]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu-v3.c
Merge remote-tracking branches 'asoc/topic/rcar', 'asoc/topic/reg-default', 'asoc...
[karo-tx-linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/pci.h>
32 #include <linux/platform_device.h>
33
34 #include "io-pgtable.h"
35
36 /* MMIO registers */
37 #define ARM_SMMU_IDR0                   0x0
38 #define IDR0_ST_LVL_SHIFT               27
39 #define IDR0_ST_LVL_MASK                0x3
40 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
41 #define IDR0_STALL_MODEL                (3 << 24)
42 #define IDR0_TTENDIAN_SHIFT             21
43 #define IDR0_TTENDIAN_MASK              0x3
44 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
45 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
46 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_CD2L                       (1 << 19)
48 #define IDR0_VMID16                     (1 << 18)
49 #define IDR0_PRI                        (1 << 16)
50 #define IDR0_SEV                        (1 << 14)
51 #define IDR0_MSI                        (1 << 13)
52 #define IDR0_ASID16                     (1 << 12)
53 #define IDR0_ATS                        (1 << 10)
54 #define IDR0_HYP                        (1 << 9)
55 #define IDR0_COHACC                     (1 << 4)
56 #define IDR0_TTF_SHIFT                  2
57 #define IDR0_TTF_MASK                   0x3
58 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
59 #define IDR0_S1P                        (1 << 1)
60 #define IDR0_S2P                        (1 << 0)
61
62 #define ARM_SMMU_IDR1                   0x4
63 #define IDR1_TABLES_PRESET              (1 << 30)
64 #define IDR1_QUEUES_PRESET              (1 << 29)
65 #define IDR1_REL                        (1 << 28)
66 #define IDR1_CMDQ_SHIFT                 21
67 #define IDR1_CMDQ_MASK                  0x1f
68 #define IDR1_EVTQ_SHIFT                 16
69 #define IDR1_EVTQ_MASK                  0x1f
70 #define IDR1_PRIQ_SHIFT                 11
71 #define IDR1_PRIQ_MASK                  0x1f
72 #define IDR1_SSID_SHIFT                 6
73 #define IDR1_SSID_MASK                  0x1f
74 #define IDR1_SID_SHIFT                  0
75 #define IDR1_SID_MASK                   0x3f
76
77 #define ARM_SMMU_IDR5                   0x14
78 #define IDR5_STALL_MAX_SHIFT            16
79 #define IDR5_STALL_MAX_MASK             0xffff
80 #define IDR5_GRAN64K                    (1 << 6)
81 #define IDR5_GRAN16K                    (1 << 5)
82 #define IDR5_GRAN4K                     (1 << 4)
83 #define IDR5_OAS_SHIFT                  0
84 #define IDR5_OAS_MASK                   0x7
85 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
86 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
87 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
88 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
91
92 #define ARM_SMMU_CR0                    0x20
93 #define CR0_CMDQEN                      (1 << 3)
94 #define CR0_EVTQEN                      (1 << 2)
95 #define CR0_PRIQEN                      (1 << 1)
96 #define CR0_SMMUEN                      (1 << 0)
97
98 #define ARM_SMMU_CR0ACK                 0x24
99
100 #define ARM_SMMU_CR1                    0x28
101 #define CR1_SH_NSH                      0
102 #define CR1_SH_OSH                      2
103 #define CR1_SH_ISH                      3
104 #define CR1_CACHE_NC                    0
105 #define CR1_CACHE_WB                    1
106 #define CR1_CACHE_WT                    2
107 #define CR1_TABLE_SH_SHIFT              10
108 #define CR1_TABLE_OC_SHIFT              8
109 #define CR1_TABLE_IC_SHIFT              6
110 #define CR1_QUEUE_SH_SHIFT              4
111 #define CR1_QUEUE_OC_SHIFT              2
112 #define CR1_QUEUE_IC_SHIFT              0
113
114 #define ARM_SMMU_CR2                    0x2c
115 #define CR2_PTM                         (1 << 2)
116 #define CR2_RECINVSID                   (1 << 1)
117 #define CR2_E2H                         (1 << 0)
118
119 #define ARM_SMMU_IRQ_CTRL               0x50
120 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
121 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
122
123 #define ARM_SMMU_IRQ_CTRLACK            0x54
124
125 #define ARM_SMMU_GERROR                 0x60
126 #define GERROR_SFM_ERR                  (1 << 8)
127 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
128 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
129 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
130 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
131 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
132 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
133 #define GERROR_CMDQ_ERR                 (1 << 0)
134 #define GERROR_ERR_MASK                 0xfd
135
136 #define ARM_SMMU_GERRORN                0x64
137
138 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
139 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
140 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
141
142 #define ARM_SMMU_STRTAB_BASE            0x80
143 #define STRTAB_BASE_RA                  (1UL << 62)
144 #define STRTAB_BASE_ADDR_SHIFT          6
145 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
146
147 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
148 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
149 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
150 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
151 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
152 #define STRTAB_BASE_CFG_FMT_SHIFT       16
153 #define STRTAB_BASE_CFG_FMT_MASK        0x3
154 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
155 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
156
157 #define ARM_SMMU_CMDQ_BASE              0x90
158 #define ARM_SMMU_CMDQ_PROD              0x98
159 #define ARM_SMMU_CMDQ_CONS              0x9c
160
161 #define ARM_SMMU_EVTQ_BASE              0xa0
162 #define ARM_SMMU_EVTQ_PROD              0x100a8
163 #define ARM_SMMU_EVTQ_CONS              0x100ac
164 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
165 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
166 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
167
168 #define ARM_SMMU_PRIQ_BASE              0xc0
169 #define ARM_SMMU_PRIQ_PROD              0x100c8
170 #define ARM_SMMU_PRIQ_CONS              0x100cc
171 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
172 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
173 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
174
175 /* Common MSI config fields */
176 #define MSI_CFG0_SH_SHIFT               60
177 #define MSI_CFG0_SH_NSH                 (0UL << MSI_CFG0_SH_SHIFT)
178 #define MSI_CFG0_SH_OSH                 (2UL << MSI_CFG0_SH_SHIFT)
179 #define MSI_CFG0_SH_ISH                 (3UL << MSI_CFG0_SH_SHIFT)
180 #define MSI_CFG0_MEMATTR_SHIFT          56
181 #define MSI_CFG0_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG0_MEMATTR_SHIFT)
182 #define MSI_CFG0_ADDR_SHIFT             2
183 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
184
185 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
186 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
187 #define Q_OVERFLOW_FLAG                 (1 << 31)
188 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
189 #define Q_ENT(q, p)                     ((q)->base +                    \
190                                          Q_IDX(q, p) * (q)->ent_dwords)
191
192 #define Q_BASE_RWA                      (1UL << 62)
193 #define Q_BASE_ADDR_SHIFT               5
194 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
195 #define Q_BASE_LOG2SIZE_SHIFT           0
196 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
197
198 /*
199  * Stream table.
200  *
201  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
202  * 2lvl: 128k L1 entries,
203  *       256 lazy entries per table (each table covers a PCI bus)
204  */
205 #define STRTAB_L1_SZ_SHIFT              20
206 #define STRTAB_SPLIT                    8
207
208 #define STRTAB_L1_DESC_DWORDS           1
209 #define STRTAB_L1_DESC_SPAN_SHIFT       0
210 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
211 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
212 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
213
214 #define STRTAB_STE_DWORDS               8
215 #define STRTAB_STE_0_V                  (1UL << 0)
216 #define STRTAB_STE_0_CFG_SHIFT          1
217 #define STRTAB_STE_0_CFG_MASK           0x7UL
218 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
219 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
220 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
221 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
222
223 #define STRTAB_STE_0_S1FMT_SHIFT        4
224 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
225 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
226 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
227 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
228 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
229
230 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
231 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
232 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
233 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
234 #define STRTAB_STE_1_S1C_SH_NSH         0UL
235 #define STRTAB_STE_1_S1C_SH_OSH         2UL
236 #define STRTAB_STE_1_S1C_SH_ISH         3UL
237 #define STRTAB_STE_1_S1CIR_SHIFT        2
238 #define STRTAB_STE_1_S1COR_SHIFT        4
239 #define STRTAB_STE_1_S1CSH_SHIFT        6
240
241 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
242
243 #define STRTAB_STE_1_EATS_ABT           0UL
244 #define STRTAB_STE_1_EATS_TRANS         1UL
245 #define STRTAB_STE_1_EATS_S1CHK         2UL
246 #define STRTAB_STE_1_EATS_SHIFT         28
247
248 #define STRTAB_STE_1_STRW_NSEL1         0UL
249 #define STRTAB_STE_1_STRW_EL2           2UL
250 #define STRTAB_STE_1_STRW_SHIFT         30
251
252 #define STRTAB_STE_2_S2VMID_SHIFT       0
253 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
254 #define STRTAB_STE_2_VTCR_SHIFT         32
255 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
256 #define STRTAB_STE_2_S2AA64             (1UL << 51)
257 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
258 #define STRTAB_STE_2_S2PTW              (1UL << 54)
259 #define STRTAB_STE_2_S2R                (1UL << 58)
260
261 #define STRTAB_STE_3_S2TTB_SHIFT        4
262 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
263
264 /* Context descriptor (stage-1 only) */
265 #define CTXDESC_CD_DWORDS               8
266 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
267 #define ARM64_TCR_T0SZ_SHIFT            0
268 #define ARM64_TCR_T0SZ_MASK             0x1fUL
269 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
270 #define ARM64_TCR_TG0_SHIFT             14
271 #define ARM64_TCR_TG0_MASK              0x3UL
272 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
273 #define ARM64_TCR_IRGN0_SHIFT           8
274 #define ARM64_TCR_IRGN0_MASK            0x3UL
275 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
276 #define ARM64_TCR_ORGN0_SHIFT           10
277 #define ARM64_TCR_ORGN0_MASK            0x3UL
278 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
279 #define ARM64_TCR_SH0_SHIFT             12
280 #define ARM64_TCR_SH0_MASK              0x3UL
281 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
282 #define ARM64_TCR_EPD0_SHIFT            7
283 #define ARM64_TCR_EPD0_MASK             0x1UL
284 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
285 #define ARM64_TCR_EPD1_SHIFT            23
286 #define ARM64_TCR_EPD1_MASK             0x1UL
287
288 #define CTXDESC_CD_0_ENDI               (1UL << 15)
289 #define CTXDESC_CD_0_V                  (1UL << 31)
290
291 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
292 #define ARM64_TCR_IPS_SHIFT             32
293 #define ARM64_TCR_IPS_MASK              0x7UL
294 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
295 #define ARM64_TCR_TBI0_SHIFT            37
296 #define ARM64_TCR_TBI0_MASK             0x1UL
297
298 #define CTXDESC_CD_0_AA64               (1UL << 41)
299 #define CTXDESC_CD_0_R                  (1UL << 45)
300 #define CTXDESC_CD_0_A                  (1UL << 46)
301 #define CTXDESC_CD_0_ASET_SHIFT         47
302 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
303 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
304 #define CTXDESC_CD_0_ASID_SHIFT         48
305 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
306
307 #define CTXDESC_CD_1_TTB0_SHIFT         4
308 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
309
310 #define CTXDESC_CD_3_MAIR_SHIFT         0
311
312 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
313 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
314         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
315          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
316
317 /* Command queue */
318 #define CMDQ_ENT_DWORDS                 2
319 #define CMDQ_MAX_SZ_SHIFT               8
320
321 #define CMDQ_ERR_SHIFT                  24
322 #define CMDQ_ERR_MASK                   0x7f
323 #define CMDQ_ERR_CERROR_NONE_IDX        0
324 #define CMDQ_ERR_CERROR_ILL_IDX         1
325 #define CMDQ_ERR_CERROR_ABT_IDX         2
326
327 #define CMDQ_0_OP_SHIFT                 0
328 #define CMDQ_0_OP_MASK                  0xffUL
329 #define CMDQ_0_SSV                      (1UL << 11)
330
331 #define CMDQ_PREFETCH_0_SID_SHIFT       32
332 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
333 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
334
335 #define CMDQ_CFGI_0_SID_SHIFT           32
336 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
337 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
338 #define CMDQ_CFGI_1_RANGE_SHIFT         0
339 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
340
341 #define CMDQ_TLBI_0_VMID_SHIFT          32
342 #define CMDQ_TLBI_0_ASID_SHIFT          48
343 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
344 #define CMDQ_TLBI_1_ADDR_MASK           ~0xfffUL
345
346 #define CMDQ_PRI_0_SSID_SHIFT           12
347 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
348 #define CMDQ_PRI_0_SID_SHIFT            32
349 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
350 #define CMDQ_PRI_1_GRPID_SHIFT          0
351 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
352 #define CMDQ_PRI_1_RESP_SHIFT           12
353 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
354 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
355 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
356
357 #define CMDQ_SYNC_0_CS_SHIFT            12
358 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
359 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
360
361 /* Event queue */
362 #define EVTQ_ENT_DWORDS                 4
363 #define EVTQ_MAX_SZ_SHIFT               7
364
365 #define EVTQ_0_ID_SHIFT                 0
366 #define EVTQ_0_ID_MASK                  0xffUL
367
368 /* PRI queue */
369 #define PRIQ_ENT_DWORDS                 2
370 #define PRIQ_MAX_SZ_SHIFT               8
371
372 #define PRIQ_0_SID_SHIFT                0
373 #define PRIQ_0_SID_MASK                 0xffffffffUL
374 #define PRIQ_0_SSID_SHIFT               32
375 #define PRIQ_0_SSID_MASK                0xfffffUL
376 #define PRIQ_0_OF                       (1UL << 57)
377 #define PRIQ_0_PERM_PRIV                (1UL << 58)
378 #define PRIQ_0_PERM_EXEC                (1UL << 59)
379 #define PRIQ_0_PERM_READ                (1UL << 60)
380 #define PRIQ_0_PERM_WRITE               (1UL << 61)
381 #define PRIQ_0_PRG_LAST                 (1UL << 62)
382 #define PRIQ_0_SSID_V                   (1UL << 63)
383
384 #define PRIQ_1_PRG_IDX_SHIFT            0
385 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
386 #define PRIQ_1_ADDR_SHIFT               12
387 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
388
389 /* High-level queue structures */
390 #define ARM_SMMU_POLL_TIMEOUT_US        100
391
392 static bool disable_bypass;
393 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
394 MODULE_PARM_DESC(disable_bypass,
395         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
396
397 enum pri_resp {
398         PRI_RESP_DENY,
399         PRI_RESP_FAIL,
400         PRI_RESP_SUCC,
401 };
402
403 struct arm_smmu_cmdq_ent {
404         /* Common fields */
405         u8                              opcode;
406         bool                            substream_valid;
407
408         /* Command-specific fields */
409         union {
410                 #define CMDQ_OP_PREFETCH_CFG    0x1
411                 struct {
412                         u32                     sid;
413                         u8                      size;
414                         u64                     addr;
415                 } prefetch;
416
417                 #define CMDQ_OP_CFGI_STE        0x3
418                 #define CMDQ_OP_CFGI_ALL        0x4
419                 struct {
420                         u32                     sid;
421                         union {
422                                 bool            leaf;
423                                 u8              span;
424                         };
425                 } cfgi;
426
427                 #define CMDQ_OP_TLBI_NH_ASID    0x11
428                 #define CMDQ_OP_TLBI_NH_VA      0x12
429                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
430                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
431                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
432                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
433                 struct {
434                         u16                     asid;
435                         u16                     vmid;
436                         bool                    leaf;
437                         u64                     addr;
438                 } tlbi;
439
440                 #define CMDQ_OP_PRI_RESP        0x41
441                 struct {
442                         u32                     sid;
443                         u32                     ssid;
444                         u16                     grpid;
445                         enum pri_resp           resp;
446                 } pri;
447
448                 #define CMDQ_OP_CMD_SYNC        0x46
449         };
450 };
451
452 struct arm_smmu_queue {
453         int                             irq; /* Wired interrupt */
454
455         __le64                          *base;
456         dma_addr_t                      base_dma;
457         u64                             q_base;
458
459         size_t                          ent_dwords;
460         u32                             max_n_shift;
461         u32                             prod;
462         u32                             cons;
463
464         u32 __iomem                     *prod_reg;
465         u32 __iomem                     *cons_reg;
466 };
467
468 struct arm_smmu_cmdq {
469         struct arm_smmu_queue           q;
470         spinlock_t                      lock;
471 };
472
473 struct arm_smmu_evtq {
474         struct arm_smmu_queue           q;
475         u32                             max_stalls;
476 };
477
478 struct arm_smmu_priq {
479         struct arm_smmu_queue           q;
480 };
481
482 /* High-level stream table and context descriptor structures */
483 struct arm_smmu_strtab_l1_desc {
484         u8                              span;
485
486         __le64                          *l2ptr;
487         dma_addr_t                      l2ptr_dma;
488 };
489
490 struct arm_smmu_s1_cfg {
491         __le64                          *cdptr;
492         dma_addr_t                      cdptr_dma;
493
494         struct arm_smmu_ctx_desc {
495                 u16     asid;
496                 u64     ttbr;
497                 u64     tcr;
498                 u64     mair;
499         }                               cd;
500 };
501
502 struct arm_smmu_s2_cfg {
503         u16                             vmid;
504         u64                             vttbr;
505         u64                             vtcr;
506 };
507
508 struct arm_smmu_strtab_ent {
509         bool                            valid;
510
511         bool                            bypass; /* Overrides s1/s2 config */
512         struct arm_smmu_s1_cfg          *s1_cfg;
513         struct arm_smmu_s2_cfg          *s2_cfg;
514 };
515
516 struct arm_smmu_strtab_cfg {
517         __le64                          *strtab;
518         dma_addr_t                      strtab_dma;
519         struct arm_smmu_strtab_l1_desc  *l1_desc;
520         unsigned int                    num_l1_ents;
521
522         u64                             strtab_base;
523         u32                             strtab_base_cfg;
524 };
525
526 /* An SMMUv3 instance */
527 struct arm_smmu_device {
528         struct device                   *dev;
529         void __iomem                    *base;
530
531 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
532 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
533 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
534 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
535 #define ARM_SMMU_FEAT_PRI               (1 << 4)
536 #define ARM_SMMU_FEAT_ATS               (1 << 5)
537 #define ARM_SMMU_FEAT_SEV               (1 << 6)
538 #define ARM_SMMU_FEAT_MSI               (1 << 7)
539 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
540 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
541 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
542 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
543 #define ARM_SMMU_FEAT_HYP               (1 << 12)
544         u32                             features;
545
546 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
547         u32                             options;
548
549         struct arm_smmu_cmdq            cmdq;
550         struct arm_smmu_evtq            evtq;
551         struct arm_smmu_priq            priq;
552
553         int                             gerr_irq;
554
555         unsigned long                   ias; /* IPA */
556         unsigned long                   oas; /* PA */
557
558 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
559         unsigned int                    asid_bits;
560         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
561
562 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
563         unsigned int                    vmid_bits;
564         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
565
566         unsigned int                    ssid_bits;
567         unsigned int                    sid_bits;
568
569         struct arm_smmu_strtab_cfg      strtab_cfg;
570         struct list_head                list;
571 };
572
573 /* SMMU private data for an IOMMU group */
574 struct arm_smmu_group {
575         struct arm_smmu_device          *smmu;
576         struct arm_smmu_domain          *domain;
577         int                             num_sids;
578         u32                             *sids;
579         struct arm_smmu_strtab_ent      ste;
580 };
581
582 /* SMMU private data for an IOMMU domain */
583 enum arm_smmu_domain_stage {
584         ARM_SMMU_DOMAIN_S1 = 0,
585         ARM_SMMU_DOMAIN_S2,
586         ARM_SMMU_DOMAIN_NESTED,
587 };
588
589 struct arm_smmu_domain {
590         struct arm_smmu_device          *smmu;
591         struct mutex                    init_mutex; /* Protects smmu pointer */
592
593         struct io_pgtable_ops           *pgtbl_ops;
594         spinlock_t                      pgtbl_lock;
595
596         enum arm_smmu_domain_stage      stage;
597         union {
598                 struct arm_smmu_s1_cfg  s1_cfg;
599                 struct arm_smmu_s2_cfg  s2_cfg;
600         };
601
602         struct iommu_domain             domain;
603 };
604
605 /* Our list of SMMU instances */
606 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
607 static LIST_HEAD(arm_smmu_devices);
608
609 struct arm_smmu_option_prop {
610         u32 opt;
611         const char *prop;
612 };
613
614 static struct arm_smmu_option_prop arm_smmu_options[] = {
615         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
616         { 0, NULL},
617 };
618
619 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
620 {
621         return container_of(dom, struct arm_smmu_domain, domain);
622 }
623
624 static void parse_driver_options(struct arm_smmu_device *smmu)
625 {
626         int i = 0;
627
628         do {
629                 if (of_property_read_bool(smmu->dev->of_node,
630                                                 arm_smmu_options[i].prop)) {
631                         smmu->options |= arm_smmu_options[i].opt;
632                         dev_notice(smmu->dev, "option %s\n",
633                                 arm_smmu_options[i].prop);
634                 }
635         } while (arm_smmu_options[++i].opt);
636 }
637
638 /* Low-level queue manipulation functions */
639 static bool queue_full(struct arm_smmu_queue *q)
640 {
641         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
642                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
643 }
644
645 static bool queue_empty(struct arm_smmu_queue *q)
646 {
647         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
648                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
649 }
650
651 static void queue_sync_cons(struct arm_smmu_queue *q)
652 {
653         q->cons = readl_relaxed(q->cons_reg);
654 }
655
656 static void queue_inc_cons(struct arm_smmu_queue *q)
657 {
658         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
659
660         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
661         writel(q->cons, q->cons_reg);
662 }
663
664 static int queue_sync_prod(struct arm_smmu_queue *q)
665 {
666         int ret = 0;
667         u32 prod = readl_relaxed(q->prod_reg);
668
669         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
670                 ret = -EOVERFLOW;
671
672         q->prod = prod;
673         return ret;
674 }
675
676 static void queue_inc_prod(struct arm_smmu_queue *q)
677 {
678         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
679
680         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
681         writel(q->prod, q->prod_reg);
682 }
683
684 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
685 {
686         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
687                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
688
689         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
690 }
691
692 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
693 {
694         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
695
696         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
697                 if (ktime_compare(ktime_get(), timeout) > 0)
698                         return -ETIMEDOUT;
699
700                 if (wfe) {
701                         wfe();
702                 } else {
703                         cpu_relax();
704                         udelay(1);
705                 }
706         }
707
708         return 0;
709 }
710
711 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
712 {
713         int i;
714
715         for (i = 0; i < n_dwords; ++i)
716                 *dst++ = cpu_to_le64(*src++);
717 }
718
719 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
720 {
721         if (queue_full(q))
722                 return -ENOSPC;
723
724         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
725         queue_inc_prod(q);
726         return 0;
727 }
728
729 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
730 {
731         int i;
732
733         for (i = 0; i < n_dwords; ++i)
734                 *dst++ = le64_to_cpu(*src++);
735 }
736
737 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
738 {
739         if (queue_empty(q))
740                 return -EAGAIN;
741
742         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
743         queue_inc_cons(q);
744         return 0;
745 }
746
747 /* High-level queue accessors */
748 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
749 {
750         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
751         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
752
753         switch (ent->opcode) {
754         case CMDQ_OP_TLBI_EL2_ALL:
755         case CMDQ_OP_TLBI_NSNH_ALL:
756                 break;
757         case CMDQ_OP_PREFETCH_CFG:
758                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
759                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
760                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
761                 break;
762         case CMDQ_OP_CFGI_STE:
763                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
764                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
765                 break;
766         case CMDQ_OP_CFGI_ALL:
767                 /* Cover the entire SID range */
768                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
769                 break;
770         case CMDQ_OP_TLBI_NH_VA:
771                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
772                 /* Fallthrough */
773         case CMDQ_OP_TLBI_S2_IPA:
774                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
775                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
776                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
777                 break;
778         case CMDQ_OP_TLBI_NH_ASID:
779                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
780                 /* Fallthrough */
781         case CMDQ_OP_TLBI_S12_VMALL:
782                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
783                 break;
784         case CMDQ_OP_PRI_RESP:
785                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
786                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
787                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
788                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
789                 switch (ent->pri.resp) {
790                 case PRI_RESP_DENY:
791                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
792                         break;
793                 case PRI_RESP_FAIL:
794                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
795                         break;
796                 case PRI_RESP_SUCC:
797                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
798                         break;
799                 default:
800                         return -EINVAL;
801                 }
802                 break;
803         case CMDQ_OP_CMD_SYNC:
804                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
805                 break;
806         default:
807                 return -ENOENT;
808         }
809
810         return 0;
811 }
812
813 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
814 {
815         static const char *cerror_str[] = {
816                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
817                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
818                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
819         };
820
821         int i;
822         u64 cmd[CMDQ_ENT_DWORDS];
823         struct arm_smmu_queue *q = &smmu->cmdq.q;
824         u32 cons = readl_relaxed(q->cons_reg);
825         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
826         struct arm_smmu_cmdq_ent cmd_sync = {
827                 .opcode = CMDQ_OP_CMD_SYNC,
828         };
829
830         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
831                 cerror_str[idx]);
832
833         switch (idx) {
834         case CMDQ_ERR_CERROR_ILL_IDX:
835                 break;
836         case CMDQ_ERR_CERROR_ABT_IDX:
837                 dev_err(smmu->dev, "retrying command fetch\n");
838         case CMDQ_ERR_CERROR_NONE_IDX:
839                 return;
840         }
841
842         /*
843          * We may have concurrent producers, so we need to be careful
844          * not to touch any of the shadow cmdq state.
845          */
846         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
847         dev_err(smmu->dev, "skipping command in error state:\n");
848         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
849                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
850
851         /* Convert the erroneous command into a CMD_SYNC */
852         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
853                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
854                 return;
855         }
856
857         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
858 }
859
860 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
861                                     struct arm_smmu_cmdq_ent *ent)
862 {
863         u32 until;
864         u64 cmd[CMDQ_ENT_DWORDS];
865         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
866         struct arm_smmu_queue *q = &smmu->cmdq.q;
867
868         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
869                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
870                          ent->opcode);
871                 return;
872         }
873
874         spin_lock(&smmu->cmdq.lock);
875         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
876                 /*
877                  * Keep the queue locked, otherwise the producer could wrap
878                  * twice and we could see a future consumer pointer that looks
879                  * like it's behind us.
880                  */
881                 if (queue_poll_cons(q, until, wfe))
882                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
883         }
884
885         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
886                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
887         spin_unlock(&smmu->cmdq.lock);
888 }
889
890 /* Context descriptor manipulation functions */
891 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
892 {
893         u64 val = 0;
894
895         /* Repack the TCR. Just care about TTBR0 for now */
896         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
897         val |= ARM_SMMU_TCR2CD(tcr, TG0);
898         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
899         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
900         val |= ARM_SMMU_TCR2CD(tcr, SH0);
901         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
902         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
903         val |= ARM_SMMU_TCR2CD(tcr, IPS);
904         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
905
906         return val;
907 }
908
909 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
910                                     struct arm_smmu_s1_cfg *cfg)
911 {
912         u64 val;
913
914         /*
915          * We don't need to issue any invalidation here, as we'll invalidate
916          * the STE when installing the new entry anyway.
917          */
918         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
919 #ifdef __BIG_ENDIAN
920               CTXDESC_CD_0_ENDI |
921 #endif
922               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
923               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
924               CTXDESC_CD_0_V;
925         cfg->cdptr[0] = cpu_to_le64(val);
926
927         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
928         cfg->cdptr[1] = cpu_to_le64(val);
929
930         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
931 }
932
933 /* Stream table manipulation functions */
934 static void
935 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
936 {
937         u64 val = 0;
938
939         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
940                 << STRTAB_L1_DESC_SPAN_SHIFT;
941         val |= desc->l2ptr_dma &
942                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
943
944         *dst = cpu_to_le64(val);
945 }
946
947 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
948 {
949         struct arm_smmu_cmdq_ent cmd = {
950                 .opcode = CMDQ_OP_CFGI_STE,
951                 .cfgi   = {
952                         .sid    = sid,
953                         .leaf   = true,
954                 },
955         };
956
957         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
958         cmd.opcode = CMDQ_OP_CMD_SYNC;
959         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
960 }
961
962 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
963                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
964 {
965         /*
966          * This is hideously complicated, but we only really care about
967          * three cases at the moment:
968          *
969          * 1. Invalid (all zero) -> bypass  (init)
970          * 2. Bypass -> translation (attach)
971          * 3. Translation -> bypass (detach)
972          *
973          * Given that we can't update the STE atomically and the SMMU
974          * doesn't read the thing in a defined order, that leaves us
975          * with the following maintenance requirements:
976          *
977          * 1. Update Config, return (init time STEs aren't live)
978          * 2. Write everything apart from dword 0, sync, write dword 0, sync
979          * 3. Update Config, sync
980          */
981         u64 val = le64_to_cpu(dst[0]);
982         bool ste_live = false;
983         struct arm_smmu_cmdq_ent prefetch_cmd = {
984                 .opcode         = CMDQ_OP_PREFETCH_CFG,
985                 .prefetch       = {
986                         .sid    = sid,
987                 },
988         };
989
990         if (val & STRTAB_STE_0_V) {
991                 u64 cfg;
992
993                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
994                 switch (cfg) {
995                 case STRTAB_STE_0_CFG_BYPASS:
996                         break;
997                 case STRTAB_STE_0_CFG_S1_TRANS:
998                 case STRTAB_STE_0_CFG_S2_TRANS:
999                         ste_live = true;
1000                         break;
1001                 default:
1002                         BUG(); /* STE corruption */
1003                 }
1004         }
1005
1006         /* Nuke the existing Config, as we're going to rewrite it */
1007         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1008
1009         if (ste->valid)
1010                 val |= STRTAB_STE_0_V;
1011         else
1012                 val &= ~STRTAB_STE_0_V;
1013
1014         if (ste->bypass) {
1015                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1016                                       : STRTAB_STE_0_CFG_BYPASS;
1017                 dst[0] = cpu_to_le64(val);
1018                 dst[2] = 0; /* Nuke the VMID */
1019                 if (ste_live)
1020                         arm_smmu_sync_ste_for_sid(smmu, sid);
1021                 return;
1022         }
1023
1024         if (ste->s1_cfg) {
1025                 BUG_ON(ste_live);
1026                 dst[1] = cpu_to_le64(
1027                          STRTAB_STE_1_S1C_CACHE_WBRA
1028                          << STRTAB_STE_1_S1CIR_SHIFT |
1029                          STRTAB_STE_1_S1C_CACHE_WBRA
1030                          << STRTAB_STE_1_S1COR_SHIFT |
1031                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1032                          STRTAB_STE_1_S1STALLD |
1033 #ifdef CONFIG_PCI_ATS
1034                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1035 #endif
1036                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1037
1038                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1039                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1040                         STRTAB_STE_0_CFG_S1_TRANS;
1041
1042         }
1043
1044         if (ste->s2_cfg) {
1045                 BUG_ON(ste_live);
1046                 dst[2] = cpu_to_le64(
1047                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1048                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1049                           << STRTAB_STE_2_VTCR_SHIFT |
1050 #ifdef __BIG_ENDIAN
1051                          STRTAB_STE_2_S2ENDI |
1052 #endif
1053                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1054                          STRTAB_STE_2_S2R);
1055
1056                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1057                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1058
1059                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1060         }
1061
1062         arm_smmu_sync_ste_for_sid(smmu, sid);
1063         dst[0] = cpu_to_le64(val);
1064         arm_smmu_sync_ste_for_sid(smmu, sid);
1065
1066         /* It's likely that we'll want to use the new STE soon */
1067         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1068                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1069 }
1070
1071 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1072 {
1073         unsigned int i;
1074         struct arm_smmu_strtab_ent ste = {
1075                 .valid  = true,
1076                 .bypass = true,
1077         };
1078
1079         for (i = 0; i < nent; ++i) {
1080                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1081                 strtab += STRTAB_STE_DWORDS;
1082         }
1083 }
1084
1085 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1086 {
1087         size_t size;
1088         void *strtab;
1089         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1090         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1091
1092         if (desc->l2ptr)
1093                 return 0;
1094
1095         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1096         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1097
1098         desc->span = STRTAB_SPLIT + 1;
1099         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1100                                           GFP_KERNEL);
1101         if (!desc->l2ptr) {
1102                 dev_err(smmu->dev,
1103                         "failed to allocate l2 stream table for SID %u\n",
1104                         sid);
1105                 return -ENOMEM;
1106         }
1107
1108         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1109         arm_smmu_write_strtab_l1_desc(strtab, desc);
1110         return 0;
1111 }
1112
1113 /* IRQ and event handlers */
1114 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1115 {
1116         int i;
1117         struct arm_smmu_device *smmu = dev;
1118         struct arm_smmu_queue *q = &smmu->evtq.q;
1119         u64 evt[EVTQ_ENT_DWORDS];
1120
1121         while (!queue_remove_raw(q, evt)) {
1122                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1123
1124                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1125                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1126                         dev_info(smmu->dev, "\t0x%016llx\n",
1127                                  (unsigned long long)evt[i]);
1128         }
1129
1130         /* Sync our overflow flag, as we believe we're up to speed */
1131         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1132         return IRQ_HANDLED;
1133 }
1134
1135 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1136 {
1137         irqreturn_t ret = IRQ_WAKE_THREAD;
1138         struct arm_smmu_device *smmu = dev;
1139         struct arm_smmu_queue *q = &smmu->evtq.q;
1140
1141         /*
1142          * Not much we can do on overflow, so scream and pretend we're
1143          * trying harder.
1144          */
1145         if (queue_sync_prod(q) == -EOVERFLOW)
1146                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1147         else if (queue_empty(q))
1148                 ret = IRQ_NONE;
1149
1150         return ret;
1151 }
1152
1153 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1154 {
1155         struct arm_smmu_device *smmu = dev;
1156         struct arm_smmu_queue *q = &smmu->priq.q;
1157         u64 evt[PRIQ_ENT_DWORDS];
1158
1159         while (!queue_remove_raw(q, evt)) {
1160                 u32 sid, ssid;
1161                 u16 grpid;
1162                 bool ssv, last;
1163
1164                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1165                 ssv = evt[0] & PRIQ_0_SSID_V;
1166                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1167                 last = evt[0] & PRIQ_0_PRG_LAST;
1168                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1169
1170                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1171                 dev_info(smmu->dev,
1172                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1173                          sid, ssid, grpid, last ? "L" : "",
1174                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1175                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1176                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1177                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1178                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1179
1180                 if (last) {
1181                         struct arm_smmu_cmdq_ent cmd = {
1182                                 .opcode                 = CMDQ_OP_PRI_RESP,
1183                                 .substream_valid        = ssv,
1184                                 .pri                    = {
1185                                         .sid    = sid,
1186                                         .ssid   = ssid,
1187                                         .grpid  = grpid,
1188                                         .resp   = PRI_RESP_DENY,
1189                                 },
1190                         };
1191
1192                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1193                 }
1194         }
1195
1196         /* Sync our overflow flag, as we believe we're up to speed */
1197         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1198         return IRQ_HANDLED;
1199 }
1200
1201 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1202 {
1203         irqreturn_t ret = IRQ_WAKE_THREAD;
1204         struct arm_smmu_device *smmu = dev;
1205         struct arm_smmu_queue *q = &smmu->priq.q;
1206
1207         /* PRIQ overflow indicates a programming error */
1208         if (queue_sync_prod(q) == -EOVERFLOW)
1209                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1210         else if (queue_empty(q))
1211                 ret = IRQ_NONE;
1212
1213         return ret;
1214 }
1215
1216 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1217 {
1218         /* We don't actually use CMD_SYNC interrupts for anything */
1219         return IRQ_HANDLED;
1220 }
1221
1222 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1223
1224 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1225 {
1226         u32 gerror, gerrorn;
1227         struct arm_smmu_device *smmu = dev;
1228
1229         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1230         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1231
1232         gerror ^= gerrorn;
1233         if (!(gerror & GERROR_ERR_MASK))
1234                 return IRQ_NONE; /* No errors pending */
1235
1236         dev_warn(smmu->dev,
1237                  "unexpected global error reported (0x%08x), this could be serious\n",
1238                  gerror);
1239
1240         if (gerror & GERROR_SFM_ERR) {
1241                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1242                 arm_smmu_device_disable(smmu);
1243         }
1244
1245         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1246                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1247
1248         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1249                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1250                 arm_smmu_priq_handler(irq, smmu->dev);
1251         }
1252
1253         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1254                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1255                 arm_smmu_evtq_handler(irq, smmu->dev);
1256         }
1257
1258         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1259                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1260                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1261         }
1262
1263         if (gerror & GERROR_PRIQ_ABT_ERR)
1264                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1265
1266         if (gerror & GERROR_EVTQ_ABT_ERR)
1267                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1268
1269         if (gerror & GERROR_CMDQ_ERR)
1270                 arm_smmu_cmdq_skip_err(smmu);
1271
1272         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1273         return IRQ_HANDLED;
1274 }
1275
1276 /* IO_PGTABLE API */
1277 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1278 {
1279         struct arm_smmu_cmdq_ent cmd;
1280
1281         cmd.opcode = CMDQ_OP_CMD_SYNC;
1282         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1283 }
1284
1285 static void arm_smmu_tlb_sync(void *cookie)
1286 {
1287         struct arm_smmu_domain *smmu_domain = cookie;
1288         __arm_smmu_tlb_sync(smmu_domain->smmu);
1289 }
1290
1291 static void arm_smmu_tlb_inv_context(void *cookie)
1292 {
1293         struct arm_smmu_domain *smmu_domain = cookie;
1294         struct arm_smmu_device *smmu = smmu_domain->smmu;
1295         struct arm_smmu_cmdq_ent cmd;
1296
1297         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1298                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1299                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1300                 cmd.tlbi.vmid   = 0;
1301         } else {
1302                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1303                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1304         }
1305
1306         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1307         __arm_smmu_tlb_sync(smmu);
1308 }
1309
1310 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1311                                           bool leaf, void *cookie)
1312 {
1313         struct arm_smmu_domain *smmu_domain = cookie;
1314         struct arm_smmu_device *smmu = smmu_domain->smmu;
1315         struct arm_smmu_cmdq_ent cmd = {
1316                 .tlbi = {
1317                         .leaf   = leaf,
1318                         .addr   = iova,
1319                 },
1320         };
1321
1322         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1323                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1324                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1325         } else {
1326                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1327                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1328         }
1329
1330         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1331 }
1332
1333 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
1334 {
1335         struct arm_smmu_domain *smmu_domain = cookie;
1336         struct arm_smmu_device *smmu = smmu_domain->smmu;
1337         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1338
1339         if (smmu->features & ARM_SMMU_FEAT_COHERENCY) {
1340                 dsb(ishst);
1341         } else {
1342                 dma_addr_t dma_addr;
1343                 struct device *dev = smmu->dev;
1344
1345                 dma_addr = dma_map_page(dev, virt_to_page(addr), offset, size,
1346                                         DMA_TO_DEVICE);
1347
1348                 if (dma_mapping_error(dev, dma_addr))
1349                         dev_err(dev, "failed to flush pgtable at %p\n", addr);
1350                 else
1351                         dma_unmap_page(dev, dma_addr, size, DMA_TO_DEVICE);
1352         }
1353 }
1354
1355 static struct iommu_gather_ops arm_smmu_gather_ops = {
1356         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1357         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1358         .tlb_sync       = arm_smmu_tlb_sync,
1359         .flush_pgtable  = arm_smmu_flush_pgtable,
1360 };
1361
1362 /* IOMMU API */
1363 static bool arm_smmu_capable(enum iommu_cap cap)
1364 {
1365         switch (cap) {
1366         case IOMMU_CAP_CACHE_COHERENCY:
1367                 return true;
1368         case IOMMU_CAP_INTR_REMAP:
1369                 return true; /* MSIs are just memory writes */
1370         case IOMMU_CAP_NOEXEC:
1371                 return true;
1372         default:
1373                 return false;
1374         }
1375 }
1376
1377 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1378 {
1379         struct arm_smmu_domain *smmu_domain;
1380
1381         if (type != IOMMU_DOMAIN_UNMANAGED)
1382                 return NULL;
1383
1384         /*
1385          * Allocate the domain and initialise some of its data structures.
1386          * We can't really do anything meaningful until we've added a
1387          * master.
1388          */
1389         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1390         if (!smmu_domain)
1391                 return NULL;
1392
1393         mutex_init(&smmu_domain->init_mutex);
1394         spin_lock_init(&smmu_domain->pgtbl_lock);
1395         return &smmu_domain->domain;
1396 }
1397
1398 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1399 {
1400         int idx, size = 1 << span;
1401
1402         do {
1403                 idx = find_first_zero_bit(map, size);
1404                 if (idx == size)
1405                         return -ENOSPC;
1406         } while (test_and_set_bit(idx, map));
1407
1408         return idx;
1409 }
1410
1411 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1412 {
1413         clear_bit(idx, map);
1414 }
1415
1416 static void arm_smmu_domain_free(struct iommu_domain *domain)
1417 {
1418         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1419         struct arm_smmu_device *smmu = smmu_domain->smmu;
1420
1421         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1422
1423         /* Free the CD and ASID, if we allocated them */
1424         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1425                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1426
1427                 if (cfg->cdptr) {
1428                         dma_free_coherent(smmu_domain->smmu->dev,
1429                                           CTXDESC_CD_DWORDS << 3,
1430                                           cfg->cdptr,
1431                                           cfg->cdptr_dma);
1432
1433                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1434                 }
1435         } else {
1436                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1437                 if (cfg->vmid)
1438                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1439         }
1440
1441         kfree(smmu_domain);
1442 }
1443
1444 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1445                                        struct io_pgtable_cfg *pgtbl_cfg)
1446 {
1447         int ret;
1448         u16 asid;
1449         struct arm_smmu_device *smmu = smmu_domain->smmu;
1450         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1451
1452         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1453         if (IS_ERR_VALUE(asid))
1454                 return asid;
1455
1456         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1457                                          &cfg->cdptr_dma, GFP_KERNEL);
1458         if (!cfg->cdptr) {
1459                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1460                 goto out_free_asid;
1461         }
1462
1463         cfg->cd.asid    = asid;
1464         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1465         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1466         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1467         return 0;
1468
1469 out_free_asid:
1470         arm_smmu_bitmap_free(smmu->asid_map, asid);
1471         return ret;
1472 }
1473
1474 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1475                                        struct io_pgtable_cfg *pgtbl_cfg)
1476 {
1477         u16 vmid;
1478         struct arm_smmu_device *smmu = smmu_domain->smmu;
1479         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1480
1481         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1482         if (IS_ERR_VALUE(vmid))
1483                 return vmid;
1484
1485         cfg->vmid       = vmid;
1486         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1487         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1488         return 0;
1489 }
1490
1491 static struct iommu_ops arm_smmu_ops;
1492
1493 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1494 {
1495         int ret;
1496         unsigned long ias, oas;
1497         enum io_pgtable_fmt fmt;
1498         struct io_pgtable_cfg pgtbl_cfg;
1499         struct io_pgtable_ops *pgtbl_ops;
1500         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1501                                  struct io_pgtable_cfg *);
1502         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1503         struct arm_smmu_device *smmu = smmu_domain->smmu;
1504
1505         /* Restrict the stage to what we can actually support */
1506         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1507                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1508         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1509                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1510
1511         switch (smmu_domain->stage) {
1512         case ARM_SMMU_DOMAIN_S1:
1513                 ias = VA_BITS;
1514                 oas = smmu->ias;
1515                 fmt = ARM_64_LPAE_S1;
1516                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1517                 break;
1518         case ARM_SMMU_DOMAIN_NESTED:
1519         case ARM_SMMU_DOMAIN_S2:
1520                 ias = smmu->ias;
1521                 oas = smmu->oas;
1522                 fmt = ARM_64_LPAE_S2;
1523                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1524                 break;
1525         default:
1526                 return -EINVAL;
1527         }
1528
1529         pgtbl_cfg = (struct io_pgtable_cfg) {
1530                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1531                 .ias            = ias,
1532                 .oas            = oas,
1533                 .tlb            = &arm_smmu_gather_ops,
1534         };
1535
1536         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1537         if (!pgtbl_ops)
1538                 return -ENOMEM;
1539
1540         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1541         smmu_domain->pgtbl_ops = pgtbl_ops;
1542
1543         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1544         if (IS_ERR_VALUE(ret))
1545                 free_io_pgtable_ops(pgtbl_ops);
1546
1547         return ret;
1548 }
1549
1550 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1551 {
1552         struct iommu_group *group;
1553         struct arm_smmu_group *smmu_group;
1554
1555         group = iommu_group_get(dev);
1556         if (!group)
1557                 return NULL;
1558
1559         smmu_group = iommu_group_get_iommudata(group);
1560         iommu_group_put(group);
1561         return smmu_group;
1562 }
1563
1564 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1565 {
1566         __le64 *step;
1567         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1568
1569         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1570                 struct arm_smmu_strtab_l1_desc *l1_desc;
1571                 int idx;
1572
1573                 /* Two-level walk */
1574                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1575                 l1_desc = &cfg->l1_desc[idx];
1576                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1577                 step = &l1_desc->l2ptr[idx];
1578         } else {
1579                 /* Simple linear lookup */
1580                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1581         }
1582
1583         return step;
1584 }
1585
1586 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1587 {
1588         int i;
1589         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1590         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1591         struct arm_smmu_device *smmu = smmu_group->smmu;
1592
1593         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1594                 ste->s1_cfg = &smmu_domain->s1_cfg;
1595                 ste->s2_cfg = NULL;
1596                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1597         } else {
1598                 ste->s1_cfg = NULL;
1599                 ste->s2_cfg = &smmu_domain->s2_cfg;
1600         }
1601
1602         for (i = 0; i < smmu_group->num_sids; ++i) {
1603                 u32 sid = smmu_group->sids[i];
1604                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1605
1606                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1607         }
1608
1609         return 0;
1610 }
1611
1612 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1613 {
1614         int ret = 0;
1615         struct arm_smmu_device *smmu;
1616         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1617         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1618
1619         if (!smmu_group)
1620                 return -ENOENT;
1621
1622         /* Already attached to a different domain? */
1623         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1624                 return -EEXIST;
1625
1626         smmu = smmu_group->smmu;
1627         mutex_lock(&smmu_domain->init_mutex);
1628
1629         if (!smmu_domain->smmu) {
1630                 smmu_domain->smmu = smmu;
1631                 ret = arm_smmu_domain_finalise(domain);
1632                 if (ret) {
1633                         smmu_domain->smmu = NULL;
1634                         goto out_unlock;
1635                 }
1636         } else if (smmu_domain->smmu != smmu) {
1637                 dev_err(dev,
1638                         "cannot attach to SMMU %s (upstream of %s)\n",
1639                         dev_name(smmu_domain->smmu->dev),
1640                         dev_name(smmu->dev));
1641                 ret = -ENXIO;
1642                 goto out_unlock;
1643         }
1644
1645         /* Group already attached to this domain? */
1646         if (smmu_group->domain)
1647                 goto out_unlock;
1648
1649         smmu_group->domain      = smmu_domain;
1650         smmu_group->ste.bypass  = false;
1651
1652         ret = arm_smmu_install_ste_for_group(smmu_group);
1653         if (IS_ERR_VALUE(ret))
1654                 smmu_group->domain = NULL;
1655
1656 out_unlock:
1657         mutex_unlock(&smmu_domain->init_mutex);
1658         return ret;
1659 }
1660
1661 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1662 {
1663         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1664         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1665
1666         BUG_ON(!smmu_domain);
1667         BUG_ON(!smmu_group);
1668
1669         mutex_lock(&smmu_domain->init_mutex);
1670         BUG_ON(smmu_group->domain != smmu_domain);
1671
1672         smmu_group->ste.bypass = true;
1673         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1674                 dev_warn(dev, "failed to install bypass STE\n");
1675
1676         smmu_group->domain = NULL;
1677         mutex_unlock(&smmu_domain->init_mutex);
1678 }
1679
1680 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1681                         phys_addr_t paddr, size_t size, int prot)
1682 {
1683         int ret;
1684         unsigned long flags;
1685         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1686         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1687
1688         if (!ops)
1689                 return -ENODEV;
1690
1691         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1692         ret = ops->map(ops, iova, paddr, size, prot);
1693         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1694         return ret;
1695 }
1696
1697 static size_t
1698 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1699 {
1700         size_t ret;
1701         unsigned long flags;
1702         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1703         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1704
1705         if (!ops)
1706                 return 0;
1707
1708         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1709         ret = ops->unmap(ops, iova, size);
1710         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1711         return ret;
1712 }
1713
1714 static phys_addr_t
1715 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1716 {
1717         phys_addr_t ret;
1718         unsigned long flags;
1719         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1720         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1721
1722         if (!ops)
1723                 return 0;
1724
1725         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1726         ret = ops->iova_to_phys(ops, iova);
1727         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1728
1729         return ret;
1730 }
1731
1732 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1733 {
1734         *(u32 *)sidp = alias;
1735         return 0; /* Continue walking */
1736 }
1737
1738 static void __arm_smmu_release_pci_iommudata(void *data)
1739 {
1740         kfree(data);
1741 }
1742
1743 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1744 {
1745         struct device_node *of_node;
1746         struct arm_smmu_device *curr, *smmu = NULL;
1747         struct pci_bus *bus = pdev->bus;
1748
1749         /* Walk up to the root bus */
1750         while (!pci_is_root_bus(bus))
1751                 bus = bus->parent;
1752
1753         /* Follow the "iommus" phandle from the host controller */
1754         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1755         if (!of_node)
1756                 return NULL;
1757
1758         /* See if we can find an SMMU corresponding to the phandle */
1759         spin_lock(&arm_smmu_devices_lock);
1760         list_for_each_entry(curr, &arm_smmu_devices, list) {
1761                 if (curr->dev->of_node == of_node) {
1762                         smmu = curr;
1763                         break;
1764                 }
1765         }
1766         spin_unlock(&arm_smmu_devices_lock);
1767         of_node_put(of_node);
1768         return smmu;
1769 }
1770
1771 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1772 {
1773         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1774
1775         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1776                 limit *= 1UL << STRTAB_SPLIT;
1777
1778         return sid < limit;
1779 }
1780
1781 static int arm_smmu_add_device(struct device *dev)
1782 {
1783         int i, ret;
1784         u32 sid, *sids;
1785         struct pci_dev *pdev;
1786         struct iommu_group *group;
1787         struct arm_smmu_group *smmu_group;
1788         struct arm_smmu_device *smmu;
1789
1790         /* We only support PCI, for now */
1791         if (!dev_is_pci(dev))
1792                 return -ENODEV;
1793
1794         pdev = to_pci_dev(dev);
1795         group = iommu_group_get_for_dev(dev);
1796         if (IS_ERR(group))
1797                 return PTR_ERR(group);
1798
1799         smmu_group = iommu_group_get_iommudata(group);
1800         if (!smmu_group) {
1801                 smmu = arm_smmu_get_for_pci_dev(pdev);
1802                 if (!smmu) {
1803                         ret = -ENOENT;
1804                         goto out_put_group;
1805                 }
1806
1807                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1808                 if (!smmu_group) {
1809                         ret = -ENOMEM;
1810                         goto out_put_group;
1811                 }
1812
1813                 smmu_group->ste.valid   = true;
1814                 smmu_group->smmu        = smmu;
1815                 iommu_group_set_iommudata(group, smmu_group,
1816                                           __arm_smmu_release_pci_iommudata);
1817         } else {
1818                 smmu = smmu_group->smmu;
1819         }
1820
1821         /* Assume SID == RID until firmware tells us otherwise */
1822         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1823         for (i = 0; i < smmu_group->num_sids; ++i) {
1824                 /* If we already know about this SID, then we're done */
1825                 if (smmu_group->sids[i] == sid)
1826                         return 0;
1827         }
1828
1829         /* Check the SID is in range of the SMMU and our stream table */
1830         if (!arm_smmu_sid_in_range(smmu, sid)) {
1831                 ret = -ERANGE;
1832                 goto out_put_group;
1833         }
1834
1835         /* Ensure l2 strtab is initialised */
1836         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1837                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1838                 if (ret)
1839                         goto out_put_group;
1840         }
1841
1842         /* Resize the SID array for the group */
1843         smmu_group->num_sids++;
1844         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1845                         GFP_KERNEL);
1846         if (!sids) {
1847                 smmu_group->num_sids--;
1848                 ret = -ENOMEM;
1849                 goto out_put_group;
1850         }
1851
1852         /* Add the new SID */
1853         sids[smmu_group->num_sids - 1] = sid;
1854         smmu_group->sids = sids;
1855         return 0;
1856
1857 out_put_group:
1858         iommu_group_put(group);
1859         return ret;
1860 }
1861
1862 static void arm_smmu_remove_device(struct device *dev)
1863 {
1864         iommu_group_remove_device(dev);
1865 }
1866
1867 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1868                                     enum iommu_attr attr, void *data)
1869 {
1870         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1871
1872         switch (attr) {
1873         case DOMAIN_ATTR_NESTING:
1874                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1875                 return 0;
1876         default:
1877                 return -ENODEV;
1878         }
1879 }
1880
1881 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1882                                     enum iommu_attr attr, void *data)
1883 {
1884         int ret = 0;
1885         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1886
1887         mutex_lock(&smmu_domain->init_mutex);
1888
1889         switch (attr) {
1890         case DOMAIN_ATTR_NESTING:
1891                 if (smmu_domain->smmu) {
1892                         ret = -EPERM;
1893                         goto out_unlock;
1894                 }
1895
1896                 if (*(int *)data)
1897                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1898                 else
1899                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1900
1901                 break;
1902         default:
1903                 ret = -ENODEV;
1904         }
1905
1906 out_unlock:
1907         mutex_unlock(&smmu_domain->init_mutex);
1908         return ret;
1909 }
1910
1911 static struct iommu_ops arm_smmu_ops = {
1912         .capable                = arm_smmu_capable,
1913         .domain_alloc           = arm_smmu_domain_alloc,
1914         .domain_free            = arm_smmu_domain_free,
1915         .attach_dev             = arm_smmu_attach_dev,
1916         .detach_dev             = arm_smmu_detach_dev,
1917         .map                    = arm_smmu_map,
1918         .unmap                  = arm_smmu_unmap,
1919         .iova_to_phys           = arm_smmu_iova_to_phys,
1920         .add_device             = arm_smmu_add_device,
1921         .remove_device          = arm_smmu_remove_device,
1922         .domain_get_attr        = arm_smmu_domain_get_attr,
1923         .domain_set_attr        = arm_smmu_domain_set_attr,
1924         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1925 };
1926
1927 /* Probing and initialisation functions */
1928 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1929                                    struct arm_smmu_queue *q,
1930                                    unsigned long prod_off,
1931                                    unsigned long cons_off,
1932                                    size_t dwords)
1933 {
1934         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1935
1936         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1937         if (!q->base) {
1938                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1939                         qsz);
1940                 return -ENOMEM;
1941         }
1942
1943         q->prod_reg     = smmu->base + prod_off;
1944         q->cons_reg     = smmu->base + cons_off;
1945         q->ent_dwords   = dwords;
1946
1947         q->q_base  = Q_BASE_RWA;
1948         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1949         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1950                      << Q_BASE_LOG2SIZE_SHIFT;
1951
1952         q->prod = q->cons = 0;
1953         return 0;
1954 }
1955
1956 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1957                                     struct arm_smmu_queue *q)
1958 {
1959         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1960
1961         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1962 }
1963
1964 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1965 {
1966         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1967         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1968
1969         if (smmu->features & ARM_SMMU_FEAT_PRI)
1970                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1971 }
1972
1973 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1974 {
1975         int ret;
1976
1977         /* cmdq */
1978         spin_lock_init(&smmu->cmdq.lock);
1979         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1980                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1981         if (ret)
1982                 goto out;
1983
1984         /* evtq */
1985         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1986                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1987         if (ret)
1988                 goto out_free_cmdq;
1989
1990         /* priq */
1991         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1992                 return 0;
1993
1994         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1995                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1996         if (ret)
1997                 goto out_free_evtq;
1998
1999         return 0;
2000
2001 out_free_evtq:
2002         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
2003 out_free_cmdq:
2004         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
2005 out:
2006         return ret;
2007 }
2008
2009 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
2010 {
2011         int i;
2012         size_t size;
2013         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2014
2015         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
2016         for (i = 0; i < cfg->num_l1_ents; ++i) {
2017                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
2018
2019                 if (!desc->l2ptr)
2020                         continue;
2021
2022                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2023                                   desc->l2ptr_dma);
2024         }
2025 }
2026
2027 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2028 {
2029         unsigned int i;
2030         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2031         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2032         void *strtab = smmu->strtab_cfg.strtab;
2033
2034         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2035         if (!cfg->l1_desc) {
2036                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2037                 return -ENOMEM;
2038         }
2039
2040         for (i = 0; i < cfg->num_l1_ents; ++i) {
2041                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2042                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2043         }
2044
2045         return 0;
2046 }
2047
2048 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2049 {
2050         void *strtab;
2051         u64 reg;
2052         u32 size, l1size;
2053         int ret;
2054         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2055
2056         /* Calculate the L1 size, capped to the SIDSIZE */
2057         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2058         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2059         cfg->num_l1_ents = 1 << size;
2060
2061         size += STRTAB_SPLIT;
2062         if (size < smmu->sid_bits)
2063                 dev_warn(smmu->dev,
2064                          "2-level strtab only covers %u/%u bits of SID\n",
2065                          size, smmu->sid_bits);
2066
2067         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2068         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2069                                      GFP_KERNEL);
2070         if (!strtab) {
2071                 dev_err(smmu->dev,
2072                         "failed to allocate l1 stream table (%u bytes)\n",
2073                         size);
2074                 return -ENOMEM;
2075         }
2076         cfg->strtab = strtab;
2077
2078         /* Configure strtab_base_cfg for 2 levels */
2079         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2080         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2081                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2082         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2083                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2084         cfg->strtab_base_cfg = reg;
2085
2086         ret = arm_smmu_init_l1_strtab(smmu);
2087         if (ret)
2088                 dma_free_coherent(smmu->dev,
2089                                   l1size,
2090                                   strtab,
2091                                   cfg->strtab_dma);
2092         return ret;
2093 }
2094
2095 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2096 {
2097         void *strtab;
2098         u64 reg;
2099         u32 size;
2100         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2101
2102         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2103         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2104                                      GFP_KERNEL);
2105         if (!strtab) {
2106                 dev_err(smmu->dev,
2107                         "failed to allocate linear stream table (%u bytes)\n",
2108                         size);
2109                 return -ENOMEM;
2110         }
2111         cfg->strtab = strtab;
2112         cfg->num_l1_ents = 1 << smmu->sid_bits;
2113
2114         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2115         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2116         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2117                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2118         cfg->strtab_base_cfg = reg;
2119
2120         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2121         return 0;
2122 }
2123
2124 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2125 {
2126         u64 reg;
2127         int ret;
2128
2129         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2130                 ret = arm_smmu_init_strtab_2lvl(smmu);
2131         else
2132                 ret = arm_smmu_init_strtab_linear(smmu);
2133
2134         if (ret)
2135                 return ret;
2136
2137         /* Set the strtab base address */
2138         reg  = smmu->strtab_cfg.strtab_dma &
2139                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2140         reg |= STRTAB_BASE_RA;
2141         smmu->strtab_cfg.strtab_base = reg;
2142
2143         /* Allocate the first VMID for stage-2 bypass STEs */
2144         set_bit(0, smmu->vmid_map);
2145         return 0;
2146 }
2147
2148 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2149 {
2150         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2151         u32 size = cfg->num_l1_ents;
2152
2153         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2154                 arm_smmu_free_l2_strtab(smmu);
2155                 size *= STRTAB_L1_DESC_DWORDS << 3;
2156         } else {
2157                 size *= STRTAB_STE_DWORDS * 3;
2158         }
2159
2160         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2161 }
2162
2163 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2164 {
2165         int ret;
2166
2167         ret = arm_smmu_init_queues(smmu);
2168         if (ret)
2169                 return ret;
2170
2171         ret = arm_smmu_init_strtab(smmu);
2172         if (ret)
2173                 goto out_free_queues;
2174
2175         return 0;
2176
2177 out_free_queues:
2178         arm_smmu_free_queues(smmu);
2179         return ret;
2180 }
2181
2182 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2183 {
2184         arm_smmu_free_strtab(smmu);
2185         arm_smmu_free_queues(smmu);
2186 }
2187
2188 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2189                                    unsigned int reg_off, unsigned int ack_off)
2190 {
2191         u32 reg;
2192
2193         writel_relaxed(val, smmu->base + reg_off);
2194         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2195                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2196 }
2197
2198 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2199 {
2200         int ret, irq;
2201
2202         /* Disable IRQs first */
2203         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2204                                       ARM_SMMU_IRQ_CTRLACK);
2205         if (ret) {
2206                 dev_err(smmu->dev, "failed to disable irqs\n");
2207                 return ret;
2208         }
2209
2210         /* Clear the MSI address regs */
2211         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2212         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2213
2214         /* Request wired interrupt lines */
2215         irq = smmu->evtq.q.irq;
2216         if (irq) {
2217                 ret = devm_request_threaded_irq(smmu->dev, irq,
2218                                                 arm_smmu_evtq_handler,
2219                                                 arm_smmu_evtq_thread,
2220                                                 0, "arm-smmu-v3-evtq", smmu);
2221                 if (IS_ERR_VALUE(ret))
2222                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2223         }
2224
2225         irq = smmu->cmdq.q.irq;
2226         if (irq) {
2227                 ret = devm_request_irq(smmu->dev, irq,
2228                                        arm_smmu_cmdq_sync_handler, 0,
2229                                        "arm-smmu-v3-cmdq-sync", smmu);
2230                 if (IS_ERR_VALUE(ret))
2231                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2232         }
2233
2234         irq = smmu->gerr_irq;
2235         if (irq) {
2236                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2237                                        0, "arm-smmu-v3-gerror", smmu);
2238                 if (IS_ERR_VALUE(ret))
2239                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2240         }
2241
2242         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2243                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2244
2245                 irq = smmu->priq.q.irq;
2246                 if (irq) {
2247                         ret = devm_request_threaded_irq(smmu->dev, irq,
2248                                                         arm_smmu_priq_handler,
2249                                                         arm_smmu_priq_thread,
2250                                                         0, "arm-smmu-v3-priq",
2251                                                         smmu);
2252                         if (IS_ERR_VALUE(ret))
2253                                 dev_warn(smmu->dev,
2254                                          "failed to enable priq irq\n");
2255                 }
2256         }
2257
2258         /* Enable interrupt generation on the SMMU */
2259         ret = arm_smmu_write_reg_sync(smmu,
2260                                       IRQ_CTRL_EVTQ_IRQEN |
2261                                       IRQ_CTRL_GERROR_IRQEN,
2262                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2263         if (ret)
2264                 dev_warn(smmu->dev, "failed to enable irqs\n");
2265
2266         return 0;
2267 }
2268
2269 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2270 {
2271         int ret;
2272
2273         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2274         if (ret)
2275                 dev_err(smmu->dev, "failed to clear cr0\n");
2276
2277         return ret;
2278 }
2279
2280 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2281 {
2282         int ret;
2283         u32 reg, enables;
2284         struct arm_smmu_cmdq_ent cmd;
2285
2286         /* Clear CR0 and sync (disables SMMU and queue processing) */
2287         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2288         if (reg & CR0_SMMUEN)
2289                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2290
2291         ret = arm_smmu_device_disable(smmu);
2292         if (ret)
2293                 return ret;
2294
2295         /* CR1 (table and queue memory attributes) */
2296         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2297               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2298               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2299               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2300               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2301               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2302         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2303
2304         /* CR2 (random crap) */
2305         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2306         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2307
2308         /* Stream table */
2309         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2310                        smmu->base + ARM_SMMU_STRTAB_BASE);
2311         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2312                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2313
2314         /* Command queue */
2315         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2316         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2317         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2318
2319         enables = CR0_CMDQEN;
2320         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2321                                       ARM_SMMU_CR0ACK);
2322         if (ret) {
2323                 dev_err(smmu->dev, "failed to enable command queue\n");
2324                 return ret;
2325         }
2326
2327         /* Invalidate any cached configuration */
2328         cmd.opcode = CMDQ_OP_CFGI_ALL;
2329         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330         cmd.opcode = CMDQ_OP_CMD_SYNC;
2331         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2332
2333         /* Invalidate any stale TLB entries */
2334         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2335                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2336                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2337         }
2338
2339         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2340         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2341         cmd.opcode = CMDQ_OP_CMD_SYNC;
2342         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2343
2344         /* Event queue */
2345         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2346         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2347         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2348
2349         enables |= CR0_EVTQEN;
2350         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2351                                       ARM_SMMU_CR0ACK);
2352         if (ret) {
2353                 dev_err(smmu->dev, "failed to enable event queue\n");
2354                 return ret;
2355         }
2356
2357         /* PRI queue */
2358         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2359                 writeq_relaxed(smmu->priq.q.q_base,
2360                                smmu->base + ARM_SMMU_PRIQ_BASE);
2361                 writel_relaxed(smmu->priq.q.prod,
2362                                smmu->base + ARM_SMMU_PRIQ_PROD);
2363                 writel_relaxed(smmu->priq.q.cons,
2364                                smmu->base + ARM_SMMU_PRIQ_CONS);
2365
2366                 enables |= CR0_PRIQEN;
2367                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2368                                               ARM_SMMU_CR0ACK);
2369                 if (ret) {
2370                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2371                         return ret;
2372                 }
2373         }
2374
2375         ret = arm_smmu_setup_irqs(smmu);
2376         if (ret) {
2377                 dev_err(smmu->dev, "failed to setup irqs\n");
2378                 return ret;
2379         }
2380
2381         /* Enable the SMMU interface */
2382         enables |= CR0_SMMUEN;
2383         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2384                                       ARM_SMMU_CR0ACK);
2385         if (ret) {
2386                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2387                 return ret;
2388         }
2389
2390         return 0;
2391 }
2392
2393 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2394 {
2395         u32 reg;
2396         bool coherent;
2397         unsigned long pgsize_bitmap = 0;
2398
2399         /* IDR0 */
2400         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2401
2402         /* 2-level structures */
2403         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2404                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2405
2406         if (reg & IDR0_CD2L)
2407                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2408
2409         /*
2410          * Translation table endianness.
2411          * We currently require the same endianness as the CPU, but this
2412          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2413          */
2414         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2415         case IDR0_TTENDIAN_MIXED:
2416                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2417                 break;
2418 #ifdef __BIG_ENDIAN
2419         case IDR0_TTENDIAN_BE:
2420                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2421                 break;
2422 #else
2423         case IDR0_TTENDIAN_LE:
2424                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2425                 break;
2426 #endif
2427         default:
2428                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2429                 return -ENXIO;
2430         }
2431
2432         /* Boolean feature flags */
2433         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2434                 smmu->features |= ARM_SMMU_FEAT_PRI;
2435
2436         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2437                 smmu->features |= ARM_SMMU_FEAT_ATS;
2438
2439         if (reg & IDR0_SEV)
2440                 smmu->features |= ARM_SMMU_FEAT_SEV;
2441
2442         if (reg & IDR0_MSI)
2443                 smmu->features |= ARM_SMMU_FEAT_MSI;
2444
2445         if (reg & IDR0_HYP)
2446                 smmu->features |= ARM_SMMU_FEAT_HYP;
2447
2448         /*
2449          * The dma-coherent property is used in preference to the ID
2450          * register, but warn on mismatch.
2451          */
2452         coherent = of_dma_is_coherent(smmu->dev->of_node);
2453         if (coherent)
2454                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2455
2456         if (!!(reg & IDR0_COHACC) != coherent)
2457                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2458                          coherent ? "true" : "false");
2459
2460         if (reg & IDR0_STALL_MODEL)
2461                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2462
2463         if (reg & IDR0_S1P)
2464                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2465
2466         if (reg & IDR0_S2P)
2467                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2468
2469         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2470                 dev_err(smmu->dev, "no translation support!\n");
2471                 return -ENXIO;
2472         }
2473
2474         /* We only support the AArch64 table format at present */
2475         if ((reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) < IDR0_TTF_AARCH64) {
2476                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2477                 return -ENXIO;
2478         }
2479
2480         /* ASID/VMID sizes */
2481         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2482         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2483
2484         /* IDR1 */
2485         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2486         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2487                 dev_err(smmu->dev, "embedded implementation not supported\n");
2488                 return -ENXIO;
2489         }
2490
2491         /* Queue sizes, capped at 4k */
2492         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2493                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2494         if (!smmu->cmdq.q.max_n_shift) {
2495                 /* Odd alignment restrictions on the base, so ignore for now */
2496                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2497                 return -ENXIO;
2498         }
2499
2500         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2501                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2502         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2503                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2504
2505         /* SID/SSID sizes */
2506         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2507         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2508
2509         /* IDR5 */
2510         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2511
2512         /* Maximum number of outstanding stalls */
2513         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2514                                 & IDR5_STALL_MAX_MASK;
2515
2516         /* Page sizes */
2517         if (reg & IDR5_GRAN64K)
2518                 pgsize_bitmap |= SZ_64K | SZ_512M;
2519         if (reg & IDR5_GRAN16K)
2520                 pgsize_bitmap |= SZ_16K | SZ_32M;
2521         if (reg & IDR5_GRAN4K)
2522                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2523
2524         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2525
2526         /* Output address size */
2527         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2528         case IDR5_OAS_32_BIT:
2529                 smmu->oas = 32;
2530                 break;
2531         case IDR5_OAS_36_BIT:
2532                 smmu->oas = 36;
2533                 break;
2534         case IDR5_OAS_40_BIT:
2535                 smmu->oas = 40;
2536                 break;
2537         case IDR5_OAS_42_BIT:
2538                 smmu->oas = 42;
2539                 break;
2540         case IDR5_OAS_44_BIT:
2541                 smmu->oas = 44;
2542                 break;
2543         case IDR5_OAS_48_BIT:
2544                 smmu->oas = 48;
2545                 break;
2546         default:
2547                 dev_err(smmu->dev, "unknown output address size!\n");
2548                 return -ENXIO;
2549         }
2550
2551         /* Set the DMA mask for our table walker */
2552         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2553                 dev_warn(smmu->dev,
2554                          "failed to set DMA mask for table walker\n");
2555
2556         if (!smmu->ias)
2557                 smmu->ias = smmu->oas;
2558
2559         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2560                  smmu->ias, smmu->oas, smmu->features);
2561         return 0;
2562 }
2563
2564 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2565 {
2566         int irq, ret;
2567         struct resource *res;
2568         struct arm_smmu_device *smmu;
2569         struct device *dev = &pdev->dev;
2570
2571         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2572         if (!smmu) {
2573                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2574                 return -ENOMEM;
2575         }
2576         smmu->dev = dev;
2577
2578         /* Base address */
2579         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2580         if (resource_size(res) + 1 < SZ_128K) {
2581                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2582                 return -EINVAL;
2583         }
2584
2585         smmu->base = devm_ioremap_resource(dev, res);
2586         if (IS_ERR(smmu->base))
2587                 return PTR_ERR(smmu->base);
2588
2589         /* Interrupt lines */
2590         irq = platform_get_irq_byname(pdev, "eventq");
2591         if (irq > 0)
2592                 smmu->evtq.q.irq = irq;
2593
2594         irq = platform_get_irq_byname(pdev, "priq");
2595         if (irq > 0)
2596                 smmu->priq.q.irq = irq;
2597
2598         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2599         if (irq > 0)
2600                 smmu->cmdq.q.irq = irq;
2601
2602         irq = platform_get_irq_byname(pdev, "gerror");
2603         if (irq > 0)
2604                 smmu->gerr_irq = irq;
2605
2606         parse_driver_options(smmu);
2607
2608         /* Probe the h/w */
2609         ret = arm_smmu_device_probe(smmu);
2610         if (ret)
2611                 return ret;
2612
2613         /* Initialise in-memory data structures */
2614         ret = arm_smmu_init_structures(smmu);
2615         if (ret)
2616                 return ret;
2617
2618         /* Reset the device */
2619         ret = arm_smmu_device_reset(smmu);
2620         if (ret)
2621                 goto out_free_structures;
2622
2623         /* Record our private device structure */
2624         INIT_LIST_HEAD(&smmu->list);
2625         spin_lock(&arm_smmu_devices_lock);
2626         list_add(&smmu->list, &arm_smmu_devices);
2627         spin_unlock(&arm_smmu_devices_lock);
2628         return 0;
2629
2630 out_free_structures:
2631         arm_smmu_free_structures(smmu);
2632         return ret;
2633 }
2634
2635 static int arm_smmu_device_remove(struct platform_device *pdev)
2636 {
2637         struct arm_smmu_device *curr, *smmu = NULL;
2638         struct device *dev = &pdev->dev;
2639
2640         spin_lock(&arm_smmu_devices_lock);
2641         list_for_each_entry(curr, &arm_smmu_devices, list) {
2642                 if (curr->dev == dev) {
2643                         smmu = curr;
2644                         list_del(&smmu->list);
2645                         break;
2646                 }
2647         }
2648         spin_unlock(&arm_smmu_devices_lock);
2649
2650         if (!smmu)
2651                 return -ENODEV;
2652
2653         arm_smmu_device_disable(smmu);
2654         arm_smmu_free_structures(smmu);
2655         return 0;
2656 }
2657
2658 static struct of_device_id arm_smmu_of_match[] = {
2659         { .compatible = "arm,smmu-v3", },
2660         { },
2661 };
2662 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2663
2664 static struct platform_driver arm_smmu_driver = {
2665         .driver = {
2666                 .name           = "arm-smmu-v3",
2667                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2668         },
2669         .probe  = arm_smmu_device_dt_probe,
2670         .remove = arm_smmu_device_remove,
2671 };
2672
2673 static int __init arm_smmu_init(void)
2674 {
2675         struct device_node *np;
2676         int ret;
2677
2678         np = of_find_matching_node(NULL, arm_smmu_of_match);
2679         if (!np)
2680                 return 0;
2681
2682         of_node_put(np);
2683
2684         ret = platform_driver_register(&arm_smmu_driver);
2685         if (ret)
2686                 return ret;
2687
2688         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2689 }
2690
2691 static void __exit arm_smmu_exit(void)
2692 {
2693         return platform_driver_unregister(&arm_smmu_driver);
2694 }
2695
2696 subsys_initcall(arm_smmu_init);
2697 module_exit(arm_smmu_exit);
2698
2699 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2700 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2701 MODULE_LICENSE("GPL v2");