]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
Merge tag 'mfd-fixes-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[karo-tx-linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35
36 #define VMW_RES_EVICT_ERR_COUNT 10
37
38 struct vmw_user_dma_buffer {
39         struct ttm_prime_object prime;
40         struct vmw_dma_buffer dma;
41 };
42
43 struct vmw_bo_user_rep {
44         uint32_t handle;
45         uint64_t map_handle;
46 };
47
48 struct vmw_stream {
49         struct vmw_resource res;
50         uint32_t stream_id;
51 };
52
53 struct vmw_user_stream {
54         struct ttm_base_object base;
55         struct vmw_stream stream;
56 };
57
58
59 static uint64_t vmw_user_stream_size;
60
61 static const struct vmw_res_func vmw_stream_func = {
62         .res_type = vmw_res_stream,
63         .needs_backup = false,
64         .may_evict = false,
65         .type_name = "video streams",
66         .backup_placement = NULL,
67         .create = NULL,
68         .destroy = NULL,
69         .bind = NULL,
70         .unbind = NULL
71 };
72
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76         return container_of(bo, struct vmw_dma_buffer, base);
77 }
78
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88         kref_get(&res->kref);
89         return res;
90 }
91
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95         return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97
98 /**
99  * vmw_resource_release_id - release a resource id to the id manager.
100  *
101  * @res: Pointer to the resource.
102  *
103  * Release the resource id to the resource id manager and set it to -1
104  */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107         struct vmw_private *dev_priv = res->dev_priv;
108         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109
110         write_lock(&dev_priv->resource_lock);
111         if (res->id != -1)
112                 idr_remove(idr, res->id);
113         res->id = -1;
114         write_unlock(&dev_priv->resource_lock);
115 }
116
117 static void vmw_resource_release(struct kref *kref)
118 {
119         struct vmw_resource *res =
120             container_of(kref, struct vmw_resource, kref);
121         struct vmw_private *dev_priv = res->dev_priv;
122         int id;
123         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124
125         write_lock(&dev_priv->resource_lock);
126         res->avail = false;
127         list_del_init(&res->lru_head);
128         write_unlock(&dev_priv->resource_lock);
129         if (res->backup) {
130                 struct ttm_buffer_object *bo = &res->backup->base;
131
132                 ttm_bo_reserve(bo, false, false, false, NULL);
133                 if (!list_empty(&res->mob_head) &&
134                     res->func->unbind != NULL) {
135                         struct ttm_validate_buffer val_buf;
136
137                         val_buf.bo = bo;
138                         val_buf.shared = false;
139                         res->func->unbind(res, false, &val_buf);
140                 }
141                 res->backup_dirty = false;
142                 list_del_init(&res->mob_head);
143                 ttm_bo_unreserve(bo);
144                 vmw_dmabuf_unreference(&res->backup);
145         }
146
147         if (likely(res->hw_destroy != NULL)) {
148                 mutex_lock(&dev_priv->binding_mutex);
149                 vmw_binding_res_list_kill(&res->binding_head);
150                 mutex_unlock(&dev_priv->binding_mutex);
151                 res->hw_destroy(res);
152         }
153
154         id = res->id;
155         if (res->res_free != NULL)
156                 res->res_free(res);
157         else
158                 kfree(res);
159
160         write_lock(&dev_priv->resource_lock);
161         if (id != -1)
162                 idr_remove(idr, id);
163         write_unlock(&dev_priv->resource_lock);
164 }
165
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168         struct vmw_resource *res = *p_res;
169
170         *p_res = NULL;
171         kref_put(&res->kref, vmw_resource_release);
172 }
173
174
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185         struct vmw_private *dev_priv = res->dev_priv;
186         int ret;
187         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189         BUG_ON(res->id != -1);
190
191         idr_preload(GFP_KERNEL);
192         write_lock(&dev_priv->resource_lock);
193
194         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195         if (ret >= 0)
196                 res->id = ret;
197
198         write_unlock(&dev_priv->resource_lock);
199         idr_preload_end();
200         return ret < 0 ? ret : 0;
201 }
202
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215                       bool delay_id,
216                       void (*res_free) (struct vmw_resource *res),
217                       const struct vmw_res_func *func)
218 {
219         kref_init(&res->kref);
220         res->hw_destroy = NULL;
221         res->res_free = res_free;
222         res->avail = false;
223         res->dev_priv = dev_priv;
224         res->func = func;
225         INIT_LIST_HEAD(&res->lru_head);
226         INIT_LIST_HEAD(&res->mob_head);
227         INIT_LIST_HEAD(&res->binding_head);
228         res->id = -1;
229         res->backup = NULL;
230         res->backup_offset = 0;
231         res->backup_dirty = false;
232         res->res_dirty = false;
233         if (delay_id)
234                 return 0;
235         else
236                 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252                            void (*hw_destroy) (struct vmw_resource *))
253 {
254         struct vmw_private *dev_priv = res->dev_priv;
255
256         write_lock(&dev_priv->resource_lock);
257         res->avail = true;
258         res->hw_destroy = hw_destroy;
259         write_unlock(&dev_priv->resource_lock);
260 }
261
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263                                                 struct idr *idr, int id)
264 {
265         struct vmw_resource *res;
266
267         read_lock(&dev_priv->resource_lock);
268         res = idr_find(idr, id);
269         if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270                 res = NULL;
271
272         read_unlock(&dev_priv->resource_lock);
273
274         if (unlikely(res == NULL))
275                 return NULL;
276
277         return res;
278 }
279
280 /**
281  * vmw_user_resource_lookup_handle - lookup a struct resource from a
282  * TTM user-space handle and perform basic type checks
283  *
284  * @dev_priv:     Pointer to a device private struct
285  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286  * @handle:       The TTM user-space handle
287  * @converter:    Pointer to an object describing the resource type
288  * @p_res:        On successful return the location pointed to will contain
289  *                a pointer to a refcounted struct vmw_resource.
290  *
291  * If the handle can't be found or is associated with an incorrect resource
292  * type, -EINVAL will be returned.
293  */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295                                     struct ttm_object_file *tfile,
296                                     uint32_t handle,
297                                     const struct vmw_user_resource_conv
298                                     *converter,
299                                     struct vmw_resource **p_res)
300 {
301         struct ttm_base_object *base;
302         struct vmw_resource *res;
303         int ret = -EINVAL;
304
305         base = ttm_base_object_lookup(tfile, handle);
306         if (unlikely(base == NULL))
307                 return -EINVAL;
308
309         if (unlikely(ttm_base_object_type(base) != converter->object_type))
310                 goto out_bad_resource;
311
312         res = converter->base_obj_to_res(base);
313
314         read_lock(&dev_priv->resource_lock);
315         if (!res->avail || res->res_free != converter->res_free) {
316                 read_unlock(&dev_priv->resource_lock);
317                 goto out_bad_resource;
318         }
319
320         kref_get(&res->kref);
321         read_unlock(&dev_priv->resource_lock);
322
323         *p_res = res;
324         ret = 0;
325
326 out_bad_resource:
327         ttm_base_object_unref(&base);
328
329         return ret;
330 }
331
332 /**
333  * Helper function that looks either a surface or dmabuf.
334  *
335  * The pointer this pointed at by out_surf and out_buf needs to be null.
336  */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338                            struct ttm_object_file *tfile,
339                            uint32_t handle,
340                            struct vmw_surface **out_surf,
341                            struct vmw_dma_buffer **out_buf)
342 {
343         struct vmw_resource *res;
344         int ret;
345
346         BUG_ON(*out_surf || *out_buf);
347
348         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349                                               user_surface_converter,
350                                               &res);
351         if (!ret) {
352                 *out_surf = vmw_res_to_srf(res);
353                 return 0;
354         }
355
356         *out_surf = NULL;
357         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358         return ret;
359 }
360
361 /**
362  * Buffer management.
363  */
364
365 /**
366  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367  *
368  * @dev_priv: Pointer to a struct vmw_private identifying the device.
369  * @size: The requested buffer size.
370  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371  */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373                                   bool user)
374 {
375         static size_t struct_size, user_struct_size;
376         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378
379         if (unlikely(struct_size == 0)) {
380                 size_t backend_size = ttm_round_pot(vmw_tt_size);
381
382                 struct_size = backend_size +
383                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
384                 user_struct_size = backend_size +
385                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386         }
387
388         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389                 page_array_size +=
390                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
391
392         return ((user) ? user_struct_size : struct_size) +
393                 page_array_size;
394 }
395
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399
400         kfree(vmw_bo);
401 }
402
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406
407         ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411                     struct vmw_dma_buffer *vmw_bo,
412                     size_t size, struct ttm_placement *placement,
413                     bool interruptible,
414                     void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416         struct ttm_bo_device *bdev = &dev_priv->bdev;
417         size_t acc_size;
418         int ret;
419         bool user = (bo_free == &vmw_user_dmabuf_destroy);
420
421         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422
423         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424         memset(vmw_bo, 0, sizeof(*vmw_bo));
425
426         INIT_LIST_HEAD(&vmw_bo->res_list);
427
428         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429                           ttm_bo_type_device, placement,
430                           0, interruptible,
431                           NULL, acc_size, NULL, NULL, bo_free);
432         return ret;
433 }
434
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437         struct vmw_user_dma_buffer *vmw_user_bo;
438         struct ttm_base_object *base = *p_base;
439         struct ttm_buffer_object *bo;
440
441         *p_base = NULL;
442
443         if (unlikely(base == NULL))
444                 return;
445
446         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447                                    prime.base);
448         bo = &vmw_user_bo->dma.base;
449         ttm_bo_unref(&bo);
450 }
451
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453                                             enum ttm_ref_type ref_type)
454 {
455         struct vmw_user_dma_buffer *user_bo;
456         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457
458         switch (ref_type) {
459         case TTM_REF_SYNCCPU_WRITE:
460                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
461                 break;
462         default:
463                 BUG();
464         }
465 }
466
467 /**
468  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469  *
470  * @dev_priv: Pointer to a struct device private.
471  * @tfile: Pointer to a struct ttm_object_file on which to register the user
472  * object.
473  * @size: Size of the dma buffer.
474  * @shareable: Boolean whether the buffer is shareable with other open files.
475  * @handle: Pointer to where the handle value should be assigned.
476  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477  * should be assigned.
478  */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480                           struct ttm_object_file *tfile,
481                           uint32_t size,
482                           bool shareable,
483                           uint32_t *handle,
484                           struct vmw_dma_buffer **p_dma_buf,
485                           struct ttm_base_object **p_base)
486 {
487         struct vmw_user_dma_buffer *user_bo;
488         struct ttm_buffer_object *tmp;
489         int ret;
490
491         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492         if (unlikely(user_bo == NULL)) {
493                 DRM_ERROR("Failed to allocate a buffer.\n");
494                 return -ENOMEM;
495         }
496
497         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498                               (dev_priv->has_mob) ?
499                               &vmw_sys_placement :
500                               &vmw_vram_sys_placement, true,
501                               &vmw_user_dmabuf_destroy);
502         if (unlikely(ret != 0))
503                 return ret;
504
505         tmp = ttm_bo_reference(&user_bo->dma.base);
506         ret = ttm_prime_object_init(tfile,
507                                     size,
508                                     &user_bo->prime,
509                                     shareable,
510                                     ttm_buffer_type,
511                                     &vmw_user_dmabuf_release,
512                                     &vmw_user_dmabuf_ref_obj_release);
513         if (unlikely(ret != 0)) {
514                 ttm_bo_unref(&tmp);
515                 goto out_no_base_object;
516         }
517
518         *p_dma_buf = &user_bo->dma;
519         if (p_base) {
520                 *p_base = &user_bo->prime.base;
521                 kref_get(&(*p_base)->refcount);
522         }
523         *handle = user_bo->prime.base.hash.key;
524
525 out_no_base_object:
526         return ret;
527 }
528
529 /**
530  * vmw_user_dmabuf_verify_access - verify access permissions on this
531  * buffer object.
532  *
533  * @bo: Pointer to the buffer object being accessed
534  * @tfile: Identifying the caller.
535  */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537                                   struct ttm_object_file *tfile)
538 {
539         struct vmw_user_dma_buffer *vmw_user_bo;
540
541         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542                 return -EPERM;
543
544         vmw_user_bo = vmw_user_dma_buffer(bo);
545
546         /* Check that the caller has opened the object. */
547         if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548                 return 0;
549
550         DRM_ERROR("Could not grant buffer access.\n");
551         return -EPERM;
552 }
553
554 /**
555  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556  * access, idling previous GPU operations on the buffer and optionally
557  * blocking it for further command submissions.
558  *
559  * @user_bo: Pointer to the buffer object being grabbed for CPU access
560  * @tfile: Identifying the caller.
561  * @flags: Flags indicating how the grab should be performed.
562  *
563  * A blocking grab will be automatically released when @tfile is closed.
564  */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566                                         struct ttm_object_file *tfile,
567                                         uint32_t flags)
568 {
569         struct ttm_buffer_object *bo = &user_bo->dma.base;
570         bool existed;
571         int ret;
572
573         if (flags & drm_vmw_synccpu_allow_cs) {
574                 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575                 long lret;
576
577                 if (nonblock)
578                         return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
579
580                 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
581                 if (!lret)
582                         return -EBUSY;
583                 else if (lret < 0)
584                         return lret;
585                 return 0;
586         }
587
588         ret = ttm_bo_synccpu_write_grab
589                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
590         if (unlikely(ret != 0))
591                 return ret;
592
593         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
594                                  TTM_REF_SYNCCPU_WRITE, &existed);
595         if (ret != 0 || existed)
596                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
597
598         return ret;
599 }
600
601 /**
602  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
603  * and unblock command submission on the buffer if blocked.
604  *
605  * @handle: Handle identifying the buffer object.
606  * @tfile: Identifying the caller.
607  * @flags: Flags indicating the type of release.
608  */
609 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
610                                            struct ttm_object_file *tfile,
611                                            uint32_t flags)
612 {
613         if (!(flags & drm_vmw_synccpu_allow_cs))
614                 return ttm_ref_object_base_unref(tfile, handle,
615                                                  TTM_REF_SYNCCPU_WRITE);
616
617         return 0;
618 }
619
620 /**
621  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
622  * functionality.
623  *
624  * @dev: Identifies the drm device.
625  * @data: Pointer to the ioctl argument.
626  * @file_priv: Identifies the caller.
627  *
628  * This function checks the ioctl arguments for validity and calls the
629  * relevant synccpu functions.
630  */
631 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
632                                   struct drm_file *file_priv)
633 {
634         struct drm_vmw_synccpu_arg *arg =
635                 (struct drm_vmw_synccpu_arg *) data;
636         struct vmw_dma_buffer *dma_buf;
637         struct vmw_user_dma_buffer *user_bo;
638         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
639         struct ttm_base_object *buffer_base;
640         int ret;
641
642         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
643             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
644                                drm_vmw_synccpu_dontblock |
645                                drm_vmw_synccpu_allow_cs)) != 0) {
646                 DRM_ERROR("Illegal synccpu flags.\n");
647                 return -EINVAL;
648         }
649
650         switch (arg->op) {
651         case drm_vmw_synccpu_grab:
652                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
653                                              &buffer_base);
654                 if (unlikely(ret != 0))
655                         return ret;
656
657                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
658                                        dma);
659                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
660                 vmw_dmabuf_unreference(&dma_buf);
661                 ttm_base_object_unref(&buffer_base);
662                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
663                              ret != -EBUSY)) {
664                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
665                                   (unsigned int) arg->handle);
666                         return ret;
667                 }
668                 break;
669         case drm_vmw_synccpu_release:
670                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
671                                                       arg->flags);
672                 if (unlikely(ret != 0)) {
673                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
674                                   (unsigned int) arg->handle);
675                         return ret;
676                 }
677                 break;
678         default:
679                 DRM_ERROR("Invalid synccpu operation.\n");
680                 return -EINVAL;
681         }
682
683         return 0;
684 }
685
686 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
687                            struct drm_file *file_priv)
688 {
689         struct vmw_private *dev_priv = vmw_priv(dev);
690         union drm_vmw_alloc_dmabuf_arg *arg =
691             (union drm_vmw_alloc_dmabuf_arg *)data;
692         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
693         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
694         struct vmw_dma_buffer *dma_buf;
695         uint32_t handle;
696         int ret;
697
698         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
699         if (unlikely(ret != 0))
700                 return ret;
701
702         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
703                                     req->size, false, &handle, &dma_buf,
704                                     NULL);
705         if (unlikely(ret != 0))
706                 goto out_no_dmabuf;
707
708         rep->handle = handle;
709         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
710         rep->cur_gmr_id = handle;
711         rep->cur_gmr_offset = 0;
712
713         vmw_dmabuf_unreference(&dma_buf);
714
715 out_no_dmabuf:
716         ttm_read_unlock(&dev_priv->reservation_sem);
717
718         return ret;
719 }
720
721 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
722                            struct drm_file *file_priv)
723 {
724         struct drm_vmw_unref_dmabuf_arg *arg =
725             (struct drm_vmw_unref_dmabuf_arg *)data;
726
727         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
728                                          arg->handle,
729                                          TTM_REF_USAGE);
730 }
731
732 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
733                            uint32_t handle, struct vmw_dma_buffer **out,
734                            struct ttm_base_object **p_base)
735 {
736         struct vmw_user_dma_buffer *vmw_user_bo;
737         struct ttm_base_object *base;
738
739         base = ttm_base_object_lookup(tfile, handle);
740         if (unlikely(base == NULL)) {
741                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
742                        (unsigned long)handle);
743                 return -ESRCH;
744         }
745
746         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
747                 ttm_base_object_unref(&base);
748                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
749                        (unsigned long)handle);
750                 return -EINVAL;
751         }
752
753         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
754                                    prime.base);
755         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
756         if (p_base)
757                 *p_base = base;
758         else
759                 ttm_base_object_unref(&base);
760         *out = &vmw_user_bo->dma;
761
762         return 0;
763 }
764
765 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
766                               struct vmw_dma_buffer *dma_buf,
767                               uint32_t *handle)
768 {
769         struct vmw_user_dma_buffer *user_bo;
770
771         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
772                 return -EINVAL;
773
774         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
775
776         *handle = user_bo->prime.base.hash.key;
777         return ttm_ref_object_add(tfile, &user_bo->prime.base,
778                                   TTM_REF_USAGE, NULL);
779 }
780
781 /*
782  * Stream management
783  */
784
785 static void vmw_stream_destroy(struct vmw_resource *res)
786 {
787         struct vmw_private *dev_priv = res->dev_priv;
788         struct vmw_stream *stream;
789         int ret;
790
791         DRM_INFO("%s: unref\n", __func__);
792         stream = container_of(res, struct vmw_stream, res);
793
794         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
795         WARN_ON(ret != 0);
796 }
797
798 static int vmw_stream_init(struct vmw_private *dev_priv,
799                            struct vmw_stream *stream,
800                            void (*res_free) (struct vmw_resource *res))
801 {
802         struct vmw_resource *res = &stream->res;
803         int ret;
804
805         ret = vmw_resource_init(dev_priv, res, false, res_free,
806                                 &vmw_stream_func);
807
808         if (unlikely(ret != 0)) {
809                 if (res_free == NULL)
810                         kfree(stream);
811                 else
812                         res_free(&stream->res);
813                 return ret;
814         }
815
816         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
817         if (ret) {
818                 vmw_resource_unreference(&res);
819                 return ret;
820         }
821
822         DRM_INFO("%s: claimed\n", __func__);
823
824         vmw_resource_activate(&stream->res, vmw_stream_destroy);
825         return 0;
826 }
827
828 static void vmw_user_stream_free(struct vmw_resource *res)
829 {
830         struct vmw_user_stream *stream =
831             container_of(res, struct vmw_user_stream, stream.res);
832         struct vmw_private *dev_priv = res->dev_priv;
833
834         ttm_base_object_kfree(stream, base);
835         ttm_mem_global_free(vmw_mem_glob(dev_priv),
836                             vmw_user_stream_size);
837 }
838
839 /**
840  * This function is called when user space has no more references on the
841  * base object. It releases the base-object's reference on the resource object.
842  */
843
844 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
845 {
846         struct ttm_base_object *base = *p_base;
847         struct vmw_user_stream *stream =
848             container_of(base, struct vmw_user_stream, base);
849         struct vmw_resource *res = &stream->stream.res;
850
851         *p_base = NULL;
852         vmw_resource_unreference(&res);
853 }
854
855 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
856                            struct drm_file *file_priv)
857 {
858         struct vmw_private *dev_priv = vmw_priv(dev);
859         struct vmw_resource *res;
860         struct vmw_user_stream *stream;
861         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
862         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
863         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
864         int ret = 0;
865
866
867         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
868         if (unlikely(res == NULL))
869                 return -EINVAL;
870
871         if (res->res_free != &vmw_user_stream_free) {
872                 ret = -EINVAL;
873                 goto out;
874         }
875
876         stream = container_of(res, struct vmw_user_stream, stream.res);
877         if (stream->base.tfile != tfile) {
878                 ret = -EINVAL;
879                 goto out;
880         }
881
882         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
883 out:
884         vmw_resource_unreference(&res);
885         return ret;
886 }
887
888 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
889                            struct drm_file *file_priv)
890 {
891         struct vmw_private *dev_priv = vmw_priv(dev);
892         struct vmw_user_stream *stream;
893         struct vmw_resource *res;
894         struct vmw_resource *tmp;
895         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
896         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
897         int ret;
898
899         /*
900          * Approximate idr memory usage with 128 bytes. It will be limited
901          * by maximum number_of streams anyway?
902          */
903
904         if (unlikely(vmw_user_stream_size == 0))
905                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
906
907         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
908         if (unlikely(ret != 0))
909                 return ret;
910
911         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
912                                    vmw_user_stream_size,
913                                    false, true);
914         ttm_read_unlock(&dev_priv->reservation_sem);
915         if (unlikely(ret != 0)) {
916                 if (ret != -ERESTARTSYS)
917                         DRM_ERROR("Out of graphics memory for stream"
918                                   " creation.\n");
919
920                 goto out_ret;
921         }
922
923         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
924         if (unlikely(stream == NULL)) {
925                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
926                                     vmw_user_stream_size);
927                 ret = -ENOMEM;
928                 goto out_ret;
929         }
930
931         res = &stream->stream.res;
932         stream->base.shareable = false;
933         stream->base.tfile = NULL;
934
935         /*
936          * From here on, the destructor takes over resource freeing.
937          */
938
939         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
940         if (unlikely(ret != 0))
941                 goto out_ret;
942
943         tmp = vmw_resource_reference(res);
944         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
945                                    &vmw_user_stream_base_release, NULL);
946
947         if (unlikely(ret != 0)) {
948                 vmw_resource_unreference(&tmp);
949                 goto out_err;
950         }
951
952         arg->stream_id = res->id;
953 out_err:
954         vmw_resource_unreference(&res);
955 out_ret:
956         return ret;
957 }
958
959 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
960                            struct ttm_object_file *tfile,
961                            uint32_t *inout_id, struct vmw_resource **out)
962 {
963         struct vmw_user_stream *stream;
964         struct vmw_resource *res;
965         int ret;
966
967         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
968                                   *inout_id);
969         if (unlikely(res == NULL))
970                 return -EINVAL;
971
972         if (res->res_free != &vmw_user_stream_free) {
973                 ret = -EINVAL;
974                 goto err_ref;
975         }
976
977         stream = container_of(res, struct vmw_user_stream, stream.res);
978         if (stream->base.tfile != tfile) {
979                 ret = -EPERM;
980                 goto err_ref;
981         }
982
983         *inout_id = stream->stream.stream_id;
984         *out = res;
985         return 0;
986 err_ref:
987         vmw_resource_unreference(&res);
988         return ret;
989 }
990
991
992 /**
993  * vmw_dumb_create - Create a dumb kms buffer
994  *
995  * @file_priv: Pointer to a struct drm_file identifying the caller.
996  * @dev: Pointer to the drm device.
997  * @args: Pointer to a struct drm_mode_create_dumb structure
998  *
999  * This is a driver callback for the core drm create_dumb functionality.
1000  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1001  * that the arguments have a different format.
1002  */
1003 int vmw_dumb_create(struct drm_file *file_priv,
1004                     struct drm_device *dev,
1005                     struct drm_mode_create_dumb *args)
1006 {
1007         struct vmw_private *dev_priv = vmw_priv(dev);
1008         struct vmw_dma_buffer *dma_buf;
1009         int ret;
1010
1011         args->pitch = args->width * ((args->bpp + 7) / 8);
1012         args->size = args->pitch * args->height;
1013
1014         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1015         if (unlikely(ret != 0))
1016                 return ret;
1017
1018         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1019                                     args->size, false, &args->handle,
1020                                     &dma_buf, NULL);
1021         if (unlikely(ret != 0))
1022                 goto out_no_dmabuf;
1023
1024         vmw_dmabuf_unreference(&dma_buf);
1025 out_no_dmabuf:
1026         ttm_read_unlock(&dev_priv->reservation_sem);
1027         return ret;
1028 }
1029
1030 /**
1031  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1032  *
1033  * @file_priv: Pointer to a struct drm_file identifying the caller.
1034  * @dev: Pointer to the drm device.
1035  * @handle: Handle identifying the dumb buffer.
1036  * @offset: The address space offset returned.
1037  *
1038  * This is a driver callback for the core drm dumb_map_offset functionality.
1039  */
1040 int vmw_dumb_map_offset(struct drm_file *file_priv,
1041                         struct drm_device *dev, uint32_t handle,
1042                         uint64_t *offset)
1043 {
1044         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1045         struct vmw_dma_buffer *out_buf;
1046         int ret;
1047
1048         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1049         if (ret != 0)
1050                 return -EINVAL;
1051
1052         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1053         vmw_dmabuf_unreference(&out_buf);
1054         return 0;
1055 }
1056
1057 /**
1058  * vmw_dumb_destroy - Destroy a dumb boffer
1059  *
1060  * @file_priv: Pointer to a struct drm_file identifying the caller.
1061  * @dev: Pointer to the drm device.
1062  * @handle: Handle identifying the dumb buffer.
1063  *
1064  * This is a driver callback for the core drm dumb_destroy functionality.
1065  */
1066 int vmw_dumb_destroy(struct drm_file *file_priv,
1067                      struct drm_device *dev,
1068                      uint32_t handle)
1069 {
1070         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1071                                          handle, TTM_REF_USAGE);
1072 }
1073
1074 /**
1075  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1076  *
1077  * @res:            The resource for which to allocate a backup buffer.
1078  * @interruptible:  Whether any sleeps during allocation should be
1079  *                  performed while interruptible.
1080  */
1081 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1082                                   bool interruptible)
1083 {
1084         unsigned long size =
1085                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1086         struct vmw_dma_buffer *backup;
1087         int ret;
1088
1089         if (likely(res->backup)) {
1090                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1091                 return 0;
1092         }
1093
1094         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1095         if (unlikely(backup == NULL))
1096                 return -ENOMEM;
1097
1098         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1099                               res->func->backup_placement,
1100                               interruptible,
1101                               &vmw_dmabuf_bo_free);
1102         if (unlikely(ret != 0))
1103                 goto out_no_dmabuf;
1104
1105         res->backup = backup;
1106
1107 out_no_dmabuf:
1108         return ret;
1109 }
1110
1111 /**
1112  * vmw_resource_do_validate - Make a resource up-to-date and visible
1113  *                            to the device.
1114  *
1115  * @res:            The resource to make visible to the device.
1116  * @val_buf:        Information about a buffer possibly
1117  *                  containing backup data if a bind operation is needed.
1118  *
1119  * On hardware resource shortage, this function returns -EBUSY and
1120  * should be retried once resources have been freed up.
1121  */
1122 static int vmw_resource_do_validate(struct vmw_resource *res,
1123                                     struct ttm_validate_buffer *val_buf)
1124 {
1125         int ret = 0;
1126         const struct vmw_res_func *func = res->func;
1127
1128         if (unlikely(res->id == -1)) {
1129                 ret = func->create(res);
1130                 if (unlikely(ret != 0))
1131                         return ret;
1132         }
1133
1134         if (func->bind &&
1135             ((func->needs_backup && list_empty(&res->mob_head) &&
1136               val_buf->bo != NULL) ||
1137              (!func->needs_backup && val_buf->bo != NULL))) {
1138                 ret = func->bind(res, val_buf);
1139                 if (unlikely(ret != 0))
1140                         goto out_bind_failed;
1141                 if (func->needs_backup)
1142                         list_add_tail(&res->mob_head, &res->backup->res_list);
1143         }
1144
1145         /*
1146          * Only do this on write operations, and move to
1147          * vmw_resource_unreserve if it can be called after
1148          * backup buffers have been unreserved. Otherwise
1149          * sort out locking.
1150          */
1151         res->res_dirty = true;
1152
1153         return 0;
1154
1155 out_bind_failed:
1156         func->destroy(res);
1157
1158         return ret;
1159 }
1160
1161 /**
1162  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1163  * command submission.
1164  *
1165  * @res:               Pointer to the struct vmw_resource to unreserve.
1166  * @switch_backup:     Backup buffer has been switched.
1167  * @new_backup:        Pointer to new backup buffer if command submission
1168  *                     switched. May be NULL.
1169  * @new_backup_offset: New backup offset if @switch_backup is true.
1170  *
1171  * Currently unreserving a resource means putting it back on the device's
1172  * resource lru list, so that it can be evicted if necessary.
1173  */
1174 void vmw_resource_unreserve(struct vmw_resource *res,
1175                             bool switch_backup,
1176                             struct vmw_dma_buffer *new_backup,
1177                             unsigned long new_backup_offset)
1178 {
1179         struct vmw_private *dev_priv = res->dev_priv;
1180
1181         if (!list_empty(&res->lru_head))
1182                 return;
1183
1184         if (switch_backup && new_backup != res->backup) {
1185                 if (res->backup) {
1186                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1187                         list_del_init(&res->mob_head);
1188                         vmw_dmabuf_unreference(&res->backup);
1189                 }
1190
1191                 if (new_backup) {
1192                         res->backup = vmw_dmabuf_reference(new_backup);
1193                         lockdep_assert_held(&new_backup->base.resv->lock.base);
1194                         list_add_tail(&res->mob_head, &new_backup->res_list);
1195                 } else {
1196                         res->backup = NULL;
1197                 }
1198         }
1199         if (switch_backup)
1200                 res->backup_offset = new_backup_offset;
1201
1202         if (!res->func->may_evict || res->id == -1 || res->pin_count)
1203                 return;
1204
1205         write_lock(&dev_priv->resource_lock);
1206         list_add_tail(&res->lru_head,
1207                       &res->dev_priv->res_lru[res->func->res_type]);
1208         write_unlock(&dev_priv->resource_lock);
1209 }
1210
1211 /**
1212  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1213  *                             for a resource and in that case, allocate
1214  *                             one, reserve and validate it.
1215  *
1216  * @res:            The resource for which to allocate a backup buffer.
1217  * @interruptible:  Whether any sleeps during allocation should be
1218  *                  performed while interruptible.
1219  * @val_buf:        On successful return contains data about the
1220  *                  reserved and validated backup buffer.
1221  */
1222 static int
1223 vmw_resource_check_buffer(struct vmw_resource *res,
1224                           bool interruptible,
1225                           struct ttm_validate_buffer *val_buf)
1226 {
1227         struct list_head val_list;
1228         bool backup_dirty = false;
1229         int ret;
1230
1231         if (unlikely(res->backup == NULL)) {
1232                 ret = vmw_resource_buf_alloc(res, interruptible);
1233                 if (unlikely(ret != 0))
1234                         return ret;
1235         }
1236
1237         INIT_LIST_HEAD(&val_list);
1238         val_buf->bo = ttm_bo_reference(&res->backup->base);
1239         val_buf->shared = false;
1240         list_add_tail(&val_buf->head, &val_list);
1241         ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1242         if (unlikely(ret != 0))
1243                 goto out_no_reserve;
1244
1245         if (res->func->needs_backup && list_empty(&res->mob_head))
1246                 return 0;
1247
1248         backup_dirty = res->backup_dirty;
1249         ret = ttm_bo_validate(&res->backup->base,
1250                               res->func->backup_placement,
1251                               true, false);
1252
1253         if (unlikely(ret != 0))
1254                 goto out_no_validate;
1255
1256         return 0;
1257
1258 out_no_validate:
1259         ttm_eu_backoff_reservation(NULL, &val_list);
1260 out_no_reserve:
1261         ttm_bo_unref(&val_buf->bo);
1262         if (backup_dirty)
1263                 vmw_dmabuf_unreference(&res->backup);
1264
1265         return ret;
1266 }
1267
1268 /**
1269  * vmw_resource_reserve - Reserve a resource for command submission
1270  *
1271  * @res:            The resource to reserve.
1272  *
1273  * This function takes the resource off the LRU list and make sure
1274  * a backup buffer is present for guest-backed resources. However,
1275  * the buffer may not be bound to the resource at this point.
1276  *
1277  */
1278 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1279                          bool no_backup)
1280 {
1281         struct vmw_private *dev_priv = res->dev_priv;
1282         int ret;
1283
1284         write_lock(&dev_priv->resource_lock);
1285         list_del_init(&res->lru_head);
1286         write_unlock(&dev_priv->resource_lock);
1287
1288         if (res->func->needs_backup && res->backup == NULL &&
1289             !no_backup) {
1290                 ret = vmw_resource_buf_alloc(res, interruptible);
1291                 if (unlikely(ret != 0)) {
1292                         DRM_ERROR("Failed to allocate a backup buffer "
1293                                   "of size %lu. bytes\n",
1294                                   (unsigned long) res->backup_size);
1295                         return ret;
1296                 }
1297         }
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * vmw_resource_backoff_reservation - Unreserve and unreference a
1304  *                                    backup buffer
1305  *.
1306  * @val_buf:        Backup buffer information.
1307  */
1308 static void
1309 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1310 {
1311         struct list_head val_list;
1312
1313         if (likely(val_buf->bo == NULL))
1314                 return;
1315
1316         INIT_LIST_HEAD(&val_list);
1317         list_add_tail(&val_buf->head, &val_list);
1318         ttm_eu_backoff_reservation(NULL, &val_list);
1319         ttm_bo_unref(&val_buf->bo);
1320 }
1321
1322 /**
1323  * vmw_resource_do_evict - Evict a resource, and transfer its data
1324  *                         to a backup buffer.
1325  *
1326  * @res:            The resource to evict.
1327  * @interruptible:  Whether to wait interruptible.
1328  */
1329 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1330 {
1331         struct ttm_validate_buffer val_buf;
1332         const struct vmw_res_func *func = res->func;
1333         int ret;
1334
1335         BUG_ON(!func->may_evict);
1336
1337         val_buf.bo = NULL;
1338         val_buf.shared = false;
1339         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1340         if (unlikely(ret != 0))
1341                 return ret;
1342
1343         if (unlikely(func->unbind != NULL &&
1344                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1345                 ret = func->unbind(res, res->res_dirty, &val_buf);
1346                 if (unlikely(ret != 0))
1347                         goto out_no_unbind;
1348                 list_del_init(&res->mob_head);
1349         }
1350         ret = func->destroy(res);
1351         res->backup_dirty = true;
1352         res->res_dirty = false;
1353 out_no_unbind:
1354         vmw_resource_backoff_reservation(&val_buf);
1355
1356         return ret;
1357 }
1358
1359
1360 /**
1361  * vmw_resource_validate - Make a resource up-to-date and visible
1362  *                         to the device.
1363  *
1364  * @res:            The resource to make visible to the device.
1365  *
1366  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1367  * be reserved and validated.
1368  * On hardware resource shortage, this function will repeatedly evict
1369  * resources of the same type until the validation succeeds.
1370  */
1371 int vmw_resource_validate(struct vmw_resource *res)
1372 {
1373         int ret;
1374         struct vmw_resource *evict_res;
1375         struct vmw_private *dev_priv = res->dev_priv;
1376         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1377         struct ttm_validate_buffer val_buf;
1378         unsigned err_count = 0;
1379
1380         if (!res->func->create)
1381                 return 0;
1382
1383         val_buf.bo = NULL;
1384         val_buf.shared = false;
1385         if (res->backup)
1386                 val_buf.bo = &res->backup->base;
1387         do {
1388                 ret = vmw_resource_do_validate(res, &val_buf);
1389                 if (likely(ret != -EBUSY))
1390                         break;
1391
1392                 write_lock(&dev_priv->resource_lock);
1393                 if (list_empty(lru_list) || !res->func->may_evict) {
1394                         DRM_ERROR("Out of device device resources "
1395                                   "for %s.\n", res->func->type_name);
1396                         ret = -EBUSY;
1397                         write_unlock(&dev_priv->resource_lock);
1398                         break;
1399                 }
1400
1401                 evict_res = vmw_resource_reference
1402                         (list_first_entry(lru_list, struct vmw_resource,
1403                                           lru_head));
1404                 list_del_init(&evict_res->lru_head);
1405
1406                 write_unlock(&dev_priv->resource_lock);
1407
1408                 ret = vmw_resource_do_evict(evict_res, true);
1409                 if (unlikely(ret != 0)) {
1410                         write_lock(&dev_priv->resource_lock);
1411                         list_add_tail(&evict_res->lru_head, lru_list);
1412                         write_unlock(&dev_priv->resource_lock);
1413                         if (ret == -ERESTARTSYS ||
1414                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1415                                 vmw_resource_unreference(&evict_res);
1416                                 goto out_no_validate;
1417                         }
1418                 }
1419
1420                 vmw_resource_unreference(&evict_res);
1421         } while (1);
1422
1423         if (unlikely(ret != 0))
1424                 goto out_no_validate;
1425         else if (!res->func->needs_backup && res->backup) {
1426                 list_del_init(&res->mob_head);
1427                 vmw_dmabuf_unreference(&res->backup);
1428         }
1429
1430         return 0;
1431
1432 out_no_validate:
1433         return ret;
1434 }
1435
1436 /**
1437  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1438  *                       object without unreserving it.
1439  *
1440  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1441  * @fence:          Pointer to the fence. If NULL, this function will
1442  *                  insert a fence into the command stream..
1443  *
1444  * Contrary to the ttm_eu version of this function, it takes only
1445  * a single buffer object instead of a list, and it also doesn't
1446  * unreserve the buffer object, which needs to be done separately.
1447  */
1448 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1449                          struct vmw_fence_obj *fence)
1450 {
1451         struct ttm_bo_device *bdev = bo->bdev;
1452
1453         struct vmw_private *dev_priv =
1454                 container_of(bdev, struct vmw_private, bdev);
1455
1456         if (fence == NULL) {
1457                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1458                 reservation_object_add_excl_fence(bo->resv, &fence->base);
1459                 fence_put(&fence->base);
1460         } else
1461                 reservation_object_add_excl_fence(bo->resv, &fence->base);
1462 }
1463
1464 /**
1465  * vmw_resource_move_notify - TTM move_notify_callback
1466  *
1467  * @bo: The TTM buffer object about to move.
1468  * @mem: The struct ttm_mem_reg indicating to what memory
1469  *       region the move is taking place.
1470  *
1471  * Evicts the Guest Backed hardware resource if the backup
1472  * buffer is being moved out of MOB memory.
1473  * Note that this function should not race with the resource
1474  * validation code as long as it accesses only members of struct
1475  * resource that remain static while bo::res is !NULL and
1476  * while we have @bo reserved. struct resource::backup is *not* a
1477  * static member. The resource validation code will take care
1478  * to set @bo::res to NULL, while having @bo reserved when the
1479  * buffer is no longer bound to the resource, so @bo:res can be
1480  * used to determine whether there is a need to unbind and whether
1481  * it is safe to unbind.
1482  */
1483 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1484                               struct ttm_mem_reg *mem)
1485 {
1486         struct vmw_dma_buffer *dma_buf;
1487
1488         if (mem == NULL)
1489                 return;
1490
1491         if (bo->destroy != vmw_dmabuf_bo_free &&
1492             bo->destroy != vmw_user_dmabuf_destroy)
1493                 return;
1494
1495         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1496
1497         if (mem->mem_type != VMW_PL_MOB) {
1498                 struct vmw_resource *res, *n;
1499                 struct ttm_validate_buffer val_buf;
1500
1501                 val_buf.bo = bo;
1502                 val_buf.shared = false;
1503
1504                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1505
1506                         if (unlikely(res->func->unbind == NULL))
1507                                 continue;
1508
1509                         (void) res->func->unbind(res, true, &val_buf);
1510                         res->backup_dirty = true;
1511                         res->res_dirty = false;
1512                         list_del_init(&res->mob_head);
1513                 }
1514
1515                 (void) ttm_bo_wait(bo, false, false, false);
1516         }
1517 }
1518
1519
1520
1521 /**
1522  * vmw_query_readback_all - Read back cached query states
1523  *
1524  * @dx_query_mob: Buffer containing the DX query MOB
1525  *
1526  * Read back cached states from the device if they exist.  This function
1527  * assumings binding_mutex is held.
1528  */
1529 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1530 {
1531         struct vmw_resource *dx_query_ctx;
1532         struct vmw_private *dev_priv;
1533         struct {
1534                 SVGA3dCmdHeader header;
1535                 SVGA3dCmdDXReadbackAllQuery body;
1536         } *cmd;
1537
1538
1539         /* No query bound, so do nothing */
1540         if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1541                 return 0;
1542
1543         dx_query_ctx = dx_query_mob->dx_query_ctx;
1544         dev_priv     = dx_query_ctx->dev_priv;
1545
1546         cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1547         if (unlikely(cmd == NULL)) {
1548                 DRM_ERROR("Failed reserving FIFO space for "
1549                           "query MOB read back.\n");
1550                 return -ENOMEM;
1551         }
1552
1553         cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1554         cmd->header.size = sizeof(cmd->body);
1555         cmd->body.cid    = dx_query_ctx->id;
1556
1557         vmw_fifo_commit(dev_priv, sizeof(*cmd));
1558
1559         /* Triggers a rebind the next time affected context is bound */
1560         dx_query_mob->dx_query_ctx = NULL;
1561
1562         return 0;
1563 }
1564
1565
1566
1567 /**
1568  * vmw_query_move_notify - Read back cached query states
1569  *
1570  * @bo: The TTM buffer object about to move.
1571  * @mem: The memory region @bo is moving to.
1572  *
1573  * Called before the query MOB is swapped out to read back cached query
1574  * states from the device.
1575  */
1576 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1577                            struct ttm_mem_reg *mem)
1578 {
1579         struct vmw_dma_buffer *dx_query_mob;
1580         struct ttm_bo_device *bdev = bo->bdev;
1581         struct vmw_private *dev_priv;
1582
1583
1584         dev_priv = container_of(bdev, struct vmw_private, bdev);
1585
1586         mutex_lock(&dev_priv->binding_mutex);
1587
1588         dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1589         if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1590                 mutex_unlock(&dev_priv->binding_mutex);
1591                 return;
1592         }
1593
1594         /* If BO is being moved from MOB to system memory */
1595         if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1596                 struct vmw_fence_obj *fence;
1597
1598                 (void) vmw_query_readback_all(dx_query_mob);
1599                 mutex_unlock(&dev_priv->binding_mutex);
1600
1601                 /* Create a fence and attach the BO to it */
1602                 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1603                 vmw_fence_single_bo(bo, fence);
1604
1605                 if (fence != NULL)
1606                         vmw_fence_obj_unreference(&fence);
1607
1608                 (void) ttm_bo_wait(bo, false, false, false);
1609         } else
1610                 mutex_unlock(&dev_priv->binding_mutex);
1611
1612 }
1613
1614 /**
1615  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1616  *
1617  * @res:            The resource being queried.
1618  */
1619 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1620 {
1621         return res->func->needs_backup;
1622 }
1623
1624 /**
1625  * vmw_resource_evict_type - Evict all resources of a specific type
1626  *
1627  * @dev_priv:       Pointer to a device private struct
1628  * @type:           The resource type to evict
1629  *
1630  * To avoid thrashing starvation or as part of the hibernation sequence,
1631  * try to evict all evictable resources of a specific type.
1632  */
1633 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1634                                     enum vmw_res_type type)
1635 {
1636         struct list_head *lru_list = &dev_priv->res_lru[type];
1637         struct vmw_resource *evict_res;
1638         unsigned err_count = 0;
1639         int ret;
1640
1641         do {
1642                 write_lock(&dev_priv->resource_lock);
1643
1644                 if (list_empty(lru_list))
1645                         goto out_unlock;
1646
1647                 evict_res = vmw_resource_reference(
1648                         list_first_entry(lru_list, struct vmw_resource,
1649                                          lru_head));
1650                 list_del_init(&evict_res->lru_head);
1651                 write_unlock(&dev_priv->resource_lock);
1652
1653                 ret = vmw_resource_do_evict(evict_res, false);
1654                 if (unlikely(ret != 0)) {
1655                         write_lock(&dev_priv->resource_lock);
1656                         list_add_tail(&evict_res->lru_head, lru_list);
1657                         write_unlock(&dev_priv->resource_lock);
1658                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1659                                 vmw_resource_unreference(&evict_res);
1660                                 return;
1661                         }
1662                 }
1663
1664                 vmw_resource_unreference(&evict_res);
1665         } while (1);
1666
1667 out_unlock:
1668         write_unlock(&dev_priv->resource_lock);
1669 }
1670
1671 /**
1672  * vmw_resource_evict_all - Evict all evictable resources
1673  *
1674  * @dev_priv:       Pointer to a device private struct
1675  *
1676  * To avoid thrashing starvation or as part of the hibernation sequence,
1677  * evict all evictable resources. In particular this means that all
1678  * guest-backed resources that are registered with the device are
1679  * evicted and the OTable becomes clean.
1680  */
1681 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1682 {
1683         enum vmw_res_type type;
1684
1685         mutex_lock(&dev_priv->cmdbuf_mutex);
1686
1687         for (type = 0; type < vmw_res_max; ++type)
1688                 vmw_resource_evict_type(dev_priv, type);
1689
1690         mutex_unlock(&dev_priv->cmdbuf_mutex);
1691 }
1692
1693 /**
1694  * vmw_resource_pin - Add a pin reference on a resource
1695  *
1696  * @res: The resource to add a pin reference on
1697  *
1698  * This function adds a pin reference, and if needed validates the resource.
1699  * Having a pin reference means that the resource can never be evicted, and
1700  * its id will never change as long as there is a pin reference.
1701  * This function returns 0 on success and a negative error code on failure.
1702  */
1703 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1704 {
1705         struct vmw_private *dev_priv = res->dev_priv;
1706         int ret;
1707
1708         ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1709         mutex_lock(&dev_priv->cmdbuf_mutex);
1710         ret = vmw_resource_reserve(res, interruptible, false);
1711         if (ret)
1712                 goto out_no_reserve;
1713
1714         if (res->pin_count == 0) {
1715                 struct vmw_dma_buffer *vbo = NULL;
1716
1717                 if (res->backup) {
1718                         vbo = res->backup;
1719
1720                         ttm_bo_reserve(&vbo->base, interruptible, false, false,
1721                                        NULL);
1722                         if (!vbo->pin_count) {
1723                                 ret = ttm_bo_validate
1724                                         (&vbo->base,
1725                                          res->func->backup_placement,
1726                                          interruptible, false);
1727                                 if (ret) {
1728                                         ttm_bo_unreserve(&vbo->base);
1729                                         goto out_no_validate;
1730                                 }
1731                         }
1732
1733                         /* Do we really need to pin the MOB as well? */
1734                         vmw_bo_pin_reserved(vbo, true);
1735                 }
1736                 ret = vmw_resource_validate(res);
1737                 if (vbo)
1738                         ttm_bo_unreserve(&vbo->base);
1739                 if (ret)
1740                         goto out_no_validate;
1741         }
1742         res->pin_count++;
1743
1744 out_no_validate:
1745         vmw_resource_unreserve(res, false, NULL, 0UL);
1746 out_no_reserve:
1747         mutex_unlock(&dev_priv->cmdbuf_mutex);
1748         ttm_write_unlock(&dev_priv->reservation_sem);
1749
1750         return ret;
1751 }
1752
1753 /**
1754  * vmw_resource_unpin - Remove a pin reference from a resource
1755  *
1756  * @res: The resource to remove a pin reference from
1757  *
1758  * Having a pin reference means that the resource can never be evicted, and
1759  * its id will never change as long as there is a pin reference.
1760  */
1761 void vmw_resource_unpin(struct vmw_resource *res)
1762 {
1763         struct vmw_private *dev_priv = res->dev_priv;
1764         int ret;
1765
1766         ttm_read_lock(&dev_priv->reservation_sem, false);
1767         mutex_lock(&dev_priv->cmdbuf_mutex);
1768
1769         ret = vmw_resource_reserve(res, false, true);
1770         WARN_ON(ret);
1771
1772         WARN_ON(res->pin_count == 0);
1773         if (--res->pin_count == 0 && res->backup) {
1774                 struct vmw_dma_buffer *vbo = res->backup;
1775
1776                 ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1777                 vmw_bo_pin_reserved(vbo, false);
1778                 ttm_bo_unreserve(&vbo->base);
1779         }
1780
1781         vmw_resource_unreserve(res, false, NULL, 0UL);
1782
1783         mutex_unlock(&dev_priv->cmdbuf_mutex);
1784         ttm_read_unlock(&dev_priv->reservation_sem);
1785 }
1786
1787 /**
1788  * vmw_res_type - Return the resource type
1789  *
1790  * @res: Pointer to the resource
1791  */
1792 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1793 {
1794         return res->func->res_type;
1795 }