]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/ieee1394/ieee1394_core.c
[PATCH] hpet: remove unused variable
[karo-tx-linux.git] / drivers / ieee1394 / ieee1394_core.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Core support: hpsb_packet management, packet handling and forwarding to
5  *               highlevel or lowlevel code
6  *
7  * Copyright (C) 1999, 2000 Andreas E. Bombe
8  *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
9  *
10  * This code is licensed under the GPL.  See the file COPYING in the root
11  * directory of the kernel sources for details.
12  *
13  *
14  * Contributions:
15  *
16  * Manfred Weihs <weihs@ict.tuwien.ac.at>
17  *        loopback functionality in hpsb_send_packet
18  *        allow highlevel drivers to disable automatic response generation
19  *              and to generate responses themselves (deferred)
20  *
21  */
22
23 #include <linux/config.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/bitops.h>
33 #include <linux/kdev_t.h>
34 #include <linux/skbuff.h>
35 #include <linux/suspend.h>
36
37 #include <asm/byteorder.h>
38 #include <asm/semaphore.h>
39
40 #include "ieee1394_types.h"
41 #include "ieee1394.h"
42 #include "hosts.h"
43 #include "ieee1394_core.h"
44 #include "highlevel.h"
45 #include "ieee1394_transactions.h"
46 #include "csr.h"
47 #include "nodemgr.h"
48 #include "dma.h"
49 #include "iso.h"
50 #include "config_roms.h"
51
52 /*
53  * Disable the nodemgr detection and config rom reading functionality.
54  */
55 static int disable_nodemgr;
56 module_param(disable_nodemgr, int, 0444);
57 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
58
59 /* Disable Isochronous Resource Manager functionality */
60 int hpsb_disable_irm = 0;
61 module_param_named(disable_irm, hpsb_disable_irm, bool, 0);
62 MODULE_PARM_DESC(disable_irm,
63                  "Disable Isochronous Resource Manager functionality.");
64
65 /* We are GPL, so treat us special */
66 MODULE_LICENSE("GPL");
67
68 /* Some globals used */
69 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
70 struct class *hpsb_protocol_class;
71
72 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
73 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
74 {
75         int i;
76
77         size /= 4;
78         size = (size > 4 ? 4 : size);
79
80         printk(KERN_DEBUG "ieee1394: %s", text);
81         if (speed > -1 && speed < 6)
82                 printk(" at %s", hpsb_speedto_str[speed]);
83         printk(":");
84         for (i = 0; i < size; i++)
85                 printk(" %08x", data[i]);
86         printk("\n");
87 }
88 #else
89 #define dump_packet(a,b,c,d)
90 #endif
91
92 static void abort_requests(struct hpsb_host *host);
93 static void queue_packet_complete(struct hpsb_packet *packet);
94
95
96 /**
97  * hpsb_set_packet_complete_task - set the task that runs when a packet
98  * completes. You cannot call this more than once on a single packet
99  * before it is sent.
100  *
101  * @packet: the packet whose completion we want the task added to
102  * @routine: function to call
103  * @data: data (if any) to pass to the above function
104  */
105 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
106                                    void (*routine)(void *), void *data)
107 {
108         WARN_ON(packet->complete_routine != NULL);
109         packet->complete_routine = routine;
110         packet->complete_data = data;
111         return;
112 }
113
114 /**
115  * hpsb_alloc_packet - allocate new packet structure
116  * @data_size: size of the data block to be allocated
117  *
118  * This function allocates, initializes and returns a new &struct hpsb_packet.
119  * It can be used in interrupt context.  A header block is always included, its
120  * size is big enough to contain all possible 1394 headers.  The data block is
121  * only allocated when @data_size is not zero.
122  *
123  * For packets for which responses will be received the @data_size has to be big
124  * enough to contain the response's data block since no further allocation
125  * occurs at response matching time.
126  *
127  * The packet's generation value will be set to the current generation number
128  * for ease of use.  Remember to overwrite it with your own recorded generation
129  * number if you can not be sure that your code will not race with a bus reset.
130  *
131  * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
132  * failure.
133  */
134 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
135 {
136         struct hpsb_packet *packet = NULL;
137         struct sk_buff *skb;
138
139         data_size = ((data_size + 3) & ~3);
140
141         skb = alloc_skb(data_size + sizeof(*packet), GFP_ATOMIC);
142         if (skb == NULL)
143                 return NULL;
144
145         memset(skb->data, 0, data_size + sizeof(*packet));
146
147         packet = (struct hpsb_packet *)skb->data;
148         packet->skb = skb;
149
150         packet->header = packet->embedded_header;
151         packet->state = hpsb_unused;
152         packet->generation = -1;
153         INIT_LIST_HEAD(&packet->driver_list);
154         atomic_set(&packet->refcnt, 1);
155
156         if (data_size) {
157                 packet->data = (quadlet_t *)(skb->data + sizeof(*packet));
158                 packet->data_size = data_size;
159         }
160
161         return packet;
162 }
163
164
165 /**
166  * hpsb_free_packet - free packet and data associated with it
167  * @packet: packet to free (is NULL safe)
168  *
169  * This function will free packet->data and finally the packet itself.
170  */
171 void hpsb_free_packet(struct hpsb_packet *packet)
172 {
173         if (packet && atomic_dec_and_test(&packet->refcnt)) {
174                 BUG_ON(!list_empty(&packet->driver_list));
175                 kfree_skb(packet->skb);
176         }
177 }
178
179
180 int hpsb_reset_bus(struct hpsb_host *host, int type)
181 {
182         if (!host->in_bus_reset) {
183                 host->driver->devctl(host, RESET_BUS, type);
184                 return 0;
185         } else {
186                 return 1;
187         }
188 }
189
190
191 int hpsb_bus_reset(struct hpsb_host *host)
192 {
193         if (host->in_bus_reset) {
194                 HPSB_NOTICE("%s called while bus reset already in progress",
195                             __FUNCTION__);
196                 return 1;
197         }
198
199         abort_requests(host);
200         host->in_bus_reset = 1;
201         host->irm_id = -1;
202         host->is_irm = 0;
203         host->busmgr_id = -1;
204         host->is_busmgr = 0;
205         host->is_cycmst = 0;
206         host->node_count = 0;
207         host->selfid_count = 0;
208
209         return 0;
210 }
211
212
213 /*
214  * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
215  * case verification failed.
216  */
217 static int check_selfids(struct hpsb_host *host)
218 {
219         int nodeid = -1;
220         int rest_of_selfids = host->selfid_count;
221         struct selfid *sid = (struct selfid *)host->topology_map;
222         struct ext_selfid *esid;
223         int esid_seq = 23;
224
225         host->nodes_active = 0;
226
227         while (rest_of_selfids--) {
228                 if (!sid->extended) {
229                         nodeid++;
230                         esid_seq = 0;
231
232                         if (sid->phy_id != nodeid) {
233                                 HPSB_INFO("SelfIDs failed monotony check with "
234                                           "%d", sid->phy_id);
235                                 return 0;
236                         }
237
238                         if (sid->link_active) {
239                                 host->nodes_active++;
240                                 if (sid->contender)
241                                         host->irm_id = LOCAL_BUS | sid->phy_id;
242                         }
243                 } else {
244                         esid = (struct ext_selfid *)sid;
245
246                         if ((esid->phy_id != nodeid)
247                             || (esid->seq_nr != esid_seq)) {
248                                 HPSB_INFO("SelfIDs failed monotony check with "
249                                           "%d/%d", esid->phy_id, esid->seq_nr);
250                                 return 0;
251                         }
252                         esid_seq++;
253                 }
254                 sid++;
255         }
256
257         esid = (struct ext_selfid *)(sid - 1);
258         while (esid->extended) {
259                 if ((esid->porta == 0x2) || (esid->portb == 0x2)
260                     || (esid->portc == 0x2) || (esid->portd == 0x2)
261                     || (esid->porte == 0x2) || (esid->portf == 0x2)
262                     || (esid->portg == 0x2) || (esid->porth == 0x2)) {
263                         HPSB_INFO("SelfIDs failed root check on "
264                                   "extended SelfID");
265                         return 0;
266                 }
267                 esid--;
268         }
269
270         sid = (struct selfid *)esid;
271         if ((sid->port0 == 0x2) || (sid->port1 == 0x2) || (sid->port2 == 0x2)) {
272                 HPSB_INFO("SelfIDs failed root check");
273                 return 0;
274         }
275
276         host->node_count = nodeid + 1;
277         return 1;
278 }
279
280 static void build_speed_map(struct hpsb_host *host, int nodecount)
281 {
282         u8 speedcap[nodecount];
283         u8 cldcnt[nodecount];
284         u8 *map = host->speed_map;
285         struct selfid *sid;
286         struct ext_selfid *esid;
287         int i, j, n;
288
289         for (i = 0; i < (nodecount * 64); i += 64) {
290                 for (j = 0; j < nodecount; j++) {
291                         map[i+j] = IEEE1394_SPEED_MAX;
292                 }
293         }
294
295         for (i = 0; i < nodecount; i++) {
296                 cldcnt[i] = 0;
297         }
298
299         /* find direct children count and speed */
300         for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
301                      n = nodecount - 1;
302              (void *)sid >= (void *)host->topology_map; sid--) {
303                 if (sid->extended) {
304                         esid = (struct ext_selfid *)sid;
305
306                         if (esid->porta == 0x3) cldcnt[n]++;
307                         if (esid->portb == 0x3) cldcnt[n]++;
308                         if (esid->portc == 0x3) cldcnt[n]++;
309                         if (esid->portd == 0x3) cldcnt[n]++;
310                         if (esid->porte == 0x3) cldcnt[n]++;
311                         if (esid->portf == 0x3) cldcnt[n]++;
312                         if (esid->portg == 0x3) cldcnt[n]++;
313                         if (esid->porth == 0x3) cldcnt[n]++;
314                 } else {
315                         if (sid->port0 == 0x3) cldcnt[n]++;
316                         if (sid->port1 == 0x3) cldcnt[n]++;
317                         if (sid->port2 == 0x3) cldcnt[n]++;
318
319                         speedcap[n] = sid->speed;
320                         n--;
321                 }
322         }
323
324         /* set self mapping */
325         for (i = 0; i < nodecount; i++) {
326                 map[64*i + i] = speedcap[i];
327         }
328
329         /* fix up direct children count to total children count;
330          * also fix up speedcaps for sibling and parent communication */
331         for (i = 1; i < nodecount; i++) {
332                 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
333                         cldcnt[i] += cldcnt[n];
334                         speedcap[n] = min(speedcap[n], speedcap[i]);
335                         n -= cldcnt[n] + 1;
336                 }
337         }
338
339         for (n = 0; n < nodecount; n++) {
340                 for (i = n - cldcnt[n]; i <= n; i++) {
341                         for (j = 0; j < (n - cldcnt[n]); j++) {
342                                 map[j*64 + i] = map[i*64 + j] =
343                                         min(map[i*64 + j], speedcap[n]);
344                         }
345                         for (j = n + 1; j < nodecount; j++) {
346                                 map[j*64 + i] = map[i*64 + j] =
347                                         min(map[i*64 + j], speedcap[n]);
348                         }
349                 }
350         }
351 }
352
353
354 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
355 {
356         if (host->in_bus_reset) {
357                 HPSB_VERBOSE("Including SelfID 0x%x", sid);
358                 host->topology_map[host->selfid_count++] = sid;
359         } else {
360                 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
361                             sid, NODEID_TO_BUS(host->node_id));
362         }
363 }
364
365 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
366 {
367         if (!host->in_bus_reset)
368                 HPSB_NOTICE("SelfID completion called outside of bus reset!");
369
370         host->node_id = LOCAL_BUS | phyid;
371         host->is_root = isroot;
372
373         if (!check_selfids(host)) {
374                 if (host->reset_retries++ < 20) {
375                         /* selfid stage did not complete without error */
376                         HPSB_NOTICE("Error in SelfID stage, resetting");
377                         host->in_bus_reset = 0;
378                         /* this should work from ohci1394 now... */
379                         hpsb_reset_bus(host, LONG_RESET);
380                         return;
381                 } else {
382                         HPSB_NOTICE("Stopping out-of-control reset loop");
383                         HPSB_NOTICE("Warning - topology map and speed map will not be valid");
384                         host->reset_retries = 0;
385                 }
386         } else {
387                 host->reset_retries = 0;
388                 build_speed_map(host, host->node_count);
389         }
390
391         HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
392                      "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
393
394         /* irm_id is kept up to date by check_selfids() */
395         if (host->irm_id == host->node_id) {
396                 host->is_irm = 1;
397         } else {
398                 host->is_busmgr = 0;
399                 host->is_irm = 0;
400         }
401
402         if (isroot) {
403                 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
404                 host->is_cycmst = 1;
405         }
406         atomic_inc(&host->generation);
407         host->in_bus_reset = 0;
408         highlevel_host_reset(host);
409 }
410
411
412 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
413                       int ackcode)
414 {
415         unsigned long flags;
416
417         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
418
419         packet->ack_code = ackcode;
420
421         if (packet->no_waiter || packet->state == hpsb_complete) {
422                 /* if packet->no_waiter, must not have a tlabel allocated */
423                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
424                 hpsb_free_packet(packet);
425                 return;
426         }
427
428         atomic_dec(&packet->refcnt);    /* drop HC's reference */
429         /* here the packet must be on the host->pending_packet_queue */
430
431         if (ackcode != ACK_PENDING || !packet->expect_response) {
432                 packet->state = hpsb_complete;
433                 __skb_unlink(packet->skb, &host->pending_packet_queue);
434                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
435                 queue_packet_complete(packet);
436                 return;
437         }
438
439         packet->state = hpsb_pending;
440         packet->sendtime = jiffies;
441
442         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
443
444         mod_timer(&host->timeout, jiffies + host->timeout_interval);
445 }
446
447 /**
448  * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
449  * @host: host that PHY config packet gets sent through
450  * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
451  * @gapcnt: gap count value to set (-1 = don't set gap count)
452  *
453  * This function sends a PHY config packet on the bus through the specified host.
454  *
455  * Return value: 0 for success or error number otherwise.
456  */
457 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
458 {
459         struct hpsb_packet *packet;
460         int retval = 0;
461
462         if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
463            (rootid == -1 && gapcnt == -1)) {
464                 HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
465                            rootid, gapcnt);
466                 return -EINVAL;
467         }
468
469         packet = hpsb_alloc_packet(0);
470         if (!packet)
471                 return -ENOMEM;
472
473         packet->host = host;
474         packet->header_size = 8;
475         packet->data_size = 0;
476         packet->expect_response = 0;
477         packet->no_waiter = 0;
478         packet->type = hpsb_raw;
479         packet->header[0] = 0;
480         if (rootid != -1)
481                 packet->header[0] |= rootid << 24 | 1 << 23;
482         if (gapcnt != -1)
483                 packet->header[0] |= gapcnt << 16 | 1 << 22;
484
485         packet->header[1] = ~packet->header[0];
486
487         packet->generation = get_hpsb_generation(host);
488
489         retval = hpsb_send_packet_and_wait(packet);
490         hpsb_free_packet(packet);
491
492         return retval;
493 }
494
495 /**
496  * hpsb_send_packet - transmit a packet on the bus
497  * @packet: packet to send
498  *
499  * The packet is sent through the host specified in the packet->host field.
500  * Before sending, the packet's transmit speed is automatically determined
501  * using the local speed map when it is an async, non-broadcast packet.
502  *
503  * Possibilities for failure are that host is either not initialized, in bus
504  * reset, the packet's generation number doesn't match the current generation
505  * number or the host reports a transmit error.
506  *
507  * Return value: 0 on success, negative errno on failure.
508  */
509 int hpsb_send_packet(struct hpsb_packet *packet)
510 {
511         struct hpsb_host *host = packet->host;
512
513         if (host->is_shutdown)
514                 return -EINVAL;
515         if (host->in_bus_reset ||
516             (packet->generation != get_hpsb_generation(host)))
517                 return -EAGAIN;
518
519         packet->state = hpsb_queued;
520
521         /* This just seems silly to me */
522         WARN_ON(packet->no_waiter && packet->expect_response);
523
524         if (!packet->no_waiter || packet->expect_response) {
525                 atomic_inc(&packet->refcnt);
526                 /* Set the initial "sendtime" to 10 seconds from now, to
527                    prevent premature expiry.  If a packet takes more than
528                    10 seconds to hit the wire, we have bigger problems :) */
529                 packet->sendtime = jiffies + 10 * HZ;
530                 skb_queue_tail(&host->pending_packet_queue, packet->skb);
531         }
532
533         if (packet->node_id == host->node_id) {
534                 /* it is a local request, so handle it locally */
535
536                 quadlet_t *data;
537                 size_t size = packet->data_size + packet->header_size;
538
539                 data = kmalloc(size, GFP_ATOMIC);
540                 if (!data) {
541                         HPSB_ERR("unable to allocate memory for concatenating header and data");
542                         return -ENOMEM;
543                 }
544
545                 memcpy(data, packet->header, packet->header_size);
546
547                 if (packet->data_size)
548                         memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
549
550                 dump_packet("send packet local", packet->header, packet->header_size, -1);
551
552                 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
553                 hpsb_packet_received(host, data, size, 0);
554
555                 kfree(data);
556
557                 return 0;
558         }
559
560         if (packet->type == hpsb_async && packet->node_id != ALL_NODES) {
561                 packet->speed_code =
562                         host->speed_map[NODEID_TO_NODE(host->node_id) * 64
563                                        + NODEID_TO_NODE(packet->node_id)];
564         }
565
566         dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
567
568         return host->driver->transmit_packet(host, packet);
569 }
570
571 /* We could just use complete() directly as the packet complete
572  * callback, but this is more typesafe, in the sense that we get a
573  * compiler error if the prototype for complete() changes. */
574
575 static void complete_packet(void *data)
576 {
577         complete((struct completion *) data);
578 }
579
580 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
581 {
582         struct completion done;
583         int retval;
584
585         init_completion(&done);
586         hpsb_set_packet_complete_task(packet, complete_packet, &done);
587         retval = hpsb_send_packet(packet);
588         if (retval == 0)
589                 wait_for_completion(&done);
590
591         return retval;
592 }
593
594 static void send_packet_nocare(struct hpsb_packet *packet)
595 {
596         if (hpsb_send_packet(packet) < 0) {
597                 hpsb_free_packet(packet);
598         }
599 }
600
601
602 static void handle_packet_response(struct hpsb_host *host, int tcode,
603                                    quadlet_t *data, size_t size)
604 {
605         struct hpsb_packet *packet = NULL;
606         struct sk_buff *skb;
607         int tcode_match = 0;
608         int tlabel;
609         unsigned long flags;
610
611         tlabel = (data[0] >> 10) & 0x3f;
612
613         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
614
615         skb_queue_walk(&host->pending_packet_queue, skb) {
616                 packet = (struct hpsb_packet *)skb->data;
617                 if ((packet->tlabel == tlabel)
618                     && (packet->node_id == (data[1] >> 16))){
619                         break;
620                 }
621
622                 packet = NULL;
623         }
624
625         if (packet == NULL) {
626                 HPSB_DEBUG("unsolicited response packet received - no tlabel match");
627                 dump_packet("contents", data, 16, -1);
628                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
629                 return;
630         }
631
632         switch (packet->tcode) {
633         case TCODE_WRITEQ:
634         case TCODE_WRITEB:
635                 if (tcode != TCODE_WRITE_RESPONSE)
636                         break;
637                 tcode_match = 1;
638                 memcpy(packet->header, data, 12);
639                 break;
640         case TCODE_READQ:
641                 if (tcode != TCODE_READQ_RESPONSE)
642                         break;
643                 tcode_match = 1;
644                 memcpy(packet->header, data, 16);
645                 break;
646         case TCODE_READB:
647                 if (tcode != TCODE_READB_RESPONSE)
648                         break;
649                 tcode_match = 1;
650                 BUG_ON(packet->skb->len - sizeof(*packet) < size - 16);
651                 memcpy(packet->header, data, 16);
652                 memcpy(packet->data, data + 4, size - 16);
653                 break;
654         case TCODE_LOCK_REQUEST:
655                 if (tcode != TCODE_LOCK_RESPONSE)
656                         break;
657                 tcode_match = 1;
658                 size = min((size - 16), (size_t)8);
659                 BUG_ON(packet->skb->len - sizeof(*packet) < size);
660                 memcpy(packet->header, data, 16);
661                 memcpy(packet->data, data + 4, size);
662                 break;
663         }
664
665         if (!tcode_match) {
666                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
667                 HPSB_INFO("unsolicited response packet received - tcode mismatch");
668                 dump_packet("contents", data, 16, -1);
669                 return;
670         }
671
672         __skb_unlink(skb, &host->pending_packet_queue);
673
674         if (packet->state == hpsb_queued) {
675                 packet->sendtime = jiffies;
676                 packet->ack_code = ACK_PENDING;
677         }
678
679         packet->state = hpsb_complete;
680         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
681
682         queue_packet_complete(packet);
683 }
684
685
686 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
687                                                quadlet_t *data, size_t dsize)
688 {
689         struct hpsb_packet *p;
690
691         p = hpsb_alloc_packet(dsize);
692         if (unlikely(p == NULL)) {
693                 /* FIXME - send data_error response */
694                 return NULL;
695         }
696
697         p->type = hpsb_async;
698         p->state = hpsb_unused;
699         p->host = host;
700         p->node_id = data[1] >> 16;
701         p->tlabel = (data[0] >> 10) & 0x3f;
702         p->no_waiter = 1;
703
704         p->generation = get_hpsb_generation(host);
705
706         if (dsize % 4)
707                 p->data[dsize / 4] = 0;
708
709         return p;
710 }
711
712 #define PREP_ASYNC_HEAD_RCODE(tc) \
713         packet->tcode = tc; \
714         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
715                 | (1 << 8) | (tc << 4); \
716         packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
717         packet->header[2] = 0
718
719 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
720                               quadlet_t data)
721 {
722         PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
723         packet->header[3] = data;
724         packet->header_size = 16;
725         packet->data_size = 0;
726 }
727
728 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
729                                int length)
730 {
731         if (rcode != RCODE_COMPLETE)
732                 length = 0;
733
734         PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
735         packet->header[3] = length << 16;
736         packet->header_size = 16;
737         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
738 }
739
740 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
741 {
742         PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
743         packet->header[2] = 0;
744         packet->header_size = 12;
745         packet->data_size = 0;
746 }
747
748 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
749                           int length)
750 {
751         if (rcode != RCODE_COMPLETE)
752                 length = 0;
753
754         PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
755         packet->header[3] = (length << 16) | extcode;
756         packet->header_size = 16;
757         packet->data_size = length;
758 }
759
760 #define PREP_REPLY_PACKET(length) \
761                 packet = create_reply_packet(host, data, length); \
762                 if (packet == NULL) break
763
764 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
765                                    quadlet_t *data, size_t size, int write_acked)
766 {
767         struct hpsb_packet *packet;
768         int length, rcode, extcode;
769         quadlet_t buffer;
770         nodeid_t source = data[1] >> 16;
771         nodeid_t dest = data[0] >> 16;
772         u16 flags = (u16) data[0];
773         u64 addr;
774
775         /* big FIXME - no error checking is done for an out of bounds length */
776
777         switch (tcode) {
778         case TCODE_WRITEQ:
779                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
780                 rcode = highlevel_write(host, source, dest, data+3,
781                                         addr, 4, flags);
782
783                 if (!write_acked
784                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
785                     && (rcode >= 0)) {
786                         /* not a broadcast write, reply */
787                         PREP_REPLY_PACKET(0);
788                         fill_async_write_resp(packet, rcode);
789                         send_packet_nocare(packet);
790                 }
791                 break;
792
793         case TCODE_WRITEB:
794                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
795                 rcode = highlevel_write(host, source, dest, data+4,
796                                         addr, data[3]>>16, flags);
797
798                 if (!write_acked
799                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
800                     && (rcode >= 0)) {
801                         /* not a broadcast write, reply */
802                         PREP_REPLY_PACKET(0);
803                         fill_async_write_resp(packet, rcode);
804                         send_packet_nocare(packet);
805                 }
806                 break;
807
808         case TCODE_READQ:
809                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
810                 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
811
812                 if (rcode >= 0) {
813                         PREP_REPLY_PACKET(0);
814                         fill_async_readquad_resp(packet, rcode, buffer);
815                         send_packet_nocare(packet);
816                 }
817                 break;
818
819         case TCODE_READB:
820                 length = data[3] >> 16;
821                 PREP_REPLY_PACKET(length);
822
823                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
824                 rcode = highlevel_read(host, source, packet->data, addr,
825                                        length, flags);
826
827                 if (rcode >= 0) {
828                         fill_async_readblock_resp(packet, rcode, length);
829                         send_packet_nocare(packet);
830                 } else {
831                         hpsb_free_packet(packet);
832                 }
833                 break;
834
835         case TCODE_LOCK_REQUEST:
836                 length = data[3] >> 16;
837                 extcode = data[3] & 0xffff;
838                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
839
840                 PREP_REPLY_PACKET(8);
841
842                 if ((extcode == 0) || (extcode >= 7)) {
843                         /* let switch default handle error */
844                         length = 0;
845                 }
846
847                 switch (length) {
848                 case 4:
849                         rcode = highlevel_lock(host, source, packet->data, addr,
850                                                data[4], 0, extcode,flags);
851                         fill_async_lock_resp(packet, rcode, extcode, 4);
852                         break;
853                 case 8:
854                         if ((extcode != EXTCODE_FETCH_ADD)
855                             && (extcode != EXTCODE_LITTLE_ADD)) {
856                                 rcode = highlevel_lock(host, source,
857                                                        packet->data, addr,
858                                                        data[5], data[4],
859                                                        extcode, flags);
860                                 fill_async_lock_resp(packet, rcode, extcode, 4);
861                         } else {
862                                 rcode = highlevel_lock64(host, source,
863                                              (octlet_t *)packet->data, addr,
864                                              *(octlet_t *)(data + 4), 0ULL,
865                                              extcode, flags);
866                                 fill_async_lock_resp(packet, rcode, extcode, 8);
867                         }
868                         break;
869                 case 16:
870                         rcode = highlevel_lock64(host, source,
871                                                  (octlet_t *)packet->data, addr,
872                                                  *(octlet_t *)(data + 6),
873                                                  *(octlet_t *)(data + 4),
874                                                  extcode, flags);
875                         fill_async_lock_resp(packet, rcode, extcode, 8);
876                         break;
877                 default:
878                         rcode = RCODE_TYPE_ERROR;
879                         fill_async_lock_resp(packet, rcode,
880                                              extcode, 0);
881                 }
882
883                 if (rcode >= 0) {
884                         send_packet_nocare(packet);
885                 } else {
886                         hpsb_free_packet(packet);
887                 }
888                 break;
889         }
890
891 }
892 #undef PREP_REPLY_PACKET
893
894
895 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
896                           int write_acked)
897 {
898         int tcode;
899
900         if (host->in_bus_reset) {
901                 HPSB_INFO("received packet during reset; ignoring");
902                 return;
903         }
904
905         dump_packet("received packet", data, size, -1);
906
907         tcode = (data[0] >> 4) & 0xf;
908
909         switch (tcode) {
910         case TCODE_WRITE_RESPONSE:
911         case TCODE_READQ_RESPONSE:
912         case TCODE_READB_RESPONSE:
913         case TCODE_LOCK_RESPONSE:
914                 handle_packet_response(host, tcode, data, size);
915                 break;
916
917         case TCODE_WRITEQ:
918         case TCODE_WRITEB:
919         case TCODE_READQ:
920         case TCODE_READB:
921         case TCODE_LOCK_REQUEST:
922                 handle_incoming_packet(host, tcode, data, size, write_acked);
923                 break;
924
925
926         case TCODE_ISO_DATA:
927                 highlevel_iso_receive(host, data, size);
928                 break;
929
930         case TCODE_CYCLE_START:
931                 /* simply ignore this packet if it is passed on */
932                 break;
933
934         default:
935                 HPSB_NOTICE("received packet with bogus transaction code %d",
936                             tcode);
937                 break;
938         }
939 }
940
941
942 static void abort_requests(struct hpsb_host *host)
943 {
944         struct hpsb_packet *packet;
945         struct sk_buff *skb;
946
947         host->driver->devctl(host, CANCEL_REQUESTS, 0);
948
949         while ((skb = skb_dequeue(&host->pending_packet_queue)) != NULL) {
950                 packet = (struct hpsb_packet *)skb->data;
951
952                 packet->state = hpsb_complete;
953                 packet->ack_code = ACKX_ABORTED;
954                 queue_packet_complete(packet);
955         }
956 }
957
958 void abort_timedouts(unsigned long __opaque)
959 {
960         struct hpsb_host *host = (struct hpsb_host *)__opaque;
961         unsigned long flags;
962         struct hpsb_packet *packet;
963         struct sk_buff *skb;
964         unsigned long expire;
965
966         spin_lock_irqsave(&host->csr.lock, flags);
967         expire = host->csr.expire;
968         spin_unlock_irqrestore(&host->csr.lock, flags);
969
970         /* Hold the lock around this, since we aren't dequeuing all
971          * packets, just ones we need. */
972         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
973
974         while (!skb_queue_empty(&host->pending_packet_queue)) {
975                 skb = skb_peek(&host->pending_packet_queue);
976
977                 packet = (struct hpsb_packet *)skb->data;
978
979                 if (time_before(packet->sendtime + expire, jiffies)) {
980                         __skb_unlink(skb, &host->pending_packet_queue);
981                         packet->state = hpsb_complete;
982                         packet->ack_code = ACKX_TIMEOUT;
983                         queue_packet_complete(packet);
984                 } else {
985                         /* Since packets are added to the tail, the oldest
986                          * ones are first, always. When we get to one that
987                          * isn't timed out, the rest aren't either. */
988                         break;
989                 }
990         }
991
992         if (!skb_queue_empty(&host->pending_packet_queue))
993                 mod_timer(&host->timeout, jiffies + host->timeout_interval);
994
995         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
996 }
997
998
999 /* Kernel thread and vars, which handles packets that are completed. Only
1000  * packets that have a "complete" function are sent here. This way, the
1001  * completion is run out of kernel context, and doesn't block the rest of
1002  * the stack. */
1003 static int khpsbpkt_pid = -1, khpsbpkt_kill;
1004 static DECLARE_COMPLETION(khpsbpkt_complete);
1005 static struct sk_buff_head hpsbpkt_queue;
1006 static DECLARE_MUTEX_LOCKED(khpsbpkt_sig);
1007
1008
1009 static void queue_packet_complete(struct hpsb_packet *packet)
1010 {
1011         if (packet->no_waiter) {
1012                 hpsb_free_packet(packet);
1013                 return;
1014         }
1015         if (packet->complete_routine != NULL) {
1016                 skb_queue_tail(&hpsbpkt_queue, packet->skb);
1017
1018                 /* Signal the kernel thread to handle this */
1019                 up(&khpsbpkt_sig);
1020         }
1021         return;
1022 }
1023
1024 static int hpsbpkt_thread(void *__hi)
1025 {
1026         struct sk_buff *skb;
1027         struct hpsb_packet *packet;
1028         void (*complete_routine)(void*);
1029         void *complete_data;
1030
1031         daemonize("khpsbpkt");
1032
1033         while (1) {
1034                 if (down_interruptible(&khpsbpkt_sig)) {
1035                         if (try_to_freeze())
1036                                 continue;
1037                         printk("khpsbpkt: received unexpected signal?!\n" );
1038                         break;
1039                 }
1040
1041                 if (khpsbpkt_kill)
1042                         break;
1043
1044                 while ((skb = skb_dequeue(&hpsbpkt_queue)) != NULL) {
1045                         packet = (struct hpsb_packet *)skb->data;
1046
1047                         complete_routine = packet->complete_routine;
1048                         complete_data = packet->complete_data;
1049
1050                         packet->complete_routine = packet->complete_data = NULL;
1051
1052                         complete_routine(complete_data);
1053                 }
1054         }
1055
1056         complete_and_exit(&khpsbpkt_complete, 0);
1057 }
1058
1059 static int __init ieee1394_init(void)
1060 {
1061         int i, ret;
1062
1063         skb_queue_head_init(&hpsbpkt_queue);
1064
1065         /* non-fatal error */
1066         if (hpsb_init_config_roms()) {
1067                 HPSB_ERR("Failed to initialize some config rom entries.\n");
1068                 HPSB_ERR("Some features may not be available\n");
1069         }
1070
1071         khpsbpkt_pid = kernel_thread(hpsbpkt_thread, NULL, CLONE_KERNEL);
1072         if (khpsbpkt_pid < 0) {
1073                 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1074                 ret = -ENOMEM;
1075                 goto exit_cleanup_config_roms;
1076         }
1077
1078         if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1079                 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1080                 ret = -ENODEV;
1081                 goto exit_release_kernel_thread;
1082         }
1083
1084         /* actually this is a non-fatal error */
1085         ret = devfs_mk_dir("ieee1394");
1086         if (ret < 0) {
1087                 HPSB_ERR("unable to make devfs dir for device major %d!\n", IEEE1394_MAJOR);
1088                 goto release_chrdev;
1089         }
1090
1091         ret = bus_register(&ieee1394_bus_type);
1092         if (ret < 0) {
1093                 HPSB_INFO("bus register failed");
1094                 goto release_devfs;
1095         }
1096
1097         for (i = 0; fw_bus_attrs[i]; i++) {
1098                 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1099                 if (ret < 0) {
1100                         while (i >= 0) {
1101                                 bus_remove_file(&ieee1394_bus_type,
1102                                                 fw_bus_attrs[i--]);
1103                         }
1104                         bus_unregister(&ieee1394_bus_type);
1105                         goto release_devfs;
1106                 }
1107         }
1108
1109         ret = class_register(&hpsb_host_class);
1110         if (ret < 0)
1111                 goto release_all_bus;
1112
1113         hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1114         if (IS_ERR(hpsb_protocol_class)) {
1115                 ret = PTR_ERR(hpsb_protocol_class);
1116                 goto release_class_host;
1117         }
1118
1119         ret = init_csr();
1120         if (ret) {
1121                 HPSB_INFO("init csr failed");
1122                 ret = -ENOMEM;
1123                 goto release_class_protocol;
1124         }
1125
1126         if (disable_nodemgr) {
1127                 HPSB_INFO("nodemgr and IRM functionality disabled");
1128                 /* We shouldn't contend for IRM with nodemgr disabled, since
1129                    nodemgr implements functionality required of ieee1394a-2000
1130                    IRMs */
1131                 hpsb_disable_irm = 1;
1132                       
1133                 return 0;
1134         }
1135
1136         if (hpsb_disable_irm) {
1137                 HPSB_INFO("IRM functionality disabled");
1138         }
1139
1140         ret = init_ieee1394_nodemgr();
1141         if (ret < 0) {
1142                 HPSB_INFO("init nodemgr failed");
1143                 goto cleanup_csr;
1144         }
1145
1146         return 0;
1147
1148 cleanup_csr:
1149         cleanup_csr();
1150 release_class_protocol:
1151         class_destroy(hpsb_protocol_class);
1152 release_class_host:
1153         class_unregister(&hpsb_host_class);
1154 release_all_bus:
1155         for (i = 0; fw_bus_attrs[i]; i++)
1156                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1157         bus_unregister(&ieee1394_bus_type);
1158 release_devfs:
1159         devfs_remove("ieee1394");
1160 release_chrdev:
1161         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1162 exit_release_kernel_thread:
1163         if (khpsbpkt_pid >= 0) {
1164                 kill_proc(khpsbpkt_pid, SIGTERM, 1);
1165                 wait_for_completion(&khpsbpkt_complete);
1166         }
1167 exit_cleanup_config_roms:
1168         hpsb_cleanup_config_roms();
1169         return ret;
1170 }
1171
1172 static void __exit ieee1394_cleanup(void)
1173 {
1174         int i;
1175
1176         if (!disable_nodemgr)
1177                 cleanup_ieee1394_nodemgr();
1178
1179         cleanup_csr();
1180
1181         class_destroy(hpsb_protocol_class);
1182         class_unregister(&hpsb_host_class);
1183         for (i = 0; fw_bus_attrs[i]; i++)
1184                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1185         bus_unregister(&ieee1394_bus_type);
1186
1187         if (khpsbpkt_pid >= 0) {
1188                 khpsbpkt_kill = 1;
1189                 mb();
1190                 up(&khpsbpkt_sig);
1191                 wait_for_completion(&khpsbpkt_complete);
1192         }
1193
1194         hpsb_cleanup_config_roms();
1195
1196         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1197         devfs_remove("ieee1394");
1198 }
1199
1200 module_init(ieee1394_init);
1201 module_exit(ieee1394_cleanup);
1202
1203 /* Exported symbols */
1204
1205 /** hosts.c **/
1206 EXPORT_SYMBOL(hpsb_alloc_host);
1207 EXPORT_SYMBOL(hpsb_add_host);
1208 EXPORT_SYMBOL(hpsb_remove_host);
1209 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1210
1211 /** ieee1394_core.c **/
1212 EXPORT_SYMBOL(hpsb_speedto_str);
1213 EXPORT_SYMBOL(hpsb_protocol_class);
1214 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1215 EXPORT_SYMBOL(hpsb_alloc_packet);
1216 EXPORT_SYMBOL(hpsb_free_packet);
1217 EXPORT_SYMBOL(hpsb_send_packet);
1218 EXPORT_SYMBOL(hpsb_reset_bus);
1219 EXPORT_SYMBOL(hpsb_bus_reset);
1220 EXPORT_SYMBOL(hpsb_selfid_received);
1221 EXPORT_SYMBOL(hpsb_selfid_complete);
1222 EXPORT_SYMBOL(hpsb_packet_sent);
1223 EXPORT_SYMBOL(hpsb_packet_received);
1224 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1225 #ifdef CONFIG_IEEE1394_EXPORT_FULL_API
1226 EXPORT_SYMBOL(hpsb_send_phy_config);
1227 EXPORT_SYMBOL(hpsb_send_packet_and_wait);
1228 #endif
1229
1230 /** ieee1394_transactions.c **/
1231 EXPORT_SYMBOL(hpsb_get_tlabel);
1232 EXPORT_SYMBOL(hpsb_free_tlabel);
1233 EXPORT_SYMBOL(hpsb_make_readpacket);
1234 EXPORT_SYMBOL(hpsb_make_writepacket);
1235 EXPORT_SYMBOL(hpsb_make_streampacket);
1236 EXPORT_SYMBOL(hpsb_make_lockpacket);
1237 EXPORT_SYMBOL(hpsb_make_lock64packet);
1238 EXPORT_SYMBOL(hpsb_make_phypacket);
1239 EXPORT_SYMBOL(hpsb_make_isopacket);
1240 EXPORT_SYMBOL(hpsb_read);
1241 EXPORT_SYMBOL(hpsb_write);
1242 EXPORT_SYMBOL(hpsb_packet_success);
1243
1244 /** highlevel.c **/
1245 EXPORT_SYMBOL(hpsb_register_highlevel);
1246 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1247 EXPORT_SYMBOL(hpsb_register_addrspace);
1248 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1249 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1250 EXPORT_SYMBOL(hpsb_listen_channel);
1251 EXPORT_SYMBOL(hpsb_unlisten_channel);
1252 EXPORT_SYMBOL(hpsb_get_hostinfo);
1253 EXPORT_SYMBOL(hpsb_create_hostinfo);
1254 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1255 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1256 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1257 EXPORT_SYMBOL(hpsb_set_hostinfo);
1258 EXPORT_SYMBOL(highlevel_host_reset);
1259 #ifdef CONFIG_IEEE1394_EXPORT_FULL_API
1260 EXPORT_SYMBOL(highlevel_add_host);
1261 EXPORT_SYMBOL(highlevel_remove_host);
1262 #endif
1263
1264 /** nodemgr.c **/
1265 EXPORT_SYMBOL(hpsb_node_fill_packet);
1266 EXPORT_SYMBOL(hpsb_node_write);
1267 EXPORT_SYMBOL(hpsb_register_protocol);
1268 EXPORT_SYMBOL(hpsb_unregister_protocol);
1269 EXPORT_SYMBOL(ieee1394_bus_type);
1270 #ifdef CONFIG_IEEE1394_EXPORT_FULL_API
1271 EXPORT_SYMBOL(nodemgr_for_each_host);
1272 #endif
1273
1274 /** csr.c **/
1275 EXPORT_SYMBOL(hpsb_update_config_rom);
1276
1277 /** dma.c **/
1278 EXPORT_SYMBOL(dma_prog_region_init);
1279 EXPORT_SYMBOL(dma_prog_region_alloc);
1280 EXPORT_SYMBOL(dma_prog_region_free);
1281 EXPORT_SYMBOL(dma_region_init);
1282 EXPORT_SYMBOL(dma_region_alloc);
1283 EXPORT_SYMBOL(dma_region_free);
1284 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1285 EXPORT_SYMBOL(dma_region_sync_for_device);
1286 EXPORT_SYMBOL(dma_region_mmap);
1287 EXPORT_SYMBOL(dma_region_offset_to_bus);
1288
1289 /** iso.c **/
1290 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1291 EXPORT_SYMBOL(hpsb_iso_recv_init);
1292 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1293 EXPORT_SYMBOL(hpsb_iso_recv_start);
1294 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1295 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1296 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1297 EXPORT_SYMBOL(hpsb_iso_stop);
1298 EXPORT_SYMBOL(hpsb_iso_shutdown);
1299 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1300 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1301 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1302 EXPORT_SYMBOL(hpsb_iso_n_ready);
1303 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1304 EXPORT_SYMBOL(hpsb_iso_packet_received);
1305 EXPORT_SYMBOL(hpsb_iso_wake);
1306 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1307
1308 /** csr1212.c **/
1309 EXPORT_SYMBOL(csr1212_new_directory);
1310 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1311 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1312 EXPORT_SYMBOL(csr1212_release_keyval);
1313 EXPORT_SYMBOL(csr1212_read);
1314 EXPORT_SYMBOL(csr1212_parse_keyval);
1315 EXPORT_SYMBOL(_csr1212_read_keyval);
1316 EXPORT_SYMBOL(_csr1212_destroy_keyval);
1317 #ifdef CONFIG_IEEE1394_EXPORT_FULL_API
1318 EXPORT_SYMBOL(csr1212_create_csr);
1319 EXPORT_SYMBOL(csr1212_init_local_csr);
1320 EXPORT_SYMBOL(csr1212_new_immediate);
1321 EXPORT_SYMBOL(csr1212_associate_keyval);
1322 EXPORT_SYMBOL(csr1212_new_string_descriptor_leaf);
1323 EXPORT_SYMBOL(csr1212_destroy_csr);
1324 EXPORT_SYMBOL(csr1212_generate_csr_image);
1325 EXPORT_SYMBOL(csr1212_parse_csr);
1326 #endif