]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/intel-iommu.c
Merge commit 'b8c93646fd5c' into omap-for-v4.3/fixes
[karo-tx-linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE               VTD_PAGE_SIZE
54 #define CONTEXT_SIZE            VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START      (0xfee00000)
62 #define IOAPIC_RANGE_END        (0xfeefffff)
63 #define IOVA_START_ADDR         (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
76                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN          (1)
81
82 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE            (9)
88 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91  * This bitmap is used to advertise the page sizes our hardware support
92  * to the IOMMU core, which will then use this information to split
93  * physically contiguous memory regions it is mapping into page sizes
94  * that we support.
95  *
96  * Traditionally the IOMMU core just handed us the mappings directly,
97  * after making sure the size is an order of a 4KiB page and that the
98  * mapping has natural alignment.
99  *
100  * To retain this behavior, we currently advertise that we support
101  * all page sizes that are an order of 4KiB.
102  *
103  * If at some point we'd like to utilize the IOMMU core's new behavior,
104  * we could change this to advertise the real page sizes we support.
105  */
106 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110         return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125         return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135         return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140         return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145         return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154    are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166         return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170         return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180  * set to 1 to panic kernel if can't successfully enable VT-d
181  * (used when kernel is launched w/ TXT)
182  */
183 static int force_on = 0;
184
185 /*
186  * 0: Present
187  * 1-11: Reserved
188  * 12-63: Context Ptr (12 - (haw-1))
189  * 64-127: Reserved
190  */
191 struct root_entry {
192         u64     lo;
193         u64     hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203         if (!(re->lo & 1))
204                 return 0;
205
206         return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211  * if marked present.
212  */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215         if (!(re->hi & 1))
216                 return 0;
217
218         return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221  * low 64 bits:
222  * 0: present
223  * 1: fault processing disable
224  * 2-3: translation type
225  * 12-63: address space root
226  * high 64 bits:
227  * 0-2: address width
228  * 3-6: aval
229  * 8-23: domain id
230  */
231 struct context_entry {
232         u64 lo;
233         u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238         context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243         return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248         context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253         return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258         return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263         return context_pasid_enabled(context) ?
264              __context_present(context) :
265              __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270         context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275         context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279                                                 unsigned long value)
280 {
281         context->lo &= (((u64)-1) << 4) | 3;
282         context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286                                             unsigned long value)
287 {
288         context->lo &= ~VTD_PAGE_MASK;
289         context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293                                              unsigned long value)
294 {
295         context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299                                          unsigned long value)
300 {
301         context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306         return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311         context->lo = 0;
312         context->hi = 0;
313 }
314
315 /*
316  * 0: readable
317  * 1: writable
318  * 2-6: reserved
319  * 7: super page
320  * 8-10: available
321  * 11: snoop behavior
322  * 12-63: Host physcial address
323  */
324 struct dma_pte {
325         u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330         pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336         return pte->val & VTD_PAGE_MASK;
337 #else
338         /* Must have a full atomic 64-bit read */
339         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345         return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350         return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355         return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359  * This domain is a statically identity mapping domain.
360  *      1. This domain creats a static 1:1 mapping to all usable memory.
361  *      2. It maps to each iommu if successful.
362  *      3. Each iommu mapps to this domain if successful.
363  */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /*
368  * Domain represents a virtual machine, more than one devices
369  * across iommus may be owned in one domain, e.g. kvm guest.
370  */
371 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
372
373 /* si_domain contains mulitple devices */
374 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
375
376 #define for_each_domain_iommu(idx, domain)                      \
377         for (idx = 0; idx < g_num_of_iommus; idx++)             \
378                 if (domain->iommu_refcnt[idx])
379
380 struct dmar_domain {
381         int     nid;                    /* node id */
382
383         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
384                                         /* Refcount of devices per iommu */
385
386
387         u16             iommu_did[DMAR_UNITS_SUPPORTED];
388                                         /* Domain ids per IOMMU. Use u16 since
389                                          * domain ids are 16 bit wide according
390                                          * to VT-d spec, section 9.3 */
391
392         struct list_head devices;       /* all devices' list */
393         struct iova_domain iovad;       /* iova's that belong to this domain */
394
395         struct dma_pte  *pgd;           /* virtual address */
396         int             gaw;            /* max guest address width */
397
398         /* adjusted guest address width, 0 is level 2 30-bit */
399         int             agaw;
400
401         int             flags;          /* flags to find out type of domain */
402
403         int             iommu_coherency;/* indicate coherency of iommu access */
404         int             iommu_snooping; /* indicate snooping control feature*/
405         int             iommu_count;    /* reference count of iommu */
406         int             iommu_superpage;/* Level of superpages supported:
407                                            0 == 4KiB (no superpages), 1 == 2MiB,
408                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
409         u64             max_addr;       /* maximum mapped address */
410
411         struct iommu_domain domain;     /* generic domain data structure for
412                                            iommu core */
413 };
414
415 /* PCI domain-device relationship */
416 struct device_domain_info {
417         struct list_head link;  /* link to domain siblings */
418         struct list_head global; /* link to global list */
419         u8 bus;                 /* PCI bus number */
420         u8 devfn;               /* PCI devfn number */
421         struct {
422                 u8 enabled:1;
423                 u8 qdep;
424         } ats;                  /* ATS state */
425         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
426         struct intel_iommu *iommu; /* IOMMU used by this device */
427         struct dmar_domain *domain; /* pointer to domain */
428 };
429
430 struct dmar_rmrr_unit {
431         struct list_head list;          /* list of rmrr units   */
432         struct acpi_dmar_header *hdr;   /* ACPI header          */
433         u64     base_address;           /* reserved base address*/
434         u64     end_address;            /* reserved end address */
435         struct dmar_dev_scope *devices; /* target devices */
436         int     devices_cnt;            /* target device count */
437 };
438
439 struct dmar_atsr_unit {
440         struct list_head list;          /* list of ATSR units */
441         struct acpi_dmar_header *hdr;   /* ACPI header */
442         struct dmar_dev_scope *devices; /* target devices */
443         int devices_cnt;                /* target device count */
444         u8 include_all:1;               /* include all ports */
445 };
446
447 static LIST_HEAD(dmar_atsr_units);
448 static LIST_HEAD(dmar_rmrr_units);
449
450 #define for_each_rmrr_units(rmrr) \
451         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
453 static void flush_unmaps_timeout(unsigned long data);
454
455 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
456
457 #define HIGH_WATER_MARK 250
458 struct deferred_flush_tables {
459         int next;
460         struct iova *iova[HIGH_WATER_MARK];
461         struct dmar_domain *domain[HIGH_WATER_MARK];
462         struct page *freelist[HIGH_WATER_MARK];
463 };
464
465 static struct deferred_flush_tables *deferred_flush;
466
467 /* bitmap for indexing intel_iommus */
468 static int g_num_of_iommus;
469
470 static DEFINE_SPINLOCK(async_umap_flush_lock);
471 static LIST_HEAD(unmaps_to_do);
472
473 static int timer_on;
474 static long list_size;
475
476 static void domain_exit(struct dmar_domain *domain);
477 static void domain_remove_dev_info(struct dmar_domain *domain);
478 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479                                      struct device *dev);
480 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
481 static void domain_context_clear(struct intel_iommu *iommu,
482                                  struct device *dev);
483 static int domain_detach_iommu(struct dmar_domain *domain,
484                                struct intel_iommu *iommu);
485
486 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
487 int dmar_disabled = 0;
488 #else
489 int dmar_disabled = 1;
490 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
491
492 int intel_iommu_enabled = 0;
493 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
495 static int dmar_map_gfx = 1;
496 static int dmar_forcedac;
497 static int intel_iommu_strict;
498 static int intel_iommu_superpage = 1;
499 static int intel_iommu_ecs = 1;
500
501 /* We only actually use ECS when PASID support (on the new bit 40)
502  * is also advertised. Some early implementations — the ones with
503  * PASID support on bit 28 — have issues even when we *only* use
504  * extended root/context tables. */
505 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
506                             ecap_pasid(iommu->ecap))
507
508 int intel_iommu_gfx_mapped;
509 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
510
511 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
512 static DEFINE_SPINLOCK(device_domain_lock);
513 static LIST_HEAD(device_domain_list);
514
515 static const struct iommu_ops intel_iommu_ops;
516
517 static bool translation_pre_enabled(struct intel_iommu *iommu)
518 {
519         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
520 }
521
522 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
523 {
524         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
525 }
526
527 static void init_translation_status(struct intel_iommu *iommu)
528 {
529         u32 gsts;
530
531         gsts = readl(iommu->reg + DMAR_GSTS_REG);
532         if (gsts & DMA_GSTS_TES)
533                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
534 }
535
536 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
537 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
538 {
539         return container_of(dom, struct dmar_domain, domain);
540 }
541
542 static int __init intel_iommu_setup(char *str)
543 {
544         if (!str)
545                 return -EINVAL;
546         while (*str) {
547                 if (!strncmp(str, "on", 2)) {
548                         dmar_disabled = 0;
549                         pr_info("IOMMU enabled\n");
550                 } else if (!strncmp(str, "off", 3)) {
551                         dmar_disabled = 1;
552                         pr_info("IOMMU disabled\n");
553                 } else if (!strncmp(str, "igfx_off", 8)) {
554                         dmar_map_gfx = 0;
555                         pr_info("Disable GFX device mapping\n");
556                 } else if (!strncmp(str, "forcedac", 8)) {
557                         pr_info("Forcing DAC for PCI devices\n");
558                         dmar_forcedac = 1;
559                 } else if (!strncmp(str, "strict", 6)) {
560                         pr_info("Disable batched IOTLB flush\n");
561                         intel_iommu_strict = 1;
562                 } else if (!strncmp(str, "sp_off", 6)) {
563                         pr_info("Disable supported super page\n");
564                         intel_iommu_superpage = 0;
565                 } else if (!strncmp(str, "ecs_off", 7)) {
566                         printk(KERN_INFO
567                                 "Intel-IOMMU: disable extended context table support\n");
568                         intel_iommu_ecs = 0;
569                 }
570
571                 str += strcspn(str, ",");
572                 while (*str == ',')
573                         str++;
574         }
575         return 0;
576 }
577 __setup("intel_iommu=", intel_iommu_setup);
578
579 static struct kmem_cache *iommu_domain_cache;
580 static struct kmem_cache *iommu_devinfo_cache;
581
582 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
583 {
584         struct dmar_domain **domains;
585         int idx = did >> 8;
586
587         domains = iommu->domains[idx];
588         if (!domains)
589                 return NULL;
590
591         return domains[did & 0xff];
592 }
593
594 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
595                              struct dmar_domain *domain)
596 {
597         struct dmar_domain **domains;
598         int idx = did >> 8;
599
600         if (!iommu->domains[idx]) {
601                 size_t size = 256 * sizeof(struct dmar_domain *);
602                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
603         }
604
605         domains = iommu->domains[idx];
606         if (WARN_ON(!domains))
607                 return;
608         else
609                 domains[did & 0xff] = domain;
610 }
611
612 static inline void *alloc_pgtable_page(int node)
613 {
614         struct page *page;
615         void *vaddr = NULL;
616
617         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
618         if (page)
619                 vaddr = page_address(page);
620         return vaddr;
621 }
622
623 static inline void free_pgtable_page(void *vaddr)
624 {
625         free_page((unsigned long)vaddr);
626 }
627
628 static inline void *alloc_domain_mem(void)
629 {
630         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
631 }
632
633 static void free_domain_mem(void *vaddr)
634 {
635         kmem_cache_free(iommu_domain_cache, vaddr);
636 }
637
638 static inline void * alloc_devinfo_mem(void)
639 {
640         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
641 }
642
643 static inline void free_devinfo_mem(void *vaddr)
644 {
645         kmem_cache_free(iommu_devinfo_cache, vaddr);
646 }
647
648 static inline int domain_type_is_vm(struct dmar_domain *domain)
649 {
650         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
651 }
652
653 static inline int domain_type_is_si(struct dmar_domain *domain)
654 {
655         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
656 }
657
658 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
659 {
660         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
661                                 DOMAIN_FLAG_STATIC_IDENTITY);
662 }
663
664 static inline int domain_pfn_supported(struct dmar_domain *domain,
665                                        unsigned long pfn)
666 {
667         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
668
669         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
670 }
671
672 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
673 {
674         unsigned long sagaw;
675         int agaw = -1;
676
677         sagaw = cap_sagaw(iommu->cap);
678         for (agaw = width_to_agaw(max_gaw);
679              agaw >= 0; agaw--) {
680                 if (test_bit(agaw, &sagaw))
681                         break;
682         }
683
684         return agaw;
685 }
686
687 /*
688  * Calculate max SAGAW for each iommu.
689  */
690 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
691 {
692         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
693 }
694
695 /*
696  * calculate agaw for each iommu.
697  * "SAGAW" may be different across iommus, use a default agaw, and
698  * get a supported less agaw for iommus that don't support the default agaw.
699  */
700 int iommu_calculate_agaw(struct intel_iommu *iommu)
701 {
702         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
703 }
704
705 /* This functionin only returns single iommu in a domain */
706 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
707 {
708         int iommu_id;
709
710         /* si_domain and vm domain should not get here. */
711         BUG_ON(domain_type_is_vm_or_si(domain));
712         for_each_domain_iommu(iommu_id, domain)
713                 break;
714
715         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
716                 return NULL;
717
718         return g_iommus[iommu_id];
719 }
720
721 static void domain_update_iommu_coherency(struct dmar_domain *domain)
722 {
723         struct dmar_drhd_unit *drhd;
724         struct intel_iommu *iommu;
725         bool found = false;
726         int i;
727
728         domain->iommu_coherency = 1;
729
730         for_each_domain_iommu(i, domain) {
731                 found = true;
732                 if (!ecap_coherent(g_iommus[i]->ecap)) {
733                         domain->iommu_coherency = 0;
734                         break;
735                 }
736         }
737         if (found)
738                 return;
739
740         /* No hardware attached; use lowest common denominator */
741         rcu_read_lock();
742         for_each_active_iommu(iommu, drhd) {
743                 if (!ecap_coherent(iommu->ecap)) {
744                         domain->iommu_coherency = 0;
745                         break;
746                 }
747         }
748         rcu_read_unlock();
749 }
750
751 static int domain_update_iommu_snooping(struct intel_iommu *skip)
752 {
753         struct dmar_drhd_unit *drhd;
754         struct intel_iommu *iommu;
755         int ret = 1;
756
757         rcu_read_lock();
758         for_each_active_iommu(iommu, drhd) {
759                 if (iommu != skip) {
760                         if (!ecap_sc_support(iommu->ecap)) {
761                                 ret = 0;
762                                 break;
763                         }
764                 }
765         }
766         rcu_read_unlock();
767
768         return ret;
769 }
770
771 static int domain_update_iommu_superpage(struct intel_iommu *skip)
772 {
773         struct dmar_drhd_unit *drhd;
774         struct intel_iommu *iommu;
775         int mask = 0xf;
776
777         if (!intel_iommu_superpage) {
778                 return 0;
779         }
780
781         /* set iommu_superpage to the smallest common denominator */
782         rcu_read_lock();
783         for_each_active_iommu(iommu, drhd) {
784                 if (iommu != skip) {
785                         mask &= cap_super_page_val(iommu->cap);
786                         if (!mask)
787                                 break;
788                 }
789         }
790         rcu_read_unlock();
791
792         return fls(mask);
793 }
794
795 /* Some capabilities may be different across iommus */
796 static void domain_update_iommu_cap(struct dmar_domain *domain)
797 {
798         domain_update_iommu_coherency(domain);
799         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
800         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
801 }
802
803 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
804                                                        u8 bus, u8 devfn, int alloc)
805 {
806         struct root_entry *root = &iommu->root_entry[bus];
807         struct context_entry *context;
808         u64 *entry;
809
810         entry = &root->lo;
811         if (ecs_enabled(iommu)) {
812                 if (devfn >= 0x80) {
813                         devfn -= 0x80;
814                         entry = &root->hi;
815                 }
816                 devfn *= 2;
817         }
818         if (*entry & 1)
819                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
820         else {
821                 unsigned long phy_addr;
822                 if (!alloc)
823                         return NULL;
824
825                 context = alloc_pgtable_page(iommu->node);
826                 if (!context)
827                         return NULL;
828
829                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
830                 phy_addr = virt_to_phys((void *)context);
831                 *entry = phy_addr | 1;
832                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
833         }
834         return &context[devfn];
835 }
836
837 static int iommu_dummy(struct device *dev)
838 {
839         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
840 }
841
842 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
843 {
844         struct dmar_drhd_unit *drhd = NULL;
845         struct intel_iommu *iommu;
846         struct device *tmp;
847         struct pci_dev *ptmp, *pdev = NULL;
848         u16 segment = 0;
849         int i;
850
851         if (iommu_dummy(dev))
852                 return NULL;
853
854         if (dev_is_pci(dev)) {
855                 pdev = to_pci_dev(dev);
856                 segment = pci_domain_nr(pdev->bus);
857         } else if (has_acpi_companion(dev))
858                 dev = &ACPI_COMPANION(dev)->dev;
859
860         rcu_read_lock();
861         for_each_active_iommu(iommu, drhd) {
862                 if (pdev && segment != drhd->segment)
863                         continue;
864
865                 for_each_active_dev_scope(drhd->devices,
866                                           drhd->devices_cnt, i, tmp) {
867                         if (tmp == dev) {
868                                 *bus = drhd->devices[i].bus;
869                                 *devfn = drhd->devices[i].devfn;
870                                 goto out;
871                         }
872
873                         if (!pdev || !dev_is_pci(tmp))
874                                 continue;
875
876                         ptmp = to_pci_dev(tmp);
877                         if (ptmp->subordinate &&
878                             ptmp->subordinate->number <= pdev->bus->number &&
879                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
880                                 goto got_pdev;
881                 }
882
883                 if (pdev && drhd->include_all) {
884                 got_pdev:
885                         *bus = pdev->bus->number;
886                         *devfn = pdev->devfn;
887                         goto out;
888                 }
889         }
890         iommu = NULL;
891  out:
892         rcu_read_unlock();
893
894         return iommu;
895 }
896
897 static void domain_flush_cache(struct dmar_domain *domain,
898                                void *addr, int size)
899 {
900         if (!domain->iommu_coherency)
901                 clflush_cache_range(addr, size);
902 }
903
904 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
905 {
906         struct context_entry *context;
907         int ret = 0;
908         unsigned long flags;
909
910         spin_lock_irqsave(&iommu->lock, flags);
911         context = iommu_context_addr(iommu, bus, devfn, 0);
912         if (context)
913                 ret = context_present(context);
914         spin_unlock_irqrestore(&iommu->lock, flags);
915         return ret;
916 }
917
918 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
919 {
920         struct context_entry *context;
921         unsigned long flags;
922
923         spin_lock_irqsave(&iommu->lock, flags);
924         context = iommu_context_addr(iommu, bus, devfn, 0);
925         if (context) {
926                 context_clear_entry(context);
927                 __iommu_flush_cache(iommu, context, sizeof(*context));
928         }
929         spin_unlock_irqrestore(&iommu->lock, flags);
930 }
931
932 static void free_context_table(struct intel_iommu *iommu)
933 {
934         int i;
935         unsigned long flags;
936         struct context_entry *context;
937
938         spin_lock_irqsave(&iommu->lock, flags);
939         if (!iommu->root_entry) {
940                 goto out;
941         }
942         for (i = 0; i < ROOT_ENTRY_NR; i++) {
943                 context = iommu_context_addr(iommu, i, 0, 0);
944                 if (context)
945                         free_pgtable_page(context);
946
947                 if (!ecs_enabled(iommu))
948                         continue;
949
950                 context = iommu_context_addr(iommu, i, 0x80, 0);
951                 if (context)
952                         free_pgtable_page(context);
953
954         }
955         free_pgtable_page(iommu->root_entry);
956         iommu->root_entry = NULL;
957 out:
958         spin_unlock_irqrestore(&iommu->lock, flags);
959 }
960
961 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
962                                       unsigned long pfn, int *target_level)
963 {
964         struct dma_pte *parent, *pte = NULL;
965         int level = agaw_to_level(domain->agaw);
966         int offset;
967
968         BUG_ON(!domain->pgd);
969
970         if (!domain_pfn_supported(domain, pfn))
971                 /* Address beyond IOMMU's addressing capabilities. */
972                 return NULL;
973
974         parent = domain->pgd;
975
976         while (1) {
977                 void *tmp_page;
978
979                 offset = pfn_level_offset(pfn, level);
980                 pte = &parent[offset];
981                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
982                         break;
983                 if (level == *target_level)
984                         break;
985
986                 if (!dma_pte_present(pte)) {
987                         uint64_t pteval;
988
989                         tmp_page = alloc_pgtable_page(domain->nid);
990
991                         if (!tmp_page)
992                                 return NULL;
993
994                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
995                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
996                         if (cmpxchg64(&pte->val, 0ULL, pteval))
997                                 /* Someone else set it while we were thinking; use theirs. */
998                                 free_pgtable_page(tmp_page);
999                         else
1000                                 domain_flush_cache(domain, pte, sizeof(*pte));
1001                 }
1002                 if (level == 1)
1003                         break;
1004
1005                 parent = phys_to_virt(dma_pte_addr(pte));
1006                 level--;
1007         }
1008
1009         if (!*target_level)
1010                 *target_level = level;
1011
1012         return pte;
1013 }
1014
1015
1016 /* return address's pte at specific level */
1017 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1018                                          unsigned long pfn,
1019                                          int level, int *large_page)
1020 {
1021         struct dma_pte *parent, *pte = NULL;
1022         int total = agaw_to_level(domain->agaw);
1023         int offset;
1024
1025         parent = domain->pgd;
1026         while (level <= total) {
1027                 offset = pfn_level_offset(pfn, total);
1028                 pte = &parent[offset];
1029                 if (level == total)
1030                         return pte;
1031
1032                 if (!dma_pte_present(pte)) {
1033                         *large_page = total;
1034                         break;
1035                 }
1036
1037                 if (dma_pte_superpage(pte)) {
1038                         *large_page = total;
1039                         return pte;
1040                 }
1041
1042                 parent = phys_to_virt(dma_pte_addr(pte));
1043                 total--;
1044         }
1045         return NULL;
1046 }
1047
1048 /* clear last level pte, a tlb flush should be followed */
1049 static void dma_pte_clear_range(struct dmar_domain *domain,
1050                                 unsigned long start_pfn,
1051                                 unsigned long last_pfn)
1052 {
1053         unsigned int large_page = 1;
1054         struct dma_pte *first_pte, *pte;
1055
1056         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1057         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1058         BUG_ON(start_pfn > last_pfn);
1059
1060         /* we don't need lock here; nobody else touches the iova range */
1061         do {
1062                 large_page = 1;
1063                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1064                 if (!pte) {
1065                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1066                         continue;
1067                 }
1068                 do {
1069                         dma_clear_pte(pte);
1070                         start_pfn += lvl_to_nr_pages(large_page);
1071                         pte++;
1072                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1073
1074                 domain_flush_cache(domain, first_pte,
1075                                    (void *)pte - (void *)first_pte);
1076
1077         } while (start_pfn && start_pfn <= last_pfn);
1078 }
1079
1080 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1081                                struct dma_pte *pte, unsigned long pfn,
1082                                unsigned long start_pfn, unsigned long last_pfn)
1083 {
1084         pfn = max(start_pfn, pfn);
1085         pte = &pte[pfn_level_offset(pfn, level)];
1086
1087         do {
1088                 unsigned long level_pfn;
1089                 struct dma_pte *level_pte;
1090
1091                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1092                         goto next;
1093
1094                 level_pfn = pfn & level_mask(level - 1);
1095                 level_pte = phys_to_virt(dma_pte_addr(pte));
1096
1097                 if (level > 2)
1098                         dma_pte_free_level(domain, level - 1, level_pte,
1099                                            level_pfn, start_pfn, last_pfn);
1100
1101                 /* If range covers entire pagetable, free it */
1102                 if (!(start_pfn > level_pfn ||
1103                       last_pfn < level_pfn + level_size(level) - 1)) {
1104                         dma_clear_pte(pte);
1105                         domain_flush_cache(domain, pte, sizeof(*pte));
1106                         free_pgtable_page(level_pte);
1107                 }
1108 next:
1109                 pfn += level_size(level);
1110         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112
1113 /* free page table pages. last level pte should already be cleared */
1114 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1115                                    unsigned long start_pfn,
1116                                    unsigned long last_pfn)
1117 {
1118         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1119         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1120         BUG_ON(start_pfn > last_pfn);
1121
1122         dma_pte_clear_range(domain, start_pfn, last_pfn);
1123
1124         /* We don't need lock here; nobody else touches the iova range */
1125         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1126                            domain->pgd, 0, start_pfn, last_pfn);
1127
1128         /* free pgd */
1129         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1130                 free_pgtable_page(domain->pgd);
1131                 domain->pgd = NULL;
1132         }
1133 }
1134
1135 /* When a page at a given level is being unlinked from its parent, we don't
1136    need to *modify* it at all. All we need to do is make a list of all the
1137    pages which can be freed just as soon as we've flushed the IOTLB and we
1138    know the hardware page-walk will no longer touch them.
1139    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1140    be freed. */
1141 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1142                                             int level, struct dma_pte *pte,
1143                                             struct page *freelist)
1144 {
1145         struct page *pg;
1146
1147         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1148         pg->freelist = freelist;
1149         freelist = pg;
1150
1151         if (level == 1)
1152                 return freelist;
1153
1154         pte = page_address(pg);
1155         do {
1156                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1157                         freelist = dma_pte_list_pagetables(domain, level - 1,
1158                                                            pte, freelist);
1159                 pte++;
1160         } while (!first_pte_in_page(pte));
1161
1162         return freelist;
1163 }
1164
1165 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1166                                         struct dma_pte *pte, unsigned long pfn,
1167                                         unsigned long start_pfn,
1168                                         unsigned long last_pfn,
1169                                         struct page *freelist)
1170 {
1171         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1172
1173         pfn = max(start_pfn, pfn);
1174         pte = &pte[pfn_level_offset(pfn, level)];
1175
1176         do {
1177                 unsigned long level_pfn;
1178
1179                 if (!dma_pte_present(pte))
1180                         goto next;
1181
1182                 level_pfn = pfn & level_mask(level);
1183
1184                 /* If range covers entire pagetable, free it */
1185                 if (start_pfn <= level_pfn &&
1186                     last_pfn >= level_pfn + level_size(level) - 1) {
1187                         /* These suborbinate page tables are going away entirely. Don't
1188                            bother to clear them; we're just going to *free* them. */
1189                         if (level > 1 && !dma_pte_superpage(pte))
1190                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1191
1192                         dma_clear_pte(pte);
1193                         if (!first_pte)
1194                                 first_pte = pte;
1195                         last_pte = pte;
1196                 } else if (level > 1) {
1197                         /* Recurse down into a level that isn't *entirely* obsolete */
1198                         freelist = dma_pte_clear_level(domain, level - 1,
1199                                                        phys_to_virt(dma_pte_addr(pte)),
1200                                                        level_pfn, start_pfn, last_pfn,
1201                                                        freelist);
1202                 }
1203 next:
1204                 pfn += level_size(level);
1205         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1206
1207         if (first_pte)
1208                 domain_flush_cache(domain, first_pte,
1209                                    (void *)++last_pte - (void *)first_pte);
1210
1211         return freelist;
1212 }
1213
1214 /* We can't just free the pages because the IOMMU may still be walking
1215    the page tables, and may have cached the intermediate levels. The
1216    pages can only be freed after the IOTLB flush has been done. */
1217 static struct page *domain_unmap(struct dmar_domain *domain,
1218                                  unsigned long start_pfn,
1219                                  unsigned long last_pfn)
1220 {
1221         struct page *freelist = NULL;
1222
1223         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1224         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1225         BUG_ON(start_pfn > last_pfn);
1226
1227         /* we don't need lock here; nobody else touches the iova range */
1228         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1229                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1230
1231         /* free pgd */
1232         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1233                 struct page *pgd_page = virt_to_page(domain->pgd);
1234                 pgd_page->freelist = freelist;
1235                 freelist = pgd_page;
1236
1237                 domain->pgd = NULL;
1238         }
1239
1240         return freelist;
1241 }
1242
1243 static void dma_free_pagelist(struct page *freelist)
1244 {
1245         struct page *pg;
1246
1247         while ((pg = freelist)) {
1248                 freelist = pg->freelist;
1249                 free_pgtable_page(page_address(pg));
1250         }
1251 }
1252
1253 /* iommu handling */
1254 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1255 {
1256         struct root_entry *root;
1257         unsigned long flags;
1258
1259         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1260         if (!root) {
1261                 pr_err("Allocating root entry for %s failed\n",
1262                         iommu->name);
1263                 return -ENOMEM;
1264         }
1265
1266         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1267
1268         spin_lock_irqsave(&iommu->lock, flags);
1269         iommu->root_entry = root;
1270         spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272         return 0;
1273 }
1274
1275 static void iommu_set_root_entry(struct intel_iommu *iommu)
1276 {
1277         u64 addr;
1278         u32 sts;
1279         unsigned long flag;
1280
1281         addr = virt_to_phys(iommu->root_entry);
1282         if (ecs_enabled(iommu))
1283                 addr |= DMA_RTADDR_RTT;
1284
1285         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1286         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1287
1288         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1289
1290         /* Make sure hardware complete it */
1291         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1292                       readl, (sts & DMA_GSTS_RTPS), sts);
1293
1294         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1298 {
1299         u32 val;
1300         unsigned long flag;
1301
1302         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1303                 return;
1304
1305         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1306         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1307
1308         /* Make sure hardware complete it */
1309         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1310                       readl, (!(val & DMA_GSTS_WBFS)), val);
1311
1312         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1313 }
1314
1315 /* return value determine if we need a write buffer flush */
1316 static void __iommu_flush_context(struct intel_iommu *iommu,
1317                                   u16 did, u16 source_id, u8 function_mask,
1318                                   u64 type)
1319 {
1320         u64 val = 0;
1321         unsigned long flag;
1322
1323         switch (type) {
1324         case DMA_CCMD_GLOBAL_INVL:
1325                 val = DMA_CCMD_GLOBAL_INVL;
1326                 break;
1327         case DMA_CCMD_DOMAIN_INVL:
1328                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1329                 break;
1330         case DMA_CCMD_DEVICE_INVL:
1331                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1332                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1333                 break;
1334         default:
1335                 BUG();
1336         }
1337         val |= DMA_CCMD_ICC;
1338
1339         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1341
1342         /* Make sure hardware complete it */
1343         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1344                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1345
1346         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 }
1348
1349 /* return value determine if we need a write buffer flush */
1350 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1351                                 u64 addr, unsigned int size_order, u64 type)
1352 {
1353         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1354         u64 val = 0, val_iva = 0;
1355         unsigned long flag;
1356
1357         switch (type) {
1358         case DMA_TLB_GLOBAL_FLUSH:
1359                 /* global flush doesn't need set IVA_REG */
1360                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1361                 break;
1362         case DMA_TLB_DSI_FLUSH:
1363                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1364                 break;
1365         case DMA_TLB_PSI_FLUSH:
1366                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1367                 /* IH bit is passed in as part of address */
1368                 val_iva = size_order | addr;
1369                 break;
1370         default:
1371                 BUG();
1372         }
1373         /* Note: set drain read/write */
1374 #if 0
1375         /*
1376          * This is probably to be super secure.. Looks like we can
1377          * ignore it without any impact.
1378          */
1379         if (cap_read_drain(iommu->cap))
1380                 val |= DMA_TLB_READ_DRAIN;
1381 #endif
1382         if (cap_write_drain(iommu->cap))
1383                 val |= DMA_TLB_WRITE_DRAIN;
1384
1385         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1386         /* Note: Only uses first TLB reg currently */
1387         if (val_iva)
1388                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1389         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1390
1391         /* Make sure hardware complete it */
1392         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1393                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1394
1395         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1396
1397         /* check IOTLB invalidation granularity */
1398         if (DMA_TLB_IAIG(val) == 0)
1399                 pr_err("Flush IOTLB failed\n");
1400         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1401                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1402                         (unsigned long long)DMA_TLB_IIRG(type),
1403                         (unsigned long long)DMA_TLB_IAIG(val));
1404 }
1405
1406 static struct device_domain_info *
1407 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1408                          u8 bus, u8 devfn)
1409 {
1410         bool found = false;
1411         struct device_domain_info *info;
1412         struct pci_dev *pdev;
1413
1414         assert_spin_locked(&device_domain_lock);
1415
1416         if (!ecap_dev_iotlb_support(iommu->ecap))
1417                 return NULL;
1418
1419         if (!iommu->qi)
1420                 return NULL;
1421
1422         list_for_each_entry(info, &domain->devices, link)
1423                 if (info->iommu == iommu && info->bus == bus &&
1424                     info->devfn == devfn) {
1425                         found = true;
1426                         break;
1427                 }
1428
1429         if (!found || !info->dev || !dev_is_pci(info->dev))
1430                 return NULL;
1431
1432         pdev = to_pci_dev(info->dev);
1433
1434         if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1435                 return NULL;
1436
1437         if (!dmar_find_matched_atsr_unit(pdev))
1438                 return NULL;
1439
1440         return info;
1441 }
1442
1443 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1444 {
1445         struct pci_dev *pdev;
1446
1447         if (!info || !dev_is_pci(info->dev))
1448                 return;
1449
1450         pdev = to_pci_dev(info->dev);
1451         if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1452                 return;
1453
1454         info->ats.enabled = 1;
1455         info->ats.qdep = pci_ats_queue_depth(pdev);
1456 }
1457
1458 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1459 {
1460         if (!info->ats.enabled)
1461                 return;
1462
1463         pci_disable_ats(to_pci_dev(info->dev));
1464         info->ats.enabled = 0;
1465 }
1466
1467 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1468                                   u64 addr, unsigned mask)
1469 {
1470         u16 sid, qdep;
1471         unsigned long flags;
1472         struct device_domain_info *info;
1473
1474         spin_lock_irqsave(&device_domain_lock, flags);
1475         list_for_each_entry(info, &domain->devices, link) {
1476                 if (!info->ats.enabled)
1477                         continue;
1478
1479                 sid = info->bus << 8 | info->devfn;
1480                 qdep = info->ats.qdep;
1481                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1482         }
1483         spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487                                   struct dmar_domain *domain,
1488                                   unsigned long pfn, unsigned int pages,
1489                                   int ih, int map)
1490 {
1491         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493         u16 did = domain->iommu_did[iommu->seq_id];
1494
1495         BUG_ON(pages == 0);
1496
1497         if (ih)
1498                 ih = 1 << 6;
1499         /*
1500          * Fallback to domain selective flush if no PSI support or the size is
1501          * too big.
1502          * PSI requires page size to be 2 ^ x, and the base address is naturally
1503          * aligned to the size
1504          */
1505         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507                                                 DMA_TLB_DSI_FLUSH);
1508         else
1509                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510                                                 DMA_TLB_PSI_FLUSH);
1511
1512         /*
1513          * In caching mode, changes of pages from non-present to present require
1514          * flush. However, device IOTLB doesn't need to be flushed in this case.
1515          */
1516         if (!cap_caching_mode(iommu->cap) || !map)
1517                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1518                                       addr, mask);
1519 }
1520
1521 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1522 {
1523         u32 pmen;
1524         unsigned long flags;
1525
1526         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1527         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1528         pmen &= ~DMA_PMEN_EPM;
1529         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1530
1531         /* wait for the protected region status bit to clear */
1532         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1533                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1534
1535         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1536 }
1537
1538 static void iommu_enable_translation(struct intel_iommu *iommu)
1539 {
1540         u32 sts;
1541         unsigned long flags;
1542
1543         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1544         iommu->gcmd |= DMA_GCMD_TE;
1545         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1546
1547         /* Make sure hardware complete it */
1548         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1549                       readl, (sts & DMA_GSTS_TES), sts);
1550
1551         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1552 }
1553
1554 static void iommu_disable_translation(struct intel_iommu *iommu)
1555 {
1556         u32 sts;
1557         unsigned long flag;
1558
1559         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1560         iommu->gcmd &= ~DMA_GCMD_TE;
1561         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562
1563         /* Make sure hardware complete it */
1564         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1565                       readl, (!(sts & DMA_GSTS_TES)), sts);
1566
1567         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1568 }
1569
1570
1571 static int iommu_init_domains(struct intel_iommu *iommu)
1572 {
1573         u32 ndomains, nlongs;
1574         size_t size;
1575
1576         ndomains = cap_ndoms(iommu->cap);
1577         pr_debug("%s: Number of Domains supported <%d>\n",
1578                  iommu->name, ndomains);
1579         nlongs = BITS_TO_LONGS(ndomains);
1580
1581         spin_lock_init(&iommu->lock);
1582
1583         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1584         if (!iommu->domain_ids) {
1585                 pr_err("%s: Allocating domain id array failed\n",
1586                        iommu->name);
1587                 return -ENOMEM;
1588         }
1589
1590         size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1591         iommu->domains = kzalloc(size, GFP_KERNEL);
1592
1593         if (iommu->domains) {
1594                 size = 256 * sizeof(struct dmar_domain *);
1595                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1596         }
1597
1598         if (!iommu->domains || !iommu->domains[0]) {
1599                 pr_err("%s: Allocating domain array failed\n",
1600                        iommu->name);
1601                 kfree(iommu->domain_ids);
1602                 kfree(iommu->domains);
1603                 iommu->domain_ids = NULL;
1604                 iommu->domains    = NULL;
1605                 return -ENOMEM;
1606         }
1607
1608
1609
1610         /*
1611          * If Caching mode is set, then invalid translations are tagged
1612          * with domain-id 0, hence we need to pre-allocate it. We also
1613          * use domain-id 0 as a marker for non-allocated domain-id, so
1614          * make sure it is not used for a real domain.
1615          */
1616         set_bit(0, iommu->domain_ids);
1617
1618         return 0;
1619 }
1620
1621 static void disable_dmar_iommu(struct intel_iommu *iommu)
1622 {
1623         struct device_domain_info *info, *tmp;
1624         unsigned long flags;
1625
1626         if (!iommu->domains || !iommu->domain_ids)
1627                 return;
1628
1629         spin_lock_irqsave(&device_domain_lock, flags);
1630         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1631                 struct dmar_domain *domain;
1632
1633                 if (info->iommu != iommu)
1634                         continue;
1635
1636                 if (!info->dev || !info->domain)
1637                         continue;
1638
1639                 domain = info->domain;
1640
1641                 dmar_remove_one_dev_info(domain, info->dev);
1642
1643                 if (!domain_type_is_vm_or_si(domain))
1644                         domain_exit(domain);
1645         }
1646         spin_unlock_irqrestore(&device_domain_lock, flags);
1647
1648         if (iommu->gcmd & DMA_GCMD_TE)
1649                 iommu_disable_translation(iommu);
1650 }
1651
1652 static void free_dmar_iommu(struct intel_iommu *iommu)
1653 {
1654         if ((iommu->domains) && (iommu->domain_ids)) {
1655                 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1656                 int i;
1657
1658                 for (i = 0; i < elems; i++)
1659                         kfree(iommu->domains[i]);
1660                 kfree(iommu->domains);
1661                 kfree(iommu->domain_ids);
1662                 iommu->domains = NULL;
1663                 iommu->domain_ids = NULL;
1664         }
1665
1666         g_iommus[iommu->seq_id] = NULL;
1667
1668         /* free context mapping */
1669         free_context_table(iommu);
1670 }
1671
1672 static struct dmar_domain *alloc_domain(int flags)
1673 {
1674         struct dmar_domain *domain;
1675
1676         domain = alloc_domain_mem();
1677         if (!domain)
1678                 return NULL;
1679
1680         memset(domain, 0, sizeof(*domain));
1681         domain->nid = -1;
1682         domain->flags = flags;
1683         INIT_LIST_HEAD(&domain->devices);
1684
1685         return domain;
1686 }
1687
1688 /* Must be called with iommu->lock */
1689 static int domain_attach_iommu(struct dmar_domain *domain,
1690                                struct intel_iommu *iommu)
1691 {
1692         unsigned long ndomains;
1693         int num;
1694
1695         assert_spin_locked(&device_domain_lock);
1696         assert_spin_locked(&iommu->lock);
1697
1698         domain->iommu_refcnt[iommu->seq_id] += 1;
1699         domain->iommu_count += 1;
1700         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1701                 ndomains = cap_ndoms(iommu->cap);
1702                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1703
1704                 if (num >= ndomains) {
1705                         pr_err("%s: No free domain ids\n", iommu->name);
1706                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1707                         domain->iommu_count -= 1;
1708                         return -ENOSPC;
1709                 }
1710
1711                 set_bit(num, iommu->domain_ids);
1712                 set_iommu_domain(iommu, num, domain);
1713
1714                 domain->iommu_did[iommu->seq_id] = num;
1715                 domain->nid                      = iommu->node;
1716
1717                 domain_update_iommu_cap(domain);
1718         }
1719
1720         return 0;
1721 }
1722
1723 static int domain_detach_iommu(struct dmar_domain *domain,
1724                                struct intel_iommu *iommu)
1725 {
1726         int num, count = INT_MAX;
1727
1728         assert_spin_locked(&device_domain_lock);
1729         assert_spin_locked(&iommu->lock);
1730
1731         domain->iommu_refcnt[iommu->seq_id] -= 1;
1732         count = --domain->iommu_count;
1733         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1734                 num = domain->iommu_did[iommu->seq_id];
1735                 clear_bit(num, iommu->domain_ids);
1736                 set_iommu_domain(iommu, num, NULL);
1737
1738                 domain_update_iommu_cap(domain);
1739                 domain->iommu_did[iommu->seq_id] = 0;
1740         }
1741
1742         return count;
1743 }
1744
1745 static struct iova_domain reserved_iova_list;
1746 static struct lock_class_key reserved_rbtree_key;
1747
1748 static int dmar_init_reserved_ranges(void)
1749 {
1750         struct pci_dev *pdev = NULL;
1751         struct iova *iova;
1752         int i;
1753
1754         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1755                         DMA_32BIT_PFN);
1756
1757         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1758                 &reserved_rbtree_key);
1759
1760         /* IOAPIC ranges shouldn't be accessed by DMA */
1761         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1762                 IOVA_PFN(IOAPIC_RANGE_END));
1763         if (!iova) {
1764                 pr_err("Reserve IOAPIC range failed\n");
1765                 return -ENODEV;
1766         }
1767
1768         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1769         for_each_pci_dev(pdev) {
1770                 struct resource *r;
1771
1772                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1773                         r = &pdev->resource[i];
1774                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1775                                 continue;
1776                         iova = reserve_iova(&reserved_iova_list,
1777                                             IOVA_PFN(r->start),
1778                                             IOVA_PFN(r->end));
1779                         if (!iova) {
1780                                 pr_err("Reserve iova failed\n");
1781                                 return -ENODEV;
1782                         }
1783                 }
1784         }
1785         return 0;
1786 }
1787
1788 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1789 {
1790         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1791 }
1792
1793 static inline int guestwidth_to_adjustwidth(int gaw)
1794 {
1795         int agaw;
1796         int r = (gaw - 12) % 9;
1797
1798         if (r == 0)
1799                 agaw = gaw;
1800         else
1801                 agaw = gaw + 9 - r;
1802         if (agaw > 64)
1803                 agaw = 64;
1804         return agaw;
1805 }
1806
1807 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1808                        int guest_width)
1809 {
1810         int adjust_width, agaw;
1811         unsigned long sagaw;
1812
1813         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1814                         DMA_32BIT_PFN);
1815         domain_reserve_special_ranges(domain);
1816
1817         /* calculate AGAW */
1818         if (guest_width > cap_mgaw(iommu->cap))
1819                 guest_width = cap_mgaw(iommu->cap);
1820         domain->gaw = guest_width;
1821         adjust_width = guestwidth_to_adjustwidth(guest_width);
1822         agaw = width_to_agaw(adjust_width);
1823         sagaw = cap_sagaw(iommu->cap);
1824         if (!test_bit(agaw, &sagaw)) {
1825                 /* hardware doesn't support it, choose a bigger one */
1826                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1827                 agaw = find_next_bit(&sagaw, 5, agaw);
1828                 if (agaw >= 5)
1829                         return -ENODEV;
1830         }
1831         domain->agaw = agaw;
1832
1833         if (ecap_coherent(iommu->ecap))
1834                 domain->iommu_coherency = 1;
1835         else
1836                 domain->iommu_coherency = 0;
1837
1838         if (ecap_sc_support(iommu->ecap))
1839                 domain->iommu_snooping = 1;
1840         else
1841                 domain->iommu_snooping = 0;
1842
1843         if (intel_iommu_superpage)
1844                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1845         else
1846                 domain->iommu_superpage = 0;
1847
1848         domain->nid = iommu->node;
1849
1850         /* always allocate the top pgd */
1851         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1852         if (!domain->pgd)
1853                 return -ENOMEM;
1854         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1855         return 0;
1856 }
1857
1858 static void domain_exit(struct dmar_domain *domain)
1859 {
1860         struct page *freelist = NULL;
1861
1862         /* Domain 0 is reserved, so dont process it */
1863         if (!domain)
1864                 return;
1865
1866         /* Flush any lazy unmaps that may reference this domain */
1867         if (!intel_iommu_strict)
1868                 flush_unmaps_timeout(0);
1869
1870         /* Remove associated devices and clear attached or cached domains */
1871         rcu_read_lock();
1872         domain_remove_dev_info(domain);
1873         rcu_read_unlock();
1874
1875         /* destroy iovas */
1876         put_iova_domain(&domain->iovad);
1877
1878         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1879
1880         dma_free_pagelist(freelist);
1881
1882         free_domain_mem(domain);
1883 }
1884
1885 static int domain_context_mapping_one(struct dmar_domain *domain,
1886                                       struct intel_iommu *iommu,
1887                                       u8 bus, u8 devfn)
1888 {
1889         u16 did = domain->iommu_did[iommu->seq_id];
1890         int translation = CONTEXT_TT_MULTI_LEVEL;
1891         struct device_domain_info *info = NULL;
1892         struct context_entry *context;
1893         unsigned long flags;
1894         struct dma_pte *pgd;
1895         int ret, agaw;
1896
1897         WARN_ON(did == 0);
1898
1899         if (hw_pass_through && domain_type_is_si(domain))
1900                 translation = CONTEXT_TT_PASS_THROUGH;
1901
1902         pr_debug("Set context mapping for %02x:%02x.%d\n",
1903                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1904
1905         BUG_ON(!domain->pgd);
1906
1907         spin_lock_irqsave(&device_domain_lock, flags);
1908         spin_lock(&iommu->lock);
1909
1910         ret = -ENOMEM;
1911         context = iommu_context_addr(iommu, bus, devfn, 1);
1912         if (!context)
1913                 goto out_unlock;
1914
1915         ret = 0;
1916         if (context_present(context))
1917                 goto out_unlock;
1918
1919         pgd = domain->pgd;
1920
1921         context_clear_entry(context);
1922         context_set_domain_id(context, did);
1923
1924         /*
1925          * Skip top levels of page tables for iommu which has less agaw
1926          * than default.  Unnecessary for PT mode.
1927          */
1928         if (translation != CONTEXT_TT_PASS_THROUGH) {
1929                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1930                         ret = -ENOMEM;
1931                         pgd = phys_to_virt(dma_pte_addr(pgd));
1932                         if (!dma_pte_present(pgd))
1933                                 goto out_unlock;
1934                 }
1935
1936                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1937                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1938                                      CONTEXT_TT_MULTI_LEVEL;
1939
1940                 context_set_address_root(context, virt_to_phys(pgd));
1941                 context_set_address_width(context, iommu->agaw);
1942         } else {
1943                 /*
1944                  * In pass through mode, AW must be programmed to
1945                  * indicate the largest AGAW value supported by
1946                  * hardware. And ASR is ignored by hardware.
1947                  */
1948                 context_set_address_width(context, iommu->msagaw);
1949         }
1950
1951         context_set_translation_type(context, translation);
1952         context_set_fault_enable(context);
1953         context_set_present(context);
1954         domain_flush_cache(domain, context, sizeof(*context));
1955
1956         /*
1957          * It's a non-present to present mapping. If hardware doesn't cache
1958          * non-present entry we only need to flush the write-buffer. If the
1959          * _does_ cache non-present entries, then it does so in the special
1960          * domain #0, which we have to flush:
1961          */
1962         if (cap_caching_mode(iommu->cap)) {
1963                 iommu->flush.flush_context(iommu, 0,
1964                                            (((u16)bus) << 8) | devfn,
1965                                            DMA_CCMD_MASK_NOBIT,
1966                                            DMA_CCMD_DEVICE_INVL);
1967                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1968         } else {
1969                 iommu_flush_write_buffer(iommu);
1970         }
1971         iommu_enable_dev_iotlb(info);
1972
1973         ret = 0;
1974
1975 out_unlock:
1976         spin_unlock(&iommu->lock);
1977         spin_unlock_irqrestore(&device_domain_lock, flags);
1978
1979         return 0;
1980 }
1981
1982 struct domain_context_mapping_data {
1983         struct dmar_domain *domain;
1984         struct intel_iommu *iommu;
1985 };
1986
1987 static int domain_context_mapping_cb(struct pci_dev *pdev,
1988                                      u16 alias, void *opaque)
1989 {
1990         struct domain_context_mapping_data *data = opaque;
1991
1992         return domain_context_mapping_one(data->domain, data->iommu,
1993                                           PCI_BUS_NUM(alias), alias & 0xff);
1994 }
1995
1996 static int
1997 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1998 {
1999         struct intel_iommu *iommu;
2000         u8 bus, devfn;
2001         struct domain_context_mapping_data data;
2002
2003         iommu = device_to_iommu(dev, &bus, &devfn);
2004         if (!iommu)
2005                 return -ENODEV;
2006
2007         if (!dev_is_pci(dev))
2008                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2009
2010         data.domain = domain;
2011         data.iommu = iommu;
2012
2013         return pci_for_each_dma_alias(to_pci_dev(dev),
2014                                       &domain_context_mapping_cb, &data);
2015 }
2016
2017 static int domain_context_mapped_cb(struct pci_dev *pdev,
2018                                     u16 alias, void *opaque)
2019 {
2020         struct intel_iommu *iommu = opaque;
2021
2022         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2023 }
2024
2025 static int domain_context_mapped(struct device *dev)
2026 {
2027         struct intel_iommu *iommu;
2028         u8 bus, devfn;
2029
2030         iommu = device_to_iommu(dev, &bus, &devfn);
2031         if (!iommu)
2032                 return -ENODEV;
2033
2034         if (!dev_is_pci(dev))
2035                 return device_context_mapped(iommu, bus, devfn);
2036
2037         return !pci_for_each_dma_alias(to_pci_dev(dev),
2038                                        domain_context_mapped_cb, iommu);
2039 }
2040
2041 /* Returns a number of VTD pages, but aligned to MM page size */
2042 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043                                             size_t size)
2044 {
2045         host_addr &= ~PAGE_MASK;
2046         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047 }
2048
2049 /* Return largest possible superpage level for a given mapping */
2050 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051                                           unsigned long iov_pfn,
2052                                           unsigned long phy_pfn,
2053                                           unsigned long pages)
2054 {
2055         int support, level = 1;
2056         unsigned long pfnmerge;
2057
2058         support = domain->iommu_superpage;
2059
2060         /* To use a large page, the virtual *and* physical addresses
2061            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062            of them will mean we have to use smaller pages. So just
2063            merge them and check both at once. */
2064         pfnmerge = iov_pfn | phy_pfn;
2065
2066         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067                 pages >>= VTD_STRIDE_SHIFT;
2068                 if (!pages)
2069                         break;
2070                 pfnmerge >>= VTD_STRIDE_SHIFT;
2071                 level++;
2072                 support--;
2073         }
2074         return level;
2075 }
2076
2077 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078                             struct scatterlist *sg, unsigned long phys_pfn,
2079                             unsigned long nr_pages, int prot)
2080 {
2081         struct dma_pte *first_pte = NULL, *pte = NULL;
2082         phys_addr_t uninitialized_var(pteval);
2083         unsigned long sg_res = 0;
2084         unsigned int largepage_lvl = 0;
2085         unsigned long lvl_pages = 0;
2086
2087         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2088
2089         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090                 return -EINVAL;
2091
2092         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
2094         if (!sg) {
2095                 sg_res = nr_pages;
2096                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097         }
2098
2099         while (nr_pages > 0) {
2100                 uint64_t tmp;
2101
2102                 if (!sg_res) {
2103                         sg_res = aligned_nrpages(sg->offset, sg->length);
2104                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105                         sg->dma_length = sg->length;
2106                         pteval = (sg_phys(sg) & PAGE_MASK) | prot;
2107                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2108                 }
2109
2110                 if (!pte) {
2111                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
2113                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2114                         if (!pte)
2115                                 return -ENOMEM;
2116                         /* It is large page*/
2117                         if (largepage_lvl > 1) {
2118                                 pteval |= DMA_PTE_LARGE_PAGE;
2119                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2120                                 /*
2121                                  * Ensure that old small page tables are
2122                                  * removed to make room for superpage,
2123                                  * if they exist.
2124                                  */
2125                                 dma_pte_free_pagetable(domain, iov_pfn,
2126                                                        iov_pfn + lvl_pages - 1);
2127                         } else {
2128                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2129                         }
2130
2131                 }
2132                 /* We don't need lock here, nobody else
2133                  * touches the iova range
2134                  */
2135                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2136                 if (tmp) {
2137                         static int dumps = 5;
2138                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2139                                 iov_pfn, tmp, (unsigned long long)pteval);
2140                         if (dumps) {
2141                                 dumps--;
2142                                 debug_dma_dump_mappings(NULL);
2143                         }
2144                         WARN_ON(1);
2145                 }
2146
2147                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2148
2149                 BUG_ON(nr_pages < lvl_pages);
2150                 BUG_ON(sg_res < lvl_pages);
2151
2152                 nr_pages -= lvl_pages;
2153                 iov_pfn += lvl_pages;
2154                 phys_pfn += lvl_pages;
2155                 pteval += lvl_pages * VTD_PAGE_SIZE;
2156                 sg_res -= lvl_pages;
2157
2158                 /* If the next PTE would be the first in a new page, then we
2159                    need to flush the cache on the entries we've just written.
2160                    And then we'll need to recalculate 'pte', so clear it and
2161                    let it get set again in the if (!pte) block above.
2162
2163                    If we're done (!nr_pages) we need to flush the cache too.
2164
2165                    Also if we've been setting superpages, we may need to
2166                    recalculate 'pte' and switch back to smaller pages for the
2167                    end of the mapping, if the trailing size is not enough to
2168                    use another superpage (i.e. sg_res < lvl_pages). */
2169                 pte++;
2170                 if (!nr_pages || first_pte_in_page(pte) ||
2171                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2172                         domain_flush_cache(domain, first_pte,
2173                                            (void *)pte - (void *)first_pte);
2174                         pte = NULL;
2175                 }
2176
2177                 if (!sg_res && nr_pages)
2178                         sg = sg_next(sg);
2179         }
2180         return 0;
2181 }
2182
2183 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184                                     struct scatterlist *sg, unsigned long nr_pages,
2185                                     int prot)
2186 {
2187         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2188 }
2189
2190 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2191                                      unsigned long phys_pfn, unsigned long nr_pages,
2192                                      int prot)
2193 {
2194         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2195 }
2196
2197 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2198 {
2199         if (!iommu)
2200                 return;
2201
2202         clear_context_table(iommu, bus, devfn);
2203         iommu->flush.flush_context(iommu, 0, 0, 0,
2204                                            DMA_CCMD_GLOBAL_INVL);
2205         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2206 }
2207
2208 static inline void unlink_domain_info(struct device_domain_info *info)
2209 {
2210         assert_spin_locked(&device_domain_lock);
2211         list_del(&info->link);
2212         list_del(&info->global);
2213         if (info->dev)
2214                 info->dev->archdata.iommu = NULL;
2215 }
2216
2217 static void domain_remove_dev_info(struct dmar_domain *domain)
2218 {
2219         struct device_domain_info *info, *tmp;
2220         unsigned long flags;
2221
2222         spin_lock_irqsave(&device_domain_lock, flags);
2223         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2224                 __dmar_remove_one_dev_info(info);
2225         spin_unlock_irqrestore(&device_domain_lock, flags);
2226 }
2227
2228 /*
2229  * find_domain
2230  * Note: we use struct device->archdata.iommu stores the info
2231  */
2232 static struct dmar_domain *find_domain(struct device *dev)
2233 {
2234         struct device_domain_info *info;
2235
2236         /* No lock here, assumes no domain exit in normal case */
2237         info = dev->archdata.iommu;
2238         if (info)
2239                 return info->domain;
2240         return NULL;
2241 }
2242
2243 static inline struct device_domain_info *
2244 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2245 {
2246         struct device_domain_info *info;
2247
2248         list_for_each_entry(info, &device_domain_list, global)
2249                 if (info->iommu->segment == segment && info->bus == bus &&
2250                     info->devfn == devfn)
2251                         return info;
2252
2253         return NULL;
2254 }
2255
2256 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2257                                                     int bus, int devfn,
2258                                                     struct device *dev,
2259                                                     struct dmar_domain *domain)
2260 {
2261         struct dmar_domain *found = NULL;
2262         struct device_domain_info *info;
2263         unsigned long flags;
2264         int ret;
2265
2266         info = alloc_devinfo_mem();
2267         if (!info)
2268                 return NULL;
2269
2270         info->bus = bus;
2271         info->devfn = devfn;
2272         info->ats.enabled = 0;
2273         info->ats.qdep = 0;
2274         info->dev = dev;
2275         info->domain = domain;
2276         info->iommu = iommu;
2277
2278         spin_lock_irqsave(&device_domain_lock, flags);
2279         if (dev)
2280                 found = find_domain(dev);
2281
2282         if (!found) {
2283                 struct device_domain_info *info2;
2284                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2285                 if (info2) {
2286                         found      = info2->domain;
2287                         info2->dev = dev;
2288                 }
2289         }
2290
2291         if (found) {
2292                 spin_unlock_irqrestore(&device_domain_lock, flags);
2293                 free_devinfo_mem(info);
2294                 /* Caller must free the original domain */
2295                 return found;
2296         }
2297
2298         spin_lock(&iommu->lock);
2299         ret = domain_attach_iommu(domain, iommu);
2300         spin_unlock(&iommu->lock);
2301
2302         if (ret) {
2303                 spin_unlock_irqrestore(&device_domain_lock, flags);
2304                 return NULL;
2305         }
2306
2307         list_add(&info->link, &domain->devices);
2308         list_add(&info->global, &device_domain_list);
2309         if (dev)
2310                 dev->archdata.iommu = info;
2311         spin_unlock_irqrestore(&device_domain_lock, flags);
2312
2313         if (dev && domain_context_mapping(domain, dev)) {
2314                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2315                 dmar_remove_one_dev_info(domain, dev);
2316                 return NULL;
2317         }
2318
2319         return domain;
2320 }
2321
2322 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2323 {
2324         *(u16 *)opaque = alias;
2325         return 0;
2326 }
2327
2328 /* domain is initialized */
2329 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2330 {
2331         struct device_domain_info *info = NULL;
2332         struct dmar_domain *domain, *tmp;
2333         struct intel_iommu *iommu;
2334         u16 req_id, dma_alias;
2335         unsigned long flags;
2336         u8 bus, devfn;
2337
2338         domain = find_domain(dev);
2339         if (domain)
2340                 return domain;
2341
2342         iommu = device_to_iommu(dev, &bus, &devfn);
2343         if (!iommu)
2344                 return NULL;
2345
2346         req_id = ((u16)bus << 8) | devfn;
2347
2348         if (dev_is_pci(dev)) {
2349                 struct pci_dev *pdev = to_pci_dev(dev);
2350
2351                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2352
2353                 spin_lock_irqsave(&device_domain_lock, flags);
2354                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2355                                                       PCI_BUS_NUM(dma_alias),
2356                                                       dma_alias & 0xff);
2357                 if (info) {
2358                         iommu = info->iommu;
2359                         domain = info->domain;
2360                 }
2361                 spin_unlock_irqrestore(&device_domain_lock, flags);
2362
2363                 /* DMA alias already has a domain, uses it */
2364                 if (info)
2365                         goto found_domain;
2366         }
2367
2368         /* Allocate and initialize new domain for the device */
2369         domain = alloc_domain(0);
2370         if (!domain)
2371                 return NULL;
2372         if (domain_init(domain, iommu, gaw)) {
2373                 domain_exit(domain);
2374                 return NULL;
2375         }
2376
2377         /* register PCI DMA alias device */
2378         if (req_id != dma_alias && dev_is_pci(dev)) {
2379                 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2380                                                dma_alias & 0xff, NULL, domain);
2381
2382                 if (!tmp || tmp != domain) {
2383                         domain_exit(domain);
2384                         domain = tmp;
2385                 }
2386
2387                 if (!domain)
2388                         return NULL;
2389         }
2390
2391 found_domain:
2392         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2393
2394         if (!tmp || tmp != domain) {
2395                 domain_exit(domain);
2396                 domain = tmp;
2397         }
2398
2399         return domain;
2400 }
2401
2402 static int iommu_identity_mapping;
2403 #define IDENTMAP_ALL            1
2404 #define IDENTMAP_GFX            2
2405 #define IDENTMAP_AZALIA         4
2406
2407 static int iommu_domain_identity_map(struct dmar_domain *domain,
2408                                      unsigned long long start,
2409                                      unsigned long long end)
2410 {
2411         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2412         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2413
2414         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2415                           dma_to_mm_pfn(last_vpfn))) {
2416                 pr_err("Reserving iova failed\n");
2417                 return -ENOMEM;
2418         }
2419
2420         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2421         /*
2422          * RMRR range might have overlap with physical memory range,
2423          * clear it first
2424          */
2425         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2426
2427         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2428                                   last_vpfn - first_vpfn + 1,
2429                                   DMA_PTE_READ|DMA_PTE_WRITE);
2430 }
2431
2432 static int iommu_prepare_identity_map(struct device *dev,
2433                                       unsigned long long start,
2434                                       unsigned long long end)
2435 {
2436         struct dmar_domain *domain;
2437         int ret;
2438
2439         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2440         if (!domain)
2441                 return -ENOMEM;
2442
2443         /* For _hardware_ passthrough, don't bother. But for software
2444            passthrough, we do it anyway -- it may indicate a memory
2445            range which is reserved in E820, so which didn't get set
2446            up to start with in si_domain */
2447         if (domain == si_domain && hw_pass_through) {
2448                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2449                         dev_name(dev), start, end);
2450                 return 0;
2451         }
2452
2453         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2454                 dev_name(dev), start, end);
2455
2456         if (end < start) {
2457                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2458                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2459                         dmi_get_system_info(DMI_BIOS_VENDOR),
2460                         dmi_get_system_info(DMI_BIOS_VERSION),
2461                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2462                 ret = -EIO;
2463                 goto error;
2464         }
2465
2466         if (end >> agaw_to_width(domain->agaw)) {
2467                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2468                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2469                      agaw_to_width(domain->agaw),
2470                      dmi_get_system_info(DMI_BIOS_VENDOR),
2471                      dmi_get_system_info(DMI_BIOS_VERSION),
2472                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2473                 ret = -EIO;
2474                 goto error;
2475         }
2476
2477         ret = iommu_domain_identity_map(domain, start, end);
2478         if (ret)
2479                 goto error;
2480
2481         return 0;
2482
2483  error:
2484         domain_exit(domain);
2485         return ret;
2486 }
2487
2488 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2489                                          struct device *dev)
2490 {
2491         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2492                 return 0;
2493         return iommu_prepare_identity_map(dev, rmrr->base_address,
2494                                           rmrr->end_address);
2495 }
2496
2497 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2498 static inline void iommu_prepare_isa(void)
2499 {
2500         struct pci_dev *pdev;
2501         int ret;
2502
2503         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2504         if (!pdev)
2505                 return;
2506
2507         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2508         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2509
2510         if (ret)
2511                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2512
2513         pci_dev_put(pdev);
2514 }
2515 #else
2516 static inline void iommu_prepare_isa(void)
2517 {
2518         return;
2519 }
2520 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2521
2522 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2523
2524 static int __init si_domain_init(int hw)
2525 {
2526         int nid, ret = 0;
2527
2528         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2529         if (!si_domain)
2530                 return -EFAULT;
2531
2532         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2533                 domain_exit(si_domain);
2534                 return -EFAULT;
2535         }
2536
2537         pr_debug("Identity mapping domain allocated\n");
2538
2539         if (hw)
2540                 return 0;
2541
2542         for_each_online_node(nid) {
2543                 unsigned long start_pfn, end_pfn;
2544                 int i;
2545
2546                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2547                         ret = iommu_domain_identity_map(si_domain,
2548                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2549                         if (ret)
2550                                 return ret;
2551                 }
2552         }
2553
2554         return 0;
2555 }
2556
2557 static int identity_mapping(struct device *dev)
2558 {
2559         struct device_domain_info *info;
2560
2561         if (likely(!iommu_identity_mapping))
2562                 return 0;
2563
2564         info = dev->archdata.iommu;
2565         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2566                 return (info->domain == si_domain);
2567
2568         return 0;
2569 }
2570
2571 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2572 {
2573         struct dmar_domain *ndomain;
2574         struct intel_iommu *iommu;
2575         u8 bus, devfn;
2576
2577         iommu = device_to_iommu(dev, &bus, &devfn);
2578         if (!iommu)
2579                 return -ENODEV;
2580
2581         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2582         if (ndomain != domain)
2583                 return -EBUSY;
2584
2585         return 0;
2586 }
2587
2588 static bool device_has_rmrr(struct device *dev)
2589 {
2590         struct dmar_rmrr_unit *rmrr;
2591         struct device *tmp;
2592         int i;
2593
2594         rcu_read_lock();
2595         for_each_rmrr_units(rmrr) {
2596                 /*
2597                  * Return TRUE if this RMRR contains the device that
2598                  * is passed in.
2599                  */
2600                 for_each_active_dev_scope(rmrr->devices,
2601                                           rmrr->devices_cnt, i, tmp)
2602                         if (tmp == dev) {
2603                                 rcu_read_unlock();
2604                                 return true;
2605                         }
2606         }
2607         rcu_read_unlock();
2608         return false;
2609 }
2610
2611 /*
2612  * There are a couple cases where we need to restrict the functionality of
2613  * devices associated with RMRRs.  The first is when evaluating a device for
2614  * identity mapping because problems exist when devices are moved in and out
2615  * of domains and their respective RMRR information is lost.  This means that
2616  * a device with associated RMRRs will never be in a "passthrough" domain.
2617  * The second is use of the device through the IOMMU API.  This interface
2618  * expects to have full control of the IOVA space for the device.  We cannot
2619  * satisfy both the requirement that RMRR access is maintained and have an
2620  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2621  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2622  * We therefore prevent devices associated with an RMRR from participating in
2623  * the IOMMU API, which eliminates them from device assignment.
2624  *
2625  * In both cases we assume that PCI USB devices with RMRRs have them largely
2626  * for historical reasons and that the RMRR space is not actively used post
2627  * boot.  This exclusion may change if vendors begin to abuse it.
2628  *
2629  * The same exception is made for graphics devices, with the requirement that
2630  * any use of the RMRR regions will be torn down before assigning the device
2631  * to a guest.
2632  */
2633 static bool device_is_rmrr_locked(struct device *dev)
2634 {
2635         if (!device_has_rmrr(dev))
2636                 return false;
2637
2638         if (dev_is_pci(dev)) {
2639                 struct pci_dev *pdev = to_pci_dev(dev);
2640
2641                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2642                         return false;
2643         }
2644
2645         return true;
2646 }
2647
2648 static int iommu_should_identity_map(struct device *dev, int startup)
2649 {
2650
2651         if (dev_is_pci(dev)) {
2652                 struct pci_dev *pdev = to_pci_dev(dev);
2653
2654                 if (device_is_rmrr_locked(dev))
2655                         return 0;
2656
2657                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2658                         return 1;
2659
2660                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2661                         return 1;
2662
2663                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2664                         return 0;
2665
2666                 /*
2667                  * We want to start off with all devices in the 1:1 domain, and
2668                  * take them out later if we find they can't access all of memory.
2669                  *
2670                  * However, we can't do this for PCI devices behind bridges,
2671                  * because all PCI devices behind the same bridge will end up
2672                  * with the same source-id on their transactions.
2673                  *
2674                  * Practically speaking, we can't change things around for these
2675                  * devices at run-time, because we can't be sure there'll be no
2676                  * DMA transactions in flight for any of their siblings.
2677                  *
2678                  * So PCI devices (unless they're on the root bus) as well as
2679                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2680                  * the 1:1 domain, just in _case_ one of their siblings turns out
2681                  * not to be able to map all of memory.
2682                  */
2683                 if (!pci_is_pcie(pdev)) {
2684                         if (!pci_is_root_bus(pdev->bus))
2685                                 return 0;
2686                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2687                                 return 0;
2688                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2689                         return 0;
2690         } else {
2691                 if (device_has_rmrr(dev))
2692                         return 0;
2693         }
2694
2695         /*
2696          * At boot time, we don't yet know if devices will be 64-bit capable.
2697          * Assume that they will — if they turn out not to be, then we can
2698          * take them out of the 1:1 domain later.
2699          */
2700         if (!startup) {
2701                 /*
2702                  * If the device's dma_mask is less than the system's memory
2703                  * size then this is not a candidate for identity mapping.
2704                  */
2705                 u64 dma_mask = *dev->dma_mask;
2706
2707                 if (dev->coherent_dma_mask &&
2708                     dev->coherent_dma_mask < dma_mask)
2709                         dma_mask = dev->coherent_dma_mask;
2710
2711                 return dma_mask >= dma_get_required_mask(dev);
2712         }
2713
2714         return 1;
2715 }
2716
2717 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2718 {
2719         int ret;
2720
2721         if (!iommu_should_identity_map(dev, 1))
2722                 return 0;
2723
2724         ret = domain_add_dev_info(si_domain, dev);
2725         if (!ret)
2726                 pr_info("%s identity mapping for device %s\n",
2727                         hw ? "Hardware" : "Software", dev_name(dev));
2728         else if (ret == -ENODEV)
2729                 /* device not associated with an iommu */
2730                 ret = 0;
2731
2732         return ret;
2733 }
2734
2735
2736 static int __init iommu_prepare_static_identity_mapping(int hw)
2737 {
2738         struct pci_dev *pdev = NULL;
2739         struct dmar_drhd_unit *drhd;
2740         struct intel_iommu *iommu;
2741         struct device *dev;
2742         int i;
2743         int ret = 0;
2744
2745         for_each_pci_dev(pdev) {
2746                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2747                 if (ret)
2748                         return ret;
2749         }
2750
2751         for_each_active_iommu(iommu, drhd)
2752                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2753                         struct acpi_device_physical_node *pn;
2754                         struct acpi_device *adev;
2755
2756                         if (dev->bus != &acpi_bus_type)
2757                                 continue;
2758
2759                         adev= to_acpi_device(dev);
2760                         mutex_lock(&adev->physical_node_lock);
2761                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2762                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2763                                 if (ret)
2764                                         break;
2765                         }
2766                         mutex_unlock(&adev->physical_node_lock);
2767                         if (ret)
2768                                 return ret;
2769                 }
2770
2771         return 0;
2772 }
2773
2774 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2775 {
2776         /*
2777          * Start from the sane iommu hardware state.
2778          * If the queued invalidation is already initialized by us
2779          * (for example, while enabling interrupt-remapping) then
2780          * we got the things already rolling from a sane state.
2781          */
2782         if (!iommu->qi) {
2783                 /*
2784                  * Clear any previous faults.
2785                  */
2786                 dmar_fault(-1, iommu);
2787                 /*
2788                  * Disable queued invalidation if supported and already enabled
2789                  * before OS handover.
2790                  */
2791                 dmar_disable_qi(iommu);
2792         }
2793
2794         if (dmar_enable_qi(iommu)) {
2795                 /*
2796                  * Queued Invalidate not enabled, use Register Based Invalidate
2797                  */
2798                 iommu->flush.flush_context = __iommu_flush_context;
2799                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2800                 pr_info("%s: Using Register based invalidation\n",
2801                         iommu->name);
2802         } else {
2803                 iommu->flush.flush_context = qi_flush_context;
2804                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2805                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2806         }
2807 }
2808
2809 static int copy_context_table(struct intel_iommu *iommu,
2810                               struct root_entry __iomem *old_re,
2811                               struct context_entry **tbl,
2812                               int bus, bool ext)
2813 {
2814         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2815         struct context_entry __iomem *old_ce = NULL;
2816         struct context_entry *new_ce = NULL, ce;
2817         struct root_entry re;
2818         phys_addr_t old_ce_phys;
2819
2820         tbl_idx = ext ? bus * 2 : bus;
2821         memcpy_fromio(&re, old_re, sizeof(re));
2822
2823         for (devfn = 0; devfn < 256; devfn++) {
2824                 /* First calculate the correct index */
2825                 idx = (ext ? devfn * 2 : devfn) % 256;
2826
2827                 if (idx == 0) {
2828                         /* First save what we may have and clean up */
2829                         if (new_ce) {
2830                                 tbl[tbl_idx] = new_ce;
2831                                 __iommu_flush_cache(iommu, new_ce,
2832                                                     VTD_PAGE_SIZE);
2833                                 pos = 1;
2834                         }
2835
2836                         if (old_ce)
2837                                 iounmap(old_ce);
2838
2839                         ret = 0;
2840                         if (devfn < 0x80)
2841                                 old_ce_phys = root_entry_lctp(&re);
2842                         else
2843                                 old_ce_phys = root_entry_uctp(&re);
2844
2845                         if (!old_ce_phys) {
2846                                 if (ext && devfn == 0) {
2847                                         /* No LCTP, try UCTP */
2848                                         devfn = 0x7f;
2849                                         continue;
2850                                 } else {
2851                                         goto out;
2852                                 }
2853                         }
2854
2855                         ret = -ENOMEM;
2856                         old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2857                         if (!old_ce)
2858                                 goto out;
2859
2860                         new_ce = alloc_pgtable_page(iommu->node);
2861                         if (!new_ce)
2862                                 goto out_unmap;
2863
2864                         ret = 0;
2865                 }
2866
2867                 /* Now copy the context entry */
2868                 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
2869
2870                 if (!__context_present(&ce))
2871                         continue;
2872
2873                 did = context_domain_id(&ce);
2874                 if (did >= 0 && did < cap_ndoms(iommu->cap))
2875                         set_bit(did, iommu->domain_ids);
2876
2877                 /*
2878                  * We need a marker for copied context entries. This
2879                  * marker needs to work for the old format as well as
2880                  * for extended context entries.
2881                  *
2882                  * Bit 67 of the context entry is used. In the old
2883                  * format this bit is available to software, in the
2884                  * extended format it is the PGE bit, but PGE is ignored
2885                  * by HW if PASIDs are disabled (and thus still
2886                  * available).
2887                  *
2888                  * So disable PASIDs first and then mark the entry
2889                  * copied. This means that we don't copy PASID
2890                  * translations from the old kernel, but this is fine as
2891                  * faults there are not fatal.
2892                  */
2893                 context_clear_pasid_enable(&ce);
2894                 context_set_copied(&ce);
2895
2896                 new_ce[idx] = ce;
2897         }
2898
2899         tbl[tbl_idx + pos] = new_ce;
2900
2901         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2902
2903 out_unmap:
2904         iounmap(old_ce);
2905
2906 out:
2907         return ret;
2908 }
2909
2910 static int copy_translation_tables(struct intel_iommu *iommu)
2911 {
2912         struct root_entry __iomem *old_rt;
2913         struct context_entry **ctxt_tbls;
2914         phys_addr_t old_rt_phys;
2915         int ctxt_table_entries;
2916         unsigned long flags;
2917         u64 rtaddr_reg;
2918         int bus, ret;
2919         bool new_ext, ext;
2920
2921         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2922         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2923         new_ext    = !!ecap_ecs(iommu->ecap);
2924
2925         /*
2926          * The RTT bit can only be changed when translation is disabled,
2927          * but disabling translation means to open a window for data
2928          * corruption. So bail out and don't copy anything if we would
2929          * have to change the bit.
2930          */
2931         if (new_ext != ext)
2932                 return -EINVAL;
2933
2934         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2935         if (!old_rt_phys)
2936                 return -EINVAL;
2937
2938         old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2939         if (!old_rt)
2940                 return -ENOMEM;
2941
2942         /* This is too big for the stack - allocate it from slab */
2943         ctxt_table_entries = ext ? 512 : 256;
2944         ret = -ENOMEM;
2945         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2946         if (!ctxt_tbls)
2947                 goto out_unmap;
2948
2949         for (bus = 0; bus < 256; bus++) {
2950                 ret = copy_context_table(iommu, &old_rt[bus],
2951                                          ctxt_tbls, bus, ext);
2952                 if (ret) {
2953                         pr_err("%s: Failed to copy context table for bus %d\n",
2954                                 iommu->name, bus);
2955                         continue;
2956                 }
2957         }
2958
2959         spin_lock_irqsave(&iommu->lock, flags);
2960
2961         /* Context tables are copied, now write them to the root_entry table */
2962         for (bus = 0; bus < 256; bus++) {
2963                 int idx = ext ? bus * 2 : bus;
2964                 u64 val;
2965
2966                 if (ctxt_tbls[idx]) {
2967                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
2968                         iommu->root_entry[bus].lo = val;
2969                 }
2970
2971                 if (!ext || !ctxt_tbls[idx + 1])
2972                         continue;
2973
2974                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2975                 iommu->root_entry[bus].hi = val;
2976         }
2977
2978         spin_unlock_irqrestore(&iommu->lock, flags);
2979
2980         kfree(ctxt_tbls);
2981
2982         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2983
2984         ret = 0;
2985
2986 out_unmap:
2987         iounmap(old_rt);
2988
2989         return ret;
2990 }
2991
2992 static int __init init_dmars(void)
2993 {
2994         struct dmar_drhd_unit *drhd;
2995         struct dmar_rmrr_unit *rmrr;
2996         bool copied_tables = false;
2997         struct device *dev;
2998         struct intel_iommu *iommu;
2999         int i, ret;
3000
3001         /*
3002          * for each drhd
3003          *    allocate root
3004          *    initialize and program root entry to not present
3005          * endfor
3006          */
3007         for_each_drhd_unit(drhd) {
3008                 /*
3009                  * lock not needed as this is only incremented in the single
3010                  * threaded kernel __init code path all other access are read
3011                  * only
3012                  */
3013                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3014                         g_num_of_iommus++;
3015                         continue;
3016                 }
3017                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3018         }
3019
3020         /* Preallocate enough resources for IOMMU hot-addition */
3021         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3022                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3023
3024         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3025                         GFP_KERNEL);
3026         if (!g_iommus) {
3027                 pr_err("Allocating global iommu array failed\n");
3028                 ret = -ENOMEM;
3029                 goto error;
3030         }
3031
3032         deferred_flush = kzalloc(g_num_of_iommus *
3033                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3034         if (!deferred_flush) {
3035                 ret = -ENOMEM;
3036                 goto free_g_iommus;
3037         }
3038
3039         for_each_active_iommu(iommu, drhd) {
3040                 g_iommus[iommu->seq_id] = iommu;
3041
3042                 intel_iommu_init_qi(iommu);
3043
3044                 ret = iommu_init_domains(iommu);
3045                 if (ret)
3046                         goto free_iommu;
3047
3048                 init_translation_status(iommu);
3049
3050                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3051                         iommu_disable_translation(iommu);
3052                         clear_translation_pre_enabled(iommu);
3053                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3054                                 iommu->name);
3055                 }
3056
3057                 /*
3058                  * TBD:
3059                  * we could share the same root & context tables
3060                  * among all IOMMU's. Need to Split it later.
3061                  */
3062                 ret = iommu_alloc_root_entry(iommu);
3063                 if (ret)
3064                         goto free_iommu;
3065
3066                 if (translation_pre_enabled(iommu)) {
3067                         pr_info("Translation already enabled - trying to copy translation structures\n");
3068
3069                         ret = copy_translation_tables(iommu);
3070                         if (ret) {
3071                                 /*
3072                                  * We found the IOMMU with translation
3073                                  * enabled - but failed to copy over the
3074                                  * old root-entry table. Try to proceed
3075                                  * by disabling translation now and
3076                                  * allocating a clean root-entry table.
3077                                  * This might cause DMAR faults, but
3078                                  * probably the dump will still succeed.
3079                                  */
3080                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3081                                        iommu->name);
3082                                 iommu_disable_translation(iommu);
3083                                 clear_translation_pre_enabled(iommu);
3084                         } else {
3085                                 pr_info("Copied translation tables from previous kernel for %s\n",
3086                                         iommu->name);
3087                                 copied_tables = true;
3088                         }
3089                 }
3090
3091                 iommu_flush_write_buffer(iommu);
3092                 iommu_set_root_entry(iommu);
3093                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3094                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3095
3096                 if (!ecap_pass_through(iommu->ecap))
3097                         hw_pass_through = 0;
3098         }
3099
3100         if (iommu_pass_through)
3101                 iommu_identity_mapping |= IDENTMAP_ALL;
3102
3103 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3104         iommu_identity_mapping |= IDENTMAP_GFX;
3105 #endif
3106
3107         if (iommu_identity_mapping) {
3108                 ret = si_domain_init(hw_pass_through);
3109                 if (ret)
3110                         goto free_iommu;
3111         }
3112
3113         check_tylersburg_isoch();
3114
3115         /*
3116          * If we copied translations from a previous kernel in the kdump
3117          * case, we can not assign the devices to domains now, as that
3118          * would eliminate the old mappings. So skip this part and defer
3119          * the assignment to device driver initialization time.
3120          */
3121         if (copied_tables)
3122                 goto domains_done;
3123
3124         /*
3125          * If pass through is not set or not enabled, setup context entries for
3126          * identity mappings for rmrr, gfx, and isa and may fall back to static
3127          * identity mapping if iommu_identity_mapping is set.
3128          */
3129         if (iommu_identity_mapping) {
3130                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3131                 if (ret) {
3132                         pr_crit("Failed to setup IOMMU pass-through\n");
3133                         goto free_iommu;
3134                 }
3135         }
3136         /*
3137          * For each rmrr
3138          *   for each dev attached to rmrr
3139          *   do
3140          *     locate drhd for dev, alloc domain for dev
3141          *     allocate free domain
3142          *     allocate page table entries for rmrr
3143          *     if context not allocated for bus
3144          *           allocate and init context
3145          *           set present in root table for this bus
3146          *     init context with domain, translation etc
3147          *    endfor
3148          * endfor
3149          */
3150         pr_info("Setting RMRR:\n");
3151         for_each_rmrr_units(rmrr) {
3152                 /* some BIOS lists non-exist devices in DMAR table. */
3153                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3154                                           i, dev) {
3155                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3156                         if (ret)
3157                                 pr_err("Mapping reserved region failed\n");
3158                 }
3159         }
3160
3161         iommu_prepare_isa();
3162
3163 domains_done:
3164
3165         /*
3166          * for each drhd
3167          *   enable fault log
3168          *   global invalidate context cache
3169          *   global invalidate iotlb
3170          *   enable translation
3171          */
3172         for_each_iommu(iommu, drhd) {
3173                 if (drhd->ignored) {
3174                         /*
3175                          * we always have to disable PMRs or DMA may fail on
3176                          * this device
3177                          */
3178                         if (force_on)
3179                                 iommu_disable_protect_mem_regions(iommu);
3180                         continue;
3181                 }
3182
3183                 iommu_flush_write_buffer(iommu);
3184
3185                 ret = dmar_set_interrupt(iommu);
3186                 if (ret)
3187                         goto free_iommu;
3188
3189                 if (!translation_pre_enabled(iommu))
3190                         iommu_enable_translation(iommu);
3191
3192                 iommu_disable_protect_mem_regions(iommu);
3193         }
3194
3195         return 0;
3196
3197 free_iommu:
3198         for_each_active_iommu(iommu, drhd) {
3199                 disable_dmar_iommu(iommu);
3200                 free_dmar_iommu(iommu);
3201         }
3202         kfree(deferred_flush);
3203 free_g_iommus:
3204         kfree(g_iommus);
3205 error:
3206         return ret;
3207 }
3208
3209 /* This takes a number of _MM_ pages, not VTD pages */
3210 static struct iova *intel_alloc_iova(struct device *dev,
3211                                      struct dmar_domain *domain,
3212                                      unsigned long nrpages, uint64_t dma_mask)
3213 {
3214         struct iova *iova = NULL;
3215
3216         /* Restrict dma_mask to the width that the iommu can handle */
3217         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3218
3219         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3220                 /*
3221                  * First try to allocate an io virtual address in
3222                  * DMA_BIT_MASK(32) and if that fails then try allocating
3223                  * from higher range
3224                  */
3225                 iova = alloc_iova(&domain->iovad, nrpages,
3226                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
3227                 if (iova)
3228                         return iova;
3229         }
3230         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3231         if (unlikely(!iova)) {
3232                 pr_err("Allocating %ld-page iova for %s failed",
3233                        nrpages, dev_name(dev));
3234                 return NULL;
3235         }
3236
3237         return iova;
3238 }
3239
3240 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3241 {
3242         struct dmar_domain *domain;
3243
3244         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3245         if (!domain) {
3246                 pr_err("Allocating domain for %s failed\n",
3247                        dev_name(dev));
3248                 return NULL;
3249         }
3250
3251         return domain;
3252 }
3253
3254 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3255 {
3256         struct device_domain_info *info;
3257
3258         /* No lock here, assumes no domain exit in normal case */
3259         info = dev->archdata.iommu;
3260         if (likely(info))
3261                 return info->domain;
3262
3263         return __get_valid_domain_for_dev(dev);
3264 }
3265
3266 /* Check if the dev needs to go through non-identity map and unmap process.*/
3267 static int iommu_no_mapping(struct device *dev)
3268 {
3269         int found;
3270
3271         if (iommu_dummy(dev))
3272                 return 1;
3273
3274         if (!iommu_identity_mapping)
3275                 return 0;
3276
3277         found = identity_mapping(dev);
3278         if (found) {
3279                 if (iommu_should_identity_map(dev, 0))
3280                         return 1;
3281                 else {
3282                         /*
3283                          * 32 bit DMA is removed from si_domain and fall back
3284                          * to non-identity mapping.
3285                          */
3286                         dmar_remove_one_dev_info(si_domain, dev);
3287                         pr_info("32bit %s uses non-identity mapping\n",
3288                                 dev_name(dev));
3289                         return 0;
3290                 }
3291         } else {
3292                 /*
3293                  * In case of a detached 64 bit DMA device from vm, the device
3294                  * is put into si_domain for identity mapping.
3295                  */
3296                 if (iommu_should_identity_map(dev, 0)) {
3297                         int ret;
3298                         ret = domain_add_dev_info(si_domain, dev);
3299                         if (!ret) {
3300                                 pr_info("64bit %s uses identity mapping\n",
3301                                         dev_name(dev));
3302                                 return 1;
3303                         }
3304                 }
3305         }
3306
3307         return 0;
3308 }
3309
3310 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3311                                      size_t size, int dir, u64 dma_mask)
3312 {
3313         struct dmar_domain *domain;
3314         phys_addr_t start_paddr;
3315         struct iova *iova;
3316         int prot = 0;
3317         int ret;
3318         struct intel_iommu *iommu;
3319         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3320
3321         BUG_ON(dir == DMA_NONE);
3322
3323         if (iommu_no_mapping(dev))
3324                 return paddr;
3325
3326         domain = get_valid_domain_for_dev(dev);
3327         if (!domain)
3328                 return 0;
3329
3330         iommu = domain_get_iommu(domain);
3331         size = aligned_nrpages(paddr, size);
3332
3333         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3334         if (!iova)
3335                 goto error;
3336
3337         /*
3338          * Check if DMAR supports zero-length reads on write only
3339          * mappings..
3340          */
3341         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3342                         !cap_zlr(iommu->cap))
3343                 prot |= DMA_PTE_READ;
3344         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3345                 prot |= DMA_PTE_WRITE;
3346         /*
3347          * paddr - (paddr + size) might be partial page, we should map the whole
3348          * page.  Note: if two part of one page are separately mapped, we
3349          * might have two guest_addr mapping to the same host paddr, but this
3350          * is not a big problem
3351          */
3352         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3353                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3354         if (ret)
3355                 goto error;
3356
3357         /* it's a non-present to present mapping. Only flush if caching mode */
3358         if (cap_caching_mode(iommu->cap))
3359                 iommu_flush_iotlb_psi(iommu, domain,
3360                                       mm_to_dma_pfn(iova->pfn_lo),
3361                                       size, 0, 1);
3362         else
3363                 iommu_flush_write_buffer(iommu);
3364
3365         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3366         start_paddr += paddr & ~PAGE_MASK;
3367         return start_paddr;
3368
3369 error:
3370         if (iova)
3371                 __free_iova(&domain->iovad, iova);
3372         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3373                 dev_name(dev), size, (unsigned long long)paddr, dir);
3374         return 0;
3375 }
3376
3377 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3378                                  unsigned long offset, size_t size,
3379                                  enum dma_data_direction dir,
3380                                  struct dma_attrs *attrs)
3381 {
3382         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3383                                   dir, *dev->dma_mask);
3384 }
3385
3386 static void flush_unmaps(void)
3387 {
3388         int i, j;
3389
3390         timer_on = 0;
3391
3392         /* just flush them all */
3393         for (i = 0; i < g_num_of_iommus; i++) {
3394                 struct intel_iommu *iommu = g_iommus[i];
3395                 if (!iommu)
3396                         continue;
3397
3398                 if (!deferred_flush[i].next)
3399                         continue;
3400
3401                 /* In caching mode, global flushes turn emulation expensive */
3402                 if (!cap_caching_mode(iommu->cap))
3403                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3404                                          DMA_TLB_GLOBAL_FLUSH);
3405                 for (j = 0; j < deferred_flush[i].next; j++) {
3406                         unsigned long mask;
3407                         struct iova *iova = deferred_flush[i].iova[j];
3408                         struct dmar_domain *domain = deferred_flush[i].domain[j];
3409
3410                         /* On real hardware multiple invalidations are expensive */
3411                         if (cap_caching_mode(iommu->cap))
3412                                 iommu_flush_iotlb_psi(iommu, domain,
3413                                         iova->pfn_lo, iova_size(iova),
3414                                         !deferred_flush[i].freelist[j], 0);
3415                         else {
3416                                 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3417                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3418                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3419                         }
3420                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3421                         if (deferred_flush[i].freelist[j])
3422                                 dma_free_pagelist(deferred_flush[i].freelist[j]);
3423                 }
3424                 deferred_flush[i].next = 0;
3425         }
3426
3427         list_size = 0;
3428 }
3429
3430 static void flush_unmaps_timeout(unsigned long data)
3431 {
3432         unsigned long flags;
3433
3434         spin_lock_irqsave(&async_umap_flush_lock, flags);
3435         flush_unmaps();
3436         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3437 }
3438
3439 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3440 {
3441         unsigned long flags;
3442         int next, iommu_id;
3443         struct intel_iommu *iommu;
3444
3445         spin_lock_irqsave(&async_umap_flush_lock, flags);
3446         if (list_size == HIGH_WATER_MARK)
3447                 flush_unmaps();
3448
3449         iommu = domain_get_iommu(dom);
3450         iommu_id = iommu->seq_id;
3451
3452         next = deferred_flush[iommu_id].next;
3453         deferred_flush[iommu_id].domain[next] = dom;
3454         deferred_flush[iommu_id].iova[next] = iova;
3455         deferred_flush[iommu_id].freelist[next] = freelist;
3456         deferred_flush[iommu_id].next++;
3457
3458         if (!timer_on) {
3459                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3460                 timer_on = 1;
3461         }
3462         list_size++;
3463         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3464 }
3465
3466 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3467 {
3468         struct dmar_domain *domain;
3469         unsigned long start_pfn, last_pfn;
3470         struct iova *iova;
3471         struct intel_iommu *iommu;
3472         struct page *freelist;
3473
3474         if (iommu_no_mapping(dev))
3475                 return;
3476
3477         domain = find_domain(dev);
3478         BUG_ON(!domain);
3479
3480         iommu = domain_get_iommu(domain);
3481
3482         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3483         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3484                       (unsigned long long)dev_addr))
3485                 return;
3486
3487         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3488         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3489
3490         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3491                  dev_name(dev), start_pfn, last_pfn);
3492
3493         freelist = domain_unmap(domain, start_pfn, last_pfn);
3494
3495         if (intel_iommu_strict) {
3496                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3497                                       last_pfn - start_pfn + 1, !freelist, 0);
3498                 /* free iova */
3499                 __free_iova(&domain->iovad, iova);
3500                 dma_free_pagelist(freelist);
3501         } else {
3502                 add_unmap(domain, iova, freelist);
3503                 /*
3504                  * queue up the release of the unmap to save the 1/6th of the
3505                  * cpu used up by the iotlb flush operation...
3506                  */
3507         }
3508 }
3509
3510 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3511                              size_t size, enum dma_data_direction dir,
3512                              struct dma_attrs *attrs)
3513 {
3514         intel_unmap(dev, dev_addr);
3515 }
3516
3517 static void *intel_alloc_coherent(struct device *dev, size_t size,
3518                                   dma_addr_t *dma_handle, gfp_t flags,
3519                                   struct dma_attrs *attrs)
3520 {
3521         struct page *page = NULL;
3522         int order;
3523
3524         size = PAGE_ALIGN(size);
3525         order = get_order(size);
3526
3527         if (!iommu_no_mapping(dev))
3528                 flags &= ~(GFP_DMA | GFP_DMA32);
3529         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3530                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3531                         flags |= GFP_DMA;
3532                 else
3533                         flags |= GFP_DMA32;
3534         }
3535
3536         if (flags & __GFP_WAIT) {
3537                 unsigned int count = size >> PAGE_SHIFT;
3538
3539                 page = dma_alloc_from_contiguous(dev, count, order);
3540                 if (page && iommu_no_mapping(dev) &&
3541                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3542                         dma_release_from_contiguous(dev, page, count);
3543                         page = NULL;
3544                 }
3545         }
3546
3547         if (!page)
3548                 page = alloc_pages(flags, order);
3549         if (!page)
3550                 return NULL;
3551         memset(page_address(page), 0, size);
3552
3553         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3554                                          DMA_BIDIRECTIONAL,
3555                                          dev->coherent_dma_mask);
3556         if (*dma_handle)
3557                 return page_address(page);
3558         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3559                 __free_pages(page, order);
3560
3561         return NULL;
3562 }
3563
3564 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3565                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
3566 {
3567         int order;
3568         struct page *page = virt_to_page(vaddr);
3569
3570         size = PAGE_ALIGN(size);
3571         order = get_order(size);
3572
3573         intel_unmap(dev, dma_handle);
3574         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3575                 __free_pages(page, order);
3576 }
3577
3578 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3579                            int nelems, enum dma_data_direction dir,
3580                            struct dma_attrs *attrs)
3581 {
3582         intel_unmap(dev, sglist[0].dma_address);
3583 }
3584
3585 static int intel_nontranslate_map_sg(struct device *hddev,
3586         struct scatterlist *sglist, int nelems, int dir)
3587 {
3588         int i;
3589         struct scatterlist *sg;
3590
3591         for_each_sg(sglist, sg, nelems, i) {
3592                 BUG_ON(!sg_page(sg));
3593                 sg->dma_address = sg_phys(sg);
3594                 sg->dma_length = sg->length;
3595         }
3596         return nelems;
3597 }
3598
3599 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3600                         enum dma_data_direction dir, struct dma_attrs *attrs)
3601 {
3602         int i;
3603         struct dmar_domain *domain;
3604         size_t size = 0;
3605         int prot = 0;
3606         struct iova *iova = NULL;
3607         int ret;
3608         struct scatterlist *sg;
3609         unsigned long start_vpfn;
3610         struct intel_iommu *iommu;
3611
3612         BUG_ON(dir == DMA_NONE);
3613         if (iommu_no_mapping(dev))
3614                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3615
3616         domain = get_valid_domain_for_dev(dev);
3617         if (!domain)
3618                 return 0;
3619
3620         iommu = domain_get_iommu(domain);
3621
3622         for_each_sg(sglist, sg, nelems, i)
3623                 size += aligned_nrpages(sg->offset, sg->length);
3624
3625         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3626                                 *dev->dma_mask);
3627         if (!iova) {
3628                 sglist->dma_length = 0;
3629                 return 0;
3630         }
3631
3632         /*
3633          * Check if DMAR supports zero-length reads on write only
3634          * mappings..
3635          */
3636         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3637                         !cap_zlr(iommu->cap))
3638                 prot |= DMA_PTE_READ;
3639         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3640                 prot |= DMA_PTE_WRITE;
3641
3642         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3643
3644         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3645         if (unlikely(ret)) {
3646                 dma_pte_free_pagetable(domain, start_vpfn,
3647                                        start_vpfn + size - 1);
3648                 __free_iova(&domain->iovad, iova);
3649                 return 0;
3650         }
3651
3652         /* it's a non-present to present mapping. Only flush if caching mode */
3653         if (cap_caching_mode(iommu->cap))
3654                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3655         else
3656                 iommu_flush_write_buffer(iommu);
3657
3658         return nelems;
3659 }
3660
3661 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3662 {
3663         return !dma_addr;
3664 }
3665
3666 struct dma_map_ops intel_dma_ops = {
3667         .alloc = intel_alloc_coherent,
3668         .free = intel_free_coherent,
3669         .map_sg = intel_map_sg,
3670         .unmap_sg = intel_unmap_sg,
3671         .map_page = intel_map_page,
3672         .unmap_page = intel_unmap_page,
3673         .mapping_error = intel_mapping_error,
3674 };
3675
3676 static inline int iommu_domain_cache_init(void)
3677 {
3678         int ret = 0;
3679
3680         iommu_domain_cache = kmem_cache_create("iommu_domain",
3681                                          sizeof(struct dmar_domain),
3682                                          0,
3683                                          SLAB_HWCACHE_ALIGN,
3684
3685                                          NULL);
3686         if (!iommu_domain_cache) {
3687                 pr_err("Couldn't create iommu_domain cache\n");
3688                 ret = -ENOMEM;
3689         }
3690
3691         return ret;
3692 }
3693
3694 static inline int iommu_devinfo_cache_init(void)
3695 {
3696         int ret = 0;
3697
3698         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3699                                          sizeof(struct device_domain_info),
3700                                          0,
3701                                          SLAB_HWCACHE_ALIGN,
3702                                          NULL);
3703         if (!iommu_devinfo_cache) {
3704                 pr_err("Couldn't create devinfo cache\n");
3705                 ret = -ENOMEM;
3706         }
3707
3708         return ret;
3709 }
3710
3711 static int __init iommu_init_mempool(void)
3712 {
3713         int ret;
3714         ret = iommu_iova_cache_init();
3715         if (ret)
3716                 return ret;
3717
3718         ret = iommu_domain_cache_init();
3719         if (ret)
3720                 goto domain_error;
3721
3722         ret = iommu_devinfo_cache_init();
3723         if (!ret)
3724                 return ret;
3725
3726         kmem_cache_destroy(iommu_domain_cache);
3727 domain_error:
3728         iommu_iova_cache_destroy();
3729
3730         return -ENOMEM;
3731 }
3732
3733 static void __init iommu_exit_mempool(void)
3734 {
3735         kmem_cache_destroy(iommu_devinfo_cache);
3736         kmem_cache_destroy(iommu_domain_cache);
3737         iommu_iova_cache_destroy();
3738 }
3739
3740 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3741 {
3742         struct dmar_drhd_unit *drhd;
3743         u32 vtbar;
3744         int rc;
3745
3746         /* We know that this device on this chipset has its own IOMMU.
3747          * If we find it under a different IOMMU, then the BIOS is lying
3748          * to us. Hope that the IOMMU for this device is actually
3749          * disabled, and it needs no translation...
3750          */
3751         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3752         if (rc) {
3753                 /* "can't" happen */
3754                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3755                 return;
3756         }
3757         vtbar &= 0xffff0000;
3758
3759         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3760         drhd = dmar_find_matched_drhd_unit(pdev);
3761         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3762                             TAINT_FIRMWARE_WORKAROUND,
3763                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3764                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3765 }
3766 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3767
3768 static void __init init_no_remapping_devices(void)
3769 {
3770         struct dmar_drhd_unit *drhd;
3771         struct device *dev;
3772         int i;
3773
3774         for_each_drhd_unit(drhd) {
3775                 if (!drhd->include_all) {
3776                         for_each_active_dev_scope(drhd->devices,
3777                                                   drhd->devices_cnt, i, dev)
3778                                 break;
3779                         /* ignore DMAR unit if no devices exist */
3780                         if (i == drhd->devices_cnt)
3781                                 drhd->ignored = 1;
3782                 }
3783         }
3784
3785         for_each_active_drhd_unit(drhd) {
3786                 if (drhd->include_all)
3787                         continue;
3788
3789                 for_each_active_dev_scope(drhd->devices,
3790                                           drhd->devices_cnt, i, dev)
3791                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3792                                 break;
3793                 if (i < drhd->devices_cnt)
3794                         continue;
3795
3796                 /* This IOMMU has *only* gfx devices. Either bypass it or
3797                    set the gfx_mapped flag, as appropriate */
3798                 if (dmar_map_gfx) {
3799                         intel_iommu_gfx_mapped = 1;
3800                 } else {
3801                         drhd->ignored = 1;
3802                         for_each_active_dev_scope(drhd->devices,
3803                                                   drhd->devices_cnt, i, dev)
3804                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3805                 }
3806         }
3807 }
3808
3809 #ifdef CONFIG_SUSPEND
3810 static int init_iommu_hw(void)
3811 {
3812         struct dmar_drhd_unit *drhd;
3813         struct intel_iommu *iommu = NULL;
3814
3815         for_each_active_iommu(iommu, drhd)
3816                 if (iommu->qi)
3817                         dmar_reenable_qi(iommu);
3818
3819         for_each_iommu(iommu, drhd) {
3820                 if (drhd->ignored) {
3821                         /*
3822                          * we always have to disable PMRs or DMA may fail on
3823                          * this device
3824                          */
3825                         if (force_on)
3826                                 iommu_disable_protect_mem_regions(iommu);
3827                         continue;
3828                 }
3829         
3830                 iommu_flush_write_buffer(iommu);
3831
3832                 iommu_set_root_entry(iommu);
3833
3834                 iommu->flush.flush_context(iommu, 0, 0, 0,
3835                                            DMA_CCMD_GLOBAL_INVL);
3836                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3837                 iommu_enable_translation(iommu);
3838                 iommu_disable_protect_mem_regions(iommu);
3839         }
3840
3841         return 0;
3842 }
3843
3844 static void iommu_flush_all(void)
3845 {
3846         struct dmar_drhd_unit *drhd;
3847         struct intel_iommu *iommu;
3848
3849         for_each_active_iommu(iommu, drhd) {
3850                 iommu->flush.flush_context(iommu, 0, 0, 0,
3851                                            DMA_CCMD_GLOBAL_INVL);
3852                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3853                                          DMA_TLB_GLOBAL_FLUSH);
3854         }
3855 }
3856
3857 static int iommu_suspend(void)
3858 {
3859         struct dmar_drhd_unit *drhd;
3860         struct intel_iommu *iommu = NULL;
3861         unsigned long flag;
3862
3863         for_each_active_iommu(iommu, drhd) {
3864                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3865                                                  GFP_ATOMIC);
3866                 if (!iommu->iommu_state)
3867                         goto nomem;
3868         }
3869
3870         iommu_flush_all();
3871
3872         for_each_active_iommu(iommu, drhd) {
3873                 iommu_disable_translation(iommu);
3874
3875                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3876
3877                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3878                         readl(iommu->reg + DMAR_FECTL_REG);
3879                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3880                         readl(iommu->reg + DMAR_FEDATA_REG);
3881                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3882                         readl(iommu->reg + DMAR_FEADDR_REG);
3883                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3884                         readl(iommu->reg + DMAR_FEUADDR_REG);
3885
3886                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3887         }
3888         return 0;
3889
3890 nomem:
3891         for_each_active_iommu(iommu, drhd)
3892                 kfree(iommu->iommu_state);
3893
3894         return -ENOMEM;
3895 }
3896
3897 static void iommu_resume(void)
3898 {
3899         struct dmar_drhd_unit *drhd;
3900         struct intel_iommu *iommu = NULL;
3901         unsigned long flag;
3902
3903         if (init_iommu_hw()) {
3904                 if (force_on)
3905                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3906                 else
3907                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3908                 return;
3909         }
3910
3911         for_each_active_iommu(iommu, drhd) {
3912
3913                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3914
3915                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3916                         iommu->reg + DMAR_FECTL_REG);
3917                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3918                         iommu->reg + DMAR_FEDATA_REG);
3919                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3920                         iommu->reg + DMAR_FEADDR_REG);
3921                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3922                         iommu->reg + DMAR_FEUADDR_REG);
3923
3924                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3925         }
3926
3927         for_each_active_iommu(iommu, drhd)
3928                 kfree(iommu->iommu_state);
3929 }
3930
3931 static struct syscore_ops iommu_syscore_ops = {
3932         .resume         = iommu_resume,
3933         .suspend        = iommu_suspend,
3934 };
3935
3936 static void __init init_iommu_pm_ops(void)
3937 {
3938         register_syscore_ops(&iommu_syscore_ops);
3939 }
3940
3941 #else
3942 static inline void init_iommu_pm_ops(void) {}
3943 #endif  /* CONFIG_PM */
3944
3945
3946 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3947 {
3948         struct acpi_dmar_reserved_memory *rmrr;
3949         struct dmar_rmrr_unit *rmrru;
3950
3951         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3952         if (!rmrru)
3953                 return -ENOMEM;
3954
3955         rmrru->hdr = header;
3956         rmrr = (struct acpi_dmar_reserved_memory *)header;
3957         rmrru->base_address = rmrr->base_address;
3958         rmrru->end_address = rmrr->end_address;
3959         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3960                                 ((void *)rmrr) + rmrr->header.length,
3961                                 &rmrru->devices_cnt);
3962         if (rmrru->devices_cnt && rmrru->devices == NULL) {
3963                 kfree(rmrru);
3964                 return -ENOMEM;
3965         }
3966
3967         list_add(&rmrru->list, &dmar_rmrr_units);
3968
3969         return 0;
3970 }
3971
3972 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3973 {
3974         struct dmar_atsr_unit *atsru;
3975         struct acpi_dmar_atsr *tmp;
3976
3977         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3978                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3979                 if (atsr->segment != tmp->segment)
3980                         continue;
3981                 if (atsr->header.length != tmp->header.length)
3982                         continue;
3983                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3984                         return atsru;
3985         }
3986
3987         return NULL;
3988 }
3989
3990 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3991 {
3992         struct acpi_dmar_atsr *atsr;
3993         struct dmar_atsr_unit *atsru;
3994
3995         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3996                 return 0;
3997
3998         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3999         atsru = dmar_find_atsr(atsr);
4000         if (atsru)
4001                 return 0;
4002
4003         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4004         if (!atsru)
4005                 return -ENOMEM;
4006
4007         /*
4008          * If memory is allocated from slab by ACPI _DSM method, we need to
4009          * copy the memory content because the memory buffer will be freed
4010          * on return.
4011          */
4012         atsru->hdr = (void *)(atsru + 1);
4013         memcpy(atsru->hdr, hdr, hdr->length);
4014         atsru->include_all = atsr->flags & 0x1;
4015         if (!atsru->include_all) {
4016                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4017                                 (void *)atsr + atsr->header.length,
4018                                 &atsru->devices_cnt);
4019                 if (atsru->devices_cnt && atsru->devices == NULL) {
4020                         kfree(atsru);
4021                         return -ENOMEM;
4022                 }
4023         }
4024
4025         list_add_rcu(&atsru->list, &dmar_atsr_units);
4026
4027         return 0;
4028 }
4029
4030 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4031 {
4032         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4033         kfree(atsru);
4034 }
4035
4036 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4037 {
4038         struct acpi_dmar_atsr *atsr;
4039         struct dmar_atsr_unit *atsru;
4040
4041         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4042         atsru = dmar_find_atsr(atsr);
4043         if (atsru) {
4044                 list_del_rcu(&atsru->list);
4045                 synchronize_rcu();
4046                 intel_iommu_free_atsr(atsru);
4047         }
4048
4049         return 0;
4050 }
4051
4052 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4053 {
4054         int i;
4055         struct device *dev;
4056         struct acpi_dmar_atsr *atsr;
4057         struct dmar_atsr_unit *atsru;
4058
4059         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4060         atsru = dmar_find_atsr(atsr);
4061         if (!atsru)
4062                 return 0;
4063
4064         if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4065                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4066                                           i, dev)
4067                         return -EBUSY;
4068
4069         return 0;
4070 }
4071
4072 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4073 {
4074         int sp, ret = 0;
4075         struct intel_iommu *iommu = dmaru->iommu;
4076
4077         if (g_iommus[iommu->seq_id])
4078                 return 0;
4079
4080         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4081                 pr_warn("%s: Doesn't support hardware pass through.\n",
4082                         iommu->name);
4083                 return -ENXIO;
4084         }
4085         if (!ecap_sc_support(iommu->ecap) &&
4086             domain_update_iommu_snooping(iommu)) {
4087                 pr_warn("%s: Doesn't support snooping.\n",
4088                         iommu->name);
4089                 return -ENXIO;
4090         }
4091         sp = domain_update_iommu_superpage(iommu) - 1;
4092         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4093                 pr_warn("%s: Doesn't support large page.\n",
4094                         iommu->name);
4095                 return -ENXIO;
4096         }
4097
4098         /*
4099          * Disable translation if already enabled prior to OS handover.
4100          */
4101         if (iommu->gcmd & DMA_GCMD_TE)
4102                 iommu_disable_translation(iommu);
4103
4104         g_iommus[iommu->seq_id] = iommu;
4105         ret = iommu_init_domains(iommu);
4106         if (ret == 0)
4107                 ret = iommu_alloc_root_entry(iommu);
4108         if (ret)
4109                 goto out;
4110
4111         if (dmaru->ignored) {
4112                 /*
4113                  * we always have to disable PMRs or DMA may fail on this device
4114                  */
4115                 if (force_on)
4116                         iommu_disable_protect_mem_regions(iommu);
4117                 return 0;
4118         }
4119
4120         intel_iommu_init_qi(iommu);
4121         iommu_flush_write_buffer(iommu);
4122         ret = dmar_set_interrupt(iommu);
4123         if (ret)
4124                 goto disable_iommu;
4125
4126         iommu_set_root_entry(iommu);
4127         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4128         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4129         iommu_enable_translation(iommu);
4130
4131         iommu_disable_protect_mem_regions(iommu);
4132         return 0;
4133
4134 disable_iommu:
4135         disable_dmar_iommu(iommu);
4136 out:
4137         free_dmar_iommu(iommu);
4138         return ret;
4139 }
4140
4141 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4142 {
4143         int ret = 0;
4144         struct intel_iommu *iommu = dmaru->iommu;
4145
4146         if (!intel_iommu_enabled)
4147                 return 0;
4148         if (iommu == NULL)
4149                 return -EINVAL;
4150
4151         if (insert) {
4152                 ret = intel_iommu_add(dmaru);
4153         } else {
4154                 disable_dmar_iommu(iommu);
4155                 free_dmar_iommu(iommu);
4156         }
4157
4158         return ret;
4159 }
4160
4161 static void intel_iommu_free_dmars(void)
4162 {
4163         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4164         struct dmar_atsr_unit *atsru, *atsr_n;
4165
4166         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4167                 list_del(&rmrru->list);
4168                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4169                 kfree(rmrru);
4170         }
4171
4172         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4173                 list_del(&atsru->list);
4174                 intel_iommu_free_atsr(atsru);
4175         }
4176 }
4177
4178 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4179 {
4180         int i, ret = 1;
4181         struct pci_bus *bus;
4182         struct pci_dev *bridge = NULL;
4183         struct device *tmp;
4184         struct acpi_dmar_atsr *atsr;
4185         struct dmar_atsr_unit *atsru;
4186
4187         dev = pci_physfn(dev);
4188         for (bus = dev->bus; bus; bus = bus->parent) {
4189                 bridge = bus->self;
4190                 if (!bridge || !pci_is_pcie(bridge) ||
4191                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4192                         return 0;
4193                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4194                         break;
4195         }
4196         if (!bridge)
4197                 return 0;
4198
4199         rcu_read_lock();
4200         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4201                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4202                 if (atsr->segment != pci_domain_nr(dev->bus))
4203                         continue;
4204
4205                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4206                         if (tmp == &bridge->dev)
4207                                 goto out;
4208
4209                 if (atsru->include_all)
4210                         goto out;
4211         }
4212         ret = 0;
4213 out:
4214         rcu_read_unlock();
4215
4216         return ret;
4217 }
4218
4219 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4220 {
4221         int ret = 0;
4222         struct dmar_rmrr_unit *rmrru;
4223         struct dmar_atsr_unit *atsru;
4224         struct acpi_dmar_atsr *atsr;
4225         struct acpi_dmar_reserved_memory *rmrr;
4226
4227         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4228                 return 0;
4229
4230         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4231                 rmrr = container_of(rmrru->hdr,
4232                                     struct acpi_dmar_reserved_memory, header);
4233                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4234                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4235                                 ((void *)rmrr) + rmrr->header.length,
4236                                 rmrr->segment, rmrru->devices,
4237                                 rmrru->devices_cnt);
4238                         if(ret < 0)
4239                                 return ret;
4240                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4241                         dmar_remove_dev_scope(info, rmrr->segment,
4242                                 rmrru->devices, rmrru->devices_cnt);
4243                 }
4244         }
4245
4246         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4247                 if (atsru->include_all)
4248                         continue;
4249
4250                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4251                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4252                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4253                                         (void *)atsr + atsr->header.length,
4254                                         atsr->segment, atsru->devices,
4255                                         atsru->devices_cnt);
4256                         if (ret > 0)
4257                                 break;
4258                         else if(ret < 0)
4259                                 return ret;
4260                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4261                         if (dmar_remove_dev_scope(info, atsr->segment,
4262                                         atsru->devices, atsru->devices_cnt))
4263                                 break;
4264                 }
4265         }
4266
4267         return 0;
4268 }
4269
4270 /*
4271  * Here we only respond to action of unbound device from driver.
4272  *
4273  * Added device is not attached to its DMAR domain here yet. That will happen
4274  * when mapping the device to iova.
4275  */
4276 static int device_notifier(struct notifier_block *nb,
4277                                   unsigned long action, void *data)
4278 {
4279         struct device *dev = data;
4280         struct dmar_domain *domain;
4281
4282         if (iommu_dummy(dev))
4283                 return 0;
4284
4285         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4286                 return 0;
4287
4288         domain = find_domain(dev);
4289         if (!domain)
4290                 return 0;
4291
4292         dmar_remove_one_dev_info(domain, dev);
4293         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4294                 domain_exit(domain);
4295
4296         return 0;
4297 }
4298
4299 static struct notifier_block device_nb = {
4300         .notifier_call = device_notifier,
4301 };
4302
4303 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4304                                        unsigned long val, void *v)
4305 {
4306         struct memory_notify *mhp = v;
4307         unsigned long long start, end;
4308         unsigned long start_vpfn, last_vpfn;
4309
4310         switch (val) {
4311         case MEM_GOING_ONLINE:
4312                 start = mhp->start_pfn << PAGE_SHIFT;
4313                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4314                 if (iommu_domain_identity_map(si_domain, start, end)) {
4315                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4316                                 start, end);
4317                         return NOTIFY_BAD;
4318                 }
4319                 break;
4320
4321         case MEM_OFFLINE:
4322         case MEM_CANCEL_ONLINE:
4323                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4324                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4325                 while (start_vpfn <= last_vpfn) {
4326                         struct iova *iova;
4327                         struct dmar_drhd_unit *drhd;
4328                         struct intel_iommu *iommu;
4329                         struct page *freelist;
4330
4331                         iova = find_iova(&si_domain->iovad, start_vpfn);
4332                         if (iova == NULL) {
4333                                 pr_debug("Failed get IOVA for PFN %lx\n",
4334                                          start_vpfn);
4335                                 break;
4336                         }
4337
4338                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4339                                                      start_vpfn, last_vpfn);
4340                         if (iova == NULL) {
4341                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4342                                         start_vpfn, last_vpfn);
4343                                 return NOTIFY_BAD;
4344                         }
4345
4346                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4347                                                iova->pfn_hi);
4348
4349                         rcu_read_lock();
4350                         for_each_active_iommu(iommu, drhd)
4351                                 iommu_flush_iotlb_psi(iommu, si_domain,
4352                                         iova->pfn_lo, iova_size(iova),
4353                                         !freelist, 0);
4354                         rcu_read_unlock();
4355                         dma_free_pagelist(freelist);
4356
4357                         start_vpfn = iova->pfn_hi + 1;
4358                         free_iova_mem(iova);
4359                 }
4360                 break;
4361         }
4362
4363         return NOTIFY_OK;
4364 }
4365
4366 static struct notifier_block intel_iommu_memory_nb = {
4367         .notifier_call = intel_iommu_memory_notifier,
4368         .priority = 0
4369 };
4370
4371
4372 static ssize_t intel_iommu_show_version(struct device *dev,
4373                                         struct device_attribute *attr,
4374                                         char *buf)
4375 {
4376         struct intel_iommu *iommu = dev_get_drvdata(dev);
4377         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4378         return sprintf(buf, "%d:%d\n",
4379                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4380 }
4381 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4382
4383 static ssize_t intel_iommu_show_address(struct device *dev,
4384                                         struct device_attribute *attr,
4385                                         char *buf)
4386 {
4387         struct intel_iommu *iommu = dev_get_drvdata(dev);
4388         return sprintf(buf, "%llx\n", iommu->reg_phys);
4389 }
4390 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4391
4392 static ssize_t intel_iommu_show_cap(struct device *dev,
4393                                     struct device_attribute *attr,
4394                                     char *buf)
4395 {
4396         struct intel_iommu *iommu = dev_get_drvdata(dev);
4397         return sprintf(buf, "%llx\n", iommu->cap);
4398 }
4399 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4400
4401 static ssize_t intel_iommu_show_ecap(struct device *dev,
4402                                     struct device_attribute *attr,
4403                                     char *buf)
4404 {
4405         struct intel_iommu *iommu = dev_get_drvdata(dev);
4406         return sprintf(buf, "%llx\n", iommu->ecap);
4407 }
4408 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4409
4410 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4411                                       struct device_attribute *attr,
4412                                       char *buf)
4413 {
4414         struct intel_iommu *iommu = dev_get_drvdata(dev);
4415         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4416 }
4417 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4418
4419 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4420                                            struct device_attribute *attr,
4421                                            char *buf)
4422 {
4423         struct intel_iommu *iommu = dev_get_drvdata(dev);
4424         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4425                                                   cap_ndoms(iommu->cap)));
4426 }
4427 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4428
4429 static struct attribute *intel_iommu_attrs[] = {
4430         &dev_attr_version.attr,
4431         &dev_attr_address.attr,
4432         &dev_attr_cap.attr,
4433         &dev_attr_ecap.attr,
4434         &dev_attr_domains_supported.attr,
4435         &dev_attr_domains_used.attr,
4436         NULL,
4437 };
4438
4439 static struct attribute_group intel_iommu_group = {
4440         .name = "intel-iommu",
4441         .attrs = intel_iommu_attrs,
4442 };
4443
4444 const struct attribute_group *intel_iommu_groups[] = {
4445         &intel_iommu_group,
4446         NULL,
4447 };
4448
4449 int __init intel_iommu_init(void)
4450 {
4451         int ret = -ENODEV;
4452         struct dmar_drhd_unit *drhd;
4453         struct intel_iommu *iommu;
4454
4455         /* VT-d is required for a TXT/tboot launch, so enforce that */
4456         force_on = tboot_force_iommu();
4457
4458         if (iommu_init_mempool()) {
4459                 if (force_on)
4460                         panic("tboot: Failed to initialize iommu memory\n");
4461                 return -ENOMEM;
4462         }
4463
4464         down_write(&dmar_global_lock);
4465         if (dmar_table_init()) {
4466                 if (force_on)
4467                         panic("tboot: Failed to initialize DMAR table\n");
4468                 goto out_free_dmar;
4469         }
4470
4471         if (dmar_dev_scope_init() < 0) {
4472                 if (force_on)
4473                         panic("tboot: Failed to initialize DMAR device scope\n");
4474                 goto out_free_dmar;
4475         }
4476
4477         if (no_iommu || dmar_disabled)
4478                 goto out_free_dmar;
4479
4480         if (list_empty(&dmar_rmrr_units))
4481                 pr_info("No RMRR found\n");
4482
4483         if (list_empty(&dmar_atsr_units))
4484                 pr_info("No ATSR found\n");
4485
4486         if (dmar_init_reserved_ranges()) {
4487                 if (force_on)
4488                         panic("tboot: Failed to reserve iommu ranges\n");
4489                 goto out_free_reserved_range;
4490         }
4491
4492         init_no_remapping_devices();
4493
4494         ret = init_dmars();
4495         if (ret) {
4496                 if (force_on)
4497                         panic("tboot: Failed to initialize DMARs\n");
4498                 pr_err("Initialization failed\n");
4499                 goto out_free_reserved_range;
4500         }
4501         up_write(&dmar_global_lock);
4502         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4503
4504         init_timer(&unmap_timer);
4505 #ifdef CONFIG_SWIOTLB
4506         swiotlb = 0;
4507 #endif
4508         dma_ops = &intel_dma_ops;
4509
4510         init_iommu_pm_ops();
4511
4512         for_each_active_iommu(iommu, drhd)
4513                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4514                                                        intel_iommu_groups,
4515                                                        "%s", iommu->name);
4516
4517         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4518         bus_register_notifier(&pci_bus_type, &device_nb);
4519         if (si_domain && !hw_pass_through)
4520                 register_memory_notifier(&intel_iommu_memory_nb);
4521
4522         intel_iommu_enabled = 1;
4523
4524         return 0;
4525
4526 out_free_reserved_range:
4527         put_iova_domain(&reserved_iova_list);
4528 out_free_dmar:
4529         intel_iommu_free_dmars();
4530         up_write(&dmar_global_lock);
4531         iommu_exit_mempool();
4532         return ret;
4533 }
4534
4535 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4536 {
4537         struct intel_iommu *iommu = opaque;
4538
4539         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4540         return 0;
4541 }
4542
4543 /*
4544  * NB - intel-iommu lacks any sort of reference counting for the users of
4545  * dependent devices.  If multiple endpoints have intersecting dependent
4546  * devices, unbinding the driver from any one of them will possibly leave
4547  * the others unable to operate.
4548  */
4549 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4550 {
4551         if (!iommu || !dev || !dev_is_pci(dev))
4552                 return;
4553
4554         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4555 }
4556
4557 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4558 {
4559         struct intel_iommu *iommu;
4560         unsigned long flags;
4561
4562         assert_spin_locked(&device_domain_lock);
4563
4564         if (WARN_ON(!info))
4565                 return;
4566
4567         iommu = info->iommu;
4568
4569         if (info->dev) {
4570                 iommu_disable_dev_iotlb(info);
4571                 domain_context_clear(iommu, info->dev);
4572         }
4573
4574         unlink_domain_info(info);
4575
4576         spin_lock_irqsave(&iommu->lock, flags);
4577         domain_detach_iommu(info->domain, iommu);
4578         spin_unlock_irqrestore(&iommu->lock, flags);
4579
4580         free_devinfo_mem(info);
4581 }
4582
4583 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4584                                      struct device *dev)
4585 {
4586         struct device_domain_info *info;
4587         unsigned long flags;
4588
4589         spin_lock_irqsave(&device_domain_lock, flags);
4590         info = dev->archdata.iommu;
4591         __dmar_remove_one_dev_info(info);
4592         spin_unlock_irqrestore(&device_domain_lock, flags);
4593 }
4594
4595 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4596 {
4597         int adjust_width;
4598
4599         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4600                         DMA_32BIT_PFN);
4601         domain_reserve_special_ranges(domain);
4602
4603         /* calculate AGAW */
4604         domain->gaw = guest_width;
4605         adjust_width = guestwidth_to_adjustwidth(guest_width);
4606         domain->agaw = width_to_agaw(adjust_width);
4607
4608         domain->iommu_coherency = 0;
4609         domain->iommu_snooping = 0;
4610         domain->iommu_superpage = 0;
4611         domain->max_addr = 0;
4612
4613         /* always allocate the top pgd */
4614         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4615         if (!domain->pgd)
4616                 return -ENOMEM;
4617         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4618         return 0;
4619 }
4620
4621 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4622 {
4623         struct dmar_domain *dmar_domain;
4624         struct iommu_domain *domain;
4625
4626         if (type != IOMMU_DOMAIN_UNMANAGED)
4627                 return NULL;
4628
4629         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4630         if (!dmar_domain) {
4631                 pr_err("Can't allocate dmar_domain\n");
4632                 return NULL;
4633         }
4634         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4635                 pr_err("Domain initialization failed\n");
4636                 domain_exit(dmar_domain);
4637                 return NULL;
4638         }
4639         domain_update_iommu_cap(dmar_domain);
4640
4641         domain = &dmar_domain->domain;
4642         domain->geometry.aperture_start = 0;
4643         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4644         domain->geometry.force_aperture = true;
4645
4646         return domain;
4647 }
4648
4649 static void intel_iommu_domain_free(struct iommu_domain *domain)
4650 {
4651         domain_exit(to_dmar_domain(domain));
4652 }
4653
4654 static int intel_iommu_attach_device(struct iommu_domain *domain,
4655                                      struct device *dev)
4656 {
4657         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4658         struct intel_iommu *iommu;
4659         int addr_width;
4660         u8 bus, devfn;
4661
4662         if (device_is_rmrr_locked(dev)) {
4663                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4664                 return -EPERM;
4665         }
4666
4667         /* normally dev is not mapped */
4668         if (unlikely(domain_context_mapped(dev))) {
4669                 struct dmar_domain *old_domain;
4670
4671                 old_domain = find_domain(dev);
4672                 if (old_domain) {
4673                         rcu_read_lock();
4674                         dmar_remove_one_dev_info(old_domain, dev);
4675                         rcu_read_unlock();
4676
4677                         if (!domain_type_is_vm_or_si(old_domain) &&
4678                              list_empty(&old_domain->devices))
4679                                 domain_exit(old_domain);
4680                 }
4681         }
4682
4683         iommu = device_to_iommu(dev, &bus, &devfn);
4684         if (!iommu)
4685                 return -ENODEV;
4686
4687         /* check if this iommu agaw is sufficient for max mapped address */
4688         addr_width = agaw_to_width(iommu->agaw);
4689         if (addr_width > cap_mgaw(iommu->cap))
4690                 addr_width = cap_mgaw(iommu->cap);
4691
4692         if (dmar_domain->max_addr > (1LL << addr_width)) {
4693                 pr_err("%s: iommu width (%d) is not "
4694                        "sufficient for the mapped address (%llx)\n",
4695                        __func__, addr_width, dmar_domain->max_addr);
4696                 return -EFAULT;
4697         }
4698         dmar_domain->gaw = addr_width;
4699
4700         /*
4701          * Knock out extra levels of page tables if necessary
4702          */
4703         while (iommu->agaw < dmar_domain->agaw) {
4704                 struct dma_pte *pte;
4705
4706                 pte = dmar_domain->pgd;
4707                 if (dma_pte_present(pte)) {
4708                         dmar_domain->pgd = (struct dma_pte *)
4709                                 phys_to_virt(dma_pte_addr(pte));
4710                         free_pgtable_page(pte);
4711                 }
4712                 dmar_domain->agaw--;
4713         }
4714
4715         return domain_add_dev_info(dmar_domain, dev);
4716 }
4717
4718 static void intel_iommu_detach_device(struct iommu_domain *domain,
4719                                       struct device *dev)
4720 {
4721         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
4722 }
4723
4724 static int intel_iommu_map(struct iommu_domain *domain,
4725                            unsigned long iova, phys_addr_t hpa,
4726                            size_t size, int iommu_prot)
4727 {
4728         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4729         u64 max_addr;
4730         int prot = 0;
4731         int ret;
4732
4733         if (iommu_prot & IOMMU_READ)
4734                 prot |= DMA_PTE_READ;
4735         if (iommu_prot & IOMMU_WRITE)
4736                 prot |= DMA_PTE_WRITE;
4737         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4738                 prot |= DMA_PTE_SNP;
4739
4740         max_addr = iova + size;
4741         if (dmar_domain->max_addr < max_addr) {
4742                 u64 end;
4743
4744                 /* check if minimum agaw is sufficient for mapped address */
4745                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4746                 if (end < max_addr) {
4747                         pr_err("%s: iommu width (%d) is not "
4748                                "sufficient for the mapped address (%llx)\n",
4749                                __func__, dmar_domain->gaw, max_addr);
4750                         return -EFAULT;
4751                 }
4752                 dmar_domain->max_addr = max_addr;
4753         }
4754         /* Round up size to next multiple of PAGE_SIZE, if it and
4755            the low bits of hpa would take us onto the next page */
4756         size = aligned_nrpages(hpa, size);
4757         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4758                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4759         return ret;
4760 }
4761
4762 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4763                                 unsigned long iova, size_t size)
4764 {
4765         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4766         struct page *freelist = NULL;
4767         struct intel_iommu *iommu;
4768         unsigned long start_pfn, last_pfn;
4769         unsigned int npages;
4770         int iommu_id, level = 0;
4771
4772         /* Cope with horrid API which requires us to unmap more than the
4773            size argument if it happens to be a large-page mapping. */
4774         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4775
4776         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4777                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4778
4779         start_pfn = iova >> VTD_PAGE_SHIFT;
4780         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4781
4782         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4783
4784         npages = last_pfn - start_pfn + 1;
4785
4786         for_each_domain_iommu(iommu_id, dmar_domain) {
4787                 iommu = g_iommus[iommu_id];
4788
4789                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4790                                       start_pfn, npages, !freelist, 0);
4791         }
4792
4793         dma_free_pagelist(freelist);
4794
4795         if (dmar_domain->max_addr == iova + size)
4796                 dmar_domain->max_addr = iova;
4797
4798         return size;
4799 }
4800
4801 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4802                                             dma_addr_t iova)
4803 {
4804         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4805         struct dma_pte *pte;
4806         int level = 0;
4807         u64 phys = 0;
4808
4809         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4810         if (pte)
4811                 phys = dma_pte_addr(pte);
4812
4813         return phys;
4814 }
4815
4816 static bool intel_iommu_capable(enum iommu_cap cap)
4817 {
4818         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4819                 return domain_update_iommu_snooping(NULL) == 1;
4820         if (cap == IOMMU_CAP_INTR_REMAP)
4821                 return irq_remapping_enabled == 1;
4822
4823         return false;
4824 }
4825
4826 static int intel_iommu_add_device(struct device *dev)
4827 {
4828         struct intel_iommu *iommu;
4829         struct iommu_group *group;
4830         u8 bus, devfn;
4831
4832         iommu = device_to_iommu(dev, &bus, &devfn);
4833         if (!iommu)
4834                 return -ENODEV;
4835
4836         iommu_device_link(iommu->iommu_dev, dev);
4837
4838         group = iommu_group_get_for_dev(dev);
4839
4840         if (IS_ERR(group))
4841                 return PTR_ERR(group);
4842
4843         iommu_group_put(group);
4844         return 0;
4845 }
4846
4847 static void intel_iommu_remove_device(struct device *dev)
4848 {
4849         struct intel_iommu *iommu;
4850         u8 bus, devfn;
4851
4852         iommu = device_to_iommu(dev, &bus, &devfn);
4853         if (!iommu)
4854                 return;
4855
4856         iommu_group_remove_device(dev);
4857
4858         iommu_device_unlink(iommu->iommu_dev, dev);
4859 }
4860
4861 static const struct iommu_ops intel_iommu_ops = {
4862         .capable        = intel_iommu_capable,
4863         .domain_alloc   = intel_iommu_domain_alloc,
4864         .domain_free    = intel_iommu_domain_free,
4865         .attach_dev     = intel_iommu_attach_device,
4866         .detach_dev     = intel_iommu_detach_device,
4867         .map            = intel_iommu_map,
4868         .unmap          = intel_iommu_unmap,
4869         .map_sg         = default_iommu_map_sg,
4870         .iova_to_phys   = intel_iommu_iova_to_phys,
4871         .add_device     = intel_iommu_add_device,
4872         .remove_device  = intel_iommu_remove_device,
4873         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4874 };
4875
4876 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4877 {
4878         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4879         pr_info("Disabling IOMMU for graphics on this chipset\n");
4880         dmar_map_gfx = 0;
4881 }
4882
4883 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4884 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4885 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4886 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4887 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4888 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4889 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4890
4891 static void quirk_iommu_rwbf(struct pci_dev *dev)
4892 {
4893         /*
4894          * Mobile 4 Series Chipset neglects to set RWBF capability,
4895          * but needs it. Same seems to hold for the desktop versions.
4896          */
4897         pr_info("Forcing write-buffer flush capability\n");
4898         rwbf_quirk = 1;
4899 }
4900
4901 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4902 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4903 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4904 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4905 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4906 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4907 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4908
4909 #define GGC 0x52
4910 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4911 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4912 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4913 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4914 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4915 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4916 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4917 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4918
4919 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4920 {
4921         unsigned short ggc;
4922
4923         if (pci_read_config_word(dev, GGC, &ggc))
4924                 return;
4925
4926         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4927                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4928                 dmar_map_gfx = 0;
4929         } else if (dmar_map_gfx) {
4930                 /* we have to ensure the gfx device is idle before we flush */
4931                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4932                 intel_iommu_strict = 1;
4933        }
4934 }
4935 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4936 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4937 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4938 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4939
4940 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4941    ISOCH DMAR unit for the Azalia sound device, but not give it any
4942    TLB entries, which causes it to deadlock. Check for that.  We do
4943    this in a function called from init_dmars(), instead of in a PCI
4944    quirk, because we don't want to print the obnoxious "BIOS broken"
4945    message if VT-d is actually disabled.
4946 */
4947 static void __init check_tylersburg_isoch(void)
4948 {
4949         struct pci_dev *pdev;
4950         uint32_t vtisochctrl;
4951
4952         /* If there's no Azalia in the system anyway, forget it. */
4953         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4954         if (!pdev)
4955                 return;
4956         pci_dev_put(pdev);
4957
4958         /* System Management Registers. Might be hidden, in which case
4959            we can't do the sanity check. But that's OK, because the
4960            known-broken BIOSes _don't_ actually hide it, so far. */
4961         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4962         if (!pdev)
4963                 return;
4964
4965         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4966                 pci_dev_put(pdev);
4967                 return;
4968         }
4969
4970         pci_dev_put(pdev);
4971
4972         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4973         if (vtisochctrl & 1)
4974                 return;
4975
4976         /* Drop all bits other than the number of TLB entries */
4977         vtisochctrl &= 0x1c;
4978
4979         /* If we have the recommended number of TLB entries (16), fine. */
4980         if (vtisochctrl == 0x10)
4981                 return;
4982
4983         /* Zero TLB entries? You get to ride the short bus to school. */
4984         if (!vtisochctrl) {
4985                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4986                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4987                      dmi_get_system_info(DMI_BIOS_VENDOR),
4988                      dmi_get_system_info(DMI_BIOS_VERSION),
4989                      dmi_get_system_info(DMI_PRODUCT_VERSION));
4990                 iommu_identity_mapping |= IDENTMAP_AZALIA;
4991                 return;
4992         }
4993
4994         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4995                vtisochctrl);
4996 }