]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'master' into x86/memblock
[karo-tx-linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #define ROOT_SIZE               VTD_PAGE_SIZE
48 #define CONTEXT_SIZE            VTD_PAGE_SIZE
49
50 #define IS_BRIDGE_HOST_DEVICE(pdev) \
51                             ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START      (0xfee00000)
57 #define IOAPIC_RANGE_END        (0xfeefffff)
58 #define IOVA_START_ADDR         (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63
64 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
70                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
76
77 /* page table handling */
78 #define LEVEL_STRIDE            (9)
79 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
80
81 static inline int agaw_to_level(int agaw)
82 {
83         return agaw + 2;
84 }
85
86 static inline int agaw_to_width(int agaw)
87 {
88         return 30 + agaw * LEVEL_STRIDE;
89 }
90
91 static inline int width_to_agaw(int width)
92 {
93         return (width - 30) / LEVEL_STRIDE;
94 }
95
96 static inline unsigned int level_to_offset_bits(int level)
97 {
98         return (level - 1) * LEVEL_STRIDE;
99 }
100
101 static inline int pfn_level_offset(unsigned long pfn, int level)
102 {
103         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
104 }
105
106 static inline unsigned long level_mask(int level)
107 {
108         return -1UL << level_to_offset_bits(level);
109 }
110
111 static inline unsigned long level_size(int level)
112 {
113         return 1UL << level_to_offset_bits(level);
114 }
115
116 static inline unsigned long align_to_level(unsigned long pfn, int level)
117 {
118         return (pfn + level_size(level) - 1) & level_mask(level);
119 }
120
121 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
122 {
123         return  1 << ((lvl - 1) * LEVEL_STRIDE);
124 }
125
126 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
127    are never going to work. */
128 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
129 {
130         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
131 }
132
133 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
134 {
135         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
136 }
137 static inline unsigned long page_to_dma_pfn(struct page *pg)
138 {
139         return mm_to_dma_pfn(page_to_pfn(pg));
140 }
141 static inline unsigned long virt_to_dma_pfn(void *p)
142 {
143         return page_to_dma_pfn(virt_to_page(p));
144 }
145
146 /* global iommu list, set NULL for ignored DMAR units */
147 static struct intel_iommu **g_iommus;
148
149 static void __init check_tylersburg_isoch(void);
150 static int rwbf_quirk;
151
152 /*
153  * set to 1 to panic kernel if can't successfully enable VT-d
154  * (used when kernel is launched w/ TXT)
155  */
156 static int force_on = 0;
157
158 /*
159  * 0: Present
160  * 1-11: Reserved
161  * 12-63: Context Ptr (12 - (haw-1))
162  * 64-127: Reserved
163  */
164 struct root_entry {
165         u64     val;
166         u64     rsvd1;
167 };
168 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
169 static inline bool root_present(struct root_entry *root)
170 {
171         return (root->val & 1);
172 }
173 static inline void set_root_present(struct root_entry *root)
174 {
175         root->val |= 1;
176 }
177 static inline void set_root_value(struct root_entry *root, unsigned long value)
178 {
179         root->val |= value & VTD_PAGE_MASK;
180 }
181
182 static inline struct context_entry *
183 get_context_addr_from_root(struct root_entry *root)
184 {
185         return (struct context_entry *)
186                 (root_present(root)?phys_to_virt(
187                 root->val & VTD_PAGE_MASK) :
188                 NULL);
189 }
190
191 /*
192  * low 64 bits:
193  * 0: present
194  * 1: fault processing disable
195  * 2-3: translation type
196  * 12-63: address space root
197  * high 64 bits:
198  * 0-2: address width
199  * 3-6: aval
200  * 8-23: domain id
201  */
202 struct context_entry {
203         u64 lo;
204         u64 hi;
205 };
206
207 static inline bool context_present(struct context_entry *context)
208 {
209         return (context->lo & 1);
210 }
211 static inline void context_set_present(struct context_entry *context)
212 {
213         context->lo |= 1;
214 }
215
216 static inline void context_set_fault_enable(struct context_entry *context)
217 {
218         context->lo &= (((u64)-1) << 2) | 1;
219 }
220
221 static inline void context_set_translation_type(struct context_entry *context,
222                                                 unsigned long value)
223 {
224         context->lo &= (((u64)-1) << 4) | 3;
225         context->lo |= (value & 3) << 2;
226 }
227
228 static inline void context_set_address_root(struct context_entry *context,
229                                             unsigned long value)
230 {
231         context->lo |= value & VTD_PAGE_MASK;
232 }
233
234 static inline void context_set_address_width(struct context_entry *context,
235                                              unsigned long value)
236 {
237         context->hi |= value & 7;
238 }
239
240 static inline void context_set_domain_id(struct context_entry *context,
241                                          unsigned long value)
242 {
243         context->hi |= (value & ((1 << 16) - 1)) << 8;
244 }
245
246 static inline void context_clear_entry(struct context_entry *context)
247 {
248         context->lo = 0;
249         context->hi = 0;
250 }
251
252 /*
253  * 0: readable
254  * 1: writable
255  * 2-6: reserved
256  * 7: super page
257  * 8-10: available
258  * 11: snoop behavior
259  * 12-63: Host physcial address
260  */
261 struct dma_pte {
262         u64 val;
263 };
264
265 static inline void dma_clear_pte(struct dma_pte *pte)
266 {
267         pte->val = 0;
268 }
269
270 static inline void dma_set_pte_readable(struct dma_pte *pte)
271 {
272         pte->val |= DMA_PTE_READ;
273 }
274
275 static inline void dma_set_pte_writable(struct dma_pte *pte)
276 {
277         pte->val |= DMA_PTE_WRITE;
278 }
279
280 static inline void dma_set_pte_snp(struct dma_pte *pte)
281 {
282         pte->val |= DMA_PTE_SNP;
283 }
284
285 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
286 {
287         pte->val = (pte->val & ~3) | (prot & 3);
288 }
289
290 static inline u64 dma_pte_addr(struct dma_pte *pte)
291 {
292 #ifdef CONFIG_64BIT
293         return pte->val & VTD_PAGE_MASK;
294 #else
295         /* Must have a full atomic 64-bit read */
296         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297 #endif
298 }
299
300 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
301 {
302         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
303 }
304
305 static inline bool dma_pte_present(struct dma_pte *pte)
306 {
307         return (pte->val & 3) != 0;
308 }
309
310 static inline bool dma_pte_superpage(struct dma_pte *pte)
311 {
312         return (pte->val & (1 << 7));
313 }
314
315 static inline int first_pte_in_page(struct dma_pte *pte)
316 {
317         return !((unsigned long)pte & ~VTD_PAGE_MASK);
318 }
319
320 /*
321  * This domain is a statically identity mapping domain.
322  *      1. This domain creats a static 1:1 mapping to all usable memory.
323  *      2. It maps to each iommu if successful.
324  *      3. Each iommu mapps to this domain if successful.
325  */
326 static struct dmar_domain *si_domain;
327 static int hw_pass_through = 1;
328
329 /* devices under the same p2p bridge are owned in one domain */
330 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
331
332 /* domain represents a virtual machine, more than one devices
333  * across iommus may be owned in one domain, e.g. kvm guest.
334  */
335 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
336
337 /* si_domain contains mulitple devices */
338 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
339
340 struct dmar_domain {
341         int     id;                     /* domain id */
342         int     nid;                    /* node id */
343         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
344
345         struct list_head devices;       /* all devices' list */
346         struct iova_domain iovad;       /* iova's that belong to this domain */
347
348         struct dma_pte  *pgd;           /* virtual address */
349         int             gaw;            /* max guest address width */
350
351         /* adjusted guest address width, 0 is level 2 30-bit */
352         int             agaw;
353
354         int             flags;          /* flags to find out type of domain */
355
356         int             iommu_coherency;/* indicate coherency of iommu access */
357         int             iommu_snooping; /* indicate snooping control feature*/
358         int             iommu_count;    /* reference count of iommu */
359         int             iommu_superpage;/* Level of superpages supported:
360                                            0 == 4KiB (no superpages), 1 == 2MiB,
361                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
362         spinlock_t      iommu_lock;     /* protect iommu set in domain */
363         u64             max_addr;       /* maximum mapped address */
364 };
365
366 /* PCI domain-device relationship */
367 struct device_domain_info {
368         struct list_head link;  /* link to domain siblings */
369         struct list_head global; /* link to global list */
370         int segment;            /* PCI domain */
371         u8 bus;                 /* PCI bus number */
372         u8 devfn;               /* PCI devfn number */
373         struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
374         struct intel_iommu *iommu; /* IOMMU used by this device */
375         struct dmar_domain *domain; /* pointer to domain */
376 };
377
378 static void flush_unmaps_timeout(unsigned long data);
379
380 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
381
382 #define HIGH_WATER_MARK 250
383 struct deferred_flush_tables {
384         int next;
385         struct iova *iova[HIGH_WATER_MARK];
386         struct dmar_domain *domain[HIGH_WATER_MARK];
387 };
388
389 static struct deferred_flush_tables *deferred_flush;
390
391 /* bitmap for indexing intel_iommus */
392 static int g_num_of_iommus;
393
394 static DEFINE_SPINLOCK(async_umap_flush_lock);
395 static LIST_HEAD(unmaps_to_do);
396
397 static int timer_on;
398 static long list_size;
399
400 static void domain_remove_dev_info(struct dmar_domain *domain);
401
402 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
403 int dmar_disabled = 0;
404 #else
405 int dmar_disabled = 1;
406 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
407
408 static int dmar_map_gfx = 1;
409 static int dmar_forcedac;
410 static int intel_iommu_strict;
411 static int intel_iommu_superpage = 1;
412
413 int intel_iommu_gfx_mapped;
414 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
415
416 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
417 static DEFINE_SPINLOCK(device_domain_lock);
418 static LIST_HEAD(device_domain_list);
419
420 static struct iommu_ops intel_iommu_ops;
421
422 static int __init intel_iommu_setup(char *str)
423 {
424         if (!str)
425                 return -EINVAL;
426         while (*str) {
427                 if (!strncmp(str, "on", 2)) {
428                         dmar_disabled = 0;
429                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
430                 } else if (!strncmp(str, "off", 3)) {
431                         dmar_disabled = 1;
432                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
433                 } else if (!strncmp(str, "igfx_off", 8)) {
434                         dmar_map_gfx = 0;
435                         printk(KERN_INFO
436                                 "Intel-IOMMU: disable GFX device mapping\n");
437                 } else if (!strncmp(str, "forcedac", 8)) {
438                         printk(KERN_INFO
439                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
440                         dmar_forcedac = 1;
441                 } else if (!strncmp(str, "strict", 6)) {
442                         printk(KERN_INFO
443                                 "Intel-IOMMU: disable batched IOTLB flush\n");
444                         intel_iommu_strict = 1;
445                 } else if (!strncmp(str, "sp_off", 6)) {
446                         printk(KERN_INFO
447                                 "Intel-IOMMU: disable supported super page\n");
448                         intel_iommu_superpage = 0;
449                 }
450
451                 str += strcspn(str, ",");
452                 while (*str == ',')
453                         str++;
454         }
455         return 0;
456 }
457 __setup("intel_iommu=", intel_iommu_setup);
458
459 static struct kmem_cache *iommu_domain_cache;
460 static struct kmem_cache *iommu_devinfo_cache;
461 static struct kmem_cache *iommu_iova_cache;
462
463 static inline void *alloc_pgtable_page(int node)
464 {
465         struct page *page;
466         void *vaddr = NULL;
467
468         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
469         if (page)
470                 vaddr = page_address(page);
471         return vaddr;
472 }
473
474 static inline void free_pgtable_page(void *vaddr)
475 {
476         free_page((unsigned long)vaddr);
477 }
478
479 static inline void *alloc_domain_mem(void)
480 {
481         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
482 }
483
484 static void free_domain_mem(void *vaddr)
485 {
486         kmem_cache_free(iommu_domain_cache, vaddr);
487 }
488
489 static inline void * alloc_devinfo_mem(void)
490 {
491         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
492 }
493
494 static inline void free_devinfo_mem(void *vaddr)
495 {
496         kmem_cache_free(iommu_devinfo_cache, vaddr);
497 }
498
499 struct iova *alloc_iova_mem(void)
500 {
501         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
502 }
503
504 void free_iova_mem(struct iova *iova)
505 {
506         kmem_cache_free(iommu_iova_cache, iova);
507 }
508
509
510 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
511 {
512         unsigned long sagaw;
513         int agaw = -1;
514
515         sagaw = cap_sagaw(iommu->cap);
516         for (agaw = width_to_agaw(max_gaw);
517              agaw >= 0; agaw--) {
518                 if (test_bit(agaw, &sagaw))
519                         break;
520         }
521
522         return agaw;
523 }
524
525 /*
526  * Calculate max SAGAW for each iommu.
527  */
528 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
529 {
530         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
531 }
532
533 /*
534  * calculate agaw for each iommu.
535  * "SAGAW" may be different across iommus, use a default agaw, and
536  * get a supported less agaw for iommus that don't support the default agaw.
537  */
538 int iommu_calculate_agaw(struct intel_iommu *iommu)
539 {
540         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
541 }
542
543 /* This functionin only returns single iommu in a domain */
544 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
545 {
546         int iommu_id;
547
548         /* si_domain and vm domain should not get here. */
549         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
550         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
551
552         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
553         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
554                 return NULL;
555
556         return g_iommus[iommu_id];
557 }
558
559 static void domain_update_iommu_coherency(struct dmar_domain *domain)
560 {
561         int i;
562
563         domain->iommu_coherency = 1;
564
565         for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
566                 if (!ecap_coherent(g_iommus[i]->ecap)) {
567                         domain->iommu_coherency = 0;
568                         break;
569                 }
570         }
571 }
572
573 static void domain_update_iommu_snooping(struct dmar_domain *domain)
574 {
575         int i;
576
577         domain->iommu_snooping = 1;
578
579         for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
580                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
581                         domain->iommu_snooping = 0;
582                         break;
583                 }
584         }
585 }
586
587 static void domain_update_iommu_superpage(struct dmar_domain *domain)
588 {
589         struct dmar_drhd_unit *drhd;
590         struct intel_iommu *iommu = NULL;
591         int mask = 0xf;
592
593         if (!intel_iommu_superpage) {
594                 domain->iommu_superpage = 0;
595                 return;
596         }
597
598         /* set iommu_superpage to the smallest common denominator */
599         for_each_active_iommu(iommu, drhd) {
600                 mask &= cap_super_page_val(iommu->cap);
601                 if (!mask) {
602                         break;
603                 }
604         }
605         domain->iommu_superpage = fls(mask);
606 }
607
608 /* Some capabilities may be different across iommus */
609 static void domain_update_iommu_cap(struct dmar_domain *domain)
610 {
611         domain_update_iommu_coherency(domain);
612         domain_update_iommu_snooping(domain);
613         domain_update_iommu_superpage(domain);
614 }
615
616 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
617 {
618         struct dmar_drhd_unit *drhd = NULL;
619         int i;
620
621         for_each_drhd_unit(drhd) {
622                 if (drhd->ignored)
623                         continue;
624                 if (segment != drhd->segment)
625                         continue;
626
627                 for (i = 0; i < drhd->devices_cnt; i++) {
628                         if (drhd->devices[i] &&
629                             drhd->devices[i]->bus->number == bus &&
630                             drhd->devices[i]->devfn == devfn)
631                                 return drhd->iommu;
632                         if (drhd->devices[i] &&
633                             drhd->devices[i]->subordinate &&
634                             drhd->devices[i]->subordinate->number <= bus &&
635                             drhd->devices[i]->subordinate->subordinate >= bus)
636                                 return drhd->iommu;
637                 }
638
639                 if (drhd->include_all)
640                         return drhd->iommu;
641         }
642
643         return NULL;
644 }
645
646 static void domain_flush_cache(struct dmar_domain *domain,
647                                void *addr, int size)
648 {
649         if (!domain->iommu_coherency)
650                 clflush_cache_range(addr, size);
651 }
652
653 /* Gets context entry for a given bus and devfn */
654 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
655                 u8 bus, u8 devfn)
656 {
657         struct root_entry *root;
658         struct context_entry *context;
659         unsigned long phy_addr;
660         unsigned long flags;
661
662         spin_lock_irqsave(&iommu->lock, flags);
663         root = &iommu->root_entry[bus];
664         context = get_context_addr_from_root(root);
665         if (!context) {
666                 context = (struct context_entry *)
667                                 alloc_pgtable_page(iommu->node);
668                 if (!context) {
669                         spin_unlock_irqrestore(&iommu->lock, flags);
670                         return NULL;
671                 }
672                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
673                 phy_addr = virt_to_phys((void *)context);
674                 set_root_value(root, phy_addr);
675                 set_root_present(root);
676                 __iommu_flush_cache(iommu, root, sizeof(*root));
677         }
678         spin_unlock_irqrestore(&iommu->lock, flags);
679         return &context[devfn];
680 }
681
682 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
683 {
684         struct root_entry *root;
685         struct context_entry *context;
686         int ret;
687         unsigned long flags;
688
689         spin_lock_irqsave(&iommu->lock, flags);
690         root = &iommu->root_entry[bus];
691         context = get_context_addr_from_root(root);
692         if (!context) {
693                 ret = 0;
694                 goto out;
695         }
696         ret = context_present(&context[devfn]);
697 out:
698         spin_unlock_irqrestore(&iommu->lock, flags);
699         return ret;
700 }
701
702 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
703 {
704         struct root_entry *root;
705         struct context_entry *context;
706         unsigned long flags;
707
708         spin_lock_irqsave(&iommu->lock, flags);
709         root = &iommu->root_entry[bus];
710         context = get_context_addr_from_root(root);
711         if (context) {
712                 context_clear_entry(&context[devfn]);
713                 __iommu_flush_cache(iommu, &context[devfn], \
714                         sizeof(*context));
715         }
716         spin_unlock_irqrestore(&iommu->lock, flags);
717 }
718
719 static void free_context_table(struct intel_iommu *iommu)
720 {
721         struct root_entry *root;
722         int i;
723         unsigned long flags;
724         struct context_entry *context;
725
726         spin_lock_irqsave(&iommu->lock, flags);
727         if (!iommu->root_entry) {
728                 goto out;
729         }
730         for (i = 0; i < ROOT_ENTRY_NR; i++) {
731                 root = &iommu->root_entry[i];
732                 context = get_context_addr_from_root(root);
733                 if (context)
734                         free_pgtable_page(context);
735         }
736         free_pgtable_page(iommu->root_entry);
737         iommu->root_entry = NULL;
738 out:
739         spin_unlock_irqrestore(&iommu->lock, flags);
740 }
741
742 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
743                                       unsigned long pfn, int target_level)
744 {
745         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
746         struct dma_pte *parent, *pte = NULL;
747         int level = agaw_to_level(domain->agaw);
748         int offset;
749
750         BUG_ON(!domain->pgd);
751         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
752         parent = domain->pgd;
753
754         while (level > 0) {
755                 void *tmp_page;
756
757                 offset = pfn_level_offset(pfn, level);
758                 pte = &parent[offset];
759                 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
760                         break;
761                 if (level == target_level)
762                         break;
763
764                 if (!dma_pte_present(pte)) {
765                         uint64_t pteval;
766
767                         tmp_page = alloc_pgtable_page(domain->nid);
768
769                         if (!tmp_page)
770                                 return NULL;
771
772                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
773                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
774                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
775                                 /* Someone else set it while we were thinking; use theirs. */
776                                 free_pgtable_page(tmp_page);
777                         } else {
778                                 dma_pte_addr(pte);
779                                 domain_flush_cache(domain, pte, sizeof(*pte));
780                         }
781                 }
782                 parent = phys_to_virt(dma_pte_addr(pte));
783                 level--;
784         }
785
786         return pte;
787 }
788
789
790 /* return address's pte at specific level */
791 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
792                                          unsigned long pfn,
793                                          int level, int *large_page)
794 {
795         struct dma_pte *parent, *pte = NULL;
796         int total = agaw_to_level(domain->agaw);
797         int offset;
798
799         parent = domain->pgd;
800         while (level <= total) {
801                 offset = pfn_level_offset(pfn, total);
802                 pte = &parent[offset];
803                 if (level == total)
804                         return pte;
805
806                 if (!dma_pte_present(pte)) {
807                         *large_page = total;
808                         break;
809                 }
810
811                 if (pte->val & DMA_PTE_LARGE_PAGE) {
812                         *large_page = total;
813                         return pte;
814                 }
815
816                 parent = phys_to_virt(dma_pte_addr(pte));
817                 total--;
818         }
819         return NULL;
820 }
821
822 /* clear last level pte, a tlb flush should be followed */
823 static int dma_pte_clear_range(struct dmar_domain *domain,
824                                 unsigned long start_pfn,
825                                 unsigned long last_pfn)
826 {
827         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
828         unsigned int large_page = 1;
829         struct dma_pte *first_pte, *pte;
830         int order;
831
832         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
833         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
834         BUG_ON(start_pfn > last_pfn);
835
836         /* we don't need lock here; nobody else touches the iova range */
837         do {
838                 large_page = 1;
839                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
840                 if (!pte) {
841                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
842                         continue;
843                 }
844                 do {
845                         dma_clear_pte(pte);
846                         start_pfn += lvl_to_nr_pages(large_page);
847                         pte++;
848                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
849
850                 domain_flush_cache(domain, first_pte,
851                                    (void *)pte - (void *)first_pte);
852
853         } while (start_pfn && start_pfn <= last_pfn);
854
855         order = (large_page - 1) * 9;
856         return order;
857 }
858
859 /* free page table pages. last level pte should already be cleared */
860 static void dma_pte_free_pagetable(struct dmar_domain *domain,
861                                    unsigned long start_pfn,
862                                    unsigned long last_pfn)
863 {
864         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
865         struct dma_pte *first_pte, *pte;
866         int total = agaw_to_level(domain->agaw);
867         int level;
868         unsigned long tmp;
869         int large_page = 2;
870
871         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
872         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
873         BUG_ON(start_pfn > last_pfn);
874
875         /* We don't need lock here; nobody else touches the iova range */
876         level = 2;
877         while (level <= total) {
878                 tmp = align_to_level(start_pfn, level);
879
880                 /* If we can't even clear one PTE at this level, we're done */
881                 if (tmp + level_size(level) - 1 > last_pfn)
882                         return;
883
884                 do {
885                         large_page = level;
886                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
887                         if (large_page > level)
888                                 level = large_page + 1;
889                         if (!pte) {
890                                 tmp = align_to_level(tmp + 1, level + 1);
891                                 continue;
892                         }
893                         do {
894                                 if (dma_pte_present(pte)) {
895                                         free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
896                                         dma_clear_pte(pte);
897                                 }
898                                 pte++;
899                                 tmp += level_size(level);
900                         } while (!first_pte_in_page(pte) &&
901                                  tmp + level_size(level) - 1 <= last_pfn);
902
903                         domain_flush_cache(domain, first_pte,
904                                            (void *)pte - (void *)first_pte);
905                         
906                 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
907                 level++;
908         }
909         /* free pgd */
910         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
911                 free_pgtable_page(domain->pgd);
912                 domain->pgd = NULL;
913         }
914 }
915
916 /* iommu handling */
917 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
918 {
919         struct root_entry *root;
920         unsigned long flags;
921
922         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
923         if (!root)
924                 return -ENOMEM;
925
926         __iommu_flush_cache(iommu, root, ROOT_SIZE);
927
928         spin_lock_irqsave(&iommu->lock, flags);
929         iommu->root_entry = root;
930         spin_unlock_irqrestore(&iommu->lock, flags);
931
932         return 0;
933 }
934
935 static void iommu_set_root_entry(struct intel_iommu *iommu)
936 {
937         void *addr;
938         u32 sts;
939         unsigned long flag;
940
941         addr = iommu->root_entry;
942
943         raw_spin_lock_irqsave(&iommu->register_lock, flag);
944         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
945
946         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
947
948         /* Make sure hardware complete it */
949         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
950                       readl, (sts & DMA_GSTS_RTPS), sts);
951
952         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
953 }
954
955 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
956 {
957         u32 val;
958         unsigned long flag;
959
960         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
961                 return;
962
963         raw_spin_lock_irqsave(&iommu->register_lock, flag);
964         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
965
966         /* Make sure hardware complete it */
967         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
968                       readl, (!(val & DMA_GSTS_WBFS)), val);
969
970         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
971 }
972
973 /* return value determine if we need a write buffer flush */
974 static void __iommu_flush_context(struct intel_iommu *iommu,
975                                   u16 did, u16 source_id, u8 function_mask,
976                                   u64 type)
977 {
978         u64 val = 0;
979         unsigned long flag;
980
981         switch (type) {
982         case DMA_CCMD_GLOBAL_INVL:
983                 val = DMA_CCMD_GLOBAL_INVL;
984                 break;
985         case DMA_CCMD_DOMAIN_INVL:
986                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
987                 break;
988         case DMA_CCMD_DEVICE_INVL:
989                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
990                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
991                 break;
992         default:
993                 BUG();
994         }
995         val |= DMA_CCMD_ICC;
996
997         raw_spin_lock_irqsave(&iommu->register_lock, flag);
998         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
999
1000         /* Make sure hardware complete it */
1001         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1002                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1003
1004         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1005 }
1006
1007 /* return value determine if we need a write buffer flush */
1008 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1009                                 u64 addr, unsigned int size_order, u64 type)
1010 {
1011         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1012         u64 val = 0, val_iva = 0;
1013         unsigned long flag;
1014
1015         switch (type) {
1016         case DMA_TLB_GLOBAL_FLUSH:
1017                 /* global flush doesn't need set IVA_REG */
1018                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1019                 break;
1020         case DMA_TLB_DSI_FLUSH:
1021                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1022                 break;
1023         case DMA_TLB_PSI_FLUSH:
1024                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1025                 /* Note: always flush non-leaf currently */
1026                 val_iva = size_order | addr;
1027                 break;
1028         default:
1029                 BUG();
1030         }
1031         /* Note: set drain read/write */
1032 #if 0
1033         /*
1034          * This is probably to be super secure.. Looks like we can
1035          * ignore it without any impact.
1036          */
1037         if (cap_read_drain(iommu->cap))
1038                 val |= DMA_TLB_READ_DRAIN;
1039 #endif
1040         if (cap_write_drain(iommu->cap))
1041                 val |= DMA_TLB_WRITE_DRAIN;
1042
1043         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1044         /* Note: Only uses first TLB reg currently */
1045         if (val_iva)
1046                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1047         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1048
1049         /* Make sure hardware complete it */
1050         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1051                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1052
1053         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1054
1055         /* check IOTLB invalidation granularity */
1056         if (DMA_TLB_IAIG(val) == 0)
1057                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1058         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1059                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1060                         (unsigned long long)DMA_TLB_IIRG(type),
1061                         (unsigned long long)DMA_TLB_IAIG(val));
1062 }
1063
1064 static struct device_domain_info *iommu_support_dev_iotlb(
1065         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1066 {
1067         int found = 0;
1068         unsigned long flags;
1069         struct device_domain_info *info;
1070         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1071
1072         if (!ecap_dev_iotlb_support(iommu->ecap))
1073                 return NULL;
1074
1075         if (!iommu->qi)
1076                 return NULL;
1077
1078         spin_lock_irqsave(&device_domain_lock, flags);
1079         list_for_each_entry(info, &domain->devices, link)
1080                 if (info->bus == bus && info->devfn == devfn) {
1081                         found = 1;
1082                         break;
1083                 }
1084         spin_unlock_irqrestore(&device_domain_lock, flags);
1085
1086         if (!found || !info->dev)
1087                 return NULL;
1088
1089         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1090                 return NULL;
1091
1092         if (!dmar_find_matched_atsr_unit(info->dev))
1093                 return NULL;
1094
1095         info->iommu = iommu;
1096
1097         return info;
1098 }
1099
1100 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1101 {
1102         if (!info)
1103                 return;
1104
1105         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1106 }
1107
1108 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1109 {
1110         if (!info->dev || !pci_ats_enabled(info->dev))
1111                 return;
1112
1113         pci_disable_ats(info->dev);
1114 }
1115
1116 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1117                                   u64 addr, unsigned mask)
1118 {
1119         u16 sid, qdep;
1120         unsigned long flags;
1121         struct device_domain_info *info;
1122
1123         spin_lock_irqsave(&device_domain_lock, flags);
1124         list_for_each_entry(info, &domain->devices, link) {
1125                 if (!info->dev || !pci_ats_enabled(info->dev))
1126                         continue;
1127
1128                 sid = info->bus << 8 | info->devfn;
1129                 qdep = pci_ats_queue_depth(info->dev);
1130                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1131         }
1132         spin_unlock_irqrestore(&device_domain_lock, flags);
1133 }
1134
1135 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1136                                   unsigned long pfn, unsigned int pages, int map)
1137 {
1138         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1139         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1140
1141         BUG_ON(pages == 0);
1142
1143         /*
1144          * Fallback to domain selective flush if no PSI support or the size is
1145          * too big.
1146          * PSI requires page size to be 2 ^ x, and the base address is naturally
1147          * aligned to the size
1148          */
1149         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1150                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1151                                                 DMA_TLB_DSI_FLUSH);
1152         else
1153                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1154                                                 DMA_TLB_PSI_FLUSH);
1155
1156         /*
1157          * In caching mode, changes of pages from non-present to present require
1158          * flush. However, device IOTLB doesn't need to be flushed in this case.
1159          */
1160         if (!cap_caching_mode(iommu->cap) || !map)
1161                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1162 }
1163
1164 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1165 {
1166         u32 pmen;
1167         unsigned long flags;
1168
1169         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1170         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1171         pmen &= ~DMA_PMEN_EPM;
1172         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1173
1174         /* wait for the protected region status bit to clear */
1175         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1176                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1177
1178         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1179 }
1180
1181 static int iommu_enable_translation(struct intel_iommu *iommu)
1182 {
1183         u32 sts;
1184         unsigned long flags;
1185
1186         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1187         iommu->gcmd |= DMA_GCMD_TE;
1188         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1189
1190         /* Make sure hardware complete it */
1191         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1192                       readl, (sts & DMA_GSTS_TES), sts);
1193
1194         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1195         return 0;
1196 }
1197
1198 static int iommu_disable_translation(struct intel_iommu *iommu)
1199 {
1200         u32 sts;
1201         unsigned long flag;
1202
1203         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1204         iommu->gcmd &= ~DMA_GCMD_TE;
1205         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1206
1207         /* Make sure hardware complete it */
1208         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1209                       readl, (!(sts & DMA_GSTS_TES)), sts);
1210
1211         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212         return 0;
1213 }
1214
1215
1216 static int iommu_init_domains(struct intel_iommu *iommu)
1217 {
1218         unsigned long ndomains;
1219         unsigned long nlongs;
1220
1221         ndomains = cap_ndoms(iommu->cap);
1222         pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1223                         ndomains);
1224         nlongs = BITS_TO_LONGS(ndomains);
1225
1226         spin_lock_init(&iommu->lock);
1227
1228         /* TBD: there might be 64K domains,
1229          * consider other allocation for future chip
1230          */
1231         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1232         if (!iommu->domain_ids) {
1233                 printk(KERN_ERR "Allocating domain id array failed\n");
1234                 return -ENOMEM;
1235         }
1236         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1237                         GFP_KERNEL);
1238         if (!iommu->domains) {
1239                 printk(KERN_ERR "Allocating domain array failed\n");
1240                 return -ENOMEM;
1241         }
1242
1243         /*
1244          * if Caching mode is set, then invalid translations are tagged
1245          * with domainid 0. Hence we need to pre-allocate it.
1246          */
1247         if (cap_caching_mode(iommu->cap))
1248                 set_bit(0, iommu->domain_ids);
1249         return 0;
1250 }
1251
1252
1253 static void domain_exit(struct dmar_domain *domain);
1254 static void vm_domain_exit(struct dmar_domain *domain);
1255
1256 void free_dmar_iommu(struct intel_iommu *iommu)
1257 {
1258         struct dmar_domain *domain;
1259         int i;
1260         unsigned long flags;
1261
1262         if ((iommu->domains) && (iommu->domain_ids)) {
1263                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1264                         domain = iommu->domains[i];
1265                         clear_bit(i, iommu->domain_ids);
1266
1267                         spin_lock_irqsave(&domain->iommu_lock, flags);
1268                         if (--domain->iommu_count == 0) {
1269                                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1270                                         vm_domain_exit(domain);
1271                                 else
1272                                         domain_exit(domain);
1273                         }
1274                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1275                 }
1276         }
1277
1278         if (iommu->gcmd & DMA_GCMD_TE)
1279                 iommu_disable_translation(iommu);
1280
1281         if (iommu->irq) {
1282                 irq_set_handler_data(iommu->irq, NULL);
1283                 /* This will mask the irq */
1284                 free_irq(iommu->irq, iommu);
1285                 destroy_irq(iommu->irq);
1286         }
1287
1288         kfree(iommu->domains);
1289         kfree(iommu->domain_ids);
1290
1291         g_iommus[iommu->seq_id] = NULL;
1292
1293         /* if all iommus are freed, free g_iommus */
1294         for (i = 0; i < g_num_of_iommus; i++) {
1295                 if (g_iommus[i])
1296                         break;
1297         }
1298
1299         if (i == g_num_of_iommus)
1300                 kfree(g_iommus);
1301
1302         /* free context mapping */
1303         free_context_table(iommu);
1304 }
1305
1306 static struct dmar_domain *alloc_domain(void)
1307 {
1308         struct dmar_domain *domain;
1309
1310         domain = alloc_domain_mem();
1311         if (!domain)
1312                 return NULL;
1313
1314         domain->nid = -1;
1315         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1316         domain->flags = 0;
1317
1318         return domain;
1319 }
1320
1321 static int iommu_attach_domain(struct dmar_domain *domain,
1322                                struct intel_iommu *iommu)
1323 {
1324         int num;
1325         unsigned long ndomains;
1326         unsigned long flags;
1327
1328         ndomains = cap_ndoms(iommu->cap);
1329
1330         spin_lock_irqsave(&iommu->lock, flags);
1331
1332         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1333         if (num >= ndomains) {
1334                 spin_unlock_irqrestore(&iommu->lock, flags);
1335                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1336                 return -ENOMEM;
1337         }
1338
1339         domain->id = num;
1340         set_bit(num, iommu->domain_ids);
1341         set_bit(iommu->seq_id, &domain->iommu_bmp);
1342         iommu->domains[num] = domain;
1343         spin_unlock_irqrestore(&iommu->lock, flags);
1344
1345         return 0;
1346 }
1347
1348 static void iommu_detach_domain(struct dmar_domain *domain,
1349                                 struct intel_iommu *iommu)
1350 {
1351         unsigned long flags;
1352         int num, ndomains;
1353         int found = 0;
1354
1355         spin_lock_irqsave(&iommu->lock, flags);
1356         ndomains = cap_ndoms(iommu->cap);
1357         for_each_set_bit(num, iommu->domain_ids, ndomains) {
1358                 if (iommu->domains[num] == domain) {
1359                         found = 1;
1360                         break;
1361                 }
1362         }
1363
1364         if (found) {
1365                 clear_bit(num, iommu->domain_ids);
1366                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1367                 iommu->domains[num] = NULL;
1368         }
1369         spin_unlock_irqrestore(&iommu->lock, flags);
1370 }
1371
1372 static struct iova_domain reserved_iova_list;
1373 static struct lock_class_key reserved_rbtree_key;
1374
1375 static int dmar_init_reserved_ranges(void)
1376 {
1377         struct pci_dev *pdev = NULL;
1378         struct iova *iova;
1379         int i;
1380
1381         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1382
1383         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1384                 &reserved_rbtree_key);
1385
1386         /* IOAPIC ranges shouldn't be accessed by DMA */
1387         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1388                 IOVA_PFN(IOAPIC_RANGE_END));
1389         if (!iova) {
1390                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1391                 return -ENODEV;
1392         }
1393
1394         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1395         for_each_pci_dev(pdev) {
1396                 struct resource *r;
1397
1398                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1399                         r = &pdev->resource[i];
1400                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1401                                 continue;
1402                         iova = reserve_iova(&reserved_iova_list,
1403                                             IOVA_PFN(r->start),
1404                                             IOVA_PFN(r->end));
1405                         if (!iova) {
1406                                 printk(KERN_ERR "Reserve iova failed\n");
1407                                 return -ENODEV;
1408                         }
1409                 }
1410         }
1411         return 0;
1412 }
1413
1414 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1415 {
1416         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1417 }
1418
1419 static inline int guestwidth_to_adjustwidth(int gaw)
1420 {
1421         int agaw;
1422         int r = (gaw - 12) % 9;
1423
1424         if (r == 0)
1425                 agaw = gaw;
1426         else
1427                 agaw = gaw + 9 - r;
1428         if (agaw > 64)
1429                 agaw = 64;
1430         return agaw;
1431 }
1432
1433 static int domain_init(struct dmar_domain *domain, int guest_width)
1434 {
1435         struct intel_iommu *iommu;
1436         int adjust_width, agaw;
1437         unsigned long sagaw;
1438
1439         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1440         spin_lock_init(&domain->iommu_lock);
1441
1442         domain_reserve_special_ranges(domain);
1443
1444         /* calculate AGAW */
1445         iommu = domain_get_iommu(domain);
1446         if (guest_width > cap_mgaw(iommu->cap))
1447                 guest_width = cap_mgaw(iommu->cap);
1448         domain->gaw = guest_width;
1449         adjust_width = guestwidth_to_adjustwidth(guest_width);
1450         agaw = width_to_agaw(adjust_width);
1451         sagaw = cap_sagaw(iommu->cap);
1452         if (!test_bit(agaw, &sagaw)) {
1453                 /* hardware doesn't support it, choose a bigger one */
1454                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1455                 agaw = find_next_bit(&sagaw, 5, agaw);
1456                 if (agaw >= 5)
1457                         return -ENODEV;
1458         }
1459         domain->agaw = agaw;
1460         INIT_LIST_HEAD(&domain->devices);
1461
1462         if (ecap_coherent(iommu->ecap))
1463                 domain->iommu_coherency = 1;
1464         else
1465                 domain->iommu_coherency = 0;
1466
1467         if (ecap_sc_support(iommu->ecap))
1468                 domain->iommu_snooping = 1;
1469         else
1470                 domain->iommu_snooping = 0;
1471
1472         domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1473         domain->iommu_count = 1;
1474         domain->nid = iommu->node;
1475
1476         /* always allocate the top pgd */
1477         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1478         if (!domain->pgd)
1479                 return -ENOMEM;
1480         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1481         return 0;
1482 }
1483
1484 static void domain_exit(struct dmar_domain *domain)
1485 {
1486         struct dmar_drhd_unit *drhd;
1487         struct intel_iommu *iommu;
1488
1489         /* Domain 0 is reserved, so dont process it */
1490         if (!domain)
1491                 return;
1492
1493         /* Flush any lazy unmaps that may reference this domain */
1494         if (!intel_iommu_strict)
1495                 flush_unmaps_timeout(0);
1496
1497         domain_remove_dev_info(domain);
1498         /* destroy iovas */
1499         put_iova_domain(&domain->iovad);
1500
1501         /* clear ptes */
1502         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1503
1504         /* free page tables */
1505         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1506
1507         for_each_active_iommu(iommu, drhd)
1508                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1509                         iommu_detach_domain(domain, iommu);
1510
1511         free_domain_mem(domain);
1512 }
1513
1514 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1515                                  u8 bus, u8 devfn, int translation)
1516 {
1517         struct context_entry *context;
1518         unsigned long flags;
1519         struct intel_iommu *iommu;
1520         struct dma_pte *pgd;
1521         unsigned long num;
1522         unsigned long ndomains;
1523         int id;
1524         int agaw;
1525         struct device_domain_info *info = NULL;
1526
1527         pr_debug("Set context mapping for %02x:%02x.%d\n",
1528                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1529
1530         BUG_ON(!domain->pgd);
1531         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1532                translation != CONTEXT_TT_MULTI_LEVEL);
1533
1534         iommu = device_to_iommu(segment, bus, devfn);
1535         if (!iommu)
1536                 return -ENODEV;
1537
1538         context = device_to_context_entry(iommu, bus, devfn);
1539         if (!context)
1540                 return -ENOMEM;
1541         spin_lock_irqsave(&iommu->lock, flags);
1542         if (context_present(context)) {
1543                 spin_unlock_irqrestore(&iommu->lock, flags);
1544                 return 0;
1545         }
1546
1547         id = domain->id;
1548         pgd = domain->pgd;
1549
1550         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1551             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1552                 int found = 0;
1553
1554                 /* find an available domain id for this device in iommu */
1555                 ndomains = cap_ndoms(iommu->cap);
1556                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1557                         if (iommu->domains[num] == domain) {
1558                                 id = num;
1559                                 found = 1;
1560                                 break;
1561                         }
1562                 }
1563
1564                 if (found == 0) {
1565                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1566                         if (num >= ndomains) {
1567                                 spin_unlock_irqrestore(&iommu->lock, flags);
1568                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1569                                 return -EFAULT;
1570                         }
1571
1572                         set_bit(num, iommu->domain_ids);
1573                         iommu->domains[num] = domain;
1574                         id = num;
1575                 }
1576
1577                 /* Skip top levels of page tables for
1578                  * iommu which has less agaw than default.
1579                  * Unnecessary for PT mode.
1580                  */
1581                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1582                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1583                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1584                                 if (!dma_pte_present(pgd)) {
1585                                         spin_unlock_irqrestore(&iommu->lock, flags);
1586                                         return -ENOMEM;
1587                                 }
1588                         }
1589                 }
1590         }
1591
1592         context_set_domain_id(context, id);
1593
1594         if (translation != CONTEXT_TT_PASS_THROUGH) {
1595                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1596                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1597                                      CONTEXT_TT_MULTI_LEVEL;
1598         }
1599         /*
1600          * In pass through mode, AW must be programmed to indicate the largest
1601          * AGAW value supported by hardware. And ASR is ignored by hardware.
1602          */
1603         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1604                 context_set_address_width(context, iommu->msagaw);
1605         else {
1606                 context_set_address_root(context, virt_to_phys(pgd));
1607                 context_set_address_width(context, iommu->agaw);
1608         }
1609
1610         context_set_translation_type(context, translation);
1611         context_set_fault_enable(context);
1612         context_set_present(context);
1613         domain_flush_cache(domain, context, sizeof(*context));
1614
1615         /*
1616          * It's a non-present to present mapping. If hardware doesn't cache
1617          * non-present entry we only need to flush the write-buffer. If the
1618          * _does_ cache non-present entries, then it does so in the special
1619          * domain #0, which we have to flush:
1620          */
1621         if (cap_caching_mode(iommu->cap)) {
1622                 iommu->flush.flush_context(iommu, 0,
1623                                            (((u16)bus) << 8) | devfn,
1624                                            DMA_CCMD_MASK_NOBIT,
1625                                            DMA_CCMD_DEVICE_INVL);
1626                 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1627         } else {
1628                 iommu_flush_write_buffer(iommu);
1629         }
1630         iommu_enable_dev_iotlb(info);
1631         spin_unlock_irqrestore(&iommu->lock, flags);
1632
1633         spin_lock_irqsave(&domain->iommu_lock, flags);
1634         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1635                 domain->iommu_count++;
1636                 if (domain->iommu_count == 1)
1637                         domain->nid = iommu->node;
1638                 domain_update_iommu_cap(domain);
1639         }
1640         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1641         return 0;
1642 }
1643
1644 static int
1645 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1646                         int translation)
1647 {
1648         int ret;
1649         struct pci_dev *tmp, *parent;
1650
1651         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1652                                          pdev->bus->number, pdev->devfn,
1653                                          translation);
1654         if (ret)
1655                 return ret;
1656
1657         /* dependent device mapping */
1658         tmp = pci_find_upstream_pcie_bridge(pdev);
1659         if (!tmp)
1660                 return 0;
1661         /* Secondary interface's bus number and devfn 0 */
1662         parent = pdev->bus->self;
1663         while (parent != tmp) {
1664                 ret = domain_context_mapping_one(domain,
1665                                                  pci_domain_nr(parent->bus),
1666                                                  parent->bus->number,
1667                                                  parent->devfn, translation);
1668                 if (ret)
1669                         return ret;
1670                 parent = parent->bus->self;
1671         }
1672         if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1673                 return domain_context_mapping_one(domain,
1674                                         pci_domain_nr(tmp->subordinate),
1675                                         tmp->subordinate->number, 0,
1676                                         translation);
1677         else /* this is a legacy PCI bridge */
1678                 return domain_context_mapping_one(domain,
1679                                                   pci_domain_nr(tmp->bus),
1680                                                   tmp->bus->number,
1681                                                   tmp->devfn,
1682                                                   translation);
1683 }
1684
1685 static int domain_context_mapped(struct pci_dev *pdev)
1686 {
1687         int ret;
1688         struct pci_dev *tmp, *parent;
1689         struct intel_iommu *iommu;
1690
1691         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1692                                 pdev->devfn);
1693         if (!iommu)
1694                 return -ENODEV;
1695
1696         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1697         if (!ret)
1698                 return ret;
1699         /* dependent device mapping */
1700         tmp = pci_find_upstream_pcie_bridge(pdev);
1701         if (!tmp)
1702                 return ret;
1703         /* Secondary interface's bus number and devfn 0 */
1704         parent = pdev->bus->self;
1705         while (parent != tmp) {
1706                 ret = device_context_mapped(iommu, parent->bus->number,
1707                                             parent->devfn);
1708                 if (!ret)
1709                         return ret;
1710                 parent = parent->bus->self;
1711         }
1712         if (pci_is_pcie(tmp))
1713                 return device_context_mapped(iommu, tmp->subordinate->number,
1714                                              0);
1715         else
1716                 return device_context_mapped(iommu, tmp->bus->number,
1717                                              tmp->devfn);
1718 }
1719
1720 /* Returns a number of VTD pages, but aligned to MM page size */
1721 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1722                                             size_t size)
1723 {
1724         host_addr &= ~PAGE_MASK;
1725         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1726 }
1727
1728 /* Return largest possible superpage level for a given mapping */
1729 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1730                                           unsigned long iov_pfn,
1731                                           unsigned long phy_pfn,
1732                                           unsigned long pages)
1733 {
1734         int support, level = 1;
1735         unsigned long pfnmerge;
1736
1737         support = domain->iommu_superpage;
1738
1739         /* To use a large page, the virtual *and* physical addresses
1740            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1741            of them will mean we have to use smaller pages. So just
1742            merge them and check both at once. */
1743         pfnmerge = iov_pfn | phy_pfn;
1744
1745         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1746                 pages >>= VTD_STRIDE_SHIFT;
1747                 if (!pages)
1748                         break;
1749                 pfnmerge >>= VTD_STRIDE_SHIFT;
1750                 level++;
1751                 support--;
1752         }
1753         return level;
1754 }
1755
1756 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1757                             struct scatterlist *sg, unsigned long phys_pfn,
1758                             unsigned long nr_pages, int prot)
1759 {
1760         struct dma_pte *first_pte = NULL, *pte = NULL;
1761         phys_addr_t uninitialized_var(pteval);
1762         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1763         unsigned long sg_res;
1764         unsigned int largepage_lvl = 0;
1765         unsigned long lvl_pages = 0;
1766
1767         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1768
1769         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1770                 return -EINVAL;
1771
1772         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1773
1774         if (sg)
1775                 sg_res = 0;
1776         else {
1777                 sg_res = nr_pages + 1;
1778                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1779         }
1780
1781         while (nr_pages > 0) {
1782                 uint64_t tmp;
1783
1784                 if (!sg_res) {
1785                         sg_res = aligned_nrpages(sg->offset, sg->length);
1786                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1787                         sg->dma_length = sg->length;
1788                         pteval = page_to_phys(sg_page(sg)) | prot;
1789                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
1790                 }
1791
1792                 if (!pte) {
1793                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1794
1795                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1796                         if (!pte)
1797                                 return -ENOMEM;
1798                         /* It is large page*/
1799                         if (largepage_lvl > 1)
1800                                 pteval |= DMA_PTE_LARGE_PAGE;
1801                         else
1802                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1803
1804                 }
1805                 /* We don't need lock here, nobody else
1806                  * touches the iova range
1807                  */
1808                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1809                 if (tmp) {
1810                         static int dumps = 5;
1811                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1812                                iov_pfn, tmp, (unsigned long long)pteval);
1813                         if (dumps) {
1814                                 dumps--;
1815                                 debug_dma_dump_mappings(NULL);
1816                         }
1817                         WARN_ON(1);
1818                 }
1819
1820                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1821
1822                 BUG_ON(nr_pages < lvl_pages);
1823                 BUG_ON(sg_res < lvl_pages);
1824
1825                 nr_pages -= lvl_pages;
1826                 iov_pfn += lvl_pages;
1827                 phys_pfn += lvl_pages;
1828                 pteval += lvl_pages * VTD_PAGE_SIZE;
1829                 sg_res -= lvl_pages;
1830
1831                 /* If the next PTE would be the first in a new page, then we
1832                    need to flush the cache on the entries we've just written.
1833                    And then we'll need to recalculate 'pte', so clear it and
1834                    let it get set again in the if (!pte) block above.
1835
1836                    If we're done (!nr_pages) we need to flush the cache too.
1837
1838                    Also if we've been setting superpages, we may need to
1839                    recalculate 'pte' and switch back to smaller pages for the
1840                    end of the mapping, if the trailing size is not enough to
1841                    use another superpage (i.e. sg_res < lvl_pages). */
1842                 pte++;
1843                 if (!nr_pages || first_pte_in_page(pte) ||
1844                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
1845                         domain_flush_cache(domain, first_pte,
1846                                            (void *)pte - (void *)first_pte);
1847                         pte = NULL;
1848                 }
1849
1850                 if (!sg_res && nr_pages)
1851                         sg = sg_next(sg);
1852         }
1853         return 0;
1854 }
1855
1856 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1857                                     struct scatterlist *sg, unsigned long nr_pages,
1858                                     int prot)
1859 {
1860         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1861 }
1862
1863 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1864                                      unsigned long phys_pfn, unsigned long nr_pages,
1865                                      int prot)
1866 {
1867         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1868 }
1869
1870 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1871 {
1872         if (!iommu)
1873                 return;
1874
1875         clear_context_table(iommu, bus, devfn);
1876         iommu->flush.flush_context(iommu, 0, 0, 0,
1877                                            DMA_CCMD_GLOBAL_INVL);
1878         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1879 }
1880
1881 static void domain_remove_dev_info(struct dmar_domain *domain)
1882 {
1883         struct device_domain_info *info;
1884         unsigned long flags;
1885         struct intel_iommu *iommu;
1886
1887         spin_lock_irqsave(&device_domain_lock, flags);
1888         while (!list_empty(&domain->devices)) {
1889                 info = list_entry(domain->devices.next,
1890                         struct device_domain_info, link);
1891                 list_del(&info->link);
1892                 list_del(&info->global);
1893                 if (info->dev)
1894                         info->dev->dev.archdata.iommu = NULL;
1895                 spin_unlock_irqrestore(&device_domain_lock, flags);
1896
1897                 iommu_disable_dev_iotlb(info);
1898                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1899                 iommu_detach_dev(iommu, info->bus, info->devfn);
1900                 free_devinfo_mem(info);
1901
1902                 spin_lock_irqsave(&device_domain_lock, flags);
1903         }
1904         spin_unlock_irqrestore(&device_domain_lock, flags);
1905 }
1906
1907 /*
1908  * find_domain
1909  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1910  */
1911 static struct dmar_domain *
1912 find_domain(struct pci_dev *pdev)
1913 {
1914         struct device_domain_info *info;
1915
1916         /* No lock here, assumes no domain exit in normal case */
1917         info = pdev->dev.archdata.iommu;
1918         if (info)
1919                 return info->domain;
1920         return NULL;
1921 }
1922
1923 /* domain is initialized */
1924 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1925 {
1926         struct dmar_domain *domain, *found = NULL;
1927         struct intel_iommu *iommu;
1928         struct dmar_drhd_unit *drhd;
1929         struct device_domain_info *info, *tmp;
1930         struct pci_dev *dev_tmp;
1931         unsigned long flags;
1932         int bus = 0, devfn = 0;
1933         int segment;
1934         int ret;
1935
1936         domain = find_domain(pdev);
1937         if (domain)
1938                 return domain;
1939
1940         segment = pci_domain_nr(pdev->bus);
1941
1942         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1943         if (dev_tmp) {
1944                 if (pci_is_pcie(dev_tmp)) {
1945                         bus = dev_tmp->subordinate->number;
1946                         devfn = 0;
1947                 } else {
1948                         bus = dev_tmp->bus->number;
1949                         devfn = dev_tmp->devfn;
1950                 }
1951                 spin_lock_irqsave(&device_domain_lock, flags);
1952                 list_for_each_entry(info, &device_domain_list, global) {
1953                         if (info->segment == segment &&
1954                             info->bus == bus && info->devfn == devfn) {
1955                                 found = info->domain;
1956                                 break;
1957                         }
1958                 }
1959                 spin_unlock_irqrestore(&device_domain_lock, flags);
1960                 /* pcie-pci bridge already has a domain, uses it */
1961                 if (found) {
1962                         domain = found;
1963                         goto found_domain;
1964                 }
1965         }
1966
1967         domain = alloc_domain();
1968         if (!domain)
1969                 goto error;
1970
1971         /* Allocate new domain for the device */
1972         drhd = dmar_find_matched_drhd_unit(pdev);
1973         if (!drhd) {
1974                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1975                         pci_name(pdev));
1976                 return NULL;
1977         }
1978         iommu = drhd->iommu;
1979
1980         ret = iommu_attach_domain(domain, iommu);
1981         if (ret) {
1982                 free_domain_mem(domain);
1983                 goto error;
1984         }
1985
1986         if (domain_init(domain, gaw)) {
1987                 domain_exit(domain);
1988                 goto error;
1989         }
1990
1991         /* register pcie-to-pci device */
1992         if (dev_tmp) {
1993                 info = alloc_devinfo_mem();
1994                 if (!info) {
1995                         domain_exit(domain);
1996                         goto error;
1997                 }
1998                 info->segment = segment;
1999                 info->bus = bus;
2000                 info->devfn = devfn;
2001                 info->dev = NULL;
2002                 info->domain = domain;
2003                 /* This domain is shared by devices under p2p bridge */
2004                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2005
2006                 /* pcie-to-pci bridge already has a domain, uses it */
2007                 found = NULL;
2008                 spin_lock_irqsave(&device_domain_lock, flags);
2009                 list_for_each_entry(tmp, &device_domain_list, global) {
2010                         if (tmp->segment == segment &&
2011                             tmp->bus == bus && tmp->devfn == devfn) {
2012                                 found = tmp->domain;
2013                                 break;
2014                         }
2015                 }
2016                 if (found) {
2017                         spin_unlock_irqrestore(&device_domain_lock, flags);
2018                         free_devinfo_mem(info);
2019                         domain_exit(domain);
2020                         domain = found;
2021                 } else {
2022                         list_add(&info->link, &domain->devices);
2023                         list_add(&info->global, &device_domain_list);
2024                         spin_unlock_irqrestore(&device_domain_lock, flags);
2025                 }
2026         }
2027
2028 found_domain:
2029         info = alloc_devinfo_mem();
2030         if (!info)
2031                 goto error;
2032         info->segment = segment;
2033         info->bus = pdev->bus->number;
2034         info->devfn = pdev->devfn;
2035         info->dev = pdev;
2036         info->domain = domain;
2037         spin_lock_irqsave(&device_domain_lock, flags);
2038         /* somebody is fast */
2039         found = find_domain(pdev);
2040         if (found != NULL) {
2041                 spin_unlock_irqrestore(&device_domain_lock, flags);
2042                 if (found != domain) {
2043                         domain_exit(domain);
2044                         domain = found;
2045                 }
2046                 free_devinfo_mem(info);
2047                 return domain;
2048         }
2049         list_add(&info->link, &domain->devices);
2050         list_add(&info->global, &device_domain_list);
2051         pdev->dev.archdata.iommu = info;
2052         spin_unlock_irqrestore(&device_domain_lock, flags);
2053         return domain;
2054 error:
2055         /* recheck it here, maybe others set it */
2056         return find_domain(pdev);
2057 }
2058
2059 static int iommu_identity_mapping;
2060 #define IDENTMAP_ALL            1
2061 #define IDENTMAP_GFX            2
2062 #define IDENTMAP_AZALIA         4
2063
2064 static int iommu_domain_identity_map(struct dmar_domain *domain,
2065                                      unsigned long long start,
2066                                      unsigned long long end)
2067 {
2068         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2069         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2070
2071         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2072                           dma_to_mm_pfn(last_vpfn))) {
2073                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2074                 return -ENOMEM;
2075         }
2076
2077         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2078                  start, end, domain->id);
2079         /*
2080          * RMRR range might have overlap with physical memory range,
2081          * clear it first
2082          */
2083         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2084
2085         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2086                                   last_vpfn - first_vpfn + 1,
2087                                   DMA_PTE_READ|DMA_PTE_WRITE);
2088 }
2089
2090 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2091                                       unsigned long long start,
2092                                       unsigned long long end)
2093 {
2094         struct dmar_domain *domain;
2095         int ret;
2096
2097         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2098         if (!domain)
2099                 return -ENOMEM;
2100
2101         /* For _hardware_ passthrough, don't bother. But for software
2102            passthrough, we do it anyway -- it may indicate a memory
2103            range which is reserved in E820, so which didn't get set
2104            up to start with in si_domain */
2105         if (domain == si_domain && hw_pass_through) {
2106                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2107                        pci_name(pdev), start, end);
2108                 return 0;
2109         }
2110
2111         printk(KERN_INFO
2112                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2113                pci_name(pdev), start, end);
2114         
2115         if (end < start) {
2116                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2117                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2118                         dmi_get_system_info(DMI_BIOS_VENDOR),
2119                         dmi_get_system_info(DMI_BIOS_VERSION),
2120                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2121                 ret = -EIO;
2122                 goto error;
2123         }
2124
2125         if (end >> agaw_to_width(domain->agaw)) {
2126                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2127                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2128                      agaw_to_width(domain->agaw),
2129                      dmi_get_system_info(DMI_BIOS_VENDOR),
2130                      dmi_get_system_info(DMI_BIOS_VERSION),
2131                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2132                 ret = -EIO;
2133                 goto error;
2134         }
2135
2136         ret = iommu_domain_identity_map(domain, start, end);
2137         if (ret)
2138                 goto error;
2139
2140         /* context entry init */
2141         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2142         if (ret)
2143                 goto error;
2144
2145         return 0;
2146
2147  error:
2148         domain_exit(domain);
2149         return ret;
2150 }
2151
2152 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2153         struct pci_dev *pdev)
2154 {
2155         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2156                 return 0;
2157         return iommu_prepare_identity_map(pdev, rmrr->base_address,
2158                 rmrr->end_address);
2159 }
2160
2161 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2162 static inline void iommu_prepare_isa(void)
2163 {
2164         struct pci_dev *pdev;
2165         int ret;
2166
2167         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2168         if (!pdev)
2169                 return;
2170
2171         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2172         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2173
2174         if (ret)
2175                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2176                        "floppy might not work\n");
2177
2178 }
2179 #else
2180 static inline void iommu_prepare_isa(void)
2181 {
2182         return;
2183 }
2184 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2185
2186 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2187
2188 static int __init si_domain_init(int hw)
2189 {
2190         struct dmar_drhd_unit *drhd;
2191         struct intel_iommu *iommu;
2192         int nid, ret = 0;
2193
2194         si_domain = alloc_domain();
2195         if (!si_domain)
2196                 return -EFAULT;
2197
2198         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2199
2200         for_each_active_iommu(iommu, drhd) {
2201                 ret = iommu_attach_domain(si_domain, iommu);
2202                 if (ret) {
2203                         domain_exit(si_domain);
2204                         return -EFAULT;
2205                 }
2206         }
2207
2208         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2209                 domain_exit(si_domain);
2210                 return -EFAULT;
2211         }
2212
2213         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2214
2215         if (hw)
2216                 return 0;
2217
2218         for_each_online_node(nid) {
2219                 unsigned long start_pfn, end_pfn;
2220                 int i;
2221
2222                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2223                         ret = iommu_domain_identity_map(si_domain,
2224                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2225                         if (ret)
2226                                 return ret;
2227                 }
2228         }
2229
2230         return 0;
2231 }
2232
2233 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2234                                           struct pci_dev *pdev);
2235 static int identity_mapping(struct pci_dev *pdev)
2236 {
2237         struct device_domain_info *info;
2238
2239         if (likely(!iommu_identity_mapping))
2240                 return 0;
2241
2242         info = pdev->dev.archdata.iommu;
2243         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2244                 return (info->domain == si_domain);
2245
2246         return 0;
2247 }
2248
2249 static int domain_add_dev_info(struct dmar_domain *domain,
2250                                struct pci_dev *pdev,
2251                                int translation)
2252 {
2253         struct device_domain_info *info;
2254         unsigned long flags;
2255         int ret;
2256
2257         info = alloc_devinfo_mem();
2258         if (!info)
2259                 return -ENOMEM;
2260
2261         ret = domain_context_mapping(domain, pdev, translation);
2262         if (ret) {
2263                 free_devinfo_mem(info);
2264                 return ret;
2265         }
2266
2267         info->segment = pci_domain_nr(pdev->bus);
2268         info->bus = pdev->bus->number;
2269         info->devfn = pdev->devfn;
2270         info->dev = pdev;
2271         info->domain = domain;
2272
2273         spin_lock_irqsave(&device_domain_lock, flags);
2274         list_add(&info->link, &domain->devices);
2275         list_add(&info->global, &device_domain_list);
2276         pdev->dev.archdata.iommu = info;
2277         spin_unlock_irqrestore(&device_domain_lock, flags);
2278
2279         return 0;
2280 }
2281
2282 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2283 {
2284         if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2285                 return 1;
2286
2287         if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2288                 return 1;
2289
2290         if (!(iommu_identity_mapping & IDENTMAP_ALL))
2291                 return 0;
2292
2293         /*
2294          * We want to start off with all devices in the 1:1 domain, and
2295          * take them out later if we find they can't access all of memory.
2296          *
2297          * However, we can't do this for PCI devices behind bridges,
2298          * because all PCI devices behind the same bridge will end up
2299          * with the same source-id on their transactions.
2300          *
2301          * Practically speaking, we can't change things around for these
2302          * devices at run-time, because we can't be sure there'll be no
2303          * DMA transactions in flight for any of their siblings.
2304          * 
2305          * So PCI devices (unless they're on the root bus) as well as
2306          * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2307          * the 1:1 domain, just in _case_ one of their siblings turns out
2308          * not to be able to map all of memory.
2309          */
2310         if (!pci_is_pcie(pdev)) {
2311                 if (!pci_is_root_bus(pdev->bus))
2312                         return 0;
2313                 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2314                         return 0;
2315         } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2316                 return 0;
2317
2318         /* 
2319          * At boot time, we don't yet know if devices will be 64-bit capable.
2320          * Assume that they will -- if they turn out not to be, then we can 
2321          * take them out of the 1:1 domain later.
2322          */
2323         if (!startup) {
2324                 /*
2325                  * If the device's dma_mask is less than the system's memory
2326                  * size then this is not a candidate for identity mapping.
2327                  */
2328                 u64 dma_mask = pdev->dma_mask;
2329
2330                 if (pdev->dev.coherent_dma_mask &&
2331                     pdev->dev.coherent_dma_mask < dma_mask)
2332                         dma_mask = pdev->dev.coherent_dma_mask;
2333
2334                 return dma_mask >= dma_get_required_mask(&pdev->dev);
2335         }
2336
2337         return 1;
2338 }
2339
2340 static int __init iommu_prepare_static_identity_mapping(int hw)
2341 {
2342         struct pci_dev *pdev = NULL;
2343         int ret;
2344
2345         ret = si_domain_init(hw);
2346         if (ret)
2347                 return -EFAULT;
2348
2349         for_each_pci_dev(pdev) {
2350                 /* Skip Host/PCI Bridge devices */
2351                 if (IS_BRIDGE_HOST_DEVICE(pdev))
2352                         continue;
2353                 if (iommu_should_identity_map(pdev, 1)) {
2354                         printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2355                                hw ? "hardware" : "software", pci_name(pdev));
2356
2357                         ret = domain_add_dev_info(si_domain, pdev,
2358                                                      hw ? CONTEXT_TT_PASS_THROUGH :
2359                                                      CONTEXT_TT_MULTI_LEVEL);
2360                         if (ret)
2361                                 return ret;
2362                 }
2363         }
2364
2365         return 0;
2366 }
2367
2368 static int __init init_dmars(void)
2369 {
2370         struct dmar_drhd_unit *drhd;
2371         struct dmar_rmrr_unit *rmrr;
2372         struct pci_dev *pdev;
2373         struct intel_iommu *iommu;
2374         int i, ret;
2375
2376         /*
2377          * for each drhd
2378          *    allocate root
2379          *    initialize and program root entry to not present
2380          * endfor
2381          */
2382         for_each_drhd_unit(drhd) {
2383                 g_num_of_iommus++;
2384                 /*
2385                  * lock not needed as this is only incremented in the single
2386                  * threaded kernel __init code path all other access are read
2387                  * only
2388                  */
2389         }
2390
2391         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2392                         GFP_KERNEL);
2393         if (!g_iommus) {
2394                 printk(KERN_ERR "Allocating global iommu array failed\n");
2395                 ret = -ENOMEM;
2396                 goto error;
2397         }
2398
2399         deferred_flush = kzalloc(g_num_of_iommus *
2400                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2401         if (!deferred_flush) {
2402                 ret = -ENOMEM;
2403                 goto error;
2404         }
2405
2406         for_each_drhd_unit(drhd) {
2407                 if (drhd->ignored)
2408                         continue;
2409
2410                 iommu = drhd->iommu;
2411                 g_iommus[iommu->seq_id] = iommu;
2412
2413                 ret = iommu_init_domains(iommu);
2414                 if (ret)
2415                         goto error;
2416
2417                 /*
2418                  * TBD:
2419                  * we could share the same root & context tables
2420                  * among all IOMMU's. Need to Split it later.
2421                  */
2422                 ret = iommu_alloc_root_entry(iommu);
2423                 if (ret) {
2424                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2425                         goto error;
2426                 }
2427                 if (!ecap_pass_through(iommu->ecap))
2428                         hw_pass_through = 0;
2429         }
2430
2431         /*
2432          * Start from the sane iommu hardware state.
2433          */
2434         for_each_drhd_unit(drhd) {
2435                 if (drhd->ignored)
2436                         continue;
2437
2438                 iommu = drhd->iommu;
2439
2440                 /*
2441                  * If the queued invalidation is already initialized by us
2442                  * (for example, while enabling interrupt-remapping) then
2443                  * we got the things already rolling from a sane state.
2444                  */
2445                 if (iommu->qi)
2446                         continue;
2447
2448                 /*
2449                  * Clear any previous faults.
2450                  */
2451                 dmar_fault(-1, iommu);
2452                 /*
2453                  * Disable queued invalidation if supported and already enabled
2454                  * before OS handover.
2455                  */
2456                 dmar_disable_qi(iommu);
2457         }
2458
2459         for_each_drhd_unit(drhd) {
2460                 if (drhd->ignored)
2461                         continue;
2462
2463                 iommu = drhd->iommu;
2464
2465                 if (dmar_enable_qi(iommu)) {
2466                         /*
2467                          * Queued Invalidate not enabled, use Register Based
2468                          * Invalidate
2469                          */
2470                         iommu->flush.flush_context = __iommu_flush_context;
2471                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2472                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2473                                "invalidation\n",
2474                                 iommu->seq_id,
2475                                (unsigned long long)drhd->reg_base_addr);
2476                 } else {
2477                         iommu->flush.flush_context = qi_flush_context;
2478                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2479                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2480                                "invalidation\n",
2481                                 iommu->seq_id,
2482                                (unsigned long long)drhd->reg_base_addr);
2483                 }
2484         }
2485
2486         if (iommu_pass_through)
2487                 iommu_identity_mapping |= IDENTMAP_ALL;
2488
2489 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2490         iommu_identity_mapping |= IDENTMAP_GFX;
2491 #endif
2492
2493         check_tylersburg_isoch();
2494
2495         /*
2496          * If pass through is not set or not enabled, setup context entries for
2497          * identity mappings for rmrr, gfx, and isa and may fall back to static
2498          * identity mapping if iommu_identity_mapping is set.
2499          */
2500         if (iommu_identity_mapping) {
2501                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2502                 if (ret) {
2503                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2504                         goto error;
2505                 }
2506         }
2507         /*
2508          * For each rmrr
2509          *   for each dev attached to rmrr
2510          *   do
2511          *     locate drhd for dev, alloc domain for dev
2512          *     allocate free domain
2513          *     allocate page table entries for rmrr
2514          *     if context not allocated for bus
2515          *           allocate and init context
2516          *           set present in root table for this bus
2517          *     init context with domain, translation etc
2518          *    endfor
2519          * endfor
2520          */
2521         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2522         for_each_rmrr_units(rmrr) {
2523                 for (i = 0; i < rmrr->devices_cnt; i++) {
2524                         pdev = rmrr->devices[i];
2525                         /*
2526                          * some BIOS lists non-exist devices in DMAR
2527                          * table.
2528                          */
2529                         if (!pdev)
2530                                 continue;
2531                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2532                         if (ret)
2533                                 printk(KERN_ERR
2534                                        "IOMMU: mapping reserved region failed\n");
2535                 }
2536         }
2537
2538         iommu_prepare_isa();
2539
2540         /*
2541          * for each drhd
2542          *   enable fault log
2543          *   global invalidate context cache
2544          *   global invalidate iotlb
2545          *   enable translation
2546          */
2547         for_each_drhd_unit(drhd) {
2548                 if (drhd->ignored) {
2549                         /*
2550                          * we always have to disable PMRs or DMA may fail on
2551                          * this device
2552                          */
2553                         if (force_on)
2554                                 iommu_disable_protect_mem_regions(drhd->iommu);
2555                         continue;
2556                 }
2557                 iommu = drhd->iommu;
2558
2559                 iommu_flush_write_buffer(iommu);
2560
2561                 ret = dmar_set_interrupt(iommu);
2562                 if (ret)
2563                         goto error;
2564
2565                 iommu_set_root_entry(iommu);
2566
2567                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2568                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2569
2570                 ret = iommu_enable_translation(iommu);
2571                 if (ret)
2572                         goto error;
2573
2574                 iommu_disable_protect_mem_regions(iommu);
2575         }
2576
2577         return 0;
2578 error:
2579         for_each_drhd_unit(drhd) {
2580                 if (drhd->ignored)
2581                         continue;
2582                 iommu = drhd->iommu;
2583                 free_iommu(iommu);
2584         }
2585         kfree(g_iommus);
2586         return ret;
2587 }
2588
2589 /* This takes a number of _MM_ pages, not VTD pages */
2590 static struct iova *intel_alloc_iova(struct device *dev,
2591                                      struct dmar_domain *domain,
2592                                      unsigned long nrpages, uint64_t dma_mask)
2593 {
2594         struct pci_dev *pdev = to_pci_dev(dev);
2595         struct iova *iova = NULL;
2596
2597         /* Restrict dma_mask to the width that the iommu can handle */
2598         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2599
2600         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2601                 /*
2602                  * First try to allocate an io virtual address in
2603                  * DMA_BIT_MASK(32) and if that fails then try allocating
2604                  * from higher range
2605                  */
2606                 iova = alloc_iova(&domain->iovad, nrpages,
2607                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2608                 if (iova)
2609                         return iova;
2610         }
2611         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2612         if (unlikely(!iova)) {
2613                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2614                        nrpages, pci_name(pdev));
2615                 return NULL;
2616         }
2617
2618         return iova;
2619 }
2620
2621 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2622 {
2623         struct dmar_domain *domain;
2624         int ret;
2625
2626         domain = get_domain_for_dev(pdev,
2627                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2628         if (!domain) {
2629                 printk(KERN_ERR
2630                         "Allocating domain for %s failed", pci_name(pdev));
2631                 return NULL;
2632         }
2633
2634         /* make sure context mapping is ok */
2635         if (unlikely(!domain_context_mapped(pdev))) {
2636                 ret = domain_context_mapping(domain, pdev,
2637                                              CONTEXT_TT_MULTI_LEVEL);
2638                 if (ret) {
2639                         printk(KERN_ERR
2640                                 "Domain context map for %s failed",
2641                                 pci_name(pdev));
2642                         return NULL;
2643                 }
2644         }
2645
2646         return domain;
2647 }
2648
2649 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2650 {
2651         struct device_domain_info *info;
2652
2653         /* No lock here, assumes no domain exit in normal case */
2654         info = dev->dev.archdata.iommu;
2655         if (likely(info))
2656                 return info->domain;
2657
2658         return __get_valid_domain_for_dev(dev);
2659 }
2660
2661 static int iommu_dummy(struct pci_dev *pdev)
2662 {
2663         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2664 }
2665
2666 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2667 static int iommu_no_mapping(struct device *dev)
2668 {
2669         struct pci_dev *pdev;
2670         int found;
2671
2672         if (unlikely(dev->bus != &pci_bus_type))
2673                 return 1;
2674
2675         pdev = to_pci_dev(dev);
2676         if (iommu_dummy(pdev))
2677                 return 1;
2678
2679         if (!iommu_identity_mapping)
2680                 return 0;
2681
2682         found = identity_mapping(pdev);
2683         if (found) {
2684                 if (iommu_should_identity_map(pdev, 0))
2685                         return 1;
2686                 else {
2687                         /*
2688                          * 32 bit DMA is removed from si_domain and fall back
2689                          * to non-identity mapping.
2690                          */
2691                         domain_remove_one_dev_info(si_domain, pdev);
2692                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2693                                pci_name(pdev));
2694                         return 0;
2695                 }
2696         } else {
2697                 /*
2698                  * In case of a detached 64 bit DMA device from vm, the device
2699                  * is put into si_domain for identity mapping.
2700                  */
2701                 if (iommu_should_identity_map(pdev, 0)) {
2702                         int ret;
2703                         ret = domain_add_dev_info(si_domain, pdev,
2704                                                   hw_pass_through ?
2705                                                   CONTEXT_TT_PASS_THROUGH :
2706                                                   CONTEXT_TT_MULTI_LEVEL);
2707                         if (!ret) {
2708                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2709                                        pci_name(pdev));
2710                                 return 1;
2711                         }
2712                 }
2713         }
2714
2715         return 0;
2716 }
2717
2718 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2719                                      size_t size, int dir, u64 dma_mask)
2720 {
2721         struct pci_dev *pdev = to_pci_dev(hwdev);
2722         struct dmar_domain *domain;
2723         phys_addr_t start_paddr;
2724         struct iova *iova;
2725         int prot = 0;
2726         int ret;
2727         struct intel_iommu *iommu;
2728         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2729
2730         BUG_ON(dir == DMA_NONE);
2731
2732         if (iommu_no_mapping(hwdev))
2733                 return paddr;
2734
2735         domain = get_valid_domain_for_dev(pdev);
2736         if (!domain)
2737                 return 0;
2738
2739         iommu = domain_get_iommu(domain);
2740         size = aligned_nrpages(paddr, size);
2741
2742         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2743         if (!iova)
2744                 goto error;
2745
2746         /*
2747          * Check if DMAR supports zero-length reads on write only
2748          * mappings..
2749          */
2750         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2751                         !cap_zlr(iommu->cap))
2752                 prot |= DMA_PTE_READ;
2753         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2754                 prot |= DMA_PTE_WRITE;
2755         /*
2756          * paddr - (paddr + size) might be partial page, we should map the whole
2757          * page.  Note: if two part of one page are separately mapped, we
2758          * might have two guest_addr mapping to the same host paddr, but this
2759          * is not a big problem
2760          */
2761         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2762                                  mm_to_dma_pfn(paddr_pfn), size, prot);
2763         if (ret)
2764                 goto error;
2765
2766         /* it's a non-present to present mapping. Only flush if caching mode */
2767         if (cap_caching_mode(iommu->cap))
2768                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2769         else
2770                 iommu_flush_write_buffer(iommu);
2771
2772         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2773         start_paddr += paddr & ~PAGE_MASK;
2774         return start_paddr;
2775
2776 error:
2777         if (iova)
2778                 __free_iova(&domain->iovad, iova);
2779         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2780                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2781         return 0;
2782 }
2783
2784 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2785                                  unsigned long offset, size_t size,
2786                                  enum dma_data_direction dir,
2787                                  struct dma_attrs *attrs)
2788 {
2789         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2790                                   dir, to_pci_dev(dev)->dma_mask);
2791 }
2792
2793 static void flush_unmaps(void)
2794 {
2795         int i, j;
2796
2797         timer_on = 0;
2798
2799         /* just flush them all */
2800         for (i = 0; i < g_num_of_iommus; i++) {
2801                 struct intel_iommu *iommu = g_iommus[i];
2802                 if (!iommu)
2803                         continue;
2804
2805                 if (!deferred_flush[i].next)
2806                         continue;
2807
2808                 /* In caching mode, global flushes turn emulation expensive */
2809                 if (!cap_caching_mode(iommu->cap))
2810                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2811                                          DMA_TLB_GLOBAL_FLUSH);
2812                 for (j = 0; j < deferred_flush[i].next; j++) {
2813                         unsigned long mask;
2814                         struct iova *iova = deferred_flush[i].iova[j];
2815                         struct dmar_domain *domain = deferred_flush[i].domain[j];
2816
2817                         /* On real hardware multiple invalidations are expensive */
2818                         if (cap_caching_mode(iommu->cap))
2819                                 iommu_flush_iotlb_psi(iommu, domain->id,
2820                                 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2821                         else {
2822                                 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2823                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2824                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2825                         }
2826                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2827                 }
2828                 deferred_flush[i].next = 0;
2829         }
2830
2831         list_size = 0;
2832 }
2833
2834 static void flush_unmaps_timeout(unsigned long data)
2835 {
2836         unsigned long flags;
2837
2838         spin_lock_irqsave(&async_umap_flush_lock, flags);
2839         flush_unmaps();
2840         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2841 }
2842
2843 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2844 {
2845         unsigned long flags;
2846         int next, iommu_id;
2847         struct intel_iommu *iommu;
2848
2849         spin_lock_irqsave(&async_umap_flush_lock, flags);
2850         if (list_size == HIGH_WATER_MARK)
2851                 flush_unmaps();
2852
2853         iommu = domain_get_iommu(dom);
2854         iommu_id = iommu->seq_id;
2855
2856         next = deferred_flush[iommu_id].next;
2857         deferred_flush[iommu_id].domain[next] = dom;
2858         deferred_flush[iommu_id].iova[next] = iova;
2859         deferred_flush[iommu_id].next++;
2860
2861         if (!timer_on) {
2862                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2863                 timer_on = 1;
2864         }
2865         list_size++;
2866         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2867 }
2868
2869 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2870                              size_t size, enum dma_data_direction dir,
2871                              struct dma_attrs *attrs)
2872 {
2873         struct pci_dev *pdev = to_pci_dev(dev);
2874         struct dmar_domain *domain;
2875         unsigned long start_pfn, last_pfn;
2876         struct iova *iova;
2877         struct intel_iommu *iommu;
2878
2879         if (iommu_no_mapping(dev))
2880                 return;
2881
2882         domain = find_domain(pdev);
2883         BUG_ON(!domain);
2884
2885         iommu = domain_get_iommu(domain);
2886
2887         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2888         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2889                       (unsigned long long)dev_addr))
2890                 return;
2891
2892         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2893         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2894
2895         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2896                  pci_name(pdev), start_pfn, last_pfn);
2897
2898         /*  clear the whole page */
2899         dma_pte_clear_range(domain, start_pfn, last_pfn);
2900
2901         /* free page tables */
2902         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2903
2904         if (intel_iommu_strict) {
2905                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2906                                       last_pfn - start_pfn + 1, 0);
2907                 /* free iova */
2908                 __free_iova(&domain->iovad, iova);
2909         } else {
2910                 add_unmap(domain, iova);
2911                 /*
2912                  * queue up the release of the unmap to save the 1/6th of the
2913                  * cpu used up by the iotlb flush operation...
2914                  */
2915         }
2916 }
2917
2918 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2919                                   dma_addr_t *dma_handle, gfp_t flags)
2920 {
2921         void *vaddr;
2922         int order;
2923
2924         size = PAGE_ALIGN(size);
2925         order = get_order(size);
2926
2927         if (!iommu_no_mapping(hwdev))
2928                 flags &= ~(GFP_DMA | GFP_DMA32);
2929         else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2930                 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2931                         flags |= GFP_DMA;
2932                 else
2933                         flags |= GFP_DMA32;
2934         }
2935
2936         vaddr = (void *)__get_free_pages(flags, order);
2937         if (!vaddr)
2938                 return NULL;
2939         memset(vaddr, 0, size);
2940
2941         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2942                                          DMA_BIDIRECTIONAL,
2943                                          hwdev->coherent_dma_mask);
2944         if (*dma_handle)
2945                 return vaddr;
2946         free_pages((unsigned long)vaddr, order);
2947         return NULL;
2948 }
2949
2950 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2951                                 dma_addr_t dma_handle)
2952 {
2953         int order;
2954
2955         size = PAGE_ALIGN(size);
2956         order = get_order(size);
2957
2958         intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2959         free_pages((unsigned long)vaddr, order);
2960 }
2961
2962 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2963                            int nelems, enum dma_data_direction dir,
2964                            struct dma_attrs *attrs)
2965 {
2966         struct pci_dev *pdev = to_pci_dev(hwdev);
2967         struct dmar_domain *domain;
2968         unsigned long start_pfn, last_pfn;
2969         struct iova *iova;
2970         struct intel_iommu *iommu;
2971
2972         if (iommu_no_mapping(hwdev))
2973                 return;
2974
2975         domain = find_domain(pdev);
2976         BUG_ON(!domain);
2977
2978         iommu = domain_get_iommu(domain);
2979
2980         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2981         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2982                       (unsigned long long)sglist[0].dma_address))
2983                 return;
2984
2985         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2986         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2987
2988         /*  clear the whole page */
2989         dma_pte_clear_range(domain, start_pfn, last_pfn);
2990
2991         /* free page tables */
2992         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2993
2994         if (intel_iommu_strict) {
2995                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2996                                       last_pfn - start_pfn + 1, 0);
2997                 /* free iova */
2998                 __free_iova(&domain->iovad, iova);
2999         } else {
3000                 add_unmap(domain, iova);
3001                 /*
3002                  * queue up the release of the unmap to save the 1/6th of the
3003                  * cpu used up by the iotlb flush operation...
3004                  */
3005         }
3006 }
3007
3008 static int intel_nontranslate_map_sg(struct device *hddev,
3009         struct scatterlist *sglist, int nelems, int dir)
3010 {
3011         int i;
3012         struct scatterlist *sg;
3013
3014         for_each_sg(sglist, sg, nelems, i) {
3015                 BUG_ON(!sg_page(sg));
3016                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3017                 sg->dma_length = sg->length;
3018         }
3019         return nelems;
3020 }
3021
3022 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3023                         enum dma_data_direction dir, struct dma_attrs *attrs)
3024 {
3025         int i;
3026         struct pci_dev *pdev = to_pci_dev(hwdev);
3027         struct dmar_domain *domain;
3028         size_t size = 0;
3029         int prot = 0;
3030         struct iova *iova = NULL;
3031         int ret;
3032         struct scatterlist *sg;
3033         unsigned long start_vpfn;
3034         struct intel_iommu *iommu;
3035
3036         BUG_ON(dir == DMA_NONE);
3037         if (iommu_no_mapping(hwdev))
3038                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3039
3040         domain = get_valid_domain_for_dev(pdev);
3041         if (!domain)
3042                 return 0;
3043
3044         iommu = domain_get_iommu(domain);
3045
3046         for_each_sg(sglist, sg, nelems, i)
3047                 size += aligned_nrpages(sg->offset, sg->length);
3048
3049         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3050                                 pdev->dma_mask);
3051         if (!iova) {
3052                 sglist->dma_length = 0;
3053                 return 0;
3054         }
3055
3056         /*
3057          * Check if DMAR supports zero-length reads on write only
3058          * mappings..
3059          */
3060         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3061                         !cap_zlr(iommu->cap))
3062                 prot |= DMA_PTE_READ;
3063         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3064                 prot |= DMA_PTE_WRITE;
3065
3066         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3067
3068         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3069         if (unlikely(ret)) {
3070                 /*  clear the page */
3071                 dma_pte_clear_range(domain, start_vpfn,
3072                                     start_vpfn + size - 1);
3073                 /* free page tables */
3074                 dma_pte_free_pagetable(domain, start_vpfn,
3075                                        start_vpfn + size - 1);
3076                 /* free iova */
3077                 __free_iova(&domain->iovad, iova);
3078                 return 0;
3079         }
3080
3081         /* it's a non-present to present mapping. Only flush if caching mode */
3082         if (cap_caching_mode(iommu->cap))
3083                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3084         else
3085                 iommu_flush_write_buffer(iommu);
3086
3087         return nelems;
3088 }
3089
3090 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3091 {
3092         return !dma_addr;
3093 }
3094
3095 struct dma_map_ops intel_dma_ops = {
3096         .alloc_coherent = intel_alloc_coherent,
3097         .free_coherent = intel_free_coherent,
3098         .map_sg = intel_map_sg,
3099         .unmap_sg = intel_unmap_sg,
3100         .map_page = intel_map_page,
3101         .unmap_page = intel_unmap_page,
3102         .mapping_error = intel_mapping_error,
3103 };
3104
3105 static inline int iommu_domain_cache_init(void)
3106 {
3107         int ret = 0;
3108
3109         iommu_domain_cache = kmem_cache_create("iommu_domain",
3110                                          sizeof(struct dmar_domain),
3111                                          0,
3112                                          SLAB_HWCACHE_ALIGN,
3113
3114                                          NULL);
3115         if (!iommu_domain_cache) {
3116                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3117                 ret = -ENOMEM;
3118         }
3119
3120         return ret;
3121 }
3122
3123 static inline int iommu_devinfo_cache_init(void)
3124 {
3125         int ret = 0;
3126
3127         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3128                                          sizeof(struct device_domain_info),
3129                                          0,
3130                                          SLAB_HWCACHE_ALIGN,
3131                                          NULL);
3132         if (!iommu_devinfo_cache) {
3133                 printk(KERN_ERR "Couldn't create devinfo cache\n");
3134                 ret = -ENOMEM;
3135         }
3136
3137         return ret;
3138 }
3139
3140 static inline int iommu_iova_cache_init(void)
3141 {
3142         int ret = 0;
3143
3144         iommu_iova_cache = kmem_cache_create("iommu_iova",
3145                                          sizeof(struct iova),
3146                                          0,
3147                                          SLAB_HWCACHE_ALIGN,
3148                                          NULL);
3149         if (!iommu_iova_cache) {
3150                 printk(KERN_ERR "Couldn't create iova cache\n");
3151                 ret = -ENOMEM;
3152         }
3153
3154         return ret;
3155 }
3156
3157 static int __init iommu_init_mempool(void)
3158 {
3159         int ret;
3160         ret = iommu_iova_cache_init();
3161         if (ret)
3162                 return ret;
3163
3164         ret = iommu_domain_cache_init();
3165         if (ret)
3166                 goto domain_error;
3167
3168         ret = iommu_devinfo_cache_init();
3169         if (!ret)
3170                 return ret;
3171
3172         kmem_cache_destroy(iommu_domain_cache);
3173 domain_error:
3174         kmem_cache_destroy(iommu_iova_cache);
3175
3176         return -ENOMEM;
3177 }
3178
3179 static void __init iommu_exit_mempool(void)
3180 {
3181         kmem_cache_destroy(iommu_devinfo_cache);
3182         kmem_cache_destroy(iommu_domain_cache);
3183         kmem_cache_destroy(iommu_iova_cache);
3184
3185 }
3186
3187 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3188 {
3189         struct dmar_drhd_unit *drhd;
3190         u32 vtbar;
3191         int rc;
3192
3193         /* We know that this device on this chipset has its own IOMMU.
3194          * If we find it under a different IOMMU, then the BIOS is lying
3195          * to us. Hope that the IOMMU for this device is actually
3196          * disabled, and it needs no translation...
3197          */
3198         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3199         if (rc) {
3200                 /* "can't" happen */
3201                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3202                 return;
3203         }
3204         vtbar &= 0xffff0000;
3205
3206         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3207         drhd = dmar_find_matched_drhd_unit(pdev);
3208         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3209                             TAINT_FIRMWARE_WORKAROUND,
3210                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3211                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3212 }
3213 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3214
3215 static void __init init_no_remapping_devices(void)
3216 {
3217         struct dmar_drhd_unit *drhd;
3218
3219         for_each_drhd_unit(drhd) {
3220                 if (!drhd->include_all) {
3221                         int i;
3222                         for (i = 0; i < drhd->devices_cnt; i++)
3223                                 if (drhd->devices[i] != NULL)
3224                                         break;
3225                         /* ignore DMAR unit if no pci devices exist */
3226                         if (i == drhd->devices_cnt)
3227                                 drhd->ignored = 1;
3228                 }
3229         }
3230
3231         for_each_drhd_unit(drhd) {
3232                 int i;
3233                 if (drhd->ignored || drhd->include_all)
3234                         continue;
3235
3236                 for (i = 0; i < drhd->devices_cnt; i++)
3237                         if (drhd->devices[i] &&
3238                             !IS_GFX_DEVICE(drhd->devices[i]))
3239                                 break;
3240
3241                 if (i < drhd->devices_cnt)
3242                         continue;
3243
3244                 /* This IOMMU has *only* gfx devices. Either bypass it or
3245                    set the gfx_mapped flag, as appropriate */
3246                 if (dmar_map_gfx) {
3247                         intel_iommu_gfx_mapped = 1;
3248                 } else {
3249                         drhd->ignored = 1;
3250                         for (i = 0; i < drhd->devices_cnt; i++) {
3251                                 if (!drhd->devices[i])
3252                                         continue;
3253                                 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3254                         }
3255                 }
3256         }
3257 }
3258
3259 #ifdef CONFIG_SUSPEND
3260 static int init_iommu_hw(void)
3261 {
3262         struct dmar_drhd_unit *drhd;
3263         struct intel_iommu *iommu = NULL;
3264
3265         for_each_active_iommu(iommu, drhd)
3266                 if (iommu->qi)
3267                         dmar_reenable_qi(iommu);
3268
3269         for_each_iommu(iommu, drhd) {
3270                 if (drhd->ignored) {
3271                         /*
3272                          * we always have to disable PMRs or DMA may fail on
3273                          * this device
3274                          */
3275                         if (force_on)
3276                                 iommu_disable_protect_mem_regions(iommu);
3277                         continue;
3278                 }
3279         
3280                 iommu_flush_write_buffer(iommu);
3281
3282                 iommu_set_root_entry(iommu);
3283
3284                 iommu->flush.flush_context(iommu, 0, 0, 0,
3285                                            DMA_CCMD_GLOBAL_INVL);
3286                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3287                                          DMA_TLB_GLOBAL_FLUSH);
3288                 if (iommu_enable_translation(iommu))
3289                         return 1;
3290                 iommu_disable_protect_mem_regions(iommu);
3291         }
3292
3293         return 0;
3294 }
3295
3296 static void iommu_flush_all(void)
3297 {
3298         struct dmar_drhd_unit *drhd;
3299         struct intel_iommu *iommu;
3300
3301         for_each_active_iommu(iommu, drhd) {
3302                 iommu->flush.flush_context(iommu, 0, 0, 0,
3303                                            DMA_CCMD_GLOBAL_INVL);
3304                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3305                                          DMA_TLB_GLOBAL_FLUSH);
3306         }
3307 }
3308
3309 static int iommu_suspend(void)
3310 {
3311         struct dmar_drhd_unit *drhd;
3312         struct intel_iommu *iommu = NULL;
3313         unsigned long flag;
3314
3315         for_each_active_iommu(iommu, drhd) {
3316                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3317                                                  GFP_ATOMIC);
3318                 if (!iommu->iommu_state)
3319                         goto nomem;
3320         }
3321
3322         iommu_flush_all();
3323
3324         for_each_active_iommu(iommu, drhd) {
3325                 iommu_disable_translation(iommu);
3326
3327                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3328
3329                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3330                         readl(iommu->reg + DMAR_FECTL_REG);
3331                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3332                         readl(iommu->reg + DMAR_FEDATA_REG);
3333                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3334                         readl(iommu->reg + DMAR_FEADDR_REG);
3335                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3336                         readl(iommu->reg + DMAR_FEUADDR_REG);
3337
3338                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3339         }
3340         return 0;
3341
3342 nomem:
3343         for_each_active_iommu(iommu, drhd)
3344                 kfree(iommu->iommu_state);
3345
3346         return -ENOMEM;
3347 }
3348
3349 static void iommu_resume(void)
3350 {
3351         struct dmar_drhd_unit *drhd;
3352         struct intel_iommu *iommu = NULL;
3353         unsigned long flag;
3354
3355         if (init_iommu_hw()) {
3356                 if (force_on)
3357                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3358                 else
3359                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3360                 return;
3361         }
3362
3363         for_each_active_iommu(iommu, drhd) {
3364
3365                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3366
3367                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3368                         iommu->reg + DMAR_FECTL_REG);
3369                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3370                         iommu->reg + DMAR_FEDATA_REG);
3371                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3372                         iommu->reg + DMAR_FEADDR_REG);
3373                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3374                         iommu->reg + DMAR_FEUADDR_REG);
3375
3376                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3377         }
3378
3379         for_each_active_iommu(iommu, drhd)
3380                 kfree(iommu->iommu_state);
3381 }
3382
3383 static struct syscore_ops iommu_syscore_ops = {
3384         .resume         = iommu_resume,
3385         .suspend        = iommu_suspend,
3386 };
3387
3388 static void __init init_iommu_pm_ops(void)
3389 {
3390         register_syscore_ops(&iommu_syscore_ops);
3391 }
3392
3393 #else
3394 static inline void init_iommu_pm_ops(void) {}
3395 #endif  /* CONFIG_PM */
3396
3397 LIST_HEAD(dmar_rmrr_units);
3398
3399 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3400 {
3401         list_add(&rmrr->list, &dmar_rmrr_units);
3402 }
3403
3404
3405 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3406 {
3407         struct acpi_dmar_reserved_memory *rmrr;
3408         struct dmar_rmrr_unit *rmrru;
3409
3410         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3411         if (!rmrru)
3412                 return -ENOMEM;
3413
3414         rmrru->hdr = header;
3415         rmrr = (struct acpi_dmar_reserved_memory *)header;
3416         rmrru->base_address = rmrr->base_address;
3417         rmrru->end_address = rmrr->end_address;
3418
3419         dmar_register_rmrr_unit(rmrru);
3420         return 0;
3421 }
3422
3423 static int __init
3424 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3425 {
3426         struct acpi_dmar_reserved_memory *rmrr;
3427         int ret;
3428
3429         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3430         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3431                 ((void *)rmrr) + rmrr->header.length,
3432                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3433
3434         if (ret || (rmrru->devices_cnt == 0)) {
3435                 list_del(&rmrru->list);
3436                 kfree(rmrru);
3437         }
3438         return ret;
3439 }
3440
3441 static LIST_HEAD(dmar_atsr_units);
3442
3443 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3444 {
3445         struct acpi_dmar_atsr *atsr;
3446         struct dmar_atsr_unit *atsru;
3447
3448         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3449         atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3450         if (!atsru)
3451                 return -ENOMEM;
3452
3453         atsru->hdr = hdr;
3454         atsru->include_all = atsr->flags & 0x1;
3455
3456         list_add(&atsru->list, &dmar_atsr_units);
3457
3458         return 0;
3459 }
3460
3461 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3462 {
3463         int rc;
3464         struct acpi_dmar_atsr *atsr;
3465
3466         if (atsru->include_all)
3467                 return 0;
3468
3469         atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3470         rc = dmar_parse_dev_scope((void *)(atsr + 1),
3471                                 (void *)atsr + atsr->header.length,
3472                                 &atsru->devices_cnt, &atsru->devices,
3473                                 atsr->segment);
3474         if (rc || !atsru->devices_cnt) {
3475                 list_del(&atsru->list);
3476                 kfree(atsru);
3477         }
3478
3479         return rc;
3480 }
3481
3482 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3483 {
3484         int i;
3485         struct pci_bus *bus;
3486         struct acpi_dmar_atsr *atsr;
3487         struct dmar_atsr_unit *atsru;
3488
3489         dev = pci_physfn(dev);
3490
3491         list_for_each_entry(atsru, &dmar_atsr_units, list) {
3492                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3493                 if (atsr->segment == pci_domain_nr(dev->bus))
3494                         goto found;
3495         }
3496
3497         return 0;
3498
3499 found:
3500         for (bus = dev->bus; bus; bus = bus->parent) {
3501                 struct pci_dev *bridge = bus->self;
3502
3503                 if (!bridge || !pci_is_pcie(bridge) ||
3504                     bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3505                         return 0;
3506
3507                 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3508                         for (i = 0; i < atsru->devices_cnt; i++)
3509                                 if (atsru->devices[i] == bridge)
3510                                         return 1;
3511                         break;
3512                 }
3513         }
3514
3515         if (atsru->include_all)
3516                 return 1;
3517
3518         return 0;
3519 }
3520
3521 int dmar_parse_rmrr_atsr_dev(void)
3522 {
3523         struct dmar_rmrr_unit *rmrr, *rmrr_n;
3524         struct dmar_atsr_unit *atsr, *atsr_n;
3525         int ret = 0;
3526
3527         list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3528                 ret = rmrr_parse_dev(rmrr);
3529                 if (ret)
3530                         return ret;
3531         }
3532
3533         list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3534                 ret = atsr_parse_dev(atsr);
3535                 if (ret)
3536                         return ret;
3537         }
3538
3539         return ret;
3540 }
3541
3542 /*
3543  * Here we only respond to action of unbound device from driver.
3544  *
3545  * Added device is not attached to its DMAR domain here yet. That will happen
3546  * when mapping the device to iova.
3547  */
3548 static int device_notifier(struct notifier_block *nb,
3549                                   unsigned long action, void *data)
3550 {
3551         struct device *dev = data;
3552         struct pci_dev *pdev = to_pci_dev(dev);
3553         struct dmar_domain *domain;
3554
3555         if (iommu_no_mapping(dev))
3556                 return 0;
3557
3558         domain = find_domain(pdev);
3559         if (!domain)
3560                 return 0;
3561
3562         if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3563                 domain_remove_one_dev_info(domain, pdev);
3564
3565                 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3566                     !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3567                     list_empty(&domain->devices))
3568                         domain_exit(domain);
3569         }
3570
3571         return 0;
3572 }
3573
3574 static struct notifier_block device_nb = {
3575         .notifier_call = device_notifier,
3576 };
3577
3578 int __init intel_iommu_init(void)
3579 {
3580         int ret = 0;
3581
3582         /* VT-d is required for a TXT/tboot launch, so enforce that */
3583         force_on = tboot_force_iommu();
3584
3585         if (dmar_table_init()) {
3586                 if (force_on)
3587                         panic("tboot: Failed to initialize DMAR table\n");
3588                 return  -ENODEV;
3589         }
3590
3591         if (dmar_dev_scope_init() < 0) {
3592                 if (force_on)
3593                         panic("tboot: Failed to initialize DMAR device scope\n");
3594                 return  -ENODEV;
3595         }
3596
3597         if (no_iommu || dmar_disabled)
3598                 return -ENODEV;
3599
3600         if (iommu_init_mempool()) {
3601                 if (force_on)
3602                         panic("tboot: Failed to initialize iommu memory\n");
3603                 return  -ENODEV;
3604         }
3605
3606         if (list_empty(&dmar_rmrr_units))
3607                 printk(KERN_INFO "DMAR: No RMRR found\n");
3608
3609         if (list_empty(&dmar_atsr_units))
3610                 printk(KERN_INFO "DMAR: No ATSR found\n");
3611
3612         if (dmar_init_reserved_ranges()) {
3613                 if (force_on)
3614                         panic("tboot: Failed to reserve iommu ranges\n");
3615                 return  -ENODEV;
3616         }
3617
3618         init_no_remapping_devices();
3619
3620         ret = init_dmars();
3621         if (ret) {
3622                 if (force_on)
3623                         panic("tboot: Failed to initialize DMARs\n");
3624                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3625                 put_iova_domain(&reserved_iova_list);
3626                 iommu_exit_mempool();
3627                 return ret;
3628         }
3629         printk(KERN_INFO
3630         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3631
3632         init_timer(&unmap_timer);
3633 #ifdef CONFIG_SWIOTLB
3634         swiotlb = 0;
3635 #endif
3636         dma_ops = &intel_dma_ops;
3637
3638         init_iommu_pm_ops();
3639
3640         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3641
3642         bus_register_notifier(&pci_bus_type, &device_nb);
3643
3644         return 0;
3645 }
3646
3647 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3648                                            struct pci_dev *pdev)
3649 {
3650         struct pci_dev *tmp, *parent;
3651
3652         if (!iommu || !pdev)
3653                 return;
3654
3655         /* dependent device detach */
3656         tmp = pci_find_upstream_pcie_bridge(pdev);
3657         /* Secondary interface's bus number and devfn 0 */
3658         if (tmp) {
3659                 parent = pdev->bus->self;
3660                 while (parent != tmp) {
3661                         iommu_detach_dev(iommu, parent->bus->number,
3662                                          parent->devfn);
3663                         parent = parent->bus->self;
3664                 }
3665                 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3666                         iommu_detach_dev(iommu,
3667                                 tmp->subordinate->number, 0);
3668                 else /* this is a legacy PCI bridge */
3669                         iommu_detach_dev(iommu, tmp->bus->number,
3670                                          tmp->devfn);
3671         }
3672 }
3673
3674 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3675                                           struct pci_dev *pdev)
3676 {
3677         struct device_domain_info *info;
3678         struct intel_iommu *iommu;
3679         unsigned long flags;
3680         int found = 0;
3681         struct list_head *entry, *tmp;
3682
3683         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3684                                 pdev->devfn);
3685         if (!iommu)
3686                 return;
3687
3688         spin_lock_irqsave(&device_domain_lock, flags);
3689         list_for_each_safe(entry, tmp, &domain->devices) {
3690                 info = list_entry(entry, struct device_domain_info, link);
3691                 if (info->segment == pci_domain_nr(pdev->bus) &&
3692                     info->bus == pdev->bus->number &&
3693                     info->devfn == pdev->devfn) {
3694                         list_del(&info->link);
3695                         list_del(&info->global);
3696                         if (info->dev)
3697                                 info->dev->dev.archdata.iommu = NULL;
3698                         spin_unlock_irqrestore(&device_domain_lock, flags);
3699
3700                         iommu_disable_dev_iotlb(info);
3701                         iommu_detach_dev(iommu, info->bus, info->devfn);
3702                         iommu_detach_dependent_devices(iommu, pdev);
3703                         free_devinfo_mem(info);
3704
3705                         spin_lock_irqsave(&device_domain_lock, flags);
3706
3707                         if (found)
3708                                 break;
3709                         else
3710                                 continue;
3711                 }
3712
3713                 /* if there is no other devices under the same iommu
3714                  * owned by this domain, clear this iommu in iommu_bmp
3715                  * update iommu count and coherency
3716                  */
3717                 if (iommu == device_to_iommu(info->segment, info->bus,
3718                                             info->devfn))
3719                         found = 1;
3720         }
3721
3722         spin_unlock_irqrestore(&device_domain_lock, flags);
3723
3724         if (found == 0) {
3725                 unsigned long tmp_flags;
3726                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3727                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3728                 domain->iommu_count--;
3729                 domain_update_iommu_cap(domain);
3730                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3731
3732                 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3733                     !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3734                         spin_lock_irqsave(&iommu->lock, tmp_flags);
3735                         clear_bit(domain->id, iommu->domain_ids);
3736                         iommu->domains[domain->id] = NULL;
3737                         spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3738                 }
3739         }
3740 }
3741
3742 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3743 {
3744         struct device_domain_info *info;
3745         struct intel_iommu *iommu;
3746         unsigned long flags1, flags2;
3747
3748         spin_lock_irqsave(&device_domain_lock, flags1);
3749         while (!list_empty(&domain->devices)) {
3750                 info = list_entry(domain->devices.next,
3751                         struct device_domain_info, link);
3752                 list_del(&info->link);
3753                 list_del(&info->global);
3754                 if (info->dev)
3755                         info->dev->dev.archdata.iommu = NULL;
3756
3757                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3758
3759                 iommu_disable_dev_iotlb(info);
3760                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3761                 iommu_detach_dev(iommu, info->bus, info->devfn);
3762                 iommu_detach_dependent_devices(iommu, info->dev);
3763
3764                 /* clear this iommu in iommu_bmp, update iommu count
3765                  * and capabilities
3766                  */
3767                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3768                 if (test_and_clear_bit(iommu->seq_id,
3769                                        &domain->iommu_bmp)) {
3770                         domain->iommu_count--;
3771                         domain_update_iommu_cap(domain);
3772                 }
3773                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3774
3775                 free_devinfo_mem(info);
3776                 spin_lock_irqsave(&device_domain_lock, flags1);
3777         }
3778         spin_unlock_irqrestore(&device_domain_lock, flags1);
3779 }
3780
3781 /* domain id for virtual machine, it won't be set in context */
3782 static unsigned long vm_domid;
3783
3784 static struct dmar_domain *iommu_alloc_vm_domain(void)
3785 {
3786         struct dmar_domain *domain;
3787
3788         domain = alloc_domain_mem();
3789         if (!domain)
3790                 return NULL;
3791
3792         domain->id = vm_domid++;
3793         domain->nid = -1;
3794         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3795         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3796
3797         return domain;
3798 }
3799
3800 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3801 {
3802         int adjust_width;
3803
3804         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3805         spin_lock_init(&domain->iommu_lock);
3806
3807         domain_reserve_special_ranges(domain);
3808
3809         /* calculate AGAW */
3810         domain->gaw = guest_width;
3811         adjust_width = guestwidth_to_adjustwidth(guest_width);
3812         domain->agaw = width_to_agaw(adjust_width);
3813
3814         INIT_LIST_HEAD(&domain->devices);
3815
3816         domain->iommu_count = 0;
3817         domain->iommu_coherency = 0;
3818         domain->iommu_snooping = 0;
3819         domain->iommu_superpage = 0;
3820         domain->max_addr = 0;
3821         domain->nid = -1;
3822
3823         /* always allocate the top pgd */
3824         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3825         if (!domain->pgd)
3826                 return -ENOMEM;
3827         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3828         return 0;
3829 }
3830
3831 static void iommu_free_vm_domain(struct dmar_domain *domain)
3832 {
3833         unsigned long flags;
3834         struct dmar_drhd_unit *drhd;
3835         struct intel_iommu *iommu;
3836         unsigned long i;
3837         unsigned long ndomains;
3838
3839         for_each_drhd_unit(drhd) {
3840                 if (drhd->ignored)
3841                         continue;
3842                 iommu = drhd->iommu;
3843
3844                 ndomains = cap_ndoms(iommu->cap);
3845                 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3846                         if (iommu->domains[i] == domain) {
3847                                 spin_lock_irqsave(&iommu->lock, flags);
3848                                 clear_bit(i, iommu->domain_ids);
3849                                 iommu->domains[i] = NULL;
3850                                 spin_unlock_irqrestore(&iommu->lock, flags);
3851                                 break;
3852                         }
3853                 }
3854         }
3855 }
3856
3857 static void vm_domain_exit(struct dmar_domain *domain)
3858 {
3859         /* Domain 0 is reserved, so dont process it */
3860         if (!domain)
3861                 return;
3862
3863         vm_domain_remove_all_dev_info(domain);
3864         /* destroy iovas */
3865         put_iova_domain(&domain->iovad);
3866
3867         /* clear ptes */
3868         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3869
3870         /* free page tables */
3871         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3872
3873         iommu_free_vm_domain(domain);
3874         free_domain_mem(domain);
3875 }
3876
3877 static int intel_iommu_domain_init(struct iommu_domain *domain)
3878 {
3879         struct dmar_domain *dmar_domain;
3880
3881         dmar_domain = iommu_alloc_vm_domain();
3882         if (!dmar_domain) {
3883                 printk(KERN_ERR
3884                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3885                 return -ENOMEM;
3886         }
3887         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3888                 printk(KERN_ERR
3889                         "intel_iommu_domain_init() failed\n");
3890                 vm_domain_exit(dmar_domain);
3891                 return -ENOMEM;
3892         }
3893         domain_update_iommu_cap(dmar_domain);
3894         domain->priv = dmar_domain;
3895
3896         return 0;
3897 }
3898
3899 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3900 {
3901         struct dmar_domain *dmar_domain = domain->priv;
3902
3903         domain->priv = NULL;
3904         vm_domain_exit(dmar_domain);
3905 }
3906
3907 static int intel_iommu_attach_device(struct iommu_domain *domain,
3908                                      struct device *dev)
3909 {
3910         struct dmar_domain *dmar_domain = domain->priv;
3911         struct pci_dev *pdev = to_pci_dev(dev);
3912         struct intel_iommu *iommu;
3913         int addr_width;
3914
3915         /* normally pdev is not mapped */
3916         if (unlikely(domain_context_mapped(pdev))) {
3917                 struct dmar_domain *old_domain;
3918
3919                 old_domain = find_domain(pdev);
3920                 if (old_domain) {
3921                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3922                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3923                                 domain_remove_one_dev_info(old_domain, pdev);
3924                         else
3925                                 domain_remove_dev_info(old_domain);
3926                 }
3927         }
3928
3929         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3930                                 pdev->devfn);
3931         if (!iommu)
3932                 return -ENODEV;
3933
3934         /* check if this iommu agaw is sufficient for max mapped address */
3935         addr_width = agaw_to_width(iommu->agaw);
3936         if (addr_width > cap_mgaw(iommu->cap))
3937                 addr_width = cap_mgaw(iommu->cap);
3938
3939         if (dmar_domain->max_addr > (1LL << addr_width)) {
3940                 printk(KERN_ERR "%s: iommu width (%d) is not "
3941                        "sufficient for the mapped address (%llx)\n",
3942                        __func__, addr_width, dmar_domain->max_addr);
3943                 return -EFAULT;
3944         }
3945         dmar_domain->gaw = addr_width;
3946
3947         /*
3948          * Knock out extra levels of page tables if necessary
3949          */
3950         while (iommu->agaw < dmar_domain->agaw) {
3951                 struct dma_pte *pte;
3952
3953                 pte = dmar_domain->pgd;
3954                 if (dma_pte_present(pte)) {
3955                         dmar_domain->pgd = (struct dma_pte *)
3956                                 phys_to_virt(dma_pte_addr(pte));
3957                         free_pgtable_page(pte);
3958                 }
3959                 dmar_domain->agaw--;
3960         }
3961
3962         return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3963 }
3964
3965 static void intel_iommu_detach_device(struct iommu_domain *domain,
3966                                       struct device *dev)
3967 {
3968         struct dmar_domain *dmar_domain = domain->priv;
3969         struct pci_dev *pdev = to_pci_dev(dev);
3970
3971         domain_remove_one_dev_info(dmar_domain, pdev);
3972 }
3973
3974 static int intel_iommu_map(struct iommu_domain *domain,
3975                            unsigned long iova, phys_addr_t hpa,
3976                            int gfp_order, int iommu_prot)
3977 {
3978         struct dmar_domain *dmar_domain = domain->priv;
3979         u64 max_addr;
3980         int prot = 0;
3981         size_t size;
3982         int ret;
3983
3984         if (iommu_prot & IOMMU_READ)
3985                 prot |= DMA_PTE_READ;
3986         if (iommu_prot & IOMMU_WRITE)
3987                 prot |= DMA_PTE_WRITE;
3988         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3989                 prot |= DMA_PTE_SNP;
3990
3991         size     = PAGE_SIZE << gfp_order;
3992         max_addr = iova + size;
3993         if (dmar_domain->max_addr < max_addr) {
3994                 u64 end;
3995
3996                 /* check if minimum agaw is sufficient for mapped address */
3997                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3998                 if (end < max_addr) {
3999                         printk(KERN_ERR "%s: iommu width (%d) is not "
4000                                "sufficient for the mapped address (%llx)\n",
4001                                __func__, dmar_domain->gaw, max_addr);
4002                         return -EFAULT;
4003                 }
4004                 dmar_domain->max_addr = max_addr;
4005         }
4006         /* Round up size to next multiple of PAGE_SIZE, if it and
4007            the low bits of hpa would take us onto the next page */
4008         size = aligned_nrpages(hpa, size);
4009         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4010                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4011         return ret;
4012 }
4013
4014 static int intel_iommu_unmap(struct iommu_domain *domain,
4015                              unsigned long iova, int gfp_order)
4016 {
4017         struct dmar_domain *dmar_domain = domain->priv;
4018         size_t size = PAGE_SIZE << gfp_order;
4019         int order;
4020
4021         order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4022                             (iova + size - 1) >> VTD_PAGE_SHIFT);
4023
4024         if (dmar_domain->max_addr == iova + size)
4025                 dmar_domain->max_addr = iova;
4026
4027         return order;
4028 }
4029
4030 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4031                                             unsigned long iova)
4032 {
4033         struct dmar_domain *dmar_domain = domain->priv;
4034         struct dma_pte *pte;
4035         u64 phys = 0;
4036
4037         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4038         if (pte)
4039                 phys = dma_pte_addr(pte);
4040
4041         return phys;
4042 }
4043
4044 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4045                                       unsigned long cap)
4046 {
4047         struct dmar_domain *dmar_domain = domain->priv;
4048
4049         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4050                 return dmar_domain->iommu_snooping;
4051         if (cap == IOMMU_CAP_INTR_REMAP)
4052                 return intr_remapping_enabled;
4053
4054         return 0;
4055 }
4056
4057 static struct iommu_ops intel_iommu_ops = {
4058         .domain_init    = intel_iommu_domain_init,
4059         .domain_destroy = intel_iommu_domain_destroy,
4060         .attach_dev     = intel_iommu_attach_device,
4061         .detach_dev     = intel_iommu_detach_device,
4062         .map            = intel_iommu_map,
4063         .unmap          = intel_iommu_unmap,
4064         .iova_to_phys   = intel_iommu_iova_to_phys,
4065         .domain_has_cap = intel_iommu_domain_has_cap,
4066 };
4067
4068 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4069 {
4070         /*
4071          * Mobile 4 Series Chipset neglects to set RWBF capability,
4072          * but needs it:
4073          */
4074         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4075         rwbf_quirk = 1;
4076
4077         /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4078         if (dev->revision == 0x07) {
4079                 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4080                 dmar_map_gfx = 0;
4081         }
4082 }
4083
4084 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4085
4086 #define GGC 0x52
4087 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4088 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4089 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4090 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4091 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4092 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4093 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4094 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4095
4096 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4097 {
4098         unsigned short ggc;
4099
4100         if (pci_read_config_word(dev, GGC, &ggc))
4101                 return;
4102
4103         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4104                 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4105                 dmar_map_gfx = 0;
4106         } else if (dmar_map_gfx) {
4107                 /* we have to ensure the gfx device is idle before we flush */
4108                 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4109                 intel_iommu_strict = 1;
4110        }
4111 }
4112 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4113 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4114 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4115 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4116
4117 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4118    ISOCH DMAR unit for the Azalia sound device, but not give it any
4119    TLB entries, which causes it to deadlock. Check for that.  We do
4120    this in a function called from init_dmars(), instead of in a PCI
4121    quirk, because we don't want to print the obnoxious "BIOS broken"
4122    message if VT-d is actually disabled.
4123 */
4124 static void __init check_tylersburg_isoch(void)
4125 {
4126         struct pci_dev *pdev;
4127         uint32_t vtisochctrl;
4128
4129         /* If there's no Azalia in the system anyway, forget it. */
4130         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4131         if (!pdev)
4132                 return;
4133         pci_dev_put(pdev);
4134
4135         /* System Management Registers. Might be hidden, in which case
4136            we can't do the sanity check. But that's OK, because the
4137            known-broken BIOSes _don't_ actually hide it, so far. */
4138         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4139         if (!pdev)
4140                 return;
4141
4142         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4143                 pci_dev_put(pdev);
4144                 return;
4145         }
4146
4147         pci_dev_put(pdev);
4148
4149         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4150         if (vtisochctrl & 1)
4151                 return;
4152
4153         /* Drop all bits other than the number of TLB entries */
4154         vtisochctrl &= 0x1c;
4155
4156         /* If we have the recommended number of TLB entries (16), fine. */
4157         if (vtisochctrl == 0x10)
4158                 return;
4159
4160         /* Zero TLB entries? You get to ride the short bus to school. */
4161         if (!vtisochctrl) {
4162                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4163                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4164                      dmi_get_system_info(DMI_BIOS_VENDOR),
4165                      dmi_get_system_info(DMI_BIOS_VERSION),
4166                      dmi_get_system_info(DMI_PRODUCT_VERSION));
4167                 iommu_identity_mapping |= IDENTMAP_AZALIA;
4168                 return;
4169         }
4170         
4171         printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4172                vtisochctrl);
4173 }