]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
powerpc/dma: dma_set_coherent_mask() should not be GPL only
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 enum {
200         ADVANCED_CONTEXT = 0,
201         LEGACY_CONTEXT,
202         ADVANCED_AD_CONTEXT,
203         LEGACY_64B_CONTEXT
204 };
205 #define GEN8_CTX_MODE_SHIFT 3
206 enum {
207         FAULT_AND_HANG = 0,
208         FAULT_AND_HALT, /* Debug only */
209         FAULT_AND_STREAM,
210         FAULT_AND_CONTINUE /* Unsupported */
211 };
212 #define GEN8_CTX_ID_SHIFT 32
213 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
214
215 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
216
217 /**
218  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
219  * @dev: DRM device.
220  * @enable_execlists: value of i915.enable_execlists module parameter.
221  *
222  * Only certain platforms support Execlists (the prerequisites being
223  * support for Logical Ring Contexts and Aliasing PPGTT or better).
224  *
225  * Return: 1 if Execlists is supported and has to be enabled.
226  */
227 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
228 {
229         WARN_ON(i915.enable_ppgtt == -1);
230
231         if (INTEL_INFO(dev)->gen >= 9)
232                 return 1;
233
234         if (enable_execlists == 0)
235                 return 0;
236
237         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
238             i915.use_mmio_flip >= 0)
239                 return 1;
240
241         return 0;
242 }
243
244 /**
245  * intel_execlists_ctx_id() - get the Execlists Context ID
246  * @ctx_obj: Logical Ring Context backing object.
247  *
248  * Do not confuse with ctx->id! Unfortunately we have a name overload
249  * here: the old context ID we pass to userspace as a handler so that
250  * they can refer to a context, and the new context ID we pass to the
251  * ELSP so that the GPU can inform us of the context status via
252  * interrupts.
253  *
254  * Return: 20-bits globally unique context ID.
255  */
256 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
257 {
258         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
259
260         /* LRCA is required to be 4K aligned so the more significant 20 bits
261          * are globally unique */
262         return lrca >> 12;
263 }
264
265 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
266 {
267         struct intel_engine_cs *ring = rq->ring;
268         struct drm_device *dev = ring->dev;
269         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
298                                  struct drm_i915_gem_request *rq1)
299 {
300
301         struct intel_engine_cs *ring = rq0->ring;
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t desc[2];
305
306         if (rq1) {
307                 desc[1] = execlists_ctx_descriptor(rq1);
308                 rq1->elsp_submitted++;
309         } else {
310                 desc[1] = 0;
311         }
312
313         desc[0] = execlists_ctx_descriptor(rq0);
314         rq0->elsp_submitted++;
315
316         /* You must always write both descriptors in the order below. */
317         spin_lock(&dev_priv->uncore.lock);
318         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
319         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
320         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
321
322         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
323         /* The context is automatically loaded after the following */
324         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
325
326         /* ELSP is a wo register, use another nearby reg for posting */
327         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
328         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
329         spin_unlock(&dev_priv->uncore.lock);
330 }
331
332 static int execlists_update_context(struct drm_i915_gem_request *rq)
333 {
334         struct intel_engine_cs *ring = rq->ring;
335         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
336         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
337         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
338         struct page *page;
339         uint32_t *reg_state;
340
341         BUG_ON(!ctx_obj);
342         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
343         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
344
345         page = i915_gem_object_get_page(ctx_obj, 1);
346         reg_state = kmap_atomic(page);
347
348         reg_state[CTX_RING_TAIL+1] = rq->tail;
349         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
350
351         /* True PPGTT with dynamic page allocation: update PDP registers and
352          * point the unallocated PDPs to the scratch page
353          */
354         if (ppgtt) {
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
356                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
357                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
358                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
359         }
360
361         kunmap_atomic(reg_state);
362
363         return 0;
364 }
365
366 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
367                                       struct drm_i915_gem_request *rq1)
368 {
369         execlists_update_context(rq0);
370
371         if (rq1)
372                 execlists_update_context(rq1);
373
374         execlists_elsp_write(rq0, rq1);
375 }
376
377 static void execlists_context_unqueue(struct intel_engine_cs *ring)
378 {
379         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
380         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
381
382         assert_spin_locked(&ring->execlist_lock);
383
384         /*
385          * If irqs are not active generate a warning as batches that finish
386          * without the irqs may get lost and a GPU Hang may occur.
387          */
388         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
389
390         if (list_empty(&ring->execlist_queue))
391                 return;
392
393         /* Try to read in pairs */
394         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
395                                  execlist_link) {
396                 if (!req0) {
397                         req0 = cursor;
398                 } else if (req0->ctx == cursor->ctx) {
399                         /* Same ctx: ignore first request, as second request
400                          * will update tail past first request's workload */
401                         cursor->elsp_submitted = req0->elsp_submitted;
402                         list_del(&req0->execlist_link);
403                         list_add_tail(&req0->execlist_link,
404                                 &ring->execlist_retired_req_list);
405                         req0 = cursor;
406                 } else {
407                         req1 = cursor;
408                         break;
409                 }
410         }
411
412         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
413                 /*
414                  * WaIdleLiteRestore: make sure we never cause a lite
415                  * restore with HEAD==TAIL
416                  */
417                 if (req0->elsp_submitted) {
418                         /*
419                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
420                          * as we resubmit the request. See gen8_emit_request()
421                          * for where we prepare the padding after the end of the
422                          * request.
423                          */
424                         struct intel_ringbuffer *ringbuf;
425
426                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
427                         req0->tail += 8;
428                         req0->tail &= ringbuf->size - 1;
429                 }
430         }
431
432         WARN_ON(req1 && req1->elsp_submitted);
433
434         execlists_submit_requests(req0, req1);
435 }
436
437 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
438                                            u32 request_id)
439 {
440         struct drm_i915_gem_request *head_req;
441
442         assert_spin_locked(&ring->execlist_lock);
443
444         head_req = list_first_entry_or_null(&ring->execlist_queue,
445                                             struct drm_i915_gem_request,
446                                             execlist_link);
447
448         if (head_req != NULL) {
449                 struct drm_i915_gem_object *ctx_obj =
450                                 head_req->ctx->engine[ring->id].state;
451                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
452                         WARN(head_req->elsp_submitted == 0,
453                              "Never submitted head request\n");
454
455                         if (--head_req->elsp_submitted <= 0) {
456                                 list_del(&head_req->execlist_link);
457                                 list_add_tail(&head_req->execlist_link,
458                                         &ring->execlist_retired_req_list);
459                                 return true;
460                         }
461                 }
462         }
463
464         return false;
465 }
466
467 /**
468  * intel_lrc_irq_handler() - handle Context Switch interrupts
469  * @ring: Engine Command Streamer to handle.
470  *
471  * Check the unread Context Status Buffers and manage the submission of new
472  * contexts to the ELSP accordingly.
473  */
474 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
475 {
476         struct drm_i915_private *dev_priv = ring->dev->dev_private;
477         u32 status_pointer;
478         u8 read_pointer;
479         u8 write_pointer;
480         u32 status;
481         u32 status_id;
482         u32 submit_contexts = 0;
483
484         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
485
486         read_pointer = ring->next_context_status_buffer;
487         write_pointer = status_pointer & 0x07;
488         if (read_pointer > write_pointer)
489                 write_pointer += 6;
490
491         spin_lock(&ring->execlist_lock);
492
493         while (read_pointer < write_pointer) {
494                 read_pointer++;
495                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
496                                 (read_pointer % 6) * 8);
497                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
498                                 (read_pointer % 6) * 8 + 4);
499
500                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
501                         continue;
502
503                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
504                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
505                                 if (execlists_check_remove_request(ring, status_id))
506                                         WARN(1, "Lite Restored request removed from queue\n");
507                         } else
508                                 WARN(1, "Preemption without Lite Restore\n");
509                 }
510
511                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
512                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
513                         if (execlists_check_remove_request(ring, status_id))
514                                 submit_contexts++;
515                 }
516         }
517
518         if (submit_contexts != 0)
519                 execlists_context_unqueue(ring);
520
521         spin_unlock(&ring->execlist_lock);
522
523         WARN(submit_contexts > 2, "More than two context complete events?\n");
524         ring->next_context_status_buffer = write_pointer % 6;
525
526         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
527                    _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
528 }
529
530 static int execlists_context_queue(struct drm_i915_gem_request *request)
531 {
532         struct intel_engine_cs *ring = request->ring;
533         struct drm_i915_gem_request *cursor;
534         int num_elements = 0;
535
536         if (request->ctx != ring->default_context)
537                 intel_lr_context_pin(request);
538
539         i915_gem_request_reference(request);
540
541         request->tail = request->ringbuf->tail;
542
543         spin_lock_irq(&ring->execlist_lock);
544
545         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
546                 if (++num_elements > 2)
547                         break;
548
549         if (num_elements > 2) {
550                 struct drm_i915_gem_request *tail_req;
551
552                 tail_req = list_last_entry(&ring->execlist_queue,
553                                            struct drm_i915_gem_request,
554                                            execlist_link);
555
556                 if (request->ctx == tail_req->ctx) {
557                         WARN(tail_req->elsp_submitted != 0,
558                                 "More than 2 already-submitted reqs queued\n");
559                         list_del(&tail_req->execlist_link);
560                         list_add_tail(&tail_req->execlist_link,
561                                 &ring->execlist_retired_req_list);
562                 }
563         }
564
565         list_add_tail(&request->execlist_link, &ring->execlist_queue);
566         if (num_elements == 0)
567                 execlists_context_unqueue(ring);
568
569         spin_unlock_irq(&ring->execlist_lock);
570
571         return 0;
572 }
573
574 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
575 {
576         struct intel_engine_cs *ring = req->ring;
577         uint32_t flush_domains;
578         int ret;
579
580         flush_domains = 0;
581         if (ring->gpu_caches_dirty)
582                 flush_domains = I915_GEM_GPU_DOMAINS;
583
584         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
585         if (ret)
586                 return ret;
587
588         ring->gpu_caches_dirty = false;
589         return 0;
590 }
591
592 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
593                                  struct list_head *vmas)
594 {
595         const unsigned other_rings = ~intel_ring_flag(req->ring);
596         struct i915_vma *vma;
597         uint32_t flush_domains = 0;
598         bool flush_chipset = false;
599         int ret;
600
601         list_for_each_entry(vma, vmas, exec_list) {
602                 struct drm_i915_gem_object *obj = vma->obj;
603
604                 if (obj->active & other_rings) {
605                         ret = i915_gem_object_sync(obj, req->ring, &req);
606                         if (ret)
607                                 return ret;
608                 }
609
610                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
611                         flush_chipset |= i915_gem_clflush_object(obj, false);
612
613                 flush_domains |= obj->base.write_domain;
614         }
615
616         if (flush_domains & I915_GEM_DOMAIN_GTT)
617                 wmb();
618
619         /* Unconditionally invalidate gpu caches and ensure that we do flush
620          * any residual writes from the previous batch.
621          */
622         return logical_ring_invalidate_all_caches(req);
623 }
624
625 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
626 {
627         int ret;
628
629         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
630
631         if (request->ctx != request->ring->default_context) {
632                 ret = intel_lr_context_pin(request);
633                 if (ret)
634                         return ret;
635         }
636
637         return 0;
638 }
639
640 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
641                                        int bytes)
642 {
643         struct intel_ringbuffer *ringbuf = req->ringbuf;
644         struct intel_engine_cs *ring = req->ring;
645         struct drm_i915_gem_request *target;
646         unsigned space;
647         int ret;
648
649         if (intel_ring_space(ringbuf) >= bytes)
650                 return 0;
651
652         /* The whole point of reserving space is to not wait! */
653         WARN_ON(ringbuf->reserved_in_use);
654
655         list_for_each_entry(target, &ring->request_list, list) {
656                 /*
657                  * The request queue is per-engine, so can contain requests
658                  * from multiple ringbuffers. Here, we must ignore any that
659                  * aren't from the ringbuffer we're considering.
660                  */
661                 if (target->ringbuf != ringbuf)
662                         continue;
663
664                 /* Would completion of this request free enough space? */
665                 space = __intel_ring_space(target->postfix, ringbuf->tail,
666                                            ringbuf->size);
667                 if (space >= bytes)
668                         break;
669         }
670
671         if (WARN_ON(&target->list == &ring->request_list))
672                 return -ENOSPC;
673
674         ret = i915_wait_request(target);
675         if (ret)
676                 return ret;
677
678         ringbuf->space = space;
679         return 0;
680 }
681
682 /*
683  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
684  * @request: Request to advance the logical ringbuffer of.
685  *
686  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
687  * really happens during submission is that the context and current tail will be placed
688  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
689  * point, the tail *inside* the context is updated and the ELSP written to.
690  */
691 static void
692 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
693 {
694         struct intel_engine_cs *ring = request->ring;
695
696         intel_logical_ring_advance(request->ringbuf);
697
698         if (intel_ring_stopped(ring))
699                 return;
700
701         execlists_context_queue(request);
702 }
703
704 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
705 {
706         uint32_t __iomem *virt;
707         int rem = ringbuf->size - ringbuf->tail;
708
709         virt = ringbuf->virtual_start + ringbuf->tail;
710         rem /= 4;
711         while (rem--)
712                 iowrite32(MI_NOOP, virt++);
713
714         ringbuf->tail = 0;
715         intel_ring_update_space(ringbuf);
716 }
717
718 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
719 {
720         struct intel_ringbuffer *ringbuf = req->ringbuf;
721         int remain_usable = ringbuf->effective_size - ringbuf->tail;
722         int remain_actual = ringbuf->size - ringbuf->tail;
723         int ret, total_bytes, wait_bytes = 0;
724         bool need_wrap = false;
725
726         if (ringbuf->reserved_in_use)
727                 total_bytes = bytes;
728         else
729                 total_bytes = bytes + ringbuf->reserved_size;
730
731         if (unlikely(bytes > remain_usable)) {
732                 /*
733                  * Not enough space for the basic request. So need to flush
734                  * out the remainder and then wait for base + reserved.
735                  */
736                 wait_bytes = remain_actual + total_bytes;
737                 need_wrap = true;
738         } else {
739                 if (unlikely(total_bytes > remain_usable)) {
740                         /*
741                          * The base request will fit but the reserved space
742                          * falls off the end. So only need to to wait for the
743                          * reserved size after flushing out the remainder.
744                          */
745                         wait_bytes = remain_actual + ringbuf->reserved_size;
746                         need_wrap = true;
747                 } else if (total_bytes > ringbuf->space) {
748                         /* No wrapping required, just waiting. */
749                         wait_bytes = total_bytes;
750                 }
751         }
752
753         if (wait_bytes) {
754                 ret = logical_ring_wait_for_space(req, wait_bytes);
755                 if (unlikely(ret))
756                         return ret;
757
758                 if (need_wrap)
759                         __wrap_ring_buffer(ringbuf);
760         }
761
762         return 0;
763 }
764
765 /**
766  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
767  *
768  * @request: The request to start some new work for
769  * @ctx: Logical ring context whose ringbuffer is being prepared.
770  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
771  *
772  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
773  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
774  * and also preallocates a request (every workload submission is still mediated through
775  * requests, same as it did with legacy ringbuffer submission).
776  *
777  * Return: non-zero if the ringbuffer is not ready to be written to.
778  */
779 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
780 {
781         struct drm_i915_private *dev_priv;
782         int ret;
783
784         WARN_ON(req == NULL);
785         dev_priv = req->ring->dev->dev_private;
786
787         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
788                                    dev_priv->mm.interruptible);
789         if (ret)
790                 return ret;
791
792         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
793         if (ret)
794                 return ret;
795
796         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
797         return 0;
798 }
799
800 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
801 {
802         /*
803          * The first call merely notes the reserve request and is common for
804          * all back ends. The subsequent localised _begin() call actually
805          * ensures that the reservation is available. Without the begin, if
806          * the request creator immediately submitted the request without
807          * adding any commands to it then there might not actually be
808          * sufficient room for the submission commands.
809          */
810         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
811
812         return intel_logical_ring_begin(request, 0);
813 }
814
815 /**
816  * execlists_submission() - submit a batchbuffer for execution, Execlists style
817  * @dev: DRM device.
818  * @file: DRM file.
819  * @ring: Engine Command Streamer to submit to.
820  * @ctx: Context to employ for this submission.
821  * @args: execbuffer call arguments.
822  * @vmas: list of vmas.
823  * @batch_obj: the batchbuffer to submit.
824  * @exec_start: batchbuffer start virtual address pointer.
825  * @dispatch_flags: translated execbuffer call flags.
826  *
827  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
828  * away the submission details of the execbuffer ioctl call.
829  *
830  * Return: non-zero if the submission fails.
831  */
832 int intel_execlists_submission(struct i915_execbuffer_params *params,
833                                struct drm_i915_gem_execbuffer2 *args,
834                                struct list_head *vmas)
835 {
836         struct drm_device       *dev = params->dev;
837         struct intel_engine_cs  *ring = params->ring;
838         struct drm_i915_private *dev_priv = dev->dev_private;
839         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
840         u64 exec_start;
841         int instp_mode;
842         u32 instp_mask;
843         int ret;
844
845         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
846         instp_mask = I915_EXEC_CONSTANTS_MASK;
847         switch (instp_mode) {
848         case I915_EXEC_CONSTANTS_REL_GENERAL:
849         case I915_EXEC_CONSTANTS_ABSOLUTE:
850         case I915_EXEC_CONSTANTS_REL_SURFACE:
851                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
852                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
853                         return -EINVAL;
854                 }
855
856                 if (instp_mode != dev_priv->relative_constants_mode) {
857                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
858                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
859                                 return -EINVAL;
860                         }
861
862                         /* The HW changed the meaning on this bit on gen6 */
863                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
864                 }
865                 break;
866         default:
867                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
868                 return -EINVAL;
869         }
870
871         if (args->num_cliprects != 0) {
872                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
873                 return -EINVAL;
874         } else {
875                 if (args->DR4 == 0xffffffff) {
876                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
877                         args->DR4 = 0;
878                 }
879
880                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
881                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
882                         return -EINVAL;
883                 }
884         }
885
886         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
887                 DRM_DEBUG("sol reset is gen7 only\n");
888                 return -EINVAL;
889         }
890
891         ret = execlists_move_to_gpu(params->request, vmas);
892         if (ret)
893                 return ret;
894
895         if (ring == &dev_priv->ring[RCS] &&
896             instp_mode != dev_priv->relative_constants_mode) {
897                 ret = intel_logical_ring_begin(params->request, 4);
898                 if (ret)
899                         return ret;
900
901                 intel_logical_ring_emit(ringbuf, MI_NOOP);
902                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
903                 intel_logical_ring_emit(ringbuf, INSTPM);
904                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
905                 intel_logical_ring_advance(ringbuf);
906
907                 dev_priv->relative_constants_mode = instp_mode;
908         }
909
910         exec_start = params->batch_obj_vm_offset +
911                      args->batch_start_offset;
912
913         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
914         if (ret)
915                 return ret;
916
917         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
918
919         i915_gem_execbuffer_move_to_active(vmas, params->request);
920         i915_gem_execbuffer_retire_commands(params);
921
922         return 0;
923 }
924
925 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
926 {
927         struct drm_i915_gem_request *req, *tmp;
928         struct list_head retired_list;
929
930         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
931         if (list_empty(&ring->execlist_retired_req_list))
932                 return;
933
934         INIT_LIST_HEAD(&retired_list);
935         spin_lock_irq(&ring->execlist_lock);
936         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
937         spin_unlock_irq(&ring->execlist_lock);
938
939         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
940                 struct intel_context *ctx = req->ctx;
941                 struct drm_i915_gem_object *ctx_obj =
942                                 ctx->engine[ring->id].state;
943
944                 if (ctx_obj && (ctx != ring->default_context))
945                         intel_lr_context_unpin(req);
946                 list_del(&req->execlist_link);
947                 i915_gem_request_unreference(req);
948         }
949 }
950
951 void intel_logical_ring_stop(struct intel_engine_cs *ring)
952 {
953         struct drm_i915_private *dev_priv = ring->dev->dev_private;
954         int ret;
955
956         if (!intel_ring_initialized(ring))
957                 return;
958
959         ret = intel_ring_idle(ring);
960         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
961                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
962                           ring->name, ret);
963
964         /* TODO: Is this correct with Execlists enabled? */
965         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
966         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
967                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
968                 return;
969         }
970         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
971 }
972
973 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
974 {
975         struct intel_engine_cs *ring = req->ring;
976         int ret;
977
978         if (!ring->gpu_caches_dirty)
979                 return 0;
980
981         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
982         if (ret)
983                 return ret;
984
985         ring->gpu_caches_dirty = false;
986         return 0;
987 }
988
989 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
990 {
991         struct intel_engine_cs *ring = rq->ring;
992         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
993         struct intel_ringbuffer *ringbuf = rq->ringbuf;
994         int ret = 0;
995
996         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
997         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
998                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
999                                 GEN8_LR_CONTEXT_ALIGN, 0);
1000                 if (ret)
1001                         goto reset_pin_count;
1002
1003                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1004                 if (ret)
1005                         goto unpin_ctx_obj;
1006
1007                 ctx_obj->dirty = true;
1008         }
1009
1010         return ret;
1011
1012 unpin_ctx_obj:
1013         i915_gem_object_ggtt_unpin(ctx_obj);
1014 reset_pin_count:
1015         rq->ctx->engine[ring->id].pin_count = 0;
1016
1017         return ret;
1018 }
1019
1020 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1021 {
1022         struct intel_engine_cs *ring = rq->ring;
1023         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1024         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1025
1026         if (ctx_obj) {
1027                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1028                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1029                         intel_unpin_ringbuffer_obj(ringbuf);
1030                         i915_gem_object_ggtt_unpin(ctx_obj);
1031                 }
1032         }
1033 }
1034
1035 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1036 {
1037         int ret, i;
1038         struct intel_engine_cs *ring = req->ring;
1039         struct intel_ringbuffer *ringbuf = req->ringbuf;
1040         struct drm_device *dev = ring->dev;
1041         struct drm_i915_private *dev_priv = dev->dev_private;
1042         struct i915_workarounds *w = &dev_priv->workarounds;
1043
1044         if (WARN_ON_ONCE(w->count == 0))
1045                 return 0;
1046
1047         ring->gpu_caches_dirty = true;
1048         ret = logical_ring_flush_all_caches(req);
1049         if (ret)
1050                 return ret;
1051
1052         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1053         if (ret)
1054                 return ret;
1055
1056         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1057         for (i = 0; i < w->count; i++) {
1058                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1059                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1060         }
1061         intel_logical_ring_emit(ringbuf, MI_NOOP);
1062
1063         intel_logical_ring_advance(ringbuf);
1064
1065         ring->gpu_caches_dirty = true;
1066         ret = logical_ring_flush_all_caches(req);
1067         if (ret)
1068                 return ret;
1069
1070         return 0;
1071 }
1072
1073 #define wa_ctx_emit(batch, index, cmd)                                  \
1074         do {                                                            \
1075                 int __index = (index)++;                                \
1076                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1077                         return -ENOSPC;                                 \
1078                 }                                                       \
1079                 batch[__index] = (cmd);                                 \
1080         } while (0)
1081
1082
1083 /*
1084  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1085  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1086  * but there is a slight complication as this is applied in WA batch where the
1087  * values are only initialized once so we cannot take register value at the
1088  * beginning and reuse it further; hence we save its value to memory, upload a
1089  * constant value with bit21 set and then we restore it back with the saved value.
1090  * To simplify the WA, a constant value is formed by using the default value
1091  * of this register. This shouldn't be a problem because we are only modifying
1092  * it for a short period and this batch in non-premptible. We can ofcourse
1093  * use additional instructions that read the actual value of the register
1094  * at that time and set our bit of interest but it makes the WA complicated.
1095  *
1096  * This WA is also required for Gen9 so extracting as a function avoids
1097  * code duplication.
1098  */
1099 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1100                                                 uint32_t *const batch,
1101                                                 uint32_t index)
1102 {
1103         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1104
1105         /*
1106          * WaDisableLSQCROPERFforOCL:skl
1107          * This WA is implemented in skl_init_clock_gating() but since
1108          * this batch updates GEN8_L3SQCREG4 with default value we need to
1109          * set this bit here to retain the WA during flush.
1110          */
1111         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1112                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1113
1114         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1115                                    MI_SRM_LRM_GLOBAL_GTT));
1116         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1117         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1118         wa_ctx_emit(batch, index, 0);
1119
1120         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1121         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1122         wa_ctx_emit(batch, index, l3sqc4_flush);
1123
1124         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1125         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1126                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1127         wa_ctx_emit(batch, index, 0);
1128         wa_ctx_emit(batch, index, 0);
1129         wa_ctx_emit(batch, index, 0);
1130         wa_ctx_emit(batch, index, 0);
1131
1132         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1133                                    MI_SRM_LRM_GLOBAL_GTT));
1134         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1135         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1136         wa_ctx_emit(batch, index, 0);
1137
1138         return index;
1139 }
1140
1141 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1142                                     uint32_t offset,
1143                                     uint32_t start_alignment)
1144 {
1145         return wa_ctx->offset = ALIGN(offset, start_alignment);
1146 }
1147
1148 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1149                              uint32_t offset,
1150                              uint32_t size_alignment)
1151 {
1152         wa_ctx->size = offset - wa_ctx->offset;
1153
1154         WARN(wa_ctx->size % size_alignment,
1155              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1156              wa_ctx->size, size_alignment);
1157         return 0;
1158 }
1159
1160 /**
1161  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1162  *
1163  * @ring: only applicable for RCS
1164  * @wa_ctx: structure representing wa_ctx
1165  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1166  *    with the offset value received as input.
1167  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1168  * @batch: page in which WA are loaded
1169  * @offset: This field specifies the start of the batch, it should be
1170  *  cache-aligned otherwise it is adjusted accordingly.
1171  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1172  *  initialized at the beginning and shared across all contexts but this field
1173  *  helps us to have multiple batches at different offsets and select them based
1174  *  on a criteria. At the moment this batch always start at the beginning of the page
1175  *  and at this point we don't have multiple wa_ctx batch buffers.
1176  *
1177  *  The number of WA applied are not known at the beginning; we use this field
1178  *  to return the no of DWORDS written.
1179  *
1180  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1181  *  so it adds NOOPs as padding to make it cacheline aligned.
1182  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1183  *  makes a complete batch buffer.
1184  *
1185  * Return: non-zero if we exceed the PAGE_SIZE limit.
1186  */
1187
1188 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1189                                     struct i915_wa_ctx_bb *wa_ctx,
1190                                     uint32_t *const batch,
1191                                     uint32_t *offset)
1192 {
1193         uint32_t scratch_addr;
1194         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1195
1196         /* WaDisableCtxRestoreArbitration:bdw,chv */
1197         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1198
1199         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1200         if (IS_BROADWELL(ring->dev)) {
1201                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1202                 if (index < 0)
1203                         return index;
1204         }
1205
1206         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1207         /* Actual scratch location is at 128 bytes offset */
1208         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1209
1210         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1211         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1212                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1213                                    PIPE_CONTROL_CS_STALL |
1214                                    PIPE_CONTROL_QW_WRITE));
1215         wa_ctx_emit(batch, index, scratch_addr);
1216         wa_ctx_emit(batch, index, 0);
1217         wa_ctx_emit(batch, index, 0);
1218         wa_ctx_emit(batch, index, 0);
1219
1220         /* Pad to end of cacheline */
1221         while (index % CACHELINE_DWORDS)
1222                 wa_ctx_emit(batch, index, MI_NOOP);
1223
1224         /*
1225          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1226          * execution depends on the length specified in terms of cache lines
1227          * in the register CTX_RCS_INDIRECT_CTX
1228          */
1229
1230         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1231 }
1232
1233 /**
1234  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1235  *
1236  * @ring: only applicable for RCS
1237  * @wa_ctx: structure representing wa_ctx
1238  *  offset: specifies start of the batch, should be cache-aligned.
1239  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1240  * @batch: page in which WA are loaded
1241  * @offset: This field specifies the start of this batch.
1242  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1243  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1244  *
1245  *   The number of DWORDS written are returned using this field.
1246  *
1247  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1248  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1249  */
1250 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1251                                struct i915_wa_ctx_bb *wa_ctx,
1252                                uint32_t *const batch,
1253                                uint32_t *offset)
1254 {
1255         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1256
1257         /* WaDisableCtxRestoreArbitration:bdw,chv */
1258         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1259
1260         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1261
1262         return wa_ctx_end(wa_ctx, *offset = index, 1);
1263 }
1264
1265 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1266                                     struct i915_wa_ctx_bb *wa_ctx,
1267                                     uint32_t *const batch,
1268                                     uint32_t *offset)
1269 {
1270         int ret;
1271         struct drm_device *dev = ring->dev;
1272         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1273
1274         /* WaDisableCtxRestoreArbitration:skl,bxt */
1275         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1276             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1277                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1278
1279         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1280         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1281         if (ret < 0)
1282                 return ret;
1283         index = ret;
1284
1285         /* Pad to end of cacheline */
1286         while (index % CACHELINE_DWORDS)
1287                 wa_ctx_emit(batch, index, MI_NOOP);
1288
1289         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1290 }
1291
1292 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1293                                struct i915_wa_ctx_bb *wa_ctx,
1294                                uint32_t *const batch,
1295                                uint32_t *offset)
1296 {
1297         struct drm_device *dev = ring->dev;
1298         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1299
1300         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1301         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1302             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1303                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1304                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1305                 wa_ctx_emit(batch, index,
1306                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1307                 wa_ctx_emit(batch, index, MI_NOOP);
1308         }
1309
1310         /* WaDisableCtxRestoreArbitration:skl,bxt */
1311         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1312             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1313                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1314
1315         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1316
1317         return wa_ctx_end(wa_ctx, *offset = index, 1);
1318 }
1319
1320 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1321 {
1322         int ret;
1323
1324         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1325         if (!ring->wa_ctx.obj) {
1326                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1327                 return -ENOMEM;
1328         }
1329
1330         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1331         if (ret) {
1332                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1333                                  ret);
1334                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1335                 return ret;
1336         }
1337
1338         return 0;
1339 }
1340
1341 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1342 {
1343         if (ring->wa_ctx.obj) {
1344                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1345                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1346                 ring->wa_ctx.obj = NULL;
1347         }
1348 }
1349
1350 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1351 {
1352         int ret;
1353         uint32_t *batch;
1354         uint32_t offset;
1355         struct page *page;
1356         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1357
1358         WARN_ON(ring->id != RCS);
1359
1360         /* update this when WA for higher Gen are added */
1361         if (INTEL_INFO(ring->dev)->gen > 9) {
1362                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1363                           INTEL_INFO(ring->dev)->gen);
1364                 return 0;
1365         }
1366
1367         /* some WA perform writes to scratch page, ensure it is valid */
1368         if (ring->scratch.obj == NULL) {
1369                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1370                 return -EINVAL;
1371         }
1372
1373         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1374         if (ret) {
1375                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1376                 return ret;
1377         }
1378
1379         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1380         batch = kmap_atomic(page);
1381         offset = 0;
1382
1383         if (INTEL_INFO(ring->dev)->gen == 8) {
1384                 ret = gen8_init_indirectctx_bb(ring,
1385                                                &wa_ctx->indirect_ctx,
1386                                                batch,
1387                                                &offset);
1388                 if (ret)
1389                         goto out;
1390
1391                 ret = gen8_init_perctx_bb(ring,
1392                                           &wa_ctx->per_ctx,
1393                                           batch,
1394                                           &offset);
1395                 if (ret)
1396                         goto out;
1397         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1398                 ret = gen9_init_indirectctx_bb(ring,
1399                                                &wa_ctx->indirect_ctx,
1400                                                batch,
1401                                                &offset);
1402                 if (ret)
1403                         goto out;
1404
1405                 ret = gen9_init_perctx_bb(ring,
1406                                           &wa_ctx->per_ctx,
1407                                           batch,
1408                                           &offset);
1409                 if (ret)
1410                         goto out;
1411         }
1412
1413 out:
1414         kunmap_atomic(batch);
1415         if (ret)
1416                 lrc_destroy_wa_ctx_obj(ring);
1417
1418         return ret;
1419 }
1420
1421 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1422 {
1423         struct drm_device *dev = ring->dev;
1424         struct drm_i915_private *dev_priv = dev->dev_private;
1425
1426         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1427         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1428
1429         if (ring->status_page.obj) {
1430                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1431                            (u32)ring->status_page.gfx_addr);
1432                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1433         }
1434
1435         I915_WRITE(RING_MODE_GEN7(ring),
1436                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1437                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1438         POSTING_READ(RING_MODE_GEN7(ring));
1439         ring->next_context_status_buffer = 0;
1440         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1441
1442         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1443
1444         return 0;
1445 }
1446
1447 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1448 {
1449         struct drm_device *dev = ring->dev;
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         int ret;
1452
1453         ret = gen8_init_common_ring(ring);
1454         if (ret)
1455                 return ret;
1456
1457         /* We need to disable the AsyncFlip performance optimisations in order
1458          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1459          * programmed to '1' on all products.
1460          *
1461          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1462          */
1463         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1464
1465         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1466
1467         return init_workarounds_ring(ring);
1468 }
1469
1470 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1471 {
1472         int ret;
1473
1474         ret = gen8_init_common_ring(ring);
1475         if (ret)
1476                 return ret;
1477
1478         return init_workarounds_ring(ring);
1479 }
1480
1481 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1482 {
1483         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1484         struct intel_engine_cs *ring = req->ring;
1485         struct intel_ringbuffer *ringbuf = req->ringbuf;
1486         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1487         int i, ret;
1488
1489         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1490         if (ret)
1491                 return ret;
1492
1493         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1494         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1495                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1496
1497                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1498                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1499                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1500                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1501         }
1502
1503         intel_logical_ring_emit(ringbuf, MI_NOOP);
1504         intel_logical_ring_advance(ringbuf);
1505
1506         return 0;
1507 }
1508
1509 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1510                               u64 offset, unsigned dispatch_flags)
1511 {
1512         struct intel_ringbuffer *ringbuf = req->ringbuf;
1513         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1514         int ret;
1515
1516         /* Don't rely in hw updating PDPs, specially in lite-restore.
1517          * Ideally, we should set Force PD Restore in ctx descriptor,
1518          * but we can't. Force Restore would be a second option, but
1519          * it is unsafe in case of lite-restore (because the ctx is
1520          * not idle). */
1521         if (req->ctx->ppgtt &&
1522             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1523                 ret = intel_logical_ring_emit_pdps(req);
1524                 if (ret)
1525                         return ret;
1526
1527                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1528         }
1529
1530         ret = intel_logical_ring_begin(req, 4);
1531         if (ret)
1532                 return ret;
1533
1534         /* FIXME(BDW): Address space and security selectors. */
1535         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1536                                 (ppgtt<<8) |
1537                                 (dispatch_flags & I915_DISPATCH_RS ?
1538                                  MI_BATCH_RESOURCE_STREAMER : 0));
1539         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1540         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1541         intel_logical_ring_emit(ringbuf, MI_NOOP);
1542         intel_logical_ring_advance(ringbuf);
1543
1544         return 0;
1545 }
1546
1547 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1548 {
1549         struct drm_device *dev = ring->dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         unsigned long flags;
1552
1553         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1554                 return false;
1555
1556         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1557         if (ring->irq_refcount++ == 0) {
1558                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1559                 POSTING_READ(RING_IMR(ring->mmio_base));
1560         }
1561         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1562
1563         return true;
1564 }
1565
1566 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1567 {
1568         struct drm_device *dev = ring->dev;
1569         struct drm_i915_private *dev_priv = dev->dev_private;
1570         unsigned long flags;
1571
1572         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1573         if (--ring->irq_refcount == 0) {
1574                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1575                 POSTING_READ(RING_IMR(ring->mmio_base));
1576         }
1577         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1578 }
1579
1580 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1581                            u32 invalidate_domains,
1582                            u32 unused)
1583 {
1584         struct intel_ringbuffer *ringbuf = request->ringbuf;
1585         struct intel_engine_cs *ring = ringbuf->ring;
1586         struct drm_device *dev = ring->dev;
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         uint32_t cmd;
1589         int ret;
1590
1591         ret = intel_logical_ring_begin(request, 4);
1592         if (ret)
1593                 return ret;
1594
1595         cmd = MI_FLUSH_DW + 1;
1596
1597         /* We always require a command barrier so that subsequent
1598          * commands, such as breadcrumb interrupts, are strictly ordered
1599          * wrt the contents of the write cache being flushed to memory
1600          * (and thus being coherent from the CPU).
1601          */
1602         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1603
1604         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1605                 cmd |= MI_INVALIDATE_TLB;
1606                 if (ring == &dev_priv->ring[VCS])
1607                         cmd |= MI_INVALIDATE_BSD;
1608         }
1609
1610         intel_logical_ring_emit(ringbuf, cmd);
1611         intel_logical_ring_emit(ringbuf,
1612                                 I915_GEM_HWS_SCRATCH_ADDR |
1613                                 MI_FLUSH_DW_USE_GTT);
1614         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1615         intel_logical_ring_emit(ringbuf, 0); /* value */
1616         intel_logical_ring_advance(ringbuf);
1617
1618         return 0;
1619 }
1620
1621 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1622                                   u32 invalidate_domains,
1623                                   u32 flush_domains)
1624 {
1625         struct intel_ringbuffer *ringbuf = request->ringbuf;
1626         struct intel_engine_cs *ring = ringbuf->ring;
1627         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1628         bool vf_flush_wa;
1629         u32 flags = 0;
1630         int ret;
1631
1632         flags |= PIPE_CONTROL_CS_STALL;
1633
1634         if (flush_domains) {
1635                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1636                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1637         }
1638
1639         if (invalidate_domains) {
1640                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1641                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1642                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1643                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1644                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1645                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1646                 flags |= PIPE_CONTROL_QW_WRITE;
1647                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1648         }
1649
1650         /*
1651          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1652          * control.
1653          */
1654         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1655                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1656
1657         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1658         if (ret)
1659                 return ret;
1660
1661         if (vf_flush_wa) {
1662                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1663                 intel_logical_ring_emit(ringbuf, 0);
1664                 intel_logical_ring_emit(ringbuf, 0);
1665                 intel_logical_ring_emit(ringbuf, 0);
1666                 intel_logical_ring_emit(ringbuf, 0);
1667                 intel_logical_ring_emit(ringbuf, 0);
1668         }
1669
1670         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1671         intel_logical_ring_emit(ringbuf, flags);
1672         intel_logical_ring_emit(ringbuf, scratch_addr);
1673         intel_logical_ring_emit(ringbuf, 0);
1674         intel_logical_ring_emit(ringbuf, 0);
1675         intel_logical_ring_emit(ringbuf, 0);
1676         intel_logical_ring_advance(ringbuf);
1677
1678         return 0;
1679 }
1680
1681 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1682 {
1683         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1684 }
1685
1686 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1687 {
1688         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1689 }
1690
1691 static int gen8_emit_request(struct drm_i915_gem_request *request)
1692 {
1693         struct intel_ringbuffer *ringbuf = request->ringbuf;
1694         struct intel_engine_cs *ring = ringbuf->ring;
1695         u32 cmd;
1696         int ret;
1697
1698         /*
1699          * Reserve space for 2 NOOPs at the end of each request to be
1700          * used as a workaround for not being allowed to do lite
1701          * restore with HEAD==TAIL (WaIdleLiteRestore).
1702          */
1703         ret = intel_logical_ring_begin(request, 8);
1704         if (ret)
1705                 return ret;
1706
1707         cmd = MI_STORE_DWORD_IMM_GEN4;
1708         cmd |= MI_GLOBAL_GTT;
1709
1710         intel_logical_ring_emit(ringbuf, cmd);
1711         intel_logical_ring_emit(ringbuf,
1712                                 (ring->status_page.gfx_addr +
1713                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1714         intel_logical_ring_emit(ringbuf, 0);
1715         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1716         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1717         intel_logical_ring_emit(ringbuf, MI_NOOP);
1718         intel_logical_ring_advance_and_submit(request);
1719
1720         /*
1721          * Here we add two extra NOOPs as padding to avoid
1722          * lite restore of a context with HEAD==TAIL.
1723          */
1724         intel_logical_ring_emit(ringbuf, MI_NOOP);
1725         intel_logical_ring_emit(ringbuf, MI_NOOP);
1726         intel_logical_ring_advance(ringbuf);
1727
1728         return 0;
1729 }
1730
1731 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1732 {
1733         struct render_state so;
1734         int ret;
1735
1736         ret = i915_gem_render_state_prepare(req->ring, &so);
1737         if (ret)
1738                 return ret;
1739
1740         if (so.rodata == NULL)
1741                 return 0;
1742
1743         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1744                                        I915_DISPATCH_SECURE);
1745         if (ret)
1746                 goto out;
1747
1748         ret = req->ring->emit_bb_start(req,
1749                                        (so.ggtt_offset + so.aux_batch_offset),
1750                                        I915_DISPATCH_SECURE);
1751         if (ret)
1752                 goto out;
1753
1754         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1755
1756 out:
1757         i915_gem_render_state_fini(&so);
1758         return ret;
1759 }
1760
1761 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1762 {
1763         int ret;
1764
1765         ret = intel_logical_ring_workarounds_emit(req);
1766         if (ret)
1767                 return ret;
1768
1769         ret = intel_rcs_context_init_mocs(req);
1770         /*
1771          * Failing to program the MOCS is non-fatal.The system will not
1772          * run at peak performance. So generate an error and carry on.
1773          */
1774         if (ret)
1775                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1776
1777         return intel_lr_context_render_state_init(req);
1778 }
1779
1780 /**
1781  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1782  *
1783  * @ring: Engine Command Streamer.
1784  *
1785  */
1786 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1787 {
1788         struct drm_i915_private *dev_priv;
1789
1790         if (!intel_ring_initialized(ring))
1791                 return;
1792
1793         dev_priv = ring->dev->dev_private;
1794
1795         intel_logical_ring_stop(ring);
1796         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1797
1798         if (ring->cleanup)
1799                 ring->cleanup(ring);
1800
1801         i915_cmd_parser_fini_ring(ring);
1802         i915_gem_batch_pool_fini(&ring->batch_pool);
1803
1804         if (ring->status_page.obj) {
1805                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1806                 ring->status_page.obj = NULL;
1807         }
1808
1809         lrc_destroy_wa_ctx_obj(ring);
1810 }
1811
1812 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1813 {
1814         int ret;
1815
1816         /* Intentionally left blank. */
1817         ring->buffer = NULL;
1818
1819         ring->dev = dev;
1820         INIT_LIST_HEAD(&ring->active_list);
1821         INIT_LIST_HEAD(&ring->request_list);
1822         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1823         init_waitqueue_head(&ring->irq_queue);
1824
1825         INIT_LIST_HEAD(&ring->execlist_queue);
1826         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1827         spin_lock_init(&ring->execlist_lock);
1828
1829         ret = i915_cmd_parser_init_ring(ring);
1830         if (ret)
1831                 return ret;
1832
1833         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1834
1835         return ret;
1836 }
1837
1838 static int logical_render_ring_init(struct drm_device *dev)
1839 {
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1842         int ret;
1843
1844         ring->name = "render ring";
1845         ring->id = RCS;
1846         ring->mmio_base = RENDER_RING_BASE;
1847         ring->irq_enable_mask =
1848                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1849         ring->irq_keep_mask =
1850                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1851         if (HAS_L3_DPF(dev))
1852                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1853
1854         if (INTEL_INFO(dev)->gen >= 9)
1855                 ring->init_hw = gen9_init_render_ring;
1856         else
1857                 ring->init_hw = gen8_init_render_ring;
1858         ring->init_context = gen8_init_rcs_context;
1859         ring->cleanup = intel_fini_pipe_control;
1860         ring->get_seqno = gen8_get_seqno;
1861         ring->set_seqno = gen8_set_seqno;
1862         ring->emit_request = gen8_emit_request;
1863         ring->emit_flush = gen8_emit_flush_render;
1864         ring->irq_get = gen8_logical_ring_get_irq;
1865         ring->irq_put = gen8_logical_ring_put_irq;
1866         ring->emit_bb_start = gen8_emit_bb_start;
1867
1868         ring->dev = dev;
1869
1870         ret = intel_init_pipe_control(ring);
1871         if (ret)
1872                 return ret;
1873
1874         ret = intel_init_workaround_bb(ring);
1875         if (ret) {
1876                 /*
1877                  * We continue even if we fail to initialize WA batch
1878                  * because we only expect rare glitches but nothing
1879                  * critical to prevent us from using GPU
1880                  */
1881                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1882                           ret);
1883         }
1884
1885         ret = logical_ring_init(dev, ring);
1886         if (ret) {
1887                 lrc_destroy_wa_ctx_obj(ring);
1888         }
1889
1890         return ret;
1891 }
1892
1893 static int logical_bsd_ring_init(struct drm_device *dev)
1894 {
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1897
1898         ring->name = "bsd ring";
1899         ring->id = VCS;
1900         ring->mmio_base = GEN6_BSD_RING_BASE;
1901         ring->irq_enable_mask =
1902                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1903         ring->irq_keep_mask =
1904                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1905
1906         ring->init_hw = gen8_init_common_ring;
1907         ring->get_seqno = gen8_get_seqno;
1908         ring->set_seqno = gen8_set_seqno;
1909         ring->emit_request = gen8_emit_request;
1910         ring->emit_flush = gen8_emit_flush;
1911         ring->irq_get = gen8_logical_ring_get_irq;
1912         ring->irq_put = gen8_logical_ring_put_irq;
1913         ring->emit_bb_start = gen8_emit_bb_start;
1914
1915         return logical_ring_init(dev, ring);
1916 }
1917
1918 static int logical_bsd2_ring_init(struct drm_device *dev)
1919 {
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1922
1923         ring->name = "bds2 ring";
1924         ring->id = VCS2;
1925         ring->mmio_base = GEN8_BSD2_RING_BASE;
1926         ring->irq_enable_mask =
1927                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1928         ring->irq_keep_mask =
1929                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1930
1931         ring->init_hw = gen8_init_common_ring;
1932         ring->get_seqno = gen8_get_seqno;
1933         ring->set_seqno = gen8_set_seqno;
1934         ring->emit_request = gen8_emit_request;
1935         ring->emit_flush = gen8_emit_flush;
1936         ring->irq_get = gen8_logical_ring_get_irq;
1937         ring->irq_put = gen8_logical_ring_put_irq;
1938         ring->emit_bb_start = gen8_emit_bb_start;
1939
1940         return logical_ring_init(dev, ring);
1941 }
1942
1943 static int logical_blt_ring_init(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1947
1948         ring->name = "blitter ring";
1949         ring->id = BCS;
1950         ring->mmio_base = BLT_RING_BASE;
1951         ring->irq_enable_mask =
1952                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1953         ring->irq_keep_mask =
1954                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1955
1956         ring->init_hw = gen8_init_common_ring;
1957         ring->get_seqno = gen8_get_seqno;
1958         ring->set_seqno = gen8_set_seqno;
1959         ring->emit_request = gen8_emit_request;
1960         ring->emit_flush = gen8_emit_flush;
1961         ring->irq_get = gen8_logical_ring_get_irq;
1962         ring->irq_put = gen8_logical_ring_put_irq;
1963         ring->emit_bb_start = gen8_emit_bb_start;
1964
1965         return logical_ring_init(dev, ring);
1966 }
1967
1968 static int logical_vebox_ring_init(struct drm_device *dev)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1972
1973         ring->name = "video enhancement ring";
1974         ring->id = VECS;
1975         ring->mmio_base = VEBOX_RING_BASE;
1976         ring->irq_enable_mask =
1977                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1978         ring->irq_keep_mask =
1979                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1980
1981         ring->init_hw = gen8_init_common_ring;
1982         ring->get_seqno = gen8_get_seqno;
1983         ring->set_seqno = gen8_set_seqno;
1984         ring->emit_request = gen8_emit_request;
1985         ring->emit_flush = gen8_emit_flush;
1986         ring->irq_get = gen8_logical_ring_get_irq;
1987         ring->irq_put = gen8_logical_ring_put_irq;
1988         ring->emit_bb_start = gen8_emit_bb_start;
1989
1990         return logical_ring_init(dev, ring);
1991 }
1992
1993 /**
1994  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1995  * @dev: DRM device.
1996  *
1997  * This function inits the engines for an Execlists submission style (the equivalent in the
1998  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1999  * those engines that are present in the hardware.
2000  *
2001  * Return: non-zero if the initialization failed.
2002  */
2003 int intel_logical_rings_init(struct drm_device *dev)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         int ret;
2007
2008         ret = logical_render_ring_init(dev);
2009         if (ret)
2010                 return ret;
2011
2012         if (HAS_BSD(dev)) {
2013                 ret = logical_bsd_ring_init(dev);
2014                 if (ret)
2015                         goto cleanup_render_ring;
2016         }
2017
2018         if (HAS_BLT(dev)) {
2019                 ret = logical_blt_ring_init(dev);
2020                 if (ret)
2021                         goto cleanup_bsd_ring;
2022         }
2023
2024         if (HAS_VEBOX(dev)) {
2025                 ret = logical_vebox_ring_init(dev);
2026                 if (ret)
2027                         goto cleanup_blt_ring;
2028         }
2029
2030         if (HAS_BSD2(dev)) {
2031                 ret = logical_bsd2_ring_init(dev);
2032                 if (ret)
2033                         goto cleanup_vebox_ring;
2034         }
2035
2036         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2037         if (ret)
2038                 goto cleanup_bsd2_ring;
2039
2040         return 0;
2041
2042 cleanup_bsd2_ring:
2043         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2044 cleanup_vebox_ring:
2045         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2046 cleanup_blt_ring:
2047         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2048 cleanup_bsd_ring:
2049         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2050 cleanup_render_ring:
2051         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2052
2053         return ret;
2054 }
2055
2056 static u32
2057 make_rpcs(struct drm_device *dev)
2058 {
2059         u32 rpcs = 0;
2060
2061         /*
2062          * No explicit RPCS request is needed to ensure full
2063          * slice/subslice/EU enablement prior to Gen9.
2064         */
2065         if (INTEL_INFO(dev)->gen < 9)
2066                 return 0;
2067
2068         /*
2069          * Starting in Gen9, render power gating can leave
2070          * slice/subslice/EU in a partially enabled state. We
2071          * must make an explicit request through RPCS for full
2072          * enablement.
2073         */
2074         if (INTEL_INFO(dev)->has_slice_pg) {
2075                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2076                 rpcs |= INTEL_INFO(dev)->slice_total <<
2077                         GEN8_RPCS_S_CNT_SHIFT;
2078                 rpcs |= GEN8_RPCS_ENABLE;
2079         }
2080
2081         if (INTEL_INFO(dev)->has_subslice_pg) {
2082                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2083                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2084                         GEN8_RPCS_SS_CNT_SHIFT;
2085                 rpcs |= GEN8_RPCS_ENABLE;
2086         }
2087
2088         if (INTEL_INFO(dev)->has_eu_pg) {
2089                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2090                         GEN8_RPCS_EU_MIN_SHIFT;
2091                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2092                         GEN8_RPCS_EU_MAX_SHIFT;
2093                 rpcs |= GEN8_RPCS_ENABLE;
2094         }
2095
2096         return rpcs;
2097 }
2098
2099 static int
2100 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2101                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2102 {
2103         struct drm_device *dev = ring->dev;
2104         struct drm_i915_private *dev_priv = dev->dev_private;
2105         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2106         struct page *page;
2107         uint32_t *reg_state;
2108         int ret;
2109
2110         if (!ppgtt)
2111                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2112
2113         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2114         if (ret) {
2115                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2116                 return ret;
2117         }
2118
2119         ret = i915_gem_object_get_pages(ctx_obj);
2120         if (ret) {
2121                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2122                 return ret;
2123         }
2124
2125         i915_gem_object_pin_pages(ctx_obj);
2126
2127         /* The second page of the context object contains some fields which must
2128          * be set up prior to the first execution. */
2129         page = i915_gem_object_get_page(ctx_obj, 1);
2130         reg_state = kmap_atomic(page);
2131
2132         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2133          * commands followed by (reg, value) pairs. The values we are setting here are
2134          * only for the first context restore: on a subsequent save, the GPU will
2135          * recreate this batchbuffer with new values (including all the missing
2136          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2137         if (ring->id == RCS)
2138                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2139         else
2140                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2141         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2142         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2143         reg_state[CTX_CONTEXT_CONTROL+1] =
2144                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2145                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2146                                    CTX_CTRL_RS_CTX_ENABLE);
2147         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2148         reg_state[CTX_RING_HEAD+1] = 0;
2149         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2150         reg_state[CTX_RING_TAIL+1] = 0;
2151         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2152         /* Ring buffer start address is not known until the buffer is pinned.
2153          * It is written to the context image in execlists_update_context()
2154          */
2155         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2156         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2157                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2158         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2159         reg_state[CTX_BB_HEAD_U+1] = 0;
2160         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2161         reg_state[CTX_BB_HEAD_L+1] = 0;
2162         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2163         reg_state[CTX_BB_STATE+1] = (1<<5);
2164         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2165         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2166         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2167         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2168         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2169         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2170         if (ring->id == RCS) {
2171                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2172                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2173                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2174                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2175                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2176                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2177                 if (ring->wa_ctx.obj) {
2178                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2179                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2180
2181                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2182                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2183                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2184
2185                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2186                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2187
2188                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2189                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2190                                 0x01;
2191                 }
2192         }
2193         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2194         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2195         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2196         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2197         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2198         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2199         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2200         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2201         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2202         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2203         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2204         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2205
2206         /* With dynamic page allocation, PDPs may not be allocated at this point,
2207          * Point the unallocated PDPs to the scratch page
2208          */
2209         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2210         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2211         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2212         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2213         if (ring->id == RCS) {
2214                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2215                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2216                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2217         }
2218
2219         kunmap_atomic(reg_state);
2220
2221         ctx_obj->dirty = 1;
2222         set_page_dirty(page);
2223         i915_gem_object_unpin_pages(ctx_obj);
2224
2225         return 0;
2226 }
2227
2228 /**
2229  * intel_lr_context_free() - free the LRC specific bits of a context
2230  * @ctx: the LR context to free.
2231  *
2232  * The real context freeing is done in i915_gem_context_free: this only
2233  * takes care of the bits that are LRC related: the per-engine backing
2234  * objects and the logical ringbuffer.
2235  */
2236 void intel_lr_context_free(struct intel_context *ctx)
2237 {
2238         int i;
2239
2240         for (i = 0; i < I915_NUM_RINGS; i++) {
2241                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2242
2243                 if (ctx_obj) {
2244                         struct intel_ringbuffer *ringbuf =
2245                                         ctx->engine[i].ringbuf;
2246                         struct intel_engine_cs *ring = ringbuf->ring;
2247
2248                         if (ctx == ring->default_context) {
2249                                 intel_unpin_ringbuffer_obj(ringbuf);
2250                                 i915_gem_object_ggtt_unpin(ctx_obj);
2251                         }
2252                         WARN_ON(ctx->engine[ring->id].pin_count);
2253                         intel_destroy_ringbuffer_obj(ringbuf);
2254                         kfree(ringbuf);
2255                         drm_gem_object_unreference(&ctx_obj->base);
2256                 }
2257         }
2258 }
2259
2260 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2261 {
2262         int ret = 0;
2263
2264         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2265
2266         switch (ring->id) {
2267         case RCS:
2268                 if (INTEL_INFO(ring->dev)->gen >= 9)
2269                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2270                 else
2271                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2272                 break;
2273         case VCS:
2274         case BCS:
2275         case VECS:
2276         case VCS2:
2277                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2278                 break;
2279         }
2280
2281         return ret;
2282 }
2283
2284 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2285                 struct drm_i915_gem_object *default_ctx_obj)
2286 {
2287         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2288
2289         /* The status page is offset 0 from the default context object
2290          * in LRC mode. */
2291         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2292         ring->status_page.page_addr =
2293                         kmap(sg_page(default_ctx_obj->pages->sgl));
2294         ring->status_page.obj = default_ctx_obj;
2295
2296         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2297                         (u32)ring->status_page.gfx_addr);
2298         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2299 }
2300
2301 /**
2302  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2303  * @ctx: LR context to create.
2304  * @ring: engine to be used with the context.
2305  *
2306  * This function can be called more than once, with different engines, if we plan
2307  * to use the context with them. The context backing objects and the ringbuffers
2308  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2309  * the creation is a deferred call: it's better to make sure first that we need to use
2310  * a given ring with the context.
2311  *
2312  * Return: non-zero on error.
2313  */
2314 int intel_lr_context_deferred_create(struct intel_context *ctx,
2315                                      struct intel_engine_cs *ring)
2316 {
2317         const bool is_global_default_ctx = (ctx == ring->default_context);
2318         struct drm_device *dev = ring->dev;
2319         struct drm_i915_gem_object *ctx_obj;
2320         uint32_t context_size;
2321         struct intel_ringbuffer *ringbuf;
2322         int ret;
2323
2324         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2325         WARN_ON(ctx->engine[ring->id].state);
2326
2327         context_size = round_up(get_lr_context_size(ring), 4096);
2328
2329         ctx_obj = i915_gem_alloc_object(dev, context_size);
2330         if (!ctx_obj) {
2331                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2332                 return -ENOMEM;
2333         }
2334
2335         if (is_global_default_ctx) {
2336                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2337                 if (ret) {
2338                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2339                                         ret);
2340                         drm_gem_object_unreference(&ctx_obj->base);
2341                         return ret;
2342                 }
2343         }
2344
2345         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2346         if (!ringbuf) {
2347                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2348                                 ring->name);
2349                 ret = -ENOMEM;
2350                 goto error_unpin_ctx;
2351         }
2352
2353         ringbuf->ring = ring;
2354
2355         ringbuf->size = 32 * PAGE_SIZE;
2356         ringbuf->effective_size = ringbuf->size;
2357         ringbuf->head = 0;
2358         ringbuf->tail = 0;
2359         ringbuf->last_retired_head = -1;
2360         intel_ring_update_space(ringbuf);
2361
2362         if (ringbuf->obj == NULL) {
2363                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2364                 if (ret) {
2365                         DRM_DEBUG_DRIVER(
2366                                 "Failed to allocate ringbuffer obj %s: %d\n",
2367                                 ring->name, ret);
2368                         goto error_free_rbuf;
2369                 }
2370
2371                 if (is_global_default_ctx) {
2372                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2373                         if (ret) {
2374                                 DRM_ERROR(
2375                                         "Failed to pin and map ringbuffer %s: %d\n",
2376                                         ring->name, ret);
2377                                 goto error_destroy_rbuf;
2378                         }
2379                 }
2380
2381         }
2382
2383         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2384         if (ret) {
2385                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2386                 goto error;
2387         }
2388
2389         ctx->engine[ring->id].ringbuf = ringbuf;
2390         ctx->engine[ring->id].state = ctx_obj;
2391
2392         if (ctx == ring->default_context)
2393                 lrc_setup_hardware_status_page(ring, ctx_obj);
2394         else if (ring->id == RCS && !ctx->rcs_initialized) {
2395                 if (ring->init_context) {
2396                         struct drm_i915_gem_request *req;
2397
2398                         ret = i915_gem_request_alloc(ring, ctx, &req);
2399                         if (ret)
2400                                 return ret;
2401
2402                         ret = ring->init_context(req);
2403                         if (ret) {
2404                                 DRM_ERROR("ring init context: %d\n", ret);
2405                                 i915_gem_request_cancel(req);
2406                                 ctx->engine[ring->id].ringbuf = NULL;
2407                                 ctx->engine[ring->id].state = NULL;
2408                                 goto error;
2409                         }
2410
2411                         i915_add_request_no_flush(req);
2412                 }
2413
2414                 ctx->rcs_initialized = true;
2415         }
2416
2417         return 0;
2418
2419 error:
2420         if (is_global_default_ctx)
2421                 intel_unpin_ringbuffer_obj(ringbuf);
2422 error_destroy_rbuf:
2423         intel_destroy_ringbuffer_obj(ringbuf);
2424 error_free_rbuf:
2425         kfree(ringbuf);
2426 error_unpin_ctx:
2427         if (is_global_default_ctx)
2428                 i915_gem_object_ggtt_unpin(ctx_obj);
2429         drm_gem_object_unreference(&ctx_obj->base);
2430         return ret;
2431 }
2432
2433 void intel_lr_context_reset(struct drm_device *dev,
2434                         struct intel_context *ctx)
2435 {
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_engine_cs *ring;
2438         int i;
2439
2440         for_each_ring(ring, dev_priv, i) {
2441                 struct drm_i915_gem_object *ctx_obj =
2442                                 ctx->engine[ring->id].state;
2443                 struct intel_ringbuffer *ringbuf =
2444                                 ctx->engine[ring->id].ringbuf;
2445                 uint32_t *reg_state;
2446                 struct page *page;
2447
2448                 if (!ctx_obj)
2449                         continue;
2450
2451                 if (i915_gem_object_get_pages(ctx_obj)) {
2452                         WARN(1, "Failed get_pages for context obj\n");
2453                         continue;
2454                 }
2455                 page = i915_gem_object_get_page(ctx_obj, 1);
2456                 reg_state = kmap_atomic(page);
2457
2458                 reg_state[CTX_RING_HEAD+1] = 0;
2459                 reg_state[CTX_RING_TAIL+1] = 0;
2460
2461                 kunmap_atomic(reg_state);
2462
2463                 ringbuf->head = 0;
2464                 ringbuf->tail = 0;
2465         }
2466 }