]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_psr.c
Merge remote-tracking branch 'asoc/topic/core' into asoc-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61         return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66         struct drm_i915_private *dev_priv = dev->dev_private;
67         uint32_t val;
68
69         val = I915_READ(VLV_PSRSTAT(pipe)) &
70               VLV_EDP_PSR_CURR_STATE_MASK;
71         return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72                (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76                                     struct edp_vsc_psr *vsc_psr)
77 {
78         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79         struct drm_device *dev = dig_port->base.base.dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config->cpu_transcoder);
83         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config->cpu_transcoder);
84         uint32_t *data = (uint32_t *) vsc_psr;
85         unsigned int i;
86
87         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88            the video DIP being updated before program video DIP data buffer
89            registers for DIP being updated. */
90         I915_WRITE(ctl_reg, 0);
91         POSTING_READ(ctl_reg);
92
93         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
94                 if (i < sizeof(struct edp_vsc_psr))
95                         I915_WRITE(data_reg + i, *data++);
96                 else
97                         I915_WRITE(data_reg + i, 0);
98         }
99
100         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
101         POSTING_READ(ctl_reg);
102 }
103
104 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
105 {
106         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
107         struct drm_device *dev = intel_dig_port->base.base.dev;
108         struct drm_i915_private *dev_priv = dev->dev_private;
109         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
110         enum pipe pipe = to_intel_crtc(crtc)->pipe;
111         uint32_t val;
112
113         /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
114         val  = I915_READ(VLV_VSCSDP(pipe));
115         val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
116         val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
117         I915_WRITE(VLV_VSCSDP(pipe), val);
118 }
119
120 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
121 {
122         struct edp_vsc_psr psr_vsc;
123
124         /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
125         memset(&psr_vsc, 0, sizeof(psr_vsc));
126         psr_vsc.sdp_header.HB0 = 0;
127         psr_vsc.sdp_header.HB1 = 0x7;
128         psr_vsc.sdp_header.HB2 = 0x3;
129         psr_vsc.sdp_header.HB3 = 0xb;
130         intel_psr_write_vsc(intel_dp, &psr_vsc);
131 }
132
133 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
134 {
135         struct edp_vsc_psr psr_vsc;
136
137         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
138         memset(&psr_vsc, 0, sizeof(psr_vsc));
139         psr_vsc.sdp_header.HB0 = 0;
140         psr_vsc.sdp_header.HB1 = 0x7;
141         psr_vsc.sdp_header.HB2 = 0x2;
142         psr_vsc.sdp_header.HB3 = 0x8;
143         intel_psr_write_vsc(intel_dp, &psr_vsc);
144 }
145
146 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
147 {
148         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
149                            DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
150 }
151
152 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
153 {
154         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
155         struct drm_device *dev = dig_port->base.base.dev;
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         uint32_t aux_clock_divider;
158         uint32_t aux_data_reg, aux_ctl_reg;
159         int precharge = 0x3;
160         static const uint8_t aux_msg[] = {
161                 [0] = DP_AUX_NATIVE_WRITE << 4,
162                 [1] = DP_SET_POWER >> 8,
163                 [2] = DP_SET_POWER & 0xff,
164                 [3] = 1 - 1,
165                 [4] = DP_SET_POWER_D0,
166         };
167         int i;
168
169         BUILD_BUG_ON(sizeof(aux_msg) > 20);
170
171         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
172
173         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
174                            DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
175
176         /* Enable AUX frame sync at sink */
177         if (dev_priv->psr.aux_frame_sync)
178                 drm_dp_dpcd_writeb(&intel_dp->aux,
179                                 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
180                                 DP_AUX_FRAME_SYNC_ENABLE);
181
182         aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
183                                 DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
184         aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
185                                 DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
186
187         /* Setup AUX registers */
188         for (i = 0; i < sizeof(aux_msg); i += 4)
189                 I915_WRITE(aux_data_reg + i,
190                            intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
191
192         if (INTEL_INFO(dev)->gen >= 9) {
193                 uint32_t val;
194
195                 val = I915_READ(aux_ctl_reg);
196                 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
197                 val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
198                 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
199                 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
200                 /* Use hardcoded data values for PSR, frame sync and GTC */
201                 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
202                 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
203                 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
204                 I915_WRITE(aux_ctl_reg, val);
205         } else {
206                 I915_WRITE(aux_ctl_reg,
207                    DP_AUX_CH_CTL_TIME_OUT_400us |
208                    (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
209                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
210                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
211         }
212
213         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
214 }
215
216 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
217 {
218         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
219         struct drm_device *dev = dig_port->base.base.dev;
220         struct drm_i915_private *dev_priv = dev->dev_private;
221         struct drm_crtc *crtc = dig_port->base.base.crtc;
222         enum pipe pipe = to_intel_crtc(crtc)->pipe;
223
224         /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
225         I915_WRITE(VLV_PSRCTL(pipe),
226                    VLV_EDP_PSR_MODE_SW_TIMER |
227                    VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
228                    VLV_EDP_PSR_ENABLE);
229 }
230
231 static void vlv_psr_activate(struct intel_dp *intel_dp)
232 {
233         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
234         struct drm_device *dev = dig_port->base.base.dev;
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct drm_crtc *crtc = dig_port->base.base.crtc;
237         enum pipe pipe = to_intel_crtc(crtc)->pipe;
238
239         /* Let's do the transition from PSR_state 1 to PSR_state 2
240          * that is PSR transition to active - static frame transmission.
241          * Then Hardware is responsible for the transition to PSR_state 3
242          * that is PSR active - no Remote Frame Buffer (RFB) update.
243          */
244         I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
245                    VLV_EDP_PSR_ACTIVE_ENTRY);
246 }
247
248 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
249 {
250         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
251         struct drm_device *dev = dig_port->base.base.dev;
252         struct drm_i915_private *dev_priv = dev->dev_private;
253
254         uint32_t max_sleep_time = 0x1f;
255         /* Lately it was identified that depending on panel idle frame count
256          * calculated at HW can be off by 1. So let's use what came
257          * from VBT + 1.
258          * There are also other cases where panel demands at least 4
259          * but VBT is not being set. To cover these 2 cases lets use
260          * at least 5 when VBT isn't set to be on the safest side.
261          */
262         uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
263                                dev_priv->vbt.psr.idle_frames + 1 : 5;
264         uint32_t val = 0x0;
265         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
266
267         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
268                 /* It doesn't mean we shouldn't send TPS patters, so let's
269                    send the minimal TP1 possible and skip TP2. */
270                 val |= EDP_PSR_TP1_TIME_100us;
271                 val |= EDP_PSR_TP2_TP3_TIME_0us;
272                 val |= EDP_PSR_SKIP_AUX_EXIT;
273                 /* Sink should be able to train with the 5 or 6 idle patterns */
274                 idle_frames += 4;
275         }
276
277         I915_WRITE(EDP_PSR_CTL(dev), val |
278                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
279                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
280                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
281                    EDP_PSR_ENABLE);
282
283         if (dev_priv->psr.psr2_support)
284                 I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
285                                 EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
286 }
287
288 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
289 {
290         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
291         struct drm_device *dev = dig_port->base.base.dev;
292         struct drm_i915_private *dev_priv = dev->dev_private;
293         struct drm_crtc *crtc = dig_port->base.base.crtc;
294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
295
296         lockdep_assert_held(&dev_priv->psr.lock);
297         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
298         WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
299
300         dev_priv->psr.source_ok = false;
301
302         if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
303                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
304                 return false;
305         }
306
307         if (!i915.enable_psr) {
308                 DRM_DEBUG_KMS("PSR disable by flag\n");
309                 return false;
310         }
311
312         if (IS_HASWELL(dev) &&
313             I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
314                       S3D_ENABLE) {
315                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
316                 return false;
317         }
318
319         if (IS_HASWELL(dev) &&
320             intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
321                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
322                 return false;
323         }
324
325         if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) ||
326                                     (dig_port->port != PORT_A))) {
327                 DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
328                 return false;
329         }
330
331         dev_priv->psr.source_ok = true;
332         return true;
333 }
334
335 static void intel_psr_activate(struct intel_dp *intel_dp)
336 {
337         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
338         struct drm_device *dev = intel_dig_port->base.base.dev;
339         struct drm_i915_private *dev_priv = dev->dev_private;
340
341         WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
342         WARN_ON(dev_priv->psr.active);
343         lockdep_assert_held(&dev_priv->psr.lock);
344
345         /* Enable/Re-enable PSR on the host */
346         if (HAS_DDI(dev))
347                 /* On HSW+ after we enable PSR on source it will activate it
348                  * as soon as it match configure idle_frame count. So
349                  * we just actually enable it here on activation time.
350                  */
351                 hsw_psr_enable_source(intel_dp);
352         else
353                 vlv_psr_activate(intel_dp);
354
355         dev_priv->psr.active = true;
356 }
357
358 /**
359  * intel_psr_enable - Enable PSR
360  * @intel_dp: Intel DP
361  *
362  * This function can only be called after the pipe is fully trained and enabled.
363  */
364 void intel_psr_enable(struct intel_dp *intel_dp)
365 {
366         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
367         struct drm_device *dev = intel_dig_port->base.base.dev;
368         struct drm_i915_private *dev_priv = dev->dev_private;
369         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
370
371         if (!HAS_PSR(dev)) {
372                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
373                 return;
374         }
375
376         if (!is_edp_psr(intel_dp)) {
377                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
378                 return;
379         }
380
381         mutex_lock(&dev_priv->psr.lock);
382         if (dev_priv->psr.enabled) {
383                 DRM_DEBUG_KMS("PSR already in use\n");
384                 goto unlock;
385         }
386
387         if (!intel_psr_match_conditions(intel_dp))
388                 goto unlock;
389
390         dev_priv->psr.busy_frontbuffer_bits = 0;
391
392         if (HAS_DDI(dev)) {
393                 hsw_psr_setup_vsc(intel_dp);
394
395                 if (dev_priv->psr.psr2_support) {
396                         /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
397                         if (crtc->config->pipe_src_w > 3200 ||
398                                 crtc->config->pipe_src_h > 2000)
399                                 dev_priv->psr.psr2_support = false;
400                         else
401                                 skl_psr_setup_su_vsc(intel_dp);
402                 }
403
404                 /* Avoid continuous PSR exit by masking memup and hpd */
405                 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
406                            EDP_PSR_DEBUG_MASK_HPD);
407
408                 /* Enable PSR on the panel */
409                 hsw_psr_enable_sink(intel_dp);
410
411                 if (INTEL_INFO(dev)->gen >= 9)
412                         intel_psr_activate(intel_dp);
413         } else {
414                 vlv_psr_setup_vsc(intel_dp);
415
416                 /* Enable PSR on the panel */
417                 vlv_psr_enable_sink(intel_dp);
418
419                 /* On HSW+ enable_source also means go to PSR entry/active
420                  * state as soon as idle_frame achieved and here would be
421                  * to soon. However on VLV enable_source just enable PSR
422                  * but let it on inactive state. So we might do this prior
423                  * to active transition, i.e. here.
424                  */
425                 vlv_psr_enable_source(intel_dp);
426         }
427
428         dev_priv->psr.enabled = intel_dp;
429 unlock:
430         mutex_unlock(&dev_priv->psr.lock);
431 }
432
433 static void vlv_psr_disable(struct intel_dp *intel_dp)
434 {
435         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
436         struct drm_device *dev = intel_dig_port->base.base.dev;
437         struct drm_i915_private *dev_priv = dev->dev_private;
438         struct intel_crtc *intel_crtc =
439                 to_intel_crtc(intel_dig_port->base.base.crtc);
440         uint32_t val;
441
442         if (dev_priv->psr.active) {
443                 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
444                 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
445                               VLV_EDP_PSR_IN_TRANS) == 0, 1))
446                         WARN(1, "PSR transition took longer than expected\n");
447
448                 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
449                 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
450                 val &= ~VLV_EDP_PSR_ENABLE;
451                 val &= ~VLV_EDP_PSR_MODE_MASK;
452                 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
453
454                 dev_priv->psr.active = false;
455         } else {
456                 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
457         }
458 }
459
460 static void hsw_psr_disable(struct intel_dp *intel_dp)
461 {
462         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
463         struct drm_device *dev = intel_dig_port->base.base.dev;
464         struct drm_i915_private *dev_priv = dev->dev_private;
465
466         if (dev_priv->psr.active) {
467                 I915_WRITE(EDP_PSR_CTL(dev),
468                            I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
469
470                 /* Wait till PSR is idle */
471                 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
472                                EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
473                         DRM_ERROR("Timed out waiting for PSR Idle State\n");
474
475                 dev_priv->psr.active = false;
476         } else {
477                 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
478         }
479 }
480
481 /**
482  * intel_psr_disable - Disable PSR
483  * @intel_dp: Intel DP
484  *
485  * This function needs to be called before disabling pipe.
486  */
487 void intel_psr_disable(struct intel_dp *intel_dp)
488 {
489         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
490         struct drm_device *dev = intel_dig_port->base.base.dev;
491         struct drm_i915_private *dev_priv = dev->dev_private;
492
493         mutex_lock(&dev_priv->psr.lock);
494         if (!dev_priv->psr.enabled) {
495                 mutex_unlock(&dev_priv->psr.lock);
496                 return;
497         }
498
499         if (HAS_DDI(dev))
500                 hsw_psr_disable(intel_dp);
501         else
502                 vlv_psr_disable(intel_dp);
503
504         dev_priv->psr.enabled = NULL;
505         mutex_unlock(&dev_priv->psr.lock);
506
507         cancel_delayed_work_sync(&dev_priv->psr.work);
508 }
509
510 static void intel_psr_work(struct work_struct *work)
511 {
512         struct drm_i915_private *dev_priv =
513                 container_of(work, typeof(*dev_priv), psr.work.work);
514         struct intel_dp *intel_dp = dev_priv->psr.enabled;
515         struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
516         enum pipe pipe = to_intel_crtc(crtc)->pipe;
517
518         /* We have to make sure PSR is ready for re-enable
519          * otherwise it keeps disabled until next full enable/disable cycle.
520          * PSR might take some time to get fully disabled
521          * and be ready for re-enable.
522          */
523         if (HAS_DDI(dev_priv->dev)) {
524                 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
525                               EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
526                         DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
527                         return;
528                 }
529         } else {
530                 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
531                               VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
532                         DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
533                         return;
534                 }
535         }
536         mutex_lock(&dev_priv->psr.lock);
537         intel_dp = dev_priv->psr.enabled;
538
539         if (!intel_dp)
540                 goto unlock;
541
542         /*
543          * The delayed work can race with an invalidate hence we need to
544          * recheck. Since psr_flush first clears this and then reschedules we
545          * won't ever miss a flush when bailing out here.
546          */
547         if (dev_priv->psr.busy_frontbuffer_bits)
548                 goto unlock;
549
550         intel_psr_activate(intel_dp);
551 unlock:
552         mutex_unlock(&dev_priv->psr.lock);
553 }
554
555 static void intel_psr_exit(struct drm_device *dev)
556 {
557         struct drm_i915_private *dev_priv = dev->dev_private;
558         struct intel_dp *intel_dp = dev_priv->psr.enabled;
559         struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
560         enum pipe pipe = to_intel_crtc(crtc)->pipe;
561         u32 val;
562
563         if (!dev_priv->psr.active)
564                 return;
565
566         if (HAS_DDI(dev)) {
567                 val = I915_READ(EDP_PSR_CTL(dev));
568
569                 WARN_ON(!(val & EDP_PSR_ENABLE));
570
571                 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
572         } else {
573                 val = I915_READ(VLV_PSRCTL(pipe));
574
575                 /* Here we do the transition from PSR_state 3 to PSR_state 5
576                  * directly once PSR State 4 that is active with single frame
577                  * update can be skipped. PSR_state 5 that is PSR exit then
578                  * Hardware is responsible to transition back to PSR_state 1
579                  * that is PSR inactive. Same state after
580                  * vlv_edp_psr_enable_source.
581                  */
582                 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
583                 I915_WRITE(VLV_PSRCTL(pipe), val);
584
585                 /* Send AUX wake up - Spec says after transitioning to PSR
586                  * active we have to send AUX wake up by writing 01h in DPCD
587                  * 600h of sink device.
588                  * XXX: This might slow down the transition, but without this
589                  * HW doesn't complete the transition to PSR_state 1 and we
590                  * never get the screen updated.
591                  */
592                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
593                                    DP_SET_POWER_D0);
594         }
595
596         dev_priv->psr.active = false;
597 }
598
599 /**
600  * intel_psr_single_frame_update - Single Frame Update
601  * @dev: DRM device
602  * @frontbuffer_bits: frontbuffer plane tracking bits
603  *
604  * Some platforms support a single frame update feature that is used to
605  * send and update only one frame on Remote Frame Buffer.
606  * So far it is only implemented for Valleyview and Cherryview because
607  * hardware requires this to be done before a page flip.
608  */
609 void intel_psr_single_frame_update(struct drm_device *dev,
610                                    unsigned frontbuffer_bits)
611 {
612         struct drm_i915_private *dev_priv = dev->dev_private;
613         struct drm_crtc *crtc;
614         enum pipe pipe;
615         u32 val;
616
617         /*
618          * Single frame update is already supported on BDW+ but it requires
619          * many W/A and it isn't really needed.
620          */
621         if (!IS_VALLEYVIEW(dev))
622                 return;
623
624         mutex_lock(&dev_priv->psr.lock);
625         if (!dev_priv->psr.enabled) {
626                 mutex_unlock(&dev_priv->psr.lock);
627                 return;
628         }
629
630         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
631         pipe = to_intel_crtc(crtc)->pipe;
632
633         if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
634                 val = I915_READ(VLV_PSRCTL(pipe));
635
636                 /*
637                  * We need to set this bit before writing registers for a flip.
638                  * This bit will be self-clear when it gets to the PSR active state.
639                  */
640                 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
641         }
642         mutex_unlock(&dev_priv->psr.lock);
643 }
644
645 /**
646  * intel_psr_invalidate - Invalidade PSR
647  * @dev: DRM device
648  * @frontbuffer_bits: frontbuffer plane tracking bits
649  *
650  * Since the hardware frontbuffer tracking has gaps we need to integrate
651  * with the software frontbuffer tracking. This function gets called every
652  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
653  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
654  *
655  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
656  */
657 void intel_psr_invalidate(struct drm_device *dev,
658                           unsigned frontbuffer_bits)
659 {
660         struct drm_i915_private *dev_priv = dev->dev_private;
661         struct drm_crtc *crtc;
662         enum pipe pipe;
663
664         mutex_lock(&dev_priv->psr.lock);
665         if (!dev_priv->psr.enabled) {
666                 mutex_unlock(&dev_priv->psr.lock);
667                 return;
668         }
669
670         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
671         pipe = to_intel_crtc(crtc)->pipe;
672
673         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
674         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
675
676         if (frontbuffer_bits)
677                 intel_psr_exit(dev);
678
679         mutex_unlock(&dev_priv->psr.lock);
680 }
681
682 /**
683  * intel_psr_flush - Flush PSR
684  * @dev: DRM device
685  * @frontbuffer_bits: frontbuffer plane tracking bits
686  * @origin: which operation caused the flush
687  *
688  * Since the hardware frontbuffer tracking has gaps we need to integrate
689  * with the software frontbuffer tracking. This function gets called every
690  * time frontbuffer rendering has completed and flushed out to memory. PSR
691  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
692  *
693  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
694  */
695 void intel_psr_flush(struct drm_device *dev,
696                      unsigned frontbuffer_bits, enum fb_op_origin origin)
697 {
698         struct drm_i915_private *dev_priv = dev->dev_private;
699         struct drm_crtc *crtc;
700         enum pipe pipe;
701         int delay_ms = HAS_DDI(dev) ? 100 : 500;
702
703         mutex_lock(&dev_priv->psr.lock);
704         if (!dev_priv->psr.enabled) {
705                 mutex_unlock(&dev_priv->psr.lock);
706                 return;
707         }
708
709         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
710         pipe = to_intel_crtc(crtc)->pipe;
711
712         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
713         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
714
715         if (HAS_DDI(dev)) {
716                 /*
717                  * By definition every flush should mean invalidate + flush,
718                  * however on core platforms let's minimize the
719                  * disable/re-enable so we can avoid the invalidate when flip
720                  * originated the flush.
721                  */
722                 if (frontbuffer_bits && origin != ORIGIN_FLIP)
723                         intel_psr_exit(dev);
724         } else {
725                 /*
726                  * On Valleyview and Cherryview we don't use hardware tracking
727                  * so any plane updates or cursor moves don't result in a PSR
728                  * invalidating. Which means we need to manually fake this in
729                  * software for all flushes.
730                  */
731                 if (frontbuffer_bits)
732                         intel_psr_exit(dev);
733         }
734
735         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
736                 schedule_delayed_work(&dev_priv->psr.work,
737                                       msecs_to_jiffies(delay_ms));
738         mutex_unlock(&dev_priv->psr.lock);
739 }
740
741 /**
742  * intel_psr_init - Init basic PSR work and mutex.
743  * @dev: DRM device
744  *
745  * This function is  called only once at driver load to initialize basic
746  * PSR stuff.
747  */
748 void intel_psr_init(struct drm_device *dev)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751
752         INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
753         mutex_init(&dev_priv->psr.lock);
754 }