2916         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2917         return connector_status_disconnected;
2918 }
2919
2920 static enum drm_connector_status
2921 ironlake_dp_detect(struct intel_dp *intel_dp)
2922 {
2923         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2926         enum drm_connector_status status;
2927
2928         /* Can't disconnect eDP, but you can close the lid... */
2929         if (is_edp(intel_dp)) {
2930                 status = intel_panel_detect(dev);
2931                 if (status == connector_status_unknown)
2932                         status = connector_status_connected;
2933                 return status;
2934         }
2935
2936         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2937                 return connector_status_disconnected;
2938
2939         return intel_dp_detect_dpcd(intel_dp);
2940 }
2941
2942 static enum drm_connector_status
2943 g4x_dp_detect(struct intel_dp *intel_dp)
2944 {
2945         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2948         uint32_t bit;
2949
2950         /* Can't disconnect eDP, but you can close the lid... */
2951         if (is_edp(intel_dp)) {
2952                 enum drm_connector_status status;
2953
2954                 status = intel_panel_detect(dev);
2955                 if (status == connector_status_unknown)
2956                         status = connector_status_connected;
2957                 return status;
2958         }
2959
2960         switch (intel_dig_port->port) {
2961         case PORT_B:
2962                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2963                 break;
2964         case PORT_C:
2965                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2966                 break;
2967         case PORT_D:
2968                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2969                 break;
2970         default:
2971                 return connector_status_unknown;
2972         }
2973
2974         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2975                 return connector_status_disconnected;
2976
2977         return intel_dp_detect_dpcd(intel_dp);
2978 }
2979
2980 static struct edid *
2981 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2982 {
2983         struct intel_connector *intel_connector = to_intel_connector(connector);
2984
2985         /* use cached edid if we have one */
2986         if (intel_connector->edid) {
2987                 /* invalid edid */
2988                 if (IS_ERR(intel_connector->edid))
2989                         return NULL;
2990
2991                 return drm_edid_duplicate(intel_connector->edid);
2992         }
2993
2994         return drm_get_edid(connector, adapter);
2995 }
2996
2997 static int
2998 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2999 {
3000         struct intel_connector *intel_connector = to_intel_connector(connector);
3001
3002         /* use cached edid if we have one */
3003         if (intel_connector->edid) {
3004                 /* invalid edid */
3005                 if (IS_ERR(intel_connector->edid))
3006                         return 0;
3007
3008                 return intel_connector_update_modes(connector,
3009                                                     intel_connector->edid);
3010         }
3011
3012         return intel_ddc_get_modes(connector, adapter);
3013 }
3014
3015 static enum drm_connector_status
3016 intel_dp_detect(struct drm_connector *connector, bool force)
3017 {
3018         struct intel_dp *intel_dp = intel_attached_dp(connector);
3019         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3020         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3021         struct drm_device *dev = connector->dev;
3022         enum drm_connector_status status;
3023         struct edid *edid = NULL;
3024
3025         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3026                       connector->base.id, drm_get_connector_name(connector));
3027
3028         intel_dp->has_audio = false;
3029
3030         if (HAS_PCH_SPLIT(dev))
3031                 status = ironlake_dp_detect(intel_dp);
3032         else
3033                 status = g4x_dp_detect(intel_dp);
3034
3035         if (status != connector_status_connected)
3036                 return status;
3037
3038         intel_dp_probe_oui(intel_dp);
3039
3040         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3041                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3042         } else {
3043                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3044                 if (edid) {
3045                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3046                         kfree(edid);
3047                 }
3048         }
3049
3050         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3051                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3052         return connector_status_connected;
3053 }
3054
3055 static int intel_dp_get_modes(struct drm_connector *connector)
3056 {
3057         struct intel_dp *intel_dp = intel_attached_dp(connector);
3058         struct intel_connector *intel_connector = to_intel_connector(connector);
3059         struct drm_device *dev = connector->dev;
3060         int ret;
3061
3062         /* We should parse the EDID data and find out if it has an audio sink
3063          */
3064
3065         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3066         if (ret)
3067                 return ret;
3068
3069         /* if eDP has no EDID, fall back to fixed mode */
3070         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3071                 struct drm_display_mode *mode;
3072                 mode = drm_mode_duplicate(dev,
3073                                           intel_connector->panel.fixed_mode);
3074                 if (mode) {
3075                         drm_mode_probed_add(connector, mode);
3076                         return 1;
3077                 }
3078         }
3079         return 0;
3080 }
3081
3082 static bool
3083 intel_dp_detect_audio(struct drm_connector *connector)
3084 {
3085         struct intel_dp *intel_dp = intel_attached_dp(connector);
3086         struct edid *edid;
3087         bool has_audio = false;
3088
3089         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3090         if (edid) {
3091                 has_audio = drm_detect_monitor_audio(edid);
3092                 kfree(edid);
3093         }
3094
3095         return has_audio;
3096 }
3097
3098 static int
3099 intel_dp_set_property(struct drm_connector *connector,
3100                       struct drm_property *property,
3101                       uint64_t val)
3102 {
3103         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3104         struct intel_connector *intel_connector = to_intel_connector(connector);
3105         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3106         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3107         int ret;
3108
3109         ret = drm_object_property_set_value(&connector->base, property, val);
3110         if (ret)
3111                 return ret;
3112
3113         if (property == dev_priv->force_audio_property) {
3114                 int i = val;
3115                 bool has_audio;
3116
3117                 if (i == intel_dp->force_audio)
3118                         return 0;
3119
3120                 intel_dp->force_audio = i;
3121
3122                 if (i == HDMI_AUDIO_AUTO)
3123                         has_audio = intel_dp_detect_audio(connector);
3124                 else
3125                         has_audio = (i == HDMI_AUDIO_ON);
3126
3127                 if (has_audio == intel_dp->has_audio)
3128                         return 0;
3129
3130                 intel_dp->has_audio = has_audio;
3131                 goto done;
3132         }
3133
3134         if (property == dev_priv->broadcast_rgb_property) {
3135                 bool old_auto = intel_dp->color_range_auto;
3136                 uint32_t old_range = intel_dp->color_range;
3137
3138                 switch (val) {
3139                 case INTEL_BROADCAST_RGB_AUTO:
3140                         intel_dp->color_range_auto = true;
3141                         break;
3142                 case INTEL_BROADCAST_RGB_FULL:
3143                         intel_dp->color_range_auto = false;
3144                         intel_dp->color_range = 0;
3145                         break;
3146                 case INTEL_BROADCAST_RGB_LIMITED:
3147                         intel_dp->color_range_auto = false;
3148                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3149                         break;
3150                 default:
3151                         return -EINVAL;
3152                 }
3153
3154                 if (old_auto == intel_dp->color_range_auto &&
3155                     old_range == intel_dp->color_range)
3156                         return 0;
3157
3158                 goto done;
3159         }
3160
3161         if (is_edp(intel_dp) &&
3162             property == connector->dev->mode_config.scaling_mode_property) {
3163                 if (val == DRM_MODE_SCALE_NONE) {
3164                         DRM_DEBUG_KMS("no scaling not supported\n");
3165                         return -EINVAL;
3166                 }
3167
3168                 if (intel_connector->panel.fitting_mode == val) {
3169                         /* the eDP scaling property is not changed */
3170                         return 0;
3171                 }
3172                 intel_connector->panel.fitting_mode = val;
3173
3174                 goto done;
3175         }
3176
3177         return -EINVAL;
3178
3179 done:
3180         if (intel_encoder->base.crtc)
3181                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3182
3183         return 0;
3184 }
3185
3186 static void
3187 intel_dp_connector_destroy(struct drm_connector *connector)
3188 {
3189         struct intel_connector *intel_connector = to_intel_connector(connector);
3190
3191         if (!IS_ERR_OR_NULL(intel_connector->edid))
3192                 kfree(intel_connector->edid);
3193
3194         /* Can't call is_edp() since the encoder may have been destroyed
3195          * already. */
3196         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3197                 intel_panel_fini(&intel_connector->panel);
3198
3199         drm_connector_cleanup(connector);
3200         kfree(connector);
3201 }
3202
3203 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3204 {
3205         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3206         struct intel_dp *intel_dp = &intel_dig_port->dp;
3207         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3208
3209         i2c_del_adapter(&intel_dp->adapter);
3210         drm_encoder_cleanup(encoder);
3211         if (is_edp(intel_dp)) {
3212                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3213                 mutex_lock(&dev->mode_config.mutex);
3214                 ironlake_panel_vdd_off_sync(intel_dp);
3215                 mutex_unlock(&dev->mode_config.mutex);
3216         }
3217         kfree(intel_dig_port);
3218 }
3219
3220 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3221         .dpms = intel_connector_dpms,
3222         .detect = intel_dp_detect,
3223         .fill_modes = drm_helper_probe_single_connector_modes,
3224         .set_property = intel_dp_set_property,
3225         .destroy = intel_dp_connector_destroy,
3226 };
3227
3228 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3229         .get_modes = intel_dp_get_modes,
3230         .mode_valid = intel_dp_mode_valid,
3231         .best_encoder = intel_best_encoder,
3232 };
3233
3234 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3235         .destroy = intel_dp_encoder_destroy,
3236 };
3237
3238 static void
3239 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3240 {
3241         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3242
3243         intel_dp_check_link_status(intel_dp);
3244 }
3245
3246 /* Return which DP Port should be selected for Transcoder DP control */
3247 int
3248 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3249 {
3250         struct drm_device *dev = crtc->dev;
3251         struct intel_encoder *intel_encoder;
3252         struct intel_dp *intel_dp;
3253
3254         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3255                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3256
3257                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3258                     intel_encoder->type == INTEL_OUTPUT_EDP)
3259                         return intel_dp->output_reg;
3260         }
3261
3262         return -1;
3263 }
3264
3265 /* check the VBT to see whether the eDP is on DP-D port */
3266 bool intel_dpd_is_edp(struct drm_device *dev)
3267 {
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         union child_device_config *p_child;
3270         int i;
3271
3272         if (!dev_priv->vbt.child_dev_num)
3273                 return false;
3274
3275         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3276                 p_child = dev_priv->vbt.child_dev + i;
3277
3278                 if (p_child->common.dvo_port == PORT_IDPD &&
3279                     p_child->common.device_type == DEVICE_TYPE_eDP)
3280                         return true;
3281         }
3282         return false;
3283 }
3284
3285 static void
3286 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3287 {
3288         struct intel_connector *intel_connector = to_intel_connector(connector);
3289
3290         intel_attach_force_audio_property(connector);
3291         intel_attach_broadcast_rgb_property(connector);
3292         intel_dp->color_range_auto = true;
3293
3294         if (is_edp(intel_dp)) {
3295                 drm_mode_create_scaling_mode_property(connector->dev);
3296                 drm_object_attach_property(
3297                         &connector->base,
3298                         connector->dev->mode_config.scaling_mode_property,
3299                         DRM_MODE_SCALE_ASPECT);
3300                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3301         }
3302 }
3303
3304 static void
3305 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3306                                     struct intel_dp *intel_dp,
3307                                     struct edp_power_seq *out)
3308 {
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310         struct edp_power_seq cur, vbt, spec, final;
3311         u32 pp_on, pp_off, pp_div, pp;
3312         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3313
3314         if (HAS_PCH_SPLIT(dev)) {
3315                 pp_ctrl_reg = PCH_PP_CONTROL;
3316                 pp_on_reg = PCH_PP_ON_DELAYS;
3317                 pp_off_reg = PCH_PP_OFF_DELAYS;
3318                 pp_div_reg = PCH_PP_DIVISOR;
3319         } else {
3320                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3321
3322                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3323                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3324                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3325                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3326         }
3327
3328         /* Workaround: Need to write PP_CONTROL with the unlock key as
3329          * the very first thing. */
3330         pp = ironlake_get_pp_control(intel_dp);
3331         I915_WRITE(pp_ctrl_reg, pp);
3332
3333         pp_on = I915_READ(pp_on_reg);
3334         pp_off = I915_READ(pp_off_reg);
3335         pp_div = I915_READ(pp_div_reg);
3336
3337         /* Pull timing values out of registers */
3338         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3339                 PANEL_POWER_UP_DELAY_SHIFT;
3340
3341         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3342                 PANEL_LIGHT_ON_DELAY_SHIFT;
3343
3344         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3345                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3346
3347         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3348                 PANEL_POWER_DOWN_DELAY_SHIFT;
3349
3350         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3351                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3352
3353         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3354                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3355
3356         vbt = dev_priv->vbt.edp_pps;
3357
3358         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3359          * our hw here, which are all in 100usec. */
3360         spec.t1_t3 = 210 * 10;
3361         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3362         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3363         spec.t10 = 500 * 10;
3364         /* This one is special and actually in units of 100ms, but zero
3365          * based in the hw (so we need to add 100 ms). But the sw vbt
3366          * table multiplies it with 1000 to make it in units of 100usec,
3367          * too. */
3368         spec.t11_t12 = (510 + 100) * 10;
3369
3370         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3371                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3372
3373         /* Use the max of the register settings and vbt. If both are
3374          * unset, fall back to the spec limits. */
3375 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3376                                        spec.field : \
3377                                        max(cur.field, vbt.field))
3378         assign_final(t1_t3);
3379         assign_final(t8);
3380         assign_final(t9);
3381         assign_final(t10);
3382         assign_final(t11_t12);
3383 #undef assign_final
3384
3385 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3386         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3387         intel_dp->backlight_on_delay = get_delay(t8);
3388         intel_dp->backlight_off_delay = get_delay(t9);
3389         intel_dp->panel_power_down_delay = get_delay(t10);
3390         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3391 #undef get_delay
3392
3393         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3394                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3395                       intel_dp->panel_power_cycle_delay);
3396
3397         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3398                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3399
3400         if (out)
3401                 *out = final;
3402 }
3403
3404 static void
3405 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3406                                               struct intel_dp *intel_dp,
3407                                               struct edp_power_seq *seq)
3408 {
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410         u32 pp_on, pp_off, pp_div, port_sel = 0;
3411         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3412         int pp_on_reg, pp_off_reg, pp_div_reg;
3413
3414         if (HAS_PCH_SPLIT(dev)) {
3415                 pp_on_reg = PCH_PP_ON_DELAYS;
3416                 pp_off_reg = PCH_PP_OFF_DELAYS;
3417                 pp_div_reg = PCH_PP_DIVISOR;
3418         } else {
3419                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3420
3421                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3422                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3423                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3424         }
3425
3426         /* And finally store the new values in the power sequencer. */
3427         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3428                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3429         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3430                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3431         /* Compute the divisor for the pp clock, simply match the Bspec
3432          * formula. */
3433         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3434         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3435                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3436
3437         /* Haswell doesn't have any port selection bits for the panel
3438          * power sequencer any more. */
3439         if (IS_VALLEYVIEW(dev)) {
3440                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3441                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3442                 else
3443                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3444         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3445                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3446                         port_sel = PANEL_PORT_SELECT_DPA;
3447                 else
3448                         port_sel = PANEL_PORT_SELECT_DPD;
3449         }
3450
3451         pp_on |= port_sel;
3452
3453         I915_WRITE(pp_on_reg, pp_on);
3454         I915_WRITE(pp_off_reg, pp_off);
3455         I915_WRITE(pp_div_reg, pp_div);
3456
3457         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3458                       I915_READ(pp_on_reg),
3459                       I915_READ(pp_off_reg),
3460                       I915_READ(pp_div_reg));
3461 }
3462
3463 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3464                                      struct intel_connector *intel_connector)
3465 {
3466         struct drm_connector *connector = &intel_connector->base;
3467         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3468         struct drm_device *dev = intel_dig_port->base.base.dev;
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         struct drm_display_mode *fixed_mode = NULL;
3471         struct edp_power_seq power_seq = { 0 };
3472         bool has_dpcd;
3473         struct drm_display_mode *scan;
3474         struct edid *edid;
3475
3476         if (!is_edp(intel_dp))
3477                 return true;
3478
3479         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3480
3481         /* Cache DPCD and EDID for edp. */
3482         ironlake_edp_panel_vdd_on(intel_dp);
3483         has_dpcd = intel_dp_get_dpcd(intel_dp);
3484         ironlake_edp_panel_vdd_off(intel_dp, false);
3485
3486         if (has_dpcd) {
3487                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3488                         dev_priv->no_aux_handshake =
3489                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3490                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3491         } else {
3492                 /* if this fails, presume the device is a ghost */
3493                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3494                 return false;
3495         }
3496
3497         /* We now know it's not a ghost, init power sequence regs. */
3498         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3499                                                       &power_seq);
3500
3501         ironlake_edp_panel_vdd_on(intel_dp);
3502         edid = drm_get_edid(connector, &intel_dp->adapter);
3503         if (edid) {
3504                 if (drm_add_edid_modes(connector, edid)) {
3505                         drm_mode_connector_update_edid_property(connector,
3506                                                                 edid);
3507                         drm_edid_to_eld(connector, edid);
3508                 } else {
3509                         kfree(edid);
3510                         edid = ERR_PTR(-EINVAL);
3511                 }
3512         } else {
3513                 edid = ERR_PTR(-ENOENT);
3514         }
3515         intel_connector->edid = edid;
3516
3517         /* prefer fixed mode from EDID if available */
3518         list_for_each_entry(scan, &connector->probed_modes, head) {
3519                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3520                         fixed_mode = drm_mode_duplicate(dev, scan);
3521                         break;
3522                 }
3523         }
3524
3525         /* fallback to VBT if available for eDP */
3526         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3527                 fixed_mode = drm_mode_duplicate(dev,
3528                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3529                 if (fixed_mode)
3530                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3531         }
3532
3533         ironlake_edp_panel_vdd_off(intel_dp, false);
3534
3535         intel_panel_init(&intel_connector->panel, fixed_mode);
3536         intel_panel_setup_backlight(connector);
3537
3538         return true;
3539 }
3540
3541 bool
3542 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3543                         struct intel_connector *intel_connector)
3544 {
3545         struct drm_connector *connector = &intel_connector->base;
3546         struct intel_dp *intel_dp = &intel_dig_port->dp;
3547         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3548         struct drm_device *dev = intel_encoder->base.dev;
3549         struct drm_i915_private *dev_priv = dev->dev_private;
3550         enum port port = intel_dig_port->port;
3551         const char *name = NULL;
3552         int type, error;
3553
3554         /* Preserve the current hw state. */
3555         intel_dp->DP = I915_READ(intel_dp->output_reg);
3556         intel_dp->attached_connector = intel_connector;
3557
3558         type = DRM_MODE_CONNECTOR_DisplayPort;
3559         /*
3560          * FIXME : We need to initialize built-in panels before external panels.
3561          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3562          */
3563         switch (port) {
3564         case PORT_A:
3565                 type = DRM_MODE_CONNECTOR_eDP;
3566                 break;
3567         case PORT_C:
3568                 if (IS_VALLEYVIEW(dev))
3569                         type = DRM_MODE_CONNECTOR_eDP;
3570                 break;
3571         case PORT_D:
3572                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3573                         type = DRM_MODE_CONNECTOR_eDP;
3574                 break;
3575         default:        /* silence GCC warning */
3576                 break;
3577         }
3578
3579         /*
3580          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3581          * for DP the encoder type can be set by the caller to
3582          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3583          */
3584         if (type == DRM_MODE_CONNECTOR_eDP)
3585                 intel_encoder->type = INTEL_OUTPUT_EDP;
3586
3587         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3588                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3589                         port_name(port));
3590
3591         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3592         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3593
3594         connector->interlace_allowed = true;
3595         connector->doublescan_allowed = 0;
3596
3597         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3598                           ironlake_panel_vdd_work);
3599
3600         intel_connector_attach_encoder(intel_connector, intel_encoder);
3601         drm_sysfs_connector_add(connector);
3602
3603         if (HAS_DDI(dev))
3604                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3605         else
3606                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3607
3608         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3609         if (HAS_DDI(dev)) {
3610                 switch (intel_dig_port->port) {
3611                 case PORT_A:
3612                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3613                         break;
3614                 case PORT_B:
3615                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3616                         break;
3617                 case PORT_C:
3618                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3619                         break;
3620                 case PORT_D:
3621                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3622                         break;
3623                 default:
3624                         BUG();
3625                 }
3626         }
3627
3628         /* Set up the DDC bus. */
3629         switch (port) {
3630         case PORT_A:
3631                 intel_encoder->hpd_pin = HPD_PORT_A;
3632                 name = "DPDDC-A";
3633                 break;
3634         case PORT_B:
3635                 intel_encoder->hpd_pin = HPD_PORT_B;
3636                 name = "DPDDC-B";
3637                 break;
3638         case PORT_C:
3639                 intel_encoder->hpd_pin = HPD_PORT_C;
3640                 name = "DPDDC-C";
3641                 break;
3642         case PORT_D:
3643                 intel_encoder->hpd_pin = HPD_PORT_D;
3644                 name = "DPDDC-D";
3645                 break;
3646         default:
3647                 BUG();
3648         }
3649
3650         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3651         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3652              error, port_name(port));
3653
3654         intel_dp->psr_setup_done = false;
3655
3656         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3657                 i2c_del_adapter(&intel_dp->adapter);
3658                 if (is_edp(intel_dp)) {
3659                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3660                         mutex_lock(&dev->mode_config.mutex);
3661                         ironlake_panel_vdd_off_sync(intel_dp);
3662                         mutex_unlock(&dev->mode_config.mutex);
3663                 }
3664                 drm_sysfs_connector_remove(connector);
3665                 drm_connector_cleanup(connector);
3666                 return false;
3667         }
3668
3669         intel_dp_add_properties(intel_dp, connector);
3670
3671         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3672          * 0xd.  Failure to do so will result in spurious interrupts being
3673          * generated on the port when a cable is not attached.
3674          */
3675         if (IS_G4X(dev) && !IS_GM45(dev)) {
3676                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3677                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3678         }
3679
3680         return true;
3681 }
3682
3683 void
3684 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3685 {
3686         struct intel_digital_port *intel_dig_port;
3687         struct intel_encoder *intel_encoder;
3688         struct drm_encoder *encoder;
3689         struct intel_connector *intel_connector;
3690
3691         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3692         if (!intel_dig_port)
3693                 return;
3694
3695         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3696         if (!intel_connector) {
3697                 kfree(intel_dig_port);
3698                 return;
3699         }
3700
3701         intel_encoder = &intel_dig_port->base;
3702         encoder = &intel_encoder->base;
3703
3704         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3705                          DRM_MODE_ENCODER_TMDS);
3706
3707         intel_encoder->compute_config = intel_dp_compute_config;
3708         intel_encoder->mode_set = intel_dp_mode_set;
3709         intel_encoder->disable = intel_disable_dp;
3710         intel_encoder->post_disable = intel_post_disable_dp;
3711         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3712         intel_encoder->get_config = intel_dp_get_config;
3713         if (IS_VALLEYVIEW(dev)) {
3714                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3715                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3716                 intel_encoder->enable = vlv_enable_dp;
3717         } else {
3718                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3719                 intel_encoder->enable = g4x_enable_dp;
3720         }
3721
3722         intel_dig_port->port = port;
3723         intel_dig_port->dp.output_reg = output_reg;
3724
3725         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3726         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3727         intel_encoder->cloneable = false;
3728         intel_encoder->hot_plug = intel_dp_hot_plug;
3729
3730         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3731                 drm_encoder_cleanup(encoder);
3732                 kfree(intel_dig_port);
3733                 kfree(intel_connector);
3734         }
3735 }