]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/macintosh/windfarm_pm81.c
regmap: debugfs: Fix seeking from the cache
[karo-tx-linux.git] / drivers / macintosh / windfarm_pm81.c
1 /*
2  * Windfarm PowerMac thermal control. iMac G5
3  *
4  * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5  *                    <benh@kernel.crashing.org>
6  *
7  * Released under the term of the GNU GPL v2.
8  *
9  * The algorithm used is the PID control algorithm, used the same
10  * way the published Darwin code does, using the same values that
11  * are present in the Darwin 8.2 snapshot property lists (note however
12  * that none of the code has been re-used, it's a complete re-implementation
13  *
14  * The various control loops found in Darwin config file are:
15  *
16  * PowerMac8,1 and PowerMac8,2
17  * ===========================
18  *
19  * System Fans control loop. Different based on models. In addition to the
20  * usual PID algorithm, the control loop gets 2 additional pairs of linear
21  * scaling factors (scale/offsets) expressed as 4.12 fixed point values
22  * signed offset, unsigned scale)
23  *
24  * The targets are modified such as:
25  *  - the linked control (second control) gets the target value as-is
26  *    (typically the drive fan)
27  *  - the main control (first control) gets the target value scaled with
28  *    the first pair of factors, and is then modified as below
29  *  - the value of the target of the CPU Fan control loop is retrieved,
30  *    scaled with the second pair of factors, and the max of that and
31  *    the scaled target is applied to the main control.
32  *
33  * # model_id: 2
34  *   controls       : system-fan, drive-bay-fan
35  *   sensors        : hd-temp
36  *   PID params     : G_d = 0x15400000
37  *                    G_p = 0x00200000
38  *                    G_r = 0x000002fd
39  *                    History = 2 entries
40  *                    Input target = 0x3a0000
41  *                    Interval = 5s
42  *   linear-factors : offset = 0xff38 scale  = 0x0ccd
43  *                    offset = 0x0208 scale  = 0x07ae
44  *
45  * # model_id: 3
46  *   controls       : system-fan, drive-bay-fan
47  *   sensors        : hd-temp
48  *   PID params     : G_d = 0x08e00000
49  *                    G_p = 0x00566666
50  *                    G_r = 0x0000072b
51  *                    History = 2 entries
52  *                    Input target = 0x350000
53  *                    Interval = 5s
54  *   linear-factors : offset = 0xff38 scale  = 0x0ccd
55  *                    offset = 0x0000 scale  = 0x0000
56  *
57  * # model_id: 5
58  *   controls       : system-fan
59  *   sensors        : hd-temp
60  *   PID params     : G_d = 0x15400000
61  *                    G_p = 0x00233333
62  *                    G_r = 0x000002fd
63  *                    History = 2 entries
64  *                    Input target = 0x3a0000
65  *                    Interval = 5s
66  *   linear-factors : offset = 0x0000 scale  = 0x1000
67  *                    offset = 0x0091 scale  = 0x0bae
68  *
69  * CPU Fan control loop. The loop is identical for all models. it
70  * has an additional pair of scaling factor. This is used to scale the
71  * systems fan control loop target result (the one before it gets scaled
72  * by the System Fans control loop itself). Then, the max value of the
73  * calculated target value and system fan value is sent to the fans
74  *
75  *   controls       : cpu-fan
76  *   sensors        : cpu-temp cpu-power
77  *   PID params     : From SMU sdb partition
78  *   linear-factors : offset = 0xfb50 scale  = 0x1000
79  *
80  * CPU Slew control loop. Not implemented. The cpufreq driver in linux is
81  * completely separate for now, though we could find a way to link it, either
82  * as a client reacting to overtemp notifications, or directling monitoring
83  * the CPU temperature
84  *
85  * WARNING ! The CPU control loop requires the CPU tmax for the current
86  * operating point. However, we currently are completely separated from
87  * the cpufreq driver and thus do not know what the current operating
88  * point is. Fortunately, we also do not have any hardware supporting anything
89  * but operating point 0 at the moment, thus we just peek that value directly
90  * from the SDB partition. If we ever end up with actually slewing the system
91  * clock and thus changing operating points, we'll have to find a way to
92  * communicate with the CPU freq driver;
93  *
94  */
95
96 #include <linux/types.h>
97 #include <linux/errno.h>
98 #include <linux/kernel.h>
99 #include <linux/delay.h>
100 #include <linux/slab.h>
101 #include <linux/init.h>
102 #include <linux/spinlock.h>
103 #include <linux/wait.h>
104 #include <linux/kmod.h>
105 #include <linux/device.h>
106 #include <linux/platform_device.h>
107 #include <asm/prom.h>
108 #include <asm/machdep.h>
109 #include <asm/io.h>
110 #include <asm/sections.h>
111 #include <asm/smu.h>
112
113 #include "windfarm.h"
114 #include "windfarm_pid.h"
115
116 #define VERSION "0.4"
117
118 #undef DEBUG
119
120 #ifdef DEBUG
121 #define DBG(args...)    printk(args)
122 #else
123 #define DBG(args...)    do { } while(0)
124 #endif
125
126 /* define this to force CPU overtemp to 74 degree, useful for testing
127  * the overtemp code
128  */
129 #undef HACKED_OVERTEMP
130
131 static int wf_smu_mach_model;   /* machine model id */
132
133 /* Controls & sensors */
134 static struct wf_sensor *sensor_cpu_power;
135 static struct wf_sensor *sensor_cpu_temp;
136 static struct wf_sensor *sensor_hd_temp;
137 static struct wf_control *fan_cpu_main;
138 static struct wf_control *fan_hd;
139 static struct wf_control *fan_system;
140 static struct wf_control *cpufreq_clamp;
141
142 /* Set to kick the control loop into life */
143 static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
144
145 /* Failure handling.. could be nicer */
146 #define FAILURE_FAN             0x01
147 #define FAILURE_SENSOR          0x02
148 #define FAILURE_OVERTEMP        0x04
149
150 static unsigned int wf_smu_failure_state;
151 static int wf_smu_readjust, wf_smu_skipping;
152
153 /*
154  * ****** System Fans Control Loop ******
155  *
156  */
157
158 /* Parameters for the System Fans control loop. Parameters
159  * not in this table such as interval, history size, ...
160  * are common to all versions and thus hard coded for now.
161  */
162 struct wf_smu_sys_fans_param {
163         int     model_id;
164         s32     itarget;
165         s32     gd, gp, gr;
166
167         s16     offset0;
168         u16     scale0;
169         s16     offset1;
170         u16     scale1;
171 };
172
173 #define WF_SMU_SYS_FANS_INTERVAL        5
174 #define WF_SMU_SYS_FANS_HISTORY_SIZE    2
175
176 /* State data used by the system fans control loop
177  */
178 struct wf_smu_sys_fans_state {
179         int                     ticks;
180         s32                     sys_setpoint;
181         s32                     hd_setpoint;
182         s16                     offset0;
183         u16                     scale0;
184         s16                     offset1;
185         u16                     scale1;
186         struct wf_pid_state     pid;
187 };
188
189 /*
190  * Configs for SMU System Fan control loop
191  */
192 static struct wf_smu_sys_fans_param wf_smu_sys_all_params[] = {
193         /* Model ID 2 */
194         {
195                 .model_id       = 2,
196                 .itarget        = 0x3a0000,
197                 .gd             = 0x15400000,
198                 .gp             = 0x00200000,
199                 .gr             = 0x000002fd,
200                 .offset0        = 0xff38,
201                 .scale0         = 0x0ccd,
202                 .offset1        = 0x0208,
203                 .scale1         = 0x07ae,
204         },
205         /* Model ID 3 */
206         {
207                 .model_id       = 3,
208                 .itarget        = 0x350000,
209                 .gd             = 0x08e00000,
210                 .gp             = 0x00566666,
211                 .gr             = 0x0000072b,
212                 .offset0        = 0xff38,
213                 .scale0         = 0x0ccd,
214                 .offset1        = 0x0000,
215                 .scale1         = 0x0000,
216         },
217         /* Model ID 5 */
218         {
219                 .model_id       = 5,
220                 .itarget        = 0x3a0000,
221                 .gd             = 0x15400000,
222                 .gp             = 0x00233333,
223                 .gr             = 0x000002fd,
224                 .offset0        = 0x0000,
225                 .scale0         = 0x1000,
226                 .offset1        = 0x0091,
227                 .scale1         = 0x0bae,
228         },
229 };
230 #define WF_SMU_SYS_FANS_NUM_CONFIGS ARRAY_SIZE(wf_smu_sys_all_params)
231
232 static struct wf_smu_sys_fans_state *wf_smu_sys_fans;
233
234 /*
235  * ****** CPU Fans Control Loop ******
236  *
237  */
238
239
240 #define WF_SMU_CPU_FANS_INTERVAL        1
241 #define WF_SMU_CPU_FANS_MAX_HISTORY     16
242 #define WF_SMU_CPU_FANS_SIBLING_SCALE   0x00001000
243 #define WF_SMU_CPU_FANS_SIBLING_OFFSET  0xfffffb50
244
245 /* State data used by the cpu fans control loop
246  */
247 struct wf_smu_cpu_fans_state {
248         int                     ticks;
249         s32                     cpu_setpoint;
250         s32                     scale;
251         s32                     offset;
252         struct wf_cpu_pid_state pid;
253 };
254
255 static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
256
257
258
259 /*
260  * ***** Implementation *****
261  *
262  */
263
264 static void wf_smu_create_sys_fans(void)
265 {
266         struct wf_smu_sys_fans_param *param = NULL;
267         struct wf_pid_param pid_param;
268         int i;
269
270         /* First, locate the params for this model */
271         for (i = 0; i < WF_SMU_SYS_FANS_NUM_CONFIGS; i++)
272                 if (wf_smu_sys_all_params[i].model_id == wf_smu_mach_model) {
273                         param = &wf_smu_sys_all_params[i];
274                         break;
275                 }
276
277         /* No params found, put fans to max */
278         if (param == NULL) {
279                 printk(KERN_WARNING "windfarm: System fan config not found "
280                        "for this machine model, max fan speed\n");
281                 goto fail;
282         }
283
284         /* Alloc & initialize state */
285         wf_smu_sys_fans = kmalloc(sizeof(struct wf_smu_sys_fans_state),
286                                   GFP_KERNEL);
287         if (wf_smu_sys_fans == NULL) {
288                 printk(KERN_WARNING "windfarm: Memory allocation error"
289                        " max fan speed\n");
290                 goto fail;
291         }
292         wf_smu_sys_fans->ticks = 1;
293         wf_smu_sys_fans->scale0 = param->scale0;
294         wf_smu_sys_fans->offset0 = param->offset0;
295         wf_smu_sys_fans->scale1 = param->scale1;
296         wf_smu_sys_fans->offset1 = param->offset1;
297
298         /* Fill PID params */
299         pid_param.gd = param->gd;
300         pid_param.gp = param->gp;
301         pid_param.gr = param->gr;
302         pid_param.interval = WF_SMU_SYS_FANS_INTERVAL;
303         pid_param.history_len = WF_SMU_SYS_FANS_HISTORY_SIZE;
304         pid_param.itarget = param->itarget;
305         pid_param.min = wf_control_get_min(fan_system);
306         pid_param.max = wf_control_get_max(fan_system);
307         if (fan_hd) {
308                 pid_param.min =
309                         max(pid_param.min, wf_control_get_min(fan_hd));
310                 pid_param.max =
311                         min(pid_param.max, wf_control_get_max(fan_hd));
312         }
313         wf_pid_init(&wf_smu_sys_fans->pid, &pid_param);
314
315         DBG("wf: System Fan control initialized.\n");
316         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
317             FIX32TOPRINT(pid_param.itarget), pid_param.min, pid_param.max);
318         return;
319
320  fail:
321
322         if (fan_system)
323                 wf_control_set_max(fan_system);
324         if (fan_hd)
325                 wf_control_set_max(fan_hd);
326 }
327
328 static void wf_smu_sys_fans_tick(struct wf_smu_sys_fans_state *st)
329 {
330         s32 new_setpoint, temp, scaled, cputarget;
331         int rc;
332
333         if (--st->ticks != 0) {
334                 if (wf_smu_readjust)
335                         goto readjust;
336                 return;
337         }
338         st->ticks = WF_SMU_SYS_FANS_INTERVAL;
339
340         rc = wf_sensor_get(sensor_hd_temp, &temp);
341         if (rc) {
342                 printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
343                        rc);
344                 wf_smu_failure_state |= FAILURE_SENSOR;
345                 return;
346         }
347
348         DBG("wf_smu: System Fans tick ! HD temp: %d.%03d\n",
349             FIX32TOPRINT(temp));
350
351         if (temp > (st->pid.param.itarget + 0x50000))
352                 wf_smu_failure_state |= FAILURE_OVERTEMP;
353
354         new_setpoint = wf_pid_run(&st->pid, temp);
355
356         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
357
358         scaled = ((((s64)new_setpoint) * (s64)st->scale0) >> 12) + st->offset0;
359
360         DBG("wf_smu: scaled setpoint: %d RPM\n", (int)scaled);
361
362         cputarget = wf_smu_cpu_fans ? wf_smu_cpu_fans->pid.target : 0;
363         cputarget = ((((s64)cputarget) * (s64)st->scale1) >> 12) + st->offset1;
364         scaled = max(scaled, cputarget);
365         scaled = max(scaled, st->pid.param.min);
366         scaled = min(scaled, st->pid.param.max);
367
368         DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)scaled);
369
370         if (st->sys_setpoint == scaled && new_setpoint == st->hd_setpoint)
371                 return;
372         st->sys_setpoint = scaled;
373         st->hd_setpoint = new_setpoint;
374  readjust:
375         if (fan_system && wf_smu_failure_state == 0) {
376                 rc = wf_control_set(fan_system, st->sys_setpoint);
377                 if (rc) {
378                         printk(KERN_WARNING "windfarm: Sys fan error %d\n",
379                                rc);
380                         wf_smu_failure_state |= FAILURE_FAN;
381                 }
382         }
383         if (fan_hd && wf_smu_failure_state == 0) {
384                 rc = wf_control_set(fan_hd, st->hd_setpoint);
385                 if (rc) {
386                         printk(KERN_WARNING "windfarm: HD fan error %d\n",
387                                rc);
388                         wf_smu_failure_state |= FAILURE_FAN;
389                 }
390         }
391 }
392
393 static void wf_smu_create_cpu_fans(void)
394 {
395         struct wf_cpu_pid_param pid_param;
396         const struct smu_sdbp_header *hdr;
397         struct smu_sdbp_cpupiddata *piddata;
398         struct smu_sdbp_fvt *fvt;
399         s32 tmax, tdelta, maxpow, powadj;
400
401         /* First, locate the PID params in SMU SBD */
402         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
403         if (hdr == 0) {
404                 printk(KERN_WARNING "windfarm: CPU PID fan config not found "
405                        "max fan speed\n");
406                 goto fail;
407         }
408         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
409
410         /* Get the FVT params for operating point 0 (the only supported one
411          * for now) in order to get tmax
412          */
413         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
414         if (hdr) {
415                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
416                 tmax = ((s32)fvt->maxtemp) << 16;
417         } else
418                 tmax = 0x5e0000; /* 94 degree default */
419
420         /* Alloc & initialize state */
421         wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
422                                   GFP_KERNEL);
423         if (wf_smu_cpu_fans == NULL)
424                 goto fail;
425         wf_smu_cpu_fans->ticks = 1;
426
427         wf_smu_cpu_fans->scale = WF_SMU_CPU_FANS_SIBLING_SCALE;
428         wf_smu_cpu_fans->offset = WF_SMU_CPU_FANS_SIBLING_OFFSET;
429
430         /* Fill PID params */
431         pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
432         pid_param.history_len = piddata->history_len;
433         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
434                 printk(KERN_WARNING "windfarm: History size overflow on "
435                        "CPU control loop (%d)\n", piddata->history_len);
436                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
437         }
438         pid_param.gd = piddata->gd;
439         pid_param.gp = piddata->gp;
440         pid_param.gr = piddata->gr / pid_param.history_len;
441
442         tdelta = ((s32)piddata->target_temp_delta) << 16;
443         maxpow = ((s32)piddata->max_power) << 16;
444         powadj = ((s32)piddata->power_adj) << 16;
445
446         pid_param.tmax = tmax;
447         pid_param.ttarget = tmax - tdelta;
448         pid_param.pmaxadj = maxpow - powadj;
449
450         pid_param.min = wf_control_get_min(fan_cpu_main);
451         pid_param.max = wf_control_get_max(fan_cpu_main);
452
453         wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
454
455         DBG("wf: CPU Fan control initialized.\n");
456         DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
457             FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
458             pid_param.min, pid_param.max);
459
460         return;
461
462  fail:
463         printk(KERN_WARNING "windfarm: CPU fan config not found\n"
464                "for this machine model, max fan speed\n");
465
466         if (cpufreq_clamp)
467                 wf_control_set_max(cpufreq_clamp);
468         if (fan_cpu_main)
469                 wf_control_set_max(fan_cpu_main);
470 }
471
472 static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
473 {
474         s32 new_setpoint, temp, power, systarget;
475         int rc;
476
477         if (--st->ticks != 0) {
478                 if (wf_smu_readjust)
479                         goto readjust;
480                 return;
481         }
482         st->ticks = WF_SMU_CPU_FANS_INTERVAL;
483
484         rc = wf_sensor_get(sensor_cpu_temp, &temp);
485         if (rc) {
486                 printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
487                        rc);
488                 wf_smu_failure_state |= FAILURE_SENSOR;
489                 return;
490         }
491
492         rc = wf_sensor_get(sensor_cpu_power, &power);
493         if (rc) {
494                 printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
495                        rc);
496                 wf_smu_failure_state |= FAILURE_SENSOR;
497                 return;
498         }
499
500         DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
501             FIX32TOPRINT(temp), FIX32TOPRINT(power));
502
503 #ifdef HACKED_OVERTEMP
504         if (temp > 0x4a0000)
505                 wf_smu_failure_state |= FAILURE_OVERTEMP;
506 #else
507         if (temp > st->pid.param.tmax)
508                 wf_smu_failure_state |= FAILURE_OVERTEMP;
509 #endif
510         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
511
512         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
513
514         systarget = wf_smu_sys_fans ? wf_smu_sys_fans->pid.target : 0;
515         systarget = ((((s64)systarget) * (s64)st->scale) >> 12)
516                 + st->offset;
517         new_setpoint = max(new_setpoint, systarget);
518         new_setpoint = max(new_setpoint, st->pid.param.min);
519         new_setpoint = min(new_setpoint, st->pid.param.max);
520
521         DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)new_setpoint);
522
523         if (st->cpu_setpoint == new_setpoint)
524                 return;
525         st->cpu_setpoint = new_setpoint;
526  readjust:
527         if (fan_cpu_main && wf_smu_failure_state == 0) {
528                 rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
529                 if (rc) {
530                         printk(KERN_WARNING "windfarm: CPU main fan"
531                                " error %d\n", rc);
532                         wf_smu_failure_state |= FAILURE_FAN;
533                 }
534         }
535 }
536
537 /*
538  * ****** Setup / Init / Misc ... ******
539  *
540  */
541
542 static void wf_smu_tick(void)
543 {
544         unsigned int last_failure = wf_smu_failure_state;
545         unsigned int new_failure;
546
547         if (!wf_smu_started) {
548                 DBG("wf: creating control loops !\n");
549                 wf_smu_create_sys_fans();
550                 wf_smu_create_cpu_fans();
551                 wf_smu_started = 1;
552         }
553
554         /* Skipping ticks */
555         if (wf_smu_skipping && --wf_smu_skipping)
556                 return;
557
558         wf_smu_failure_state = 0;
559         if (wf_smu_sys_fans)
560                 wf_smu_sys_fans_tick(wf_smu_sys_fans);
561         if (wf_smu_cpu_fans)
562                 wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
563
564         wf_smu_readjust = 0;
565         new_failure = wf_smu_failure_state & ~last_failure;
566
567         /* If entering failure mode, clamp cpufreq and ramp all
568          * fans to full speed.
569          */
570         if (wf_smu_failure_state && !last_failure) {
571                 if (cpufreq_clamp)
572                         wf_control_set_max(cpufreq_clamp);
573                 if (fan_system)
574                         wf_control_set_max(fan_system);
575                 if (fan_cpu_main)
576                         wf_control_set_max(fan_cpu_main);
577                 if (fan_hd)
578                         wf_control_set_max(fan_hd);
579         }
580
581         /* If leaving failure mode, unclamp cpufreq and readjust
582          * all fans on next iteration
583          */
584         if (!wf_smu_failure_state && last_failure) {
585                 if (cpufreq_clamp)
586                         wf_control_set_min(cpufreq_clamp);
587                 wf_smu_readjust = 1;
588         }
589
590         /* Overtemp condition detected, notify and start skipping a couple
591          * ticks to let the temperature go down
592          */
593         if (new_failure & FAILURE_OVERTEMP) {
594                 wf_set_overtemp();
595                 wf_smu_skipping = 2;
596         }
597
598         /* We only clear the overtemp condition if overtemp is cleared
599          * _and_ no other failure is present. Since a sensor error will
600          * clear the overtemp condition (can't measure temperature) at
601          * the control loop levels, but we don't want to keep it clear
602          * here in this case
603          */
604         if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
605                 wf_clear_overtemp();
606 }
607
608 static void wf_smu_new_control(struct wf_control *ct)
609 {
610         if (wf_smu_all_controls_ok)
611                 return;
612
613         if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-fan")) {
614                 if (wf_get_control(ct) == 0)
615                         fan_cpu_main = ct;
616         }
617
618         if (fan_system == NULL && !strcmp(ct->name, "system-fan")) {
619                 if (wf_get_control(ct) == 0)
620                         fan_system = ct;
621         }
622
623         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
624                 if (wf_get_control(ct) == 0)
625                         cpufreq_clamp = ct;
626         }
627
628         /* Darwin property list says the HD fan is only for model ID
629          * 0, 1, 2 and 3
630          */
631
632         if (wf_smu_mach_model > 3) {
633                 if (fan_system && fan_cpu_main && cpufreq_clamp)
634                         wf_smu_all_controls_ok = 1;
635                 return;
636         }
637
638         if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
639                 if (wf_get_control(ct) == 0)
640                         fan_hd = ct;
641         }
642
643         if (fan_system && fan_hd && fan_cpu_main && cpufreq_clamp)
644                 wf_smu_all_controls_ok = 1;
645 }
646
647 static void wf_smu_new_sensor(struct wf_sensor *sr)
648 {
649         if (wf_smu_all_sensors_ok)
650                 return;
651
652         if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
653                 if (wf_get_sensor(sr) == 0)
654                         sensor_cpu_power = sr;
655         }
656
657         if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
658                 if (wf_get_sensor(sr) == 0)
659                         sensor_cpu_temp = sr;
660         }
661
662         if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
663                 if (wf_get_sensor(sr) == 0)
664                         sensor_hd_temp = sr;
665         }
666
667         if (sensor_cpu_power && sensor_cpu_temp && sensor_hd_temp)
668                 wf_smu_all_sensors_ok = 1;
669 }
670
671
672 static int wf_smu_notify(struct notifier_block *self,
673                                unsigned long event, void *data)
674 {
675         switch(event) {
676         case WF_EVENT_NEW_CONTROL:
677                 DBG("wf: new control %s detected\n",
678                     ((struct wf_control *)data)->name);
679                 wf_smu_new_control(data);
680                 wf_smu_readjust = 1;
681                 break;
682         case WF_EVENT_NEW_SENSOR:
683                 DBG("wf: new sensor %s detected\n",
684                     ((struct wf_sensor *)data)->name);
685                 wf_smu_new_sensor(data);
686                 break;
687         case WF_EVENT_TICK:
688                 if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
689                         wf_smu_tick();
690         }
691
692         return 0;
693 }
694
695 static struct notifier_block wf_smu_events = {
696         .notifier_call  = wf_smu_notify,
697 };
698
699 static int wf_init_pm(void)
700 {
701         const struct smu_sdbp_header *hdr;
702
703         hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
704         if (hdr != 0) {
705                 struct smu_sdbp_sensortree *st =
706                         (struct smu_sdbp_sensortree *)&hdr[1];
707                 wf_smu_mach_model = st->model_id;
708         }
709
710         printk(KERN_INFO "windfarm: Initializing for iMacG5 model ID %d\n",
711                wf_smu_mach_model);
712
713         return 0;
714 }
715
716 static int wf_smu_probe(struct platform_device *ddev)
717 {
718         wf_register_client(&wf_smu_events);
719
720         return 0;
721 }
722
723 static int __devexit wf_smu_remove(struct platform_device *ddev)
724 {
725         wf_unregister_client(&wf_smu_events);
726
727         /* XXX We don't have yet a guarantee that our callback isn't
728          * in progress when returning from wf_unregister_client, so
729          * we add an arbitrary delay. I'll have to fix that in the core
730          */
731         msleep(1000);
732
733         /* Release all sensors */
734         /* One more crappy race: I don't think we have any guarantee here
735          * that the attribute callback won't race with the sensor beeing
736          * disposed of, and I'm not 100% certain what best way to deal
737          * with that except by adding locks all over... I'll do that
738          * eventually but heh, who ever rmmod this module anyway ?
739          */
740         if (sensor_cpu_power)
741                 wf_put_sensor(sensor_cpu_power);
742         if (sensor_cpu_temp)
743                 wf_put_sensor(sensor_cpu_temp);
744         if (sensor_hd_temp)
745                 wf_put_sensor(sensor_hd_temp);
746
747         /* Release all controls */
748         if (fan_cpu_main)
749                 wf_put_control(fan_cpu_main);
750         if (fan_hd)
751                 wf_put_control(fan_hd);
752         if (fan_system)
753                 wf_put_control(fan_system);
754         if (cpufreq_clamp)
755                 wf_put_control(cpufreq_clamp);
756
757         /* Destroy control loops state structures */
758         kfree(wf_smu_sys_fans);
759         kfree(wf_smu_cpu_fans);
760
761         return 0;
762 }
763
764 static struct platform_driver wf_smu_driver = {
765         .probe = wf_smu_probe,
766         .remove = __devexit_p(wf_smu_remove),
767         .driver = {
768                 .name = "windfarm",
769                 .owner  = THIS_MODULE,
770         },
771 };
772
773
774 static int __init wf_smu_init(void)
775 {
776         int rc = -ENODEV;
777
778         if (of_machine_is_compatible("PowerMac8,1") ||
779             of_machine_is_compatible("PowerMac8,2"))
780                 rc = wf_init_pm();
781
782         if (rc == 0) {
783 #ifdef MODULE
784                 request_module("windfarm_smu_controls");
785                 request_module("windfarm_smu_sensors");
786                 request_module("windfarm_lm75_sensor");
787                 request_module("windfarm_cpufreq_clamp");
788
789 #endif /* MODULE */
790                 platform_driver_register(&wf_smu_driver);
791         }
792
793         return rc;
794 }
795
796 static void __exit wf_smu_exit(void)
797 {
798
799         platform_driver_unregister(&wf_smu_driver);
800 }
801
802
803 module_init(wf_smu_init);
804 module_exit(wf_smu_exit);
805
806 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
807 MODULE_DESCRIPTION("Thermal control logic for iMac G5");
808 MODULE_LICENSE("GPL");
809 MODULE_ALIAS("platform:windfarm");