]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
ACPI / DPTF: constify attribute_group structures
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263         mempool_t *mapping_pool;
264
265         process_bio_fn process_bio;
266         process_bio_fn process_discard;
267
268         process_cell_fn process_cell;
269         process_cell_fn process_discard_cell;
270
271         process_mapping_fn process_prepared_mapping;
272         process_mapping_fn process_prepared_discard;
273         process_mapping_fn process_prepared_discard_pt2;
274
275         struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285         struct dm_target *ti;
286         struct pool *pool;
287         struct dm_dev *data_dev;
288         struct dm_dev *metadata_dev;
289         struct dm_target_callbacks callbacks;
290
291         dm_block_t low_water_blocks;
292         struct pool_features requested_pf; /* Features requested during table load */
293         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300         struct list_head list;
301         struct dm_dev *pool_dev;
302         struct dm_dev *origin_dev;
303         sector_t origin_size;
304         dm_thin_id dev_id;
305
306         struct pool *pool;
307         struct dm_thin_device *td;
308         struct mapped_device *thin_md;
309
310         bool requeue_mode:1;
311         spinlock_t lock;
312         struct list_head deferred_cells;
313         struct bio_list deferred_bio_list;
314         struct bio_list retry_on_resume_list;
315         struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317         /*
318          * Ensures the thin is not destroyed until the worker has finished
319          * iterating the active_thins list.
320          */
321         atomic_t refcount;
322         struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329         return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334         return block_size_is_power_of_two(pool) ?
335                 (b << pool->sectors_per_block_shift) :
336                 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342         struct thin_c *tc;
343         struct blk_plug plug;
344         struct bio *parent_bio;
345         struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350         BUG_ON(!parent);
351
352         op->tc = tc;
353         blk_start_plug(&op->plug);
354         op->parent_bio = parent;
355         op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360         struct thin_c *tc = op->tc;
361         sector_t s = block_to_sectors(tc->pool, data_b);
362         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365                                       GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370         if (op->bio) {
371                 /*
372                  * Even if one of the calls to issue_discard failed, we
373                  * need to wait for the chain to complete.
374                  */
375                 bio_chain(op->bio, op->parent_bio);
376                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377                 submit_bio(op->bio);
378         }
379
380         blk_finish_plug(&op->plug);
381
382         /*
383          * Even if r is set, there could be sub discards in flight that we
384          * need to wait for.
385          */
386         if (r && !op->parent_bio->bi_error)
387                 op->parent_bio->bi_error = r;
388         bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399         queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405                       struct dm_bio_prison_cell **cell_result)
406 {
407         int r;
408         struct dm_bio_prison_cell *cell_prealloc;
409
410         /*
411          * Allocate a cell from the prison's mempool.
412          * This might block but it can't fail.
413          */
414         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417         if (r)
418                 /*
419                  * We reused an old cell; we can get rid of
420                  * the new one.
421                  */
422                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424         return r;
425 }
426
427 static void cell_release(struct pool *pool,
428                          struct dm_bio_prison_cell *cell,
429                          struct bio_list *bios)
430 {
431         dm_cell_release(pool->prison, cell, bios);
432         dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436                                void (*fn)(void *, struct dm_bio_prison_cell *),
437                                void *context,
438                                struct dm_bio_prison_cell *cell)
439 {
440         dm_cell_visit_release(pool->prison, fn, context, cell);
441         dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445                                    struct dm_bio_prison_cell *cell,
446                                    struct bio_list *bios)
447 {
448         dm_cell_release_no_holder(pool->prison, cell, bios);
449         dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453                                  struct dm_bio_prison_cell *cell, int error_code)
454 {
455         dm_cell_error(pool->prison, cell, error_code);
456         dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461         return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466         int error = get_pool_io_error_code(pool);
467
468         cell_error_with_code(pool, cell, error);
469 }
470
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473         cell_error_with_code(pool, cell, 0);
474 }
475
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480
481 /*----------------------------------------------------------------*/
482
483 /*
484  * A global list of pools that uses a struct mapped_device as a key.
485  */
486 static struct dm_thin_pool_table {
487         struct mutex mutex;
488         struct list_head pools;
489 } dm_thin_pool_table;
490
491 static void pool_table_init(void)
492 {
493         mutex_init(&dm_thin_pool_table.mutex);
494         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496
497 static void __pool_table_insert(struct pool *pool)
498 {
499         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500         list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_remove(struct pool *pool)
504 {
505         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506         list_del(&pool->list);
507 }
508
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511         struct pool *pool = NULL, *tmp;
512
513         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514
515         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516                 if (tmp->pool_md == md) {
517                         pool = tmp;
518                         break;
519                 }
520         }
521
522         return pool;
523 }
524
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527         struct pool *pool = NULL, *tmp;
528
529         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530
531         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532                 if (tmp->md_dev == md_dev) {
533                         pool = tmp;
534                         break;
535                 }
536         }
537
538         return pool;
539 }
540
541 /*----------------------------------------------------------------*/
542
543 struct dm_thin_endio_hook {
544         struct thin_c *tc;
545         struct dm_deferred_entry *shared_read_entry;
546         struct dm_deferred_entry *all_io_entry;
547         struct dm_thin_new_mapping *overwrite_mapping;
548         struct rb_node rb_node;
549         struct dm_bio_prison_cell *cell;
550 };
551
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554         bio_list_merge(bios, master);
555         bio_list_init(master);
556 }
557
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560         struct bio *bio;
561
562         while ((bio = bio_list_pop(bios))) {
563                 bio->bi_error = error;
564                 bio_endio(bio);
565         }
566 }
567
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570         struct bio_list bios;
571         unsigned long flags;
572
573         bio_list_init(&bios);
574
575         spin_lock_irqsave(&tc->lock, flags);
576         __merge_bio_list(&bios, master);
577         spin_unlock_irqrestore(&tc->lock, flags);
578
579         error_bio_list(&bios, error);
580 }
581
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584         struct pool *pool = tc->pool;
585         unsigned long flags;
586         struct list_head cells;
587         struct dm_bio_prison_cell *cell, *tmp;
588
589         INIT_LIST_HEAD(&cells);
590
591         spin_lock_irqsave(&tc->lock, flags);
592         list_splice_init(&tc->deferred_cells, &cells);
593         spin_unlock_irqrestore(&tc->lock, flags);
594
595         list_for_each_entry_safe(cell, tmp, &cells, user_list)
596                 cell_requeue(pool, cell);
597 }
598
599 static void requeue_io(struct thin_c *tc)
600 {
601         struct bio_list bios;
602         unsigned long flags;
603
604         bio_list_init(&bios);
605
606         spin_lock_irqsave(&tc->lock, flags);
607         __merge_bio_list(&bios, &tc->deferred_bio_list);
608         __merge_bio_list(&bios, &tc->retry_on_resume_list);
609         spin_unlock_irqrestore(&tc->lock, flags);
610
611         error_bio_list(&bios, DM_ENDIO_REQUEUE);
612         requeue_deferred_cells(tc);
613 }
614
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617         struct thin_c *tc;
618
619         rcu_read_lock();
620         list_for_each_entry_rcu(tc, &pool->active_thins, list)
621                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622         rcu_read_unlock();
623 }
624
625 static void error_retry_list(struct pool *pool)
626 {
627         int error = get_pool_io_error_code(pool);
628
629         error_retry_list_with_code(pool, error);
630 }
631
632 /*
633  * This section of code contains the logic for processing a thin device's IO.
634  * Much of the code depends on pool object resources (lists, workqueues, etc)
635  * but most is exclusively called from the thin target rather than the thin-pool
636  * target.
637  */
638
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641         struct pool *pool = tc->pool;
642         sector_t block_nr = bio->bi_iter.bi_sector;
643
644         if (block_size_is_power_of_two(pool))
645                 block_nr >>= pool->sectors_per_block_shift;
646         else
647                 (void) sector_div(block_nr, pool->sectors_per_block);
648
649         return block_nr;
650 }
651
652 /*
653  * Returns the _complete_ blocks that this bio covers.
654  */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656                                 dm_block_t *begin, dm_block_t *end)
657 {
658         struct pool *pool = tc->pool;
659         sector_t b = bio->bi_iter.bi_sector;
660         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661
662         b += pool->sectors_per_block - 1ull; /* so we round up */
663
664         if (block_size_is_power_of_two(pool)) {
665                 b >>= pool->sectors_per_block_shift;
666                 e >>= pool->sectors_per_block_shift;
667         } else {
668                 (void) sector_div(b, pool->sectors_per_block);
669                 (void) sector_div(e, pool->sectors_per_block);
670         }
671
672         if (e < b)
673                 /* Can happen if the bio is within a single block. */
674                 e = b;
675
676         *begin = b;
677         *end = e;
678 }
679
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682         struct pool *pool = tc->pool;
683         sector_t bi_sector = bio->bi_iter.bi_sector;
684
685         bio->bi_bdev = tc->pool_dev->bdev;
686         if (block_size_is_power_of_two(pool))
687                 bio->bi_iter.bi_sector =
688                         (block << pool->sectors_per_block_shift) |
689                         (bi_sector & (pool->sectors_per_block - 1));
690         else
691                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692                                  sector_div(bi_sector, pool->sectors_per_block);
693 }
694
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697         bio->bi_bdev = tc->origin_dev->bdev;
698 }
699
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702         return op_is_flush(bio->bi_opf) &&
703                 dm_thin_changed_this_transaction(tc->td);
704 }
705
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708         struct dm_thin_endio_hook *h;
709
710         if (bio_op(bio) == REQ_OP_DISCARD)
711                 return;
712
713         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719         struct pool *pool = tc->pool;
720         unsigned long flags;
721
722         if (!bio_triggers_commit(tc, bio)) {
723                 generic_make_request(bio);
724                 return;
725         }
726
727         /*
728          * Complete bio with an error if earlier I/O caused changes to
729          * the metadata that can't be committed e.g, due to I/O errors
730          * on the metadata device.
731          */
732         if (dm_thin_aborted_changes(tc->td)) {
733                 bio_io_error(bio);
734                 return;
735         }
736
737         /*
738          * Batch together any bios that trigger commits and then issue a
739          * single commit for them in process_deferred_bios().
740          */
741         spin_lock_irqsave(&pool->lock, flags);
742         bio_list_add(&pool->deferred_flush_bios, bio);
743         spin_unlock_irqrestore(&pool->lock, flags);
744 }
745
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748         remap_to_origin(tc, bio);
749         issue(tc, bio);
750 }
751
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753                             dm_block_t block)
754 {
755         remap(tc, bio, block);
756         issue(tc, bio);
757 }
758
759 /*----------------------------------------------------------------*/
760
761 /*
762  * Bio endio functions.
763  */
764 struct dm_thin_new_mapping {
765         struct list_head list;
766
767         bool pass_discard:1;
768         bool maybe_shared:1;
769
770         /*
771          * Track quiescing, copying and zeroing preparation actions.  When this
772          * counter hits zero the block is prepared and can be inserted into the
773          * btree.
774          */
775         atomic_t prepare_actions;
776
777         int err;
778         struct thin_c *tc;
779         dm_block_t virt_begin, virt_end;
780         dm_block_t data_block;
781         struct dm_bio_prison_cell *cell;
782
783         /*
784          * If the bio covers the whole area of a block then we can avoid
785          * zeroing or copying.  Instead this bio is hooked.  The bio will
786          * still be in the cell, so care has to be taken to avoid issuing
787          * the bio twice.
788          */
789         struct bio *bio;
790         bio_end_io_t *saved_bi_end_io;
791 };
792
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795         struct pool *pool = m->tc->pool;
796
797         if (atomic_dec_and_test(&m->prepare_actions)) {
798                 list_add_tail(&m->list, &pool->prepared_mappings);
799                 wake_worker(pool);
800         }
801 }
802
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805         unsigned long flags;
806         struct pool *pool = m->tc->pool;
807
808         spin_lock_irqsave(&pool->lock, flags);
809         __complete_mapping_preparation(m);
810         spin_unlock_irqrestore(&pool->lock, flags);
811 }
812
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815         struct dm_thin_new_mapping *m = context;
816
817         m->err = read_err || write_err ? -EIO : 0;
818         complete_mapping_preparation(m);
819 }
820
821 static void overwrite_endio(struct bio *bio)
822 {
823         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824         struct dm_thin_new_mapping *m = h->overwrite_mapping;
825
826         bio->bi_end_io = m->saved_bi_end_io;
827
828         m->err = bio->bi_error;
829         complete_mapping_preparation(m);
830 }
831
832 /*----------------------------------------------------------------*/
833
834 /*
835  * Workqueue.
836  */
837
838 /*
839  * Prepared mapping jobs.
840  */
841
842 /*
843  * This sends the bios in the cell, except the original holder, back
844  * to the deferred_bios list.
845  */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848         struct pool *pool = tc->pool;
849         unsigned long flags;
850
851         spin_lock_irqsave(&tc->lock, flags);
852         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853         spin_unlock_irqrestore(&tc->lock, flags);
854
855         wake_worker(pool);
856 }
857
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859
860 struct remap_info {
861         struct thin_c *tc;
862         struct bio_list defer_bios;
863         struct bio_list issue_bios;
864 };
865
866 static void __inc_remap_and_issue_cell(void *context,
867                                        struct dm_bio_prison_cell *cell)
868 {
869         struct remap_info *info = context;
870         struct bio *bio;
871
872         while ((bio = bio_list_pop(&cell->bios))) {
873                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
874                         bio_list_add(&info->defer_bios, bio);
875                 else {
876                         inc_all_io_entry(info->tc->pool, bio);
877
878                         /*
879                          * We can't issue the bios with the bio prison lock
880                          * held, so we add them to a list to issue on
881                          * return from this function.
882                          */
883                         bio_list_add(&info->issue_bios, bio);
884                 }
885         }
886 }
887
888 static void inc_remap_and_issue_cell(struct thin_c *tc,
889                                      struct dm_bio_prison_cell *cell,
890                                      dm_block_t block)
891 {
892         struct bio *bio;
893         struct remap_info info;
894
895         info.tc = tc;
896         bio_list_init(&info.defer_bios);
897         bio_list_init(&info.issue_bios);
898
899         /*
900          * We have to be careful to inc any bios we're about to issue
901          * before the cell is released, and avoid a race with new bios
902          * being added to the cell.
903          */
904         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
905                            &info, cell);
906
907         while ((bio = bio_list_pop(&info.defer_bios)))
908                 thin_defer_bio(tc, bio);
909
910         while ((bio = bio_list_pop(&info.issue_bios)))
911                 remap_and_issue(info.tc, bio, block);
912 }
913
914 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
915 {
916         cell_error(m->tc->pool, m->cell);
917         list_del(&m->list);
918         mempool_free(m, m->tc->pool->mapping_pool);
919 }
920
921 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
922 {
923         struct thin_c *tc = m->tc;
924         struct pool *pool = tc->pool;
925         struct bio *bio = m->bio;
926         int r;
927
928         if (m->err) {
929                 cell_error(pool, m->cell);
930                 goto out;
931         }
932
933         /*
934          * Commit the prepared block into the mapping btree.
935          * Any I/O for this block arriving after this point will get
936          * remapped to it directly.
937          */
938         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
939         if (r) {
940                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
941                 cell_error(pool, m->cell);
942                 goto out;
943         }
944
945         /*
946          * Release any bios held while the block was being provisioned.
947          * If we are processing a write bio that completely covers the block,
948          * we already processed it so can ignore it now when processing
949          * the bios in the cell.
950          */
951         if (bio) {
952                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
953                 bio_endio(bio);
954         } else {
955                 inc_all_io_entry(tc->pool, m->cell->holder);
956                 remap_and_issue(tc, m->cell->holder, m->data_block);
957                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
958         }
959
960 out:
961         list_del(&m->list);
962         mempool_free(m, pool->mapping_pool);
963 }
964
965 /*----------------------------------------------------------------*/
966
967 static void free_discard_mapping(struct dm_thin_new_mapping *m)
968 {
969         struct thin_c *tc = m->tc;
970         if (m->cell)
971                 cell_defer_no_holder(tc, m->cell);
972         mempool_free(m, tc->pool->mapping_pool);
973 }
974
975 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
976 {
977         bio_io_error(m->bio);
978         free_discard_mapping(m);
979 }
980
981 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
982 {
983         bio_endio(m->bio);
984         free_discard_mapping(m);
985 }
986
987 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
988 {
989         int r;
990         struct thin_c *tc = m->tc;
991
992         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
993         if (r) {
994                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
995                 bio_io_error(m->bio);
996         } else
997                 bio_endio(m->bio);
998
999         cell_defer_no_holder(tc, m->cell);
1000         mempool_free(m, tc->pool->mapping_pool);
1001 }
1002
1003 /*----------------------------------------------------------------*/
1004
1005 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006                                                    struct bio *discard_parent)
1007 {
1008         /*
1009          * We've already unmapped this range of blocks, but before we
1010          * passdown we have to check that these blocks are now unused.
1011          */
1012         int r = 0;
1013         bool used = true;
1014         struct thin_c *tc = m->tc;
1015         struct pool *pool = tc->pool;
1016         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017         struct discard_op op;
1018
1019         begin_discard(&op, tc, discard_parent);
1020         while (b != end) {
1021                 /* find start of unmapped run */
1022                 for (; b < end; b++) {
1023                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1024                         if (r)
1025                                 goto out;
1026
1027                         if (!used)
1028                                 break;
1029                 }
1030
1031                 if (b == end)
1032                         break;
1033
1034                 /* find end of run */
1035                 for (e = b + 1; e != end; e++) {
1036                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1037                         if (r)
1038                                 goto out;
1039
1040                         if (used)
1041                                 break;
1042                 }
1043
1044                 r = issue_discard(&op, b, e);
1045                 if (r)
1046                         goto out;
1047
1048                 b = e;
1049         }
1050 out:
1051         end_discard(&op, r);
1052 }
1053
1054 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055 {
1056         unsigned long flags;
1057         struct pool *pool = m->tc->pool;
1058
1059         spin_lock_irqsave(&pool->lock, flags);
1060         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061         spin_unlock_irqrestore(&pool->lock, flags);
1062         wake_worker(pool);
1063 }
1064
1065 static void passdown_endio(struct bio *bio)
1066 {
1067         /*
1068          * It doesn't matter if the passdown discard failed, we still want
1069          * to unmap (we ignore err).
1070          */
1071         queue_passdown_pt2(bio->bi_private);
1072         bio_put(bio);
1073 }
1074
1075 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076 {
1077         int r;
1078         struct thin_c *tc = m->tc;
1079         struct pool *pool = tc->pool;
1080         struct bio *discard_parent;
1081         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083         /*
1084          * Only this thread allocates blocks, so we can be sure that the
1085          * newly unmapped blocks will not be allocated before the end of
1086          * the function.
1087          */
1088         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089         if (r) {
1090                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091                 bio_io_error(m->bio);
1092                 cell_defer_no_holder(tc, m->cell);
1093                 mempool_free(m, pool->mapping_pool);
1094                 return;
1095         }
1096
1097         discard_parent = bio_alloc(GFP_NOIO, 1);
1098         if (!discard_parent) {
1099                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100                        dm_device_name(tc->pool->pool_md));
1101                 queue_passdown_pt2(m);
1102
1103         } else {
1104                 discard_parent->bi_end_io = passdown_endio;
1105                 discard_parent->bi_private = m;
1106
1107                 if (m->maybe_shared)
1108                         passdown_double_checking_shared_status(m, discard_parent);
1109                 else {
1110                         struct discard_op op;
1111
1112                         begin_discard(&op, tc, discard_parent);
1113                         r = issue_discard(&op, m->data_block, data_end);
1114                         end_discard(&op, r);
1115                 }
1116         }
1117
1118         /*
1119          * Increment the unmapped blocks.  This prevents a race between the
1120          * passdown io and reallocation of freed blocks.
1121          */
1122         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123         if (r) {
1124                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125                 bio_io_error(m->bio);
1126                 cell_defer_no_holder(tc, m->cell);
1127                 mempool_free(m, pool->mapping_pool);
1128                 return;
1129         }
1130 }
1131
1132 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133 {
1134         int r;
1135         struct thin_c *tc = m->tc;
1136         struct pool *pool = tc->pool;
1137
1138         /*
1139          * The passdown has completed, so now we can decrement all those
1140          * unmapped blocks.
1141          */
1142         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143                                    m->data_block + (m->virt_end - m->virt_begin));
1144         if (r) {
1145                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146                 bio_io_error(m->bio);
1147         } else
1148                 bio_endio(m->bio);
1149
1150         cell_defer_no_holder(tc, m->cell);
1151         mempool_free(m, pool->mapping_pool);
1152 }
1153
1154 static void process_prepared(struct pool *pool, struct list_head *head,
1155                              process_mapping_fn *fn)
1156 {
1157         unsigned long flags;
1158         struct list_head maps;
1159         struct dm_thin_new_mapping *m, *tmp;
1160
1161         INIT_LIST_HEAD(&maps);
1162         spin_lock_irqsave(&pool->lock, flags);
1163         list_splice_init(head, &maps);
1164         spin_unlock_irqrestore(&pool->lock, flags);
1165
1166         list_for_each_entry_safe(m, tmp, &maps, list)
1167                 (*fn)(m);
1168 }
1169
1170 /*
1171  * Deferred bio jobs.
1172  */
1173 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174 {
1175         return bio->bi_iter.bi_size ==
1176                 (pool->sectors_per_block << SECTOR_SHIFT);
1177 }
1178
1179 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180 {
1181         return (bio_data_dir(bio) == WRITE) &&
1182                 io_overlaps_block(pool, bio);
1183 }
1184
1185 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186                                bio_end_io_t *fn)
1187 {
1188         *save = bio->bi_end_io;
1189         bio->bi_end_io = fn;
1190 }
1191
1192 static int ensure_next_mapping(struct pool *pool)
1193 {
1194         if (pool->next_mapping)
1195                 return 0;
1196
1197         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199         return pool->next_mapping ? 0 : -ENOMEM;
1200 }
1201
1202 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203 {
1204         struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206         BUG_ON(!pool->next_mapping);
1207
1208         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209         INIT_LIST_HEAD(&m->list);
1210         m->bio = NULL;
1211
1212         pool->next_mapping = NULL;
1213
1214         return m;
1215 }
1216
1217 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218                     sector_t begin, sector_t end)
1219 {
1220         int r;
1221         struct dm_io_region to;
1222
1223         to.bdev = tc->pool_dev->bdev;
1224         to.sector = begin;
1225         to.count = end - begin;
1226
1227         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228         if (r < 0) {
1229                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1230                 copy_complete(1, 1, m);
1231         }
1232 }
1233
1234 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235                                       dm_block_t data_begin,
1236                                       struct dm_thin_new_mapping *m)
1237 {
1238         struct pool *pool = tc->pool;
1239         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241         h->overwrite_mapping = m;
1242         m->bio = bio;
1243         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244         inc_all_io_entry(pool, bio);
1245         remap_and_issue(tc, bio, data_begin);
1246 }
1247
1248 /*
1249  * A partial copy also needs to zero the uncopied region.
1250  */
1251 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252                           struct dm_dev *origin, dm_block_t data_origin,
1253                           dm_block_t data_dest,
1254                           struct dm_bio_prison_cell *cell, struct bio *bio,
1255                           sector_t len)
1256 {
1257         int r;
1258         struct pool *pool = tc->pool;
1259         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261         m->tc = tc;
1262         m->virt_begin = virt_block;
1263         m->virt_end = virt_block + 1u;
1264         m->data_block = data_dest;
1265         m->cell = cell;
1266
1267         /*
1268          * quiesce action + copy action + an extra reference held for the
1269          * duration of this function (we may need to inc later for a
1270          * partial zero).
1271          */
1272         atomic_set(&m->prepare_actions, 3);
1273
1274         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275                 complete_mapping_preparation(m); /* already quiesced */
1276
1277         /*
1278          * IO to pool_dev remaps to the pool target's data_dev.
1279          *
1280          * If the whole block of data is being overwritten, we can issue the
1281          * bio immediately. Otherwise we use kcopyd to clone the data first.
1282          */
1283         if (io_overwrites_block(pool, bio))
1284                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1285         else {
1286                 struct dm_io_region from, to;
1287
1288                 from.bdev = origin->bdev;
1289                 from.sector = data_origin * pool->sectors_per_block;
1290                 from.count = len;
1291
1292                 to.bdev = tc->pool_dev->bdev;
1293                 to.sector = data_dest * pool->sectors_per_block;
1294                 to.count = len;
1295
1296                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297                                    0, copy_complete, m);
1298                 if (r < 0) {
1299                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1300                         copy_complete(1, 1, m);
1301
1302                         /*
1303                          * We allow the zero to be issued, to simplify the
1304                          * error path.  Otherwise we'd need to start
1305                          * worrying about decrementing the prepare_actions
1306                          * counter.
1307                          */
1308                 }
1309
1310                 /*
1311                  * Do we need to zero a tail region?
1312                  */
1313                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314                         atomic_inc(&m->prepare_actions);
1315                         ll_zero(tc, m,
1316                                 data_dest * pool->sectors_per_block + len,
1317                                 (data_dest + 1) * pool->sectors_per_block);
1318                 }
1319         }
1320
1321         complete_mapping_preparation(m); /* drop our ref */
1322 }
1323
1324 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325                                    dm_block_t data_origin, dm_block_t data_dest,
1326                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1327 {
1328         schedule_copy(tc, virt_block, tc->pool_dev,
1329                       data_origin, data_dest, cell, bio,
1330                       tc->pool->sectors_per_block);
1331 }
1332
1333 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335                           struct bio *bio)
1336 {
1337         struct pool *pool = tc->pool;
1338         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341         m->tc = tc;
1342         m->virt_begin = virt_block;
1343         m->virt_end = virt_block + 1u;
1344         m->data_block = data_block;
1345         m->cell = cell;
1346
1347         /*
1348          * If the whole block of data is being overwritten or we are not
1349          * zeroing pre-existing data, we can issue the bio immediately.
1350          * Otherwise we use kcopyd to zero the data first.
1351          */
1352         if (pool->pf.zero_new_blocks) {
1353                 if (io_overwrites_block(pool, bio))
1354                         remap_and_issue_overwrite(tc, bio, data_block, m);
1355                 else
1356                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1357                                 (data_block + 1) * pool->sectors_per_block);
1358         } else
1359                 process_prepared_mapping(m);
1360 }
1361
1362 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363                                    dm_block_t data_dest,
1364                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1365 {
1366         struct pool *pool = tc->pool;
1367         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370         if (virt_block_end <= tc->origin_size)
1371                 schedule_copy(tc, virt_block, tc->origin_dev,
1372                               virt_block, data_dest, cell, bio,
1373                               pool->sectors_per_block);
1374
1375         else if (virt_block_begin < tc->origin_size)
1376                 schedule_copy(tc, virt_block, tc->origin_dev,
1377                               virt_block, data_dest, cell, bio,
1378                               tc->origin_size - virt_block_begin);
1379
1380         else
1381                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1382 }
1383
1384 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386 static void check_for_space(struct pool *pool)
1387 {
1388         int r;
1389         dm_block_t nr_free;
1390
1391         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392                 return;
1393
1394         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395         if (r)
1396                 return;
1397
1398         if (nr_free)
1399                 set_pool_mode(pool, PM_WRITE);
1400 }
1401
1402 /*
1403  * A non-zero return indicates read_only or fail_io mode.
1404  * Many callers don't care about the return value.
1405  */
1406 static int commit(struct pool *pool)
1407 {
1408         int r;
1409
1410         if (get_pool_mode(pool) >= PM_READ_ONLY)
1411                 return -EINVAL;
1412
1413         r = dm_pool_commit_metadata(pool->pmd);
1414         if (r)
1415                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416         else
1417                 check_for_space(pool);
1418
1419         return r;
1420 }
1421
1422 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423 {
1424         unsigned long flags;
1425
1426         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427                 DMWARN("%s: reached low water mark for data device: sending event.",
1428                        dm_device_name(pool->pool_md));
1429                 spin_lock_irqsave(&pool->lock, flags);
1430                 pool->low_water_triggered = true;
1431                 spin_unlock_irqrestore(&pool->lock, flags);
1432                 dm_table_event(pool->ti->table);
1433         }
1434 }
1435
1436 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437 {
1438         int r;
1439         dm_block_t free_blocks;
1440         struct pool *pool = tc->pool;
1441
1442         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443                 return -EINVAL;
1444
1445         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446         if (r) {
1447                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448                 return r;
1449         }
1450
1451         check_low_water_mark(pool, free_blocks);
1452
1453         if (!free_blocks) {
1454                 /*
1455                  * Try to commit to see if that will free up some
1456                  * more space.
1457                  */
1458                 r = commit(pool);
1459                 if (r)
1460                         return r;
1461
1462                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463                 if (r) {
1464                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465                         return r;
1466                 }
1467
1468                 if (!free_blocks) {
1469                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470                         return -ENOSPC;
1471                 }
1472         }
1473
1474         r = dm_pool_alloc_data_block(pool->pmd, result);
1475         if (r) {
1476                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477                 return r;
1478         }
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * If we have run out of space, queue bios until the device is
1485  * resumed, presumably after having been reloaded with more space.
1486  */
1487 static void retry_on_resume(struct bio *bio)
1488 {
1489         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490         struct thin_c *tc = h->tc;
1491         unsigned long flags;
1492
1493         spin_lock_irqsave(&tc->lock, flags);
1494         bio_list_add(&tc->retry_on_resume_list, bio);
1495         spin_unlock_irqrestore(&tc->lock, flags);
1496 }
1497
1498 static int should_error_unserviceable_bio(struct pool *pool)
1499 {
1500         enum pool_mode m = get_pool_mode(pool);
1501
1502         switch (m) {
1503         case PM_WRITE:
1504                 /* Shouldn't get here */
1505                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506                 return -EIO;
1507
1508         case PM_OUT_OF_DATA_SPACE:
1509                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
1511         case PM_READ_ONLY:
1512         case PM_FAIL:
1513                 return -EIO;
1514         default:
1515                 /* Shouldn't get here */
1516                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517                 return -EIO;
1518         }
1519 }
1520
1521 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522 {
1523         int error = should_error_unserviceable_bio(pool);
1524
1525         if (error) {
1526                 bio->bi_error = error;
1527                 bio_endio(bio);
1528         } else
1529                 retry_on_resume(bio);
1530 }
1531
1532 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533 {
1534         struct bio *bio;
1535         struct bio_list bios;
1536         int error;
1537
1538         error = should_error_unserviceable_bio(pool);
1539         if (error) {
1540                 cell_error_with_code(pool, cell, error);
1541                 return;
1542         }
1543
1544         bio_list_init(&bios);
1545         cell_release(pool, cell, &bios);
1546
1547         while ((bio = bio_list_pop(&bios)))
1548                 retry_on_resume(bio);
1549 }
1550
1551 static void process_discard_cell_no_passdown(struct thin_c *tc,
1552                                              struct dm_bio_prison_cell *virt_cell)
1553 {
1554         struct pool *pool = tc->pool;
1555         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557         /*
1558          * We don't need to lock the data blocks, since there's no
1559          * passdown.  We only lock data blocks for allocation and breaking sharing.
1560          */
1561         m->tc = tc;
1562         m->virt_begin = virt_cell->key.block_begin;
1563         m->virt_end = virt_cell->key.block_end;
1564         m->cell = virt_cell;
1565         m->bio = virt_cell->holder;
1566
1567         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568                 pool->process_prepared_discard(m);
1569 }
1570
1571 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572                                  struct bio *bio)
1573 {
1574         struct pool *pool = tc->pool;
1575
1576         int r;
1577         bool maybe_shared;
1578         struct dm_cell_key data_key;
1579         struct dm_bio_prison_cell *data_cell;
1580         struct dm_thin_new_mapping *m;
1581         dm_block_t virt_begin, virt_end, data_begin;
1582
1583         while (begin != end) {
1584                 r = ensure_next_mapping(pool);
1585                 if (r)
1586                         /* we did our best */
1587                         return;
1588
1589                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590                                               &data_begin, &maybe_shared);
1591                 if (r)
1592                         /*
1593                          * Silently fail, letting any mappings we've
1594                          * created complete.
1595                          */
1596                         break;
1597
1598                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600                         /* contention, we'll give up with this range */
1601                         begin = virt_end;
1602                         continue;
1603                 }
1604
1605                 /*
1606                  * IO may still be going to the destination block.  We must
1607                  * quiesce before we can do the removal.
1608                  */
1609                 m = get_next_mapping(pool);
1610                 m->tc = tc;
1611                 m->maybe_shared = maybe_shared;
1612                 m->virt_begin = virt_begin;
1613                 m->virt_end = virt_end;
1614                 m->data_block = data_begin;
1615                 m->cell = data_cell;
1616                 m->bio = bio;
1617
1618                 /*
1619                  * The parent bio must not complete before sub discard bios are
1620                  * chained to it (see end_discard's bio_chain)!
1621                  *
1622                  * This per-mapping bi_remaining increment is paired with
1623                  * the implicit decrement that occurs via bio_endio() in
1624                  * end_discard().
1625                  */
1626                 bio_inc_remaining(bio);
1627                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628                         pool->process_prepared_discard(m);
1629
1630                 begin = virt_end;
1631         }
1632 }
1633
1634 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635 {
1636         struct bio *bio = virt_cell->holder;
1637         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639         /*
1640          * The virt_cell will only get freed once the origin bio completes.
1641          * This means it will remain locked while all the individual
1642          * passdown bios are in flight.
1643          */
1644         h->cell = virt_cell;
1645         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647         /*
1648          * We complete the bio now, knowing that the bi_remaining field
1649          * will prevent completion until the sub range discards have
1650          * completed.
1651          */
1652         bio_endio(bio);
1653 }
1654
1655 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656 {
1657         dm_block_t begin, end;
1658         struct dm_cell_key virt_key;
1659         struct dm_bio_prison_cell *virt_cell;
1660
1661         get_bio_block_range(tc, bio, &begin, &end);
1662         if (begin == end) {
1663                 /*
1664                  * The discard covers less than a block.
1665                  */
1666                 bio_endio(bio);
1667                 return;
1668         }
1669
1670         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672                 /*
1673                  * Potential starvation issue: We're relying on the
1674                  * fs/application being well behaved, and not trying to
1675                  * send IO to a region at the same time as discarding it.
1676                  * If they do this persistently then it's possible this
1677                  * cell will never be granted.
1678                  */
1679                 return;
1680
1681         tc->pool->process_discard_cell(tc, virt_cell);
1682 }
1683
1684 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685                           struct dm_cell_key *key,
1686                           struct dm_thin_lookup_result *lookup_result,
1687                           struct dm_bio_prison_cell *cell)
1688 {
1689         int r;
1690         dm_block_t data_block;
1691         struct pool *pool = tc->pool;
1692
1693         r = alloc_data_block(tc, &data_block);
1694         switch (r) {
1695         case 0:
1696                 schedule_internal_copy(tc, block, lookup_result->block,
1697                                        data_block, cell, bio);
1698                 break;
1699
1700         case -ENOSPC:
1701                 retry_bios_on_resume(pool, cell);
1702                 break;
1703
1704         default:
1705                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706                             __func__, r);
1707                 cell_error(pool, cell);
1708                 break;
1709         }
1710 }
1711
1712 static void __remap_and_issue_shared_cell(void *context,
1713                                           struct dm_bio_prison_cell *cell)
1714 {
1715         struct remap_info *info = context;
1716         struct bio *bio;
1717
1718         while ((bio = bio_list_pop(&cell->bios))) {
1719                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1720                     bio_op(bio) == REQ_OP_DISCARD)
1721                         bio_list_add(&info->defer_bios, bio);
1722                 else {
1723                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1724
1725                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1726                         inc_all_io_entry(info->tc->pool, bio);
1727                         bio_list_add(&info->issue_bios, bio);
1728                 }
1729         }
1730 }
1731
1732 static void remap_and_issue_shared_cell(struct thin_c *tc,
1733                                         struct dm_bio_prison_cell *cell,
1734                                         dm_block_t block)
1735 {
1736         struct bio *bio;
1737         struct remap_info info;
1738
1739         info.tc = tc;
1740         bio_list_init(&info.defer_bios);
1741         bio_list_init(&info.issue_bios);
1742
1743         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1744                            &info, cell);
1745
1746         while ((bio = bio_list_pop(&info.defer_bios)))
1747                 thin_defer_bio(tc, bio);
1748
1749         while ((bio = bio_list_pop(&info.issue_bios)))
1750                 remap_and_issue(tc, bio, block);
1751 }
1752
1753 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1754                                dm_block_t block,
1755                                struct dm_thin_lookup_result *lookup_result,
1756                                struct dm_bio_prison_cell *virt_cell)
1757 {
1758         struct dm_bio_prison_cell *data_cell;
1759         struct pool *pool = tc->pool;
1760         struct dm_cell_key key;
1761
1762         /*
1763          * If cell is already occupied, then sharing is already in the process
1764          * of being broken so we have nothing further to do here.
1765          */
1766         build_data_key(tc->td, lookup_result->block, &key);
1767         if (bio_detain(pool, &key, bio, &data_cell)) {
1768                 cell_defer_no_holder(tc, virt_cell);
1769                 return;
1770         }
1771
1772         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1773                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1774                 cell_defer_no_holder(tc, virt_cell);
1775         } else {
1776                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1777
1778                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1779                 inc_all_io_entry(pool, bio);
1780                 remap_and_issue(tc, bio, lookup_result->block);
1781
1782                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1783                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1784         }
1785 }
1786
1787 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788                             struct dm_bio_prison_cell *cell)
1789 {
1790         int r;
1791         dm_block_t data_block;
1792         struct pool *pool = tc->pool;
1793
1794         /*
1795          * Remap empty bios (flushes) immediately, without provisioning.
1796          */
1797         if (!bio->bi_iter.bi_size) {
1798                 inc_all_io_entry(pool, bio);
1799                 cell_defer_no_holder(tc, cell);
1800
1801                 remap_and_issue(tc, bio, 0);
1802                 return;
1803         }
1804
1805         /*
1806          * Fill read bios with zeroes and complete them immediately.
1807          */
1808         if (bio_data_dir(bio) == READ) {
1809                 zero_fill_bio(bio);
1810                 cell_defer_no_holder(tc, cell);
1811                 bio_endio(bio);
1812                 return;
1813         }
1814
1815         r = alloc_data_block(tc, &data_block);
1816         switch (r) {
1817         case 0:
1818                 if (tc->origin_dev)
1819                         schedule_external_copy(tc, block, data_block, cell, bio);
1820                 else
1821                         schedule_zero(tc, block, data_block, cell, bio);
1822                 break;
1823
1824         case -ENOSPC:
1825                 retry_bios_on_resume(pool, cell);
1826                 break;
1827
1828         default:
1829                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1830                             __func__, r);
1831                 cell_error(pool, cell);
1832                 break;
1833         }
1834 }
1835
1836 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1837 {
1838         int r;
1839         struct pool *pool = tc->pool;
1840         struct bio *bio = cell->holder;
1841         dm_block_t block = get_bio_block(tc, bio);
1842         struct dm_thin_lookup_result lookup_result;
1843
1844         if (tc->requeue_mode) {
1845                 cell_requeue(pool, cell);
1846                 return;
1847         }
1848
1849         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1850         switch (r) {
1851         case 0:
1852                 if (lookup_result.shared)
1853                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1854                 else {
1855                         inc_all_io_entry(pool, bio);
1856                         remap_and_issue(tc, bio, lookup_result.block);
1857                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1858                 }
1859                 break;
1860
1861         case -ENODATA:
1862                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1863                         inc_all_io_entry(pool, bio);
1864                         cell_defer_no_holder(tc, cell);
1865
1866                         if (bio_end_sector(bio) <= tc->origin_size)
1867                                 remap_to_origin_and_issue(tc, bio);
1868
1869                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1870                                 zero_fill_bio(bio);
1871                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1872                                 remap_to_origin_and_issue(tc, bio);
1873
1874                         } else {
1875                                 zero_fill_bio(bio);
1876                                 bio_endio(bio);
1877                         }
1878                 } else
1879                         provision_block(tc, bio, block, cell);
1880                 break;
1881
1882         default:
1883                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1884                             __func__, r);
1885                 cell_defer_no_holder(tc, cell);
1886                 bio_io_error(bio);
1887                 break;
1888         }
1889 }
1890
1891 static void process_bio(struct thin_c *tc, struct bio *bio)
1892 {
1893         struct pool *pool = tc->pool;
1894         dm_block_t block = get_bio_block(tc, bio);
1895         struct dm_bio_prison_cell *cell;
1896         struct dm_cell_key key;
1897
1898         /*
1899          * If cell is already occupied, then the block is already
1900          * being provisioned so we have nothing further to do here.
1901          */
1902         build_virtual_key(tc->td, block, &key);
1903         if (bio_detain(pool, &key, bio, &cell))
1904                 return;
1905
1906         process_cell(tc, cell);
1907 }
1908
1909 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1910                                     struct dm_bio_prison_cell *cell)
1911 {
1912         int r;
1913         int rw = bio_data_dir(bio);
1914         dm_block_t block = get_bio_block(tc, bio);
1915         struct dm_thin_lookup_result lookup_result;
1916
1917         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1918         switch (r) {
1919         case 0:
1920                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1921                         handle_unserviceable_bio(tc->pool, bio);
1922                         if (cell)
1923                                 cell_defer_no_holder(tc, cell);
1924                 } else {
1925                         inc_all_io_entry(tc->pool, bio);
1926                         remap_and_issue(tc, bio, lookup_result.block);
1927                         if (cell)
1928                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1929                 }
1930                 break;
1931
1932         case -ENODATA:
1933                 if (cell)
1934                         cell_defer_no_holder(tc, cell);
1935                 if (rw != READ) {
1936                         handle_unserviceable_bio(tc->pool, bio);
1937                         break;
1938                 }
1939
1940                 if (tc->origin_dev) {
1941                         inc_all_io_entry(tc->pool, bio);
1942                         remap_to_origin_and_issue(tc, bio);
1943                         break;
1944                 }
1945
1946                 zero_fill_bio(bio);
1947                 bio_endio(bio);
1948                 break;
1949
1950         default:
1951                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1952                             __func__, r);
1953                 if (cell)
1954                         cell_defer_no_holder(tc, cell);
1955                 bio_io_error(bio);
1956                 break;
1957         }
1958 }
1959
1960 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1961 {
1962         __process_bio_read_only(tc, bio, NULL);
1963 }
1964
1965 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1966 {
1967         __process_bio_read_only(tc, cell->holder, cell);
1968 }
1969
1970 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1971 {
1972         bio_endio(bio);
1973 }
1974
1975 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1976 {
1977         bio_io_error(bio);
1978 }
1979
1980 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1981 {
1982         cell_success(tc->pool, cell);
1983 }
1984
1985 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1986 {
1987         cell_error(tc->pool, cell);
1988 }
1989
1990 /*
1991  * FIXME: should we also commit due to size of transaction, measured in
1992  * metadata blocks?
1993  */
1994 static int need_commit_due_to_time(struct pool *pool)
1995 {
1996         return !time_in_range(jiffies, pool->last_commit_jiffies,
1997                               pool->last_commit_jiffies + COMMIT_PERIOD);
1998 }
1999
2000 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2001 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2002
2003 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2004 {
2005         struct rb_node **rbp, *parent;
2006         struct dm_thin_endio_hook *pbd;
2007         sector_t bi_sector = bio->bi_iter.bi_sector;
2008
2009         rbp = &tc->sort_bio_list.rb_node;
2010         parent = NULL;
2011         while (*rbp) {
2012                 parent = *rbp;
2013                 pbd = thin_pbd(parent);
2014
2015                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2016                         rbp = &(*rbp)->rb_left;
2017                 else
2018                         rbp = &(*rbp)->rb_right;
2019         }
2020
2021         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2022         rb_link_node(&pbd->rb_node, parent, rbp);
2023         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2024 }
2025
2026 static void __extract_sorted_bios(struct thin_c *tc)
2027 {
2028         struct rb_node *node;
2029         struct dm_thin_endio_hook *pbd;
2030         struct bio *bio;
2031
2032         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2033                 pbd = thin_pbd(node);
2034                 bio = thin_bio(pbd);
2035
2036                 bio_list_add(&tc->deferred_bio_list, bio);
2037                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2038         }
2039
2040         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2041 }
2042
2043 static void __sort_thin_deferred_bios(struct thin_c *tc)
2044 {
2045         struct bio *bio;
2046         struct bio_list bios;
2047
2048         bio_list_init(&bios);
2049         bio_list_merge(&bios, &tc->deferred_bio_list);
2050         bio_list_init(&tc->deferred_bio_list);
2051
2052         /* Sort deferred_bio_list using rb-tree */
2053         while ((bio = bio_list_pop(&bios)))
2054                 __thin_bio_rb_add(tc, bio);
2055
2056         /*
2057          * Transfer the sorted bios in sort_bio_list back to
2058          * deferred_bio_list to allow lockless submission of
2059          * all bios.
2060          */
2061         __extract_sorted_bios(tc);
2062 }
2063
2064 static void process_thin_deferred_bios(struct thin_c *tc)
2065 {
2066         struct pool *pool = tc->pool;
2067         unsigned long flags;
2068         struct bio *bio;
2069         struct bio_list bios;
2070         struct blk_plug plug;
2071         unsigned count = 0;
2072
2073         if (tc->requeue_mode) {
2074                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2075                 return;
2076         }
2077
2078         bio_list_init(&bios);
2079
2080         spin_lock_irqsave(&tc->lock, flags);
2081
2082         if (bio_list_empty(&tc->deferred_bio_list)) {
2083                 spin_unlock_irqrestore(&tc->lock, flags);
2084                 return;
2085         }
2086
2087         __sort_thin_deferred_bios(tc);
2088
2089         bio_list_merge(&bios, &tc->deferred_bio_list);
2090         bio_list_init(&tc->deferred_bio_list);
2091
2092         spin_unlock_irqrestore(&tc->lock, flags);
2093
2094         blk_start_plug(&plug);
2095         while ((bio = bio_list_pop(&bios))) {
2096                 /*
2097                  * If we've got no free new_mapping structs, and processing
2098                  * this bio might require one, we pause until there are some
2099                  * prepared mappings to process.
2100                  */
2101                 if (ensure_next_mapping(pool)) {
2102                         spin_lock_irqsave(&tc->lock, flags);
2103                         bio_list_add(&tc->deferred_bio_list, bio);
2104                         bio_list_merge(&tc->deferred_bio_list, &bios);
2105                         spin_unlock_irqrestore(&tc->lock, flags);
2106                         break;
2107                 }
2108
2109                 if (bio_op(bio) == REQ_OP_DISCARD)
2110                         pool->process_discard(tc, bio);
2111                 else
2112                         pool->process_bio(tc, bio);
2113
2114                 if ((count++ & 127) == 0) {
2115                         throttle_work_update(&pool->throttle);
2116                         dm_pool_issue_prefetches(pool->pmd);
2117                 }
2118         }
2119         blk_finish_plug(&plug);
2120 }
2121
2122 static int cmp_cells(const void *lhs, const void *rhs)
2123 {
2124         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2125         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2126
2127         BUG_ON(!lhs_cell->holder);
2128         BUG_ON(!rhs_cell->holder);
2129
2130         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2131                 return -1;
2132
2133         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2134                 return 1;
2135
2136         return 0;
2137 }
2138
2139 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2140 {
2141         unsigned count = 0;
2142         struct dm_bio_prison_cell *cell, *tmp;
2143
2144         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2145                 if (count >= CELL_SORT_ARRAY_SIZE)
2146                         break;
2147
2148                 pool->cell_sort_array[count++] = cell;
2149                 list_del(&cell->user_list);
2150         }
2151
2152         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2153
2154         return count;
2155 }
2156
2157 static void process_thin_deferred_cells(struct thin_c *tc)
2158 {
2159         struct pool *pool = tc->pool;
2160         unsigned long flags;
2161         struct list_head cells;
2162         struct dm_bio_prison_cell *cell;
2163         unsigned i, j, count;
2164
2165         INIT_LIST_HEAD(&cells);
2166
2167         spin_lock_irqsave(&tc->lock, flags);
2168         list_splice_init(&tc->deferred_cells, &cells);
2169         spin_unlock_irqrestore(&tc->lock, flags);
2170
2171         if (list_empty(&cells))
2172                 return;
2173
2174         do {
2175                 count = sort_cells(tc->pool, &cells);
2176
2177                 for (i = 0; i < count; i++) {
2178                         cell = pool->cell_sort_array[i];
2179                         BUG_ON(!cell->holder);
2180
2181                         /*
2182                          * If we've got no free new_mapping structs, and processing
2183                          * this bio might require one, we pause until there are some
2184                          * prepared mappings to process.
2185                          */
2186                         if (ensure_next_mapping(pool)) {
2187                                 for (j = i; j < count; j++)
2188                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2189
2190                                 spin_lock_irqsave(&tc->lock, flags);
2191                                 list_splice(&cells, &tc->deferred_cells);
2192                                 spin_unlock_irqrestore(&tc->lock, flags);
2193                                 return;
2194                         }
2195
2196                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2197                                 pool->process_discard_cell(tc, cell);
2198                         else
2199                                 pool->process_cell(tc, cell);
2200                 }
2201         } while (!list_empty(&cells));
2202 }
2203
2204 static void thin_get(struct thin_c *tc);
2205 static void thin_put(struct thin_c *tc);
2206
2207 /*
2208  * We can't hold rcu_read_lock() around code that can block.  So we
2209  * find a thin with the rcu lock held; bump a refcount; then drop
2210  * the lock.
2211  */
2212 static struct thin_c *get_first_thin(struct pool *pool)
2213 {
2214         struct thin_c *tc = NULL;
2215
2216         rcu_read_lock();
2217         if (!list_empty(&pool->active_thins)) {
2218                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2219                 thin_get(tc);
2220         }
2221         rcu_read_unlock();
2222
2223         return tc;
2224 }
2225
2226 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2227 {
2228         struct thin_c *old_tc = tc;
2229
2230         rcu_read_lock();
2231         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2232                 thin_get(tc);
2233                 thin_put(old_tc);
2234                 rcu_read_unlock();
2235                 return tc;
2236         }
2237         thin_put(old_tc);
2238         rcu_read_unlock();
2239
2240         return NULL;
2241 }
2242
2243 static void process_deferred_bios(struct pool *pool)
2244 {
2245         unsigned long flags;
2246         struct bio *bio;
2247         struct bio_list bios;
2248         struct thin_c *tc;
2249
2250         tc = get_first_thin(pool);
2251         while (tc) {
2252                 process_thin_deferred_cells(tc);
2253                 process_thin_deferred_bios(tc);
2254                 tc = get_next_thin(pool, tc);
2255         }
2256
2257         /*
2258          * If there are any deferred flush bios, we must commit
2259          * the metadata before issuing them.
2260          */
2261         bio_list_init(&bios);
2262         spin_lock_irqsave(&pool->lock, flags);
2263         bio_list_merge(&bios, &pool->deferred_flush_bios);
2264         bio_list_init(&pool->deferred_flush_bios);
2265         spin_unlock_irqrestore(&pool->lock, flags);
2266
2267         if (bio_list_empty(&bios) &&
2268             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2269                 return;
2270
2271         if (commit(pool)) {
2272                 while ((bio = bio_list_pop(&bios)))
2273                         bio_io_error(bio);
2274                 return;
2275         }
2276         pool->last_commit_jiffies = jiffies;
2277
2278         while ((bio = bio_list_pop(&bios)))
2279                 generic_make_request(bio);
2280 }
2281
2282 static void do_worker(struct work_struct *ws)
2283 {
2284         struct pool *pool = container_of(ws, struct pool, worker);
2285
2286         throttle_work_start(&pool->throttle);
2287         dm_pool_issue_prefetches(pool->pmd);
2288         throttle_work_update(&pool->throttle);
2289         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2290         throttle_work_update(&pool->throttle);
2291         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2292         throttle_work_update(&pool->throttle);
2293         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2294         throttle_work_update(&pool->throttle);
2295         process_deferred_bios(pool);
2296         throttle_work_complete(&pool->throttle);
2297 }
2298
2299 /*
2300  * We want to commit periodically so that not too much
2301  * unwritten data builds up.
2302  */
2303 static void do_waker(struct work_struct *ws)
2304 {
2305         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2306         wake_worker(pool);
2307         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2308 }
2309
2310 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2311
2312 /*
2313  * We're holding onto IO to allow userland time to react.  After the
2314  * timeout either the pool will have been resized (and thus back in
2315  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2316  */
2317 static void do_no_space_timeout(struct work_struct *ws)
2318 {
2319         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2320                                          no_space_timeout);
2321
2322         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2323                 pool->pf.error_if_no_space = true;
2324                 notify_of_pool_mode_change_to_oods(pool);
2325                 error_retry_list_with_code(pool, -ENOSPC);
2326         }
2327 }
2328
2329 /*----------------------------------------------------------------*/
2330
2331 struct pool_work {
2332         struct work_struct worker;
2333         struct completion complete;
2334 };
2335
2336 static struct pool_work *to_pool_work(struct work_struct *ws)
2337 {
2338         return container_of(ws, struct pool_work, worker);
2339 }
2340
2341 static void pool_work_complete(struct pool_work *pw)
2342 {
2343         complete(&pw->complete);
2344 }
2345
2346 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2347                            void (*fn)(struct work_struct *))
2348 {
2349         INIT_WORK_ONSTACK(&pw->worker, fn);
2350         init_completion(&pw->complete);
2351         queue_work(pool->wq, &pw->worker);
2352         wait_for_completion(&pw->complete);
2353 }
2354
2355 /*----------------------------------------------------------------*/
2356
2357 struct noflush_work {
2358         struct pool_work pw;
2359         struct thin_c *tc;
2360 };
2361
2362 static struct noflush_work *to_noflush(struct work_struct *ws)
2363 {
2364         return container_of(to_pool_work(ws), struct noflush_work, pw);
2365 }
2366
2367 static void do_noflush_start(struct work_struct *ws)
2368 {
2369         struct noflush_work *w = to_noflush(ws);
2370         w->tc->requeue_mode = true;
2371         requeue_io(w->tc);
2372         pool_work_complete(&w->pw);
2373 }
2374
2375 static void do_noflush_stop(struct work_struct *ws)
2376 {
2377         struct noflush_work *w = to_noflush(ws);
2378         w->tc->requeue_mode = false;
2379         pool_work_complete(&w->pw);
2380 }
2381
2382 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2383 {
2384         struct noflush_work w;
2385
2386         w.tc = tc;
2387         pool_work_wait(&w.pw, tc->pool, fn);
2388 }
2389
2390 /*----------------------------------------------------------------*/
2391
2392 static enum pool_mode get_pool_mode(struct pool *pool)
2393 {
2394         return pool->pf.mode;
2395 }
2396
2397 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2398 {
2399         dm_table_event(pool->ti->table);
2400         DMINFO("%s: switching pool to %s mode",
2401                dm_device_name(pool->pool_md), new_mode);
2402 }
2403
2404 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2405 {
2406         if (!pool->pf.error_if_no_space)
2407                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2408         else
2409                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2410 }
2411
2412 static bool passdown_enabled(struct pool_c *pt)
2413 {
2414         return pt->adjusted_pf.discard_passdown;
2415 }
2416
2417 static void set_discard_callbacks(struct pool *pool)
2418 {
2419         struct pool_c *pt = pool->ti->private;
2420
2421         if (passdown_enabled(pt)) {
2422                 pool->process_discard_cell = process_discard_cell_passdown;
2423                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2424                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2425         } else {
2426                 pool->process_discard_cell = process_discard_cell_no_passdown;
2427                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2428         }
2429 }
2430
2431 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2432 {
2433         struct pool_c *pt = pool->ti->private;
2434         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2435         enum pool_mode old_mode = get_pool_mode(pool);
2436         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2437
2438         /*
2439          * Never allow the pool to transition to PM_WRITE mode if user
2440          * intervention is required to verify metadata and data consistency.
2441          */
2442         if (new_mode == PM_WRITE && needs_check) {
2443                 DMERR("%s: unable to switch pool to write mode until repaired.",
2444                       dm_device_name(pool->pool_md));
2445                 if (old_mode != new_mode)
2446                         new_mode = old_mode;
2447                 else
2448                         new_mode = PM_READ_ONLY;
2449         }
2450         /*
2451          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2452          * not going to recover without a thin_repair.  So we never let the
2453          * pool move out of the old mode.
2454          */
2455         if (old_mode == PM_FAIL)
2456                 new_mode = old_mode;
2457
2458         switch (new_mode) {
2459         case PM_FAIL:
2460                 if (old_mode != new_mode)
2461                         notify_of_pool_mode_change(pool, "failure");
2462                 dm_pool_metadata_read_only(pool->pmd);
2463                 pool->process_bio = process_bio_fail;
2464                 pool->process_discard = process_bio_fail;
2465                 pool->process_cell = process_cell_fail;
2466                 pool->process_discard_cell = process_cell_fail;
2467                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2468                 pool->process_prepared_discard = process_prepared_discard_fail;
2469
2470                 error_retry_list(pool);
2471                 break;
2472
2473         case PM_READ_ONLY:
2474                 if (old_mode != new_mode)
2475                         notify_of_pool_mode_change(pool, "read-only");
2476                 dm_pool_metadata_read_only(pool->pmd);
2477                 pool->process_bio = process_bio_read_only;
2478                 pool->process_discard = process_bio_success;
2479                 pool->process_cell = process_cell_read_only;
2480                 pool->process_discard_cell = process_cell_success;
2481                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2482                 pool->process_prepared_discard = process_prepared_discard_success;
2483
2484                 error_retry_list(pool);
2485                 break;
2486
2487         case PM_OUT_OF_DATA_SPACE:
2488                 /*
2489                  * Ideally we'd never hit this state; the low water mark
2490                  * would trigger userland to extend the pool before we
2491                  * completely run out of data space.  However, many small
2492                  * IOs to unprovisioned space can consume data space at an
2493                  * alarming rate.  Adjust your low water mark if you're
2494                  * frequently seeing this mode.
2495                  */
2496                 if (old_mode != new_mode)
2497                         notify_of_pool_mode_change_to_oods(pool);
2498                 pool->out_of_data_space = true;
2499                 pool->process_bio = process_bio_read_only;
2500                 pool->process_discard = process_discard_bio;
2501                 pool->process_cell = process_cell_read_only;
2502                 pool->process_prepared_mapping = process_prepared_mapping;
2503                 set_discard_callbacks(pool);
2504
2505                 if (!pool->pf.error_if_no_space && no_space_timeout)
2506                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2507                 break;
2508
2509         case PM_WRITE:
2510                 if (old_mode != new_mode)
2511                         notify_of_pool_mode_change(pool, "write");
2512                 pool->out_of_data_space = false;
2513                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2514                 dm_pool_metadata_read_write(pool->pmd);
2515                 pool->process_bio = process_bio;
2516                 pool->process_discard = process_discard_bio;
2517                 pool->process_cell = process_cell;
2518                 pool->process_prepared_mapping = process_prepared_mapping;
2519                 set_discard_callbacks(pool);
2520                 break;
2521         }
2522
2523         pool->pf.mode = new_mode;
2524         /*
2525          * The pool mode may have changed, sync it so bind_control_target()
2526          * doesn't cause an unexpected mode transition on resume.
2527          */
2528         pt->adjusted_pf.mode = new_mode;
2529 }
2530
2531 static void abort_transaction(struct pool *pool)
2532 {
2533         const char *dev_name = dm_device_name(pool->pool_md);
2534
2535         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2536         if (dm_pool_abort_metadata(pool->pmd)) {
2537                 DMERR("%s: failed to abort metadata transaction", dev_name);
2538                 set_pool_mode(pool, PM_FAIL);
2539         }
2540
2541         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2542                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2543                 set_pool_mode(pool, PM_FAIL);
2544         }
2545 }
2546
2547 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2548 {
2549         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2550                     dm_device_name(pool->pool_md), op, r);
2551
2552         abort_transaction(pool);
2553         set_pool_mode(pool, PM_READ_ONLY);
2554 }
2555
2556 /*----------------------------------------------------------------*/
2557
2558 /*
2559  * Mapping functions.
2560  */
2561
2562 /*
2563  * Called only while mapping a thin bio to hand it over to the workqueue.
2564  */
2565 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2566 {
2567         unsigned long flags;
2568         struct pool *pool = tc->pool;
2569
2570         spin_lock_irqsave(&tc->lock, flags);
2571         bio_list_add(&tc->deferred_bio_list, bio);
2572         spin_unlock_irqrestore(&tc->lock, flags);
2573
2574         wake_worker(pool);
2575 }
2576
2577 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2578 {
2579         struct pool *pool = tc->pool;
2580
2581         throttle_lock(&pool->throttle);
2582         thin_defer_bio(tc, bio);
2583         throttle_unlock(&pool->throttle);
2584 }
2585
2586 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2587 {
2588         unsigned long flags;
2589         struct pool *pool = tc->pool;
2590
2591         throttle_lock(&pool->throttle);
2592         spin_lock_irqsave(&tc->lock, flags);
2593         list_add_tail(&cell->user_list, &tc->deferred_cells);
2594         spin_unlock_irqrestore(&tc->lock, flags);
2595         throttle_unlock(&pool->throttle);
2596
2597         wake_worker(pool);
2598 }
2599
2600 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2601 {
2602         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2603
2604         h->tc = tc;
2605         h->shared_read_entry = NULL;
2606         h->all_io_entry = NULL;
2607         h->overwrite_mapping = NULL;
2608         h->cell = NULL;
2609 }
2610
2611 /*
2612  * Non-blocking function called from the thin target's map function.
2613  */
2614 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2615 {
2616         int r;
2617         struct thin_c *tc = ti->private;
2618         dm_block_t block = get_bio_block(tc, bio);
2619         struct dm_thin_device *td = tc->td;
2620         struct dm_thin_lookup_result result;
2621         struct dm_bio_prison_cell *virt_cell, *data_cell;
2622         struct dm_cell_key key;
2623
2624         thin_hook_bio(tc, bio);
2625
2626         if (tc->requeue_mode) {
2627                 bio->bi_error = DM_ENDIO_REQUEUE;
2628                 bio_endio(bio);
2629                 return DM_MAPIO_SUBMITTED;
2630         }
2631
2632         if (get_pool_mode(tc->pool) == PM_FAIL) {
2633                 bio_io_error(bio);
2634                 return DM_MAPIO_SUBMITTED;
2635         }
2636
2637         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2638                 thin_defer_bio_with_throttle(tc, bio);
2639                 return DM_MAPIO_SUBMITTED;
2640         }
2641
2642         /*
2643          * We must hold the virtual cell before doing the lookup, otherwise
2644          * there's a race with discard.
2645          */
2646         build_virtual_key(tc->td, block, &key);
2647         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2648                 return DM_MAPIO_SUBMITTED;
2649
2650         r = dm_thin_find_block(td, block, 0, &result);
2651
2652         /*
2653          * Note that we defer readahead too.
2654          */
2655         switch (r) {
2656         case 0:
2657                 if (unlikely(result.shared)) {
2658                         /*
2659                          * We have a race condition here between the
2660                          * result.shared value returned by the lookup and
2661                          * snapshot creation, which may cause new
2662                          * sharing.
2663                          *
2664                          * To avoid this always quiesce the origin before
2665                          * taking the snap.  You want to do this anyway to
2666                          * ensure a consistent application view
2667                          * (i.e. lockfs).
2668                          *
2669                          * More distant ancestors are irrelevant. The
2670                          * shared flag will be set in their case.
2671                          */
2672                         thin_defer_cell(tc, virt_cell);
2673                         return DM_MAPIO_SUBMITTED;
2674                 }
2675
2676                 build_data_key(tc->td, result.block, &key);
2677                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2678                         cell_defer_no_holder(tc, virt_cell);
2679                         return DM_MAPIO_SUBMITTED;
2680                 }
2681
2682                 inc_all_io_entry(tc->pool, bio);
2683                 cell_defer_no_holder(tc, data_cell);
2684                 cell_defer_no_holder(tc, virt_cell);
2685
2686                 remap(tc, bio, result.block);
2687                 return DM_MAPIO_REMAPPED;
2688
2689         case -ENODATA:
2690         case -EWOULDBLOCK:
2691                 thin_defer_cell(tc, virt_cell);
2692                 return DM_MAPIO_SUBMITTED;
2693
2694         default:
2695                 /*
2696                  * Must always call bio_io_error on failure.
2697                  * dm_thin_find_block can fail with -EINVAL if the
2698                  * pool is switched to fail-io mode.
2699                  */
2700                 bio_io_error(bio);
2701                 cell_defer_no_holder(tc, virt_cell);
2702                 return DM_MAPIO_SUBMITTED;
2703         }
2704 }
2705
2706 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2707 {
2708         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2709         struct request_queue *q;
2710
2711         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2712                 return 1;
2713
2714         q = bdev_get_queue(pt->data_dev->bdev);
2715         return bdi_congested(q->backing_dev_info, bdi_bits);
2716 }
2717
2718 static void requeue_bios(struct pool *pool)
2719 {
2720         unsigned long flags;
2721         struct thin_c *tc;
2722
2723         rcu_read_lock();
2724         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2725                 spin_lock_irqsave(&tc->lock, flags);
2726                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2727                 bio_list_init(&tc->retry_on_resume_list);
2728                 spin_unlock_irqrestore(&tc->lock, flags);
2729         }
2730         rcu_read_unlock();
2731 }
2732
2733 /*----------------------------------------------------------------
2734  * Binding of control targets to a pool object
2735  *--------------------------------------------------------------*/
2736 static bool data_dev_supports_discard(struct pool_c *pt)
2737 {
2738         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2739
2740         return q && blk_queue_discard(q);
2741 }
2742
2743 static bool is_factor(sector_t block_size, uint32_t n)
2744 {
2745         return !sector_div(block_size, n);
2746 }
2747
2748 /*
2749  * If discard_passdown was enabled verify that the data device
2750  * supports discards.  Disable discard_passdown if not.
2751  */
2752 static void disable_passdown_if_not_supported(struct pool_c *pt)
2753 {
2754         struct pool *pool = pt->pool;
2755         struct block_device *data_bdev = pt->data_dev->bdev;
2756         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2757         const char *reason = NULL;
2758         char buf[BDEVNAME_SIZE];
2759
2760         if (!pt->adjusted_pf.discard_passdown)
2761                 return;
2762
2763         if (!data_dev_supports_discard(pt))
2764                 reason = "discard unsupported";
2765
2766         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2767                 reason = "max discard sectors smaller than a block";
2768
2769         if (reason) {
2770                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2771                 pt->adjusted_pf.discard_passdown = false;
2772         }
2773 }
2774
2775 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2776 {
2777         struct pool_c *pt = ti->private;
2778
2779         /*
2780          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2781          */
2782         enum pool_mode old_mode = get_pool_mode(pool);
2783         enum pool_mode new_mode = pt->adjusted_pf.mode;
2784
2785         /*
2786          * Don't change the pool's mode until set_pool_mode() below.
2787          * Otherwise the pool's process_* function pointers may
2788          * not match the desired pool mode.
2789          */
2790         pt->adjusted_pf.mode = old_mode;
2791
2792         pool->ti = ti;
2793         pool->pf = pt->adjusted_pf;
2794         pool->low_water_blocks = pt->low_water_blocks;
2795
2796         set_pool_mode(pool, new_mode);
2797
2798         return 0;
2799 }
2800
2801 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2802 {
2803         if (pool->ti == ti)
2804                 pool->ti = NULL;
2805 }
2806
2807 /*----------------------------------------------------------------
2808  * Pool creation
2809  *--------------------------------------------------------------*/
2810 /* Initialize pool features. */
2811 static void pool_features_init(struct pool_features *pf)
2812 {
2813         pf->mode = PM_WRITE;
2814         pf->zero_new_blocks = true;
2815         pf->discard_enabled = true;
2816         pf->discard_passdown = true;
2817         pf->error_if_no_space = false;
2818 }
2819
2820 static void __pool_destroy(struct pool *pool)
2821 {
2822         __pool_table_remove(pool);
2823
2824         vfree(pool->cell_sort_array);
2825         if (dm_pool_metadata_close(pool->pmd) < 0)
2826                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2827
2828         dm_bio_prison_destroy(pool->prison);
2829         dm_kcopyd_client_destroy(pool->copier);
2830
2831         if (pool->wq)
2832                 destroy_workqueue(pool->wq);
2833
2834         if (pool->next_mapping)
2835                 mempool_free(pool->next_mapping, pool->mapping_pool);
2836         mempool_destroy(pool->mapping_pool);
2837         dm_deferred_set_destroy(pool->shared_read_ds);
2838         dm_deferred_set_destroy(pool->all_io_ds);
2839         kfree(pool);
2840 }
2841
2842 static struct kmem_cache *_new_mapping_cache;
2843
2844 static struct pool *pool_create(struct mapped_device *pool_md,
2845                                 struct block_device *metadata_dev,
2846                                 unsigned long block_size,
2847                                 int read_only, char **error)
2848 {
2849         int r;
2850         void *err_p;
2851         struct pool *pool;
2852         struct dm_pool_metadata *pmd;
2853         bool format_device = read_only ? false : true;
2854
2855         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2856         if (IS_ERR(pmd)) {
2857                 *error = "Error creating metadata object";
2858                 return (struct pool *)pmd;
2859         }
2860
2861         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2862         if (!pool) {
2863                 *error = "Error allocating memory for pool";
2864                 err_p = ERR_PTR(-ENOMEM);
2865                 goto bad_pool;
2866         }
2867
2868         pool->pmd = pmd;
2869         pool->sectors_per_block = block_size;
2870         if (block_size & (block_size - 1))
2871                 pool->sectors_per_block_shift = -1;
2872         else
2873                 pool->sectors_per_block_shift = __ffs(block_size);
2874         pool->low_water_blocks = 0;
2875         pool_features_init(&pool->pf);
2876         pool->prison = dm_bio_prison_create();
2877         if (!pool->prison) {
2878                 *error = "Error creating pool's bio prison";
2879                 err_p = ERR_PTR(-ENOMEM);
2880                 goto bad_prison;
2881         }
2882
2883         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2884         if (IS_ERR(pool->copier)) {
2885                 r = PTR_ERR(pool->copier);
2886                 *error = "Error creating pool's kcopyd client";
2887                 err_p = ERR_PTR(r);
2888                 goto bad_kcopyd_client;
2889         }
2890
2891         /*
2892          * Create singlethreaded workqueue that will service all devices
2893          * that use this metadata.
2894          */
2895         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2896         if (!pool->wq) {
2897                 *error = "Error creating pool's workqueue";
2898                 err_p = ERR_PTR(-ENOMEM);
2899                 goto bad_wq;
2900         }
2901
2902         throttle_init(&pool->throttle);
2903         INIT_WORK(&pool->worker, do_worker);
2904         INIT_DELAYED_WORK(&pool->waker, do_waker);
2905         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2906         spin_lock_init(&pool->lock);
2907         bio_list_init(&pool->deferred_flush_bios);
2908         INIT_LIST_HEAD(&pool->prepared_mappings);
2909         INIT_LIST_HEAD(&pool->prepared_discards);
2910         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2911         INIT_LIST_HEAD(&pool->active_thins);
2912         pool->low_water_triggered = false;
2913         pool->suspended = true;
2914         pool->out_of_data_space = false;
2915
2916         pool->shared_read_ds = dm_deferred_set_create();
2917         if (!pool->shared_read_ds) {
2918                 *error = "Error creating pool's shared read deferred set";
2919                 err_p = ERR_PTR(-ENOMEM);
2920                 goto bad_shared_read_ds;
2921         }
2922
2923         pool->all_io_ds = dm_deferred_set_create();
2924         if (!pool->all_io_ds) {
2925                 *error = "Error creating pool's all io deferred set";
2926                 err_p = ERR_PTR(-ENOMEM);
2927                 goto bad_all_io_ds;
2928         }
2929
2930         pool->next_mapping = NULL;
2931         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2932                                                       _new_mapping_cache);
2933         if (!pool->mapping_pool) {
2934                 *error = "Error creating pool's mapping mempool";
2935                 err_p = ERR_PTR(-ENOMEM);
2936                 goto bad_mapping_pool;
2937         }
2938
2939         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2940         if (!pool->cell_sort_array) {
2941                 *error = "Error allocating cell sort array";
2942                 err_p = ERR_PTR(-ENOMEM);
2943                 goto bad_sort_array;
2944         }
2945
2946         pool->ref_count = 1;
2947         pool->last_commit_jiffies = jiffies;
2948         pool->pool_md = pool_md;
2949         pool->md_dev = metadata_dev;
2950         __pool_table_insert(pool);
2951
2952         return pool;
2953
2954 bad_sort_array:
2955         mempool_destroy(pool->mapping_pool);
2956 bad_mapping_pool:
2957         dm_deferred_set_destroy(pool->all_io_ds);
2958 bad_all_io_ds:
2959         dm_deferred_set_destroy(pool->shared_read_ds);
2960 bad_shared_read_ds:
2961         destroy_workqueue(pool->wq);
2962 bad_wq:
2963         dm_kcopyd_client_destroy(pool->copier);
2964 bad_kcopyd_client:
2965         dm_bio_prison_destroy(pool->prison);
2966 bad_prison:
2967         kfree(pool);
2968 bad_pool:
2969         if (dm_pool_metadata_close(pmd))
2970                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2971
2972         return err_p;
2973 }
2974
2975 static void __pool_inc(struct pool *pool)
2976 {
2977         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2978         pool->ref_count++;
2979 }
2980
2981 static void __pool_dec(struct pool *pool)
2982 {
2983         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2984         BUG_ON(!pool->ref_count);
2985         if (!--pool->ref_count)
2986                 __pool_destroy(pool);
2987 }
2988
2989 static struct pool *__pool_find(struct mapped_device *pool_md,
2990                                 struct block_device *metadata_dev,
2991                                 unsigned long block_size, int read_only,
2992                                 char **error, int *created)
2993 {
2994         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2995
2996         if (pool) {
2997                 if (pool->pool_md != pool_md) {
2998                         *error = "metadata device already in use by a pool";
2999                         return ERR_PTR(-EBUSY);
3000                 }
3001                 __pool_inc(pool);
3002
3003         } else {
3004                 pool = __pool_table_lookup(pool_md);
3005                 if (pool) {
3006                         if (pool->md_dev != metadata_dev) {
3007                                 *error = "different pool cannot replace a pool";
3008                                 return ERR_PTR(-EINVAL);
3009                         }
3010                         __pool_inc(pool);
3011
3012                 } else {
3013                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3014                         *created = 1;
3015                 }
3016         }
3017
3018         return pool;
3019 }
3020
3021 /*----------------------------------------------------------------
3022  * Pool target methods
3023  *--------------------------------------------------------------*/
3024 static void pool_dtr(struct dm_target *ti)
3025 {
3026         struct pool_c *pt = ti->private;
3027
3028         mutex_lock(&dm_thin_pool_table.mutex);
3029
3030         unbind_control_target(pt->pool, ti);
3031         __pool_dec(pt->pool);
3032         dm_put_device(ti, pt->metadata_dev);
3033         dm_put_device(ti, pt->data_dev);
3034         kfree(pt);
3035
3036         mutex_unlock(&dm_thin_pool_table.mutex);
3037 }
3038
3039 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3040                                struct dm_target *ti)
3041 {
3042         int r;
3043         unsigned argc;
3044         const char *arg_name;
3045
3046         static struct dm_arg _args[] = {
3047                 {0, 4, "Invalid number of pool feature arguments"},
3048         };
3049
3050         /*
3051          * No feature arguments supplied.
3052          */
3053         if (!as->argc)
3054                 return 0;
3055
3056         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3057         if (r)
3058                 return -EINVAL;
3059
3060         while (argc && !r) {
3061                 arg_name = dm_shift_arg(as);
3062                 argc--;
3063
3064                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3065                         pf->zero_new_blocks = false;
3066
3067                 else if (!strcasecmp(arg_name, "ignore_discard"))
3068                         pf->discard_enabled = false;
3069
3070                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3071                         pf->discard_passdown = false;
3072
3073                 else if (!strcasecmp(arg_name, "read_only"))
3074                         pf->mode = PM_READ_ONLY;
3075
3076                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3077                         pf->error_if_no_space = true;
3078
3079                 else {
3080                         ti->error = "Unrecognised pool feature requested";
3081                         r = -EINVAL;
3082                         break;
3083                 }
3084         }
3085
3086         return r;
3087 }
3088
3089 static void metadata_low_callback(void *context)
3090 {
3091         struct pool *pool = context;
3092
3093         DMWARN("%s: reached low water mark for metadata device: sending event.",
3094                dm_device_name(pool->pool_md));
3095
3096         dm_table_event(pool->ti->table);
3097 }
3098
3099 static sector_t get_dev_size(struct block_device *bdev)
3100 {
3101         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3102 }
3103
3104 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3105 {
3106         sector_t metadata_dev_size = get_dev_size(bdev);
3107         char buffer[BDEVNAME_SIZE];
3108
3109         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3110                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3111                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3112 }
3113
3114 static sector_t get_metadata_dev_size(struct block_device *bdev)
3115 {
3116         sector_t metadata_dev_size = get_dev_size(bdev);
3117
3118         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3119                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3120
3121         return metadata_dev_size;
3122 }
3123
3124 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3125 {
3126         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3127
3128         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3129
3130         return metadata_dev_size;
3131 }
3132
3133 /*
3134  * When a metadata threshold is crossed a dm event is triggered, and
3135  * userland should respond by growing the metadata device.  We could let
3136  * userland set the threshold, like we do with the data threshold, but I'm
3137  * not sure they know enough to do this well.
3138  */
3139 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3140 {
3141         /*
3142          * 4M is ample for all ops with the possible exception of thin
3143          * device deletion which is harmless if it fails (just retry the
3144          * delete after you've grown the device).
3145          */
3146         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3147         return min((dm_block_t)1024ULL /* 4M */, quarter);
3148 }
3149
3150 /*
3151  * thin-pool <metadata dev> <data dev>
3152  *           <data block size (sectors)>
3153  *           <low water mark (blocks)>
3154  *           [<#feature args> [<arg>]*]
3155  *
3156  * Optional feature arguments are:
3157  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3158  *           ignore_discard: disable discard
3159  *           no_discard_passdown: don't pass discards down to the data device
3160  *           read_only: Don't allow any changes to be made to the pool metadata.
3161  *           error_if_no_space: error IOs, instead of queueing, if no space.
3162  */
3163 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3164 {
3165         int r, pool_created = 0;
3166         struct pool_c *pt;
3167         struct pool *pool;
3168         struct pool_features pf;
3169         struct dm_arg_set as;
3170         struct dm_dev *data_dev;
3171         unsigned long block_size;
3172         dm_block_t low_water_blocks;
3173         struct dm_dev *metadata_dev;
3174         fmode_t metadata_mode;
3175
3176         /*
3177          * FIXME Remove validation from scope of lock.
3178          */
3179         mutex_lock(&dm_thin_pool_table.mutex);
3180
3181         if (argc < 4) {
3182                 ti->error = "Invalid argument count";
3183                 r = -EINVAL;
3184                 goto out_unlock;
3185         }
3186
3187         as.argc = argc;
3188         as.argv = argv;
3189
3190         /*
3191          * Set default pool features.
3192          */
3193         pool_features_init(&pf);
3194
3195         dm_consume_args(&as, 4);
3196         r = parse_pool_features(&as, &pf, ti);
3197         if (r)
3198                 goto out_unlock;
3199
3200         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3201         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3202         if (r) {
3203                 ti->error = "Error opening metadata block device";
3204                 goto out_unlock;
3205         }
3206         warn_if_metadata_device_too_big(metadata_dev->bdev);
3207
3208         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3209         if (r) {
3210                 ti->error = "Error getting data device";
3211                 goto out_metadata;
3212         }
3213
3214         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3215             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3216             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3217             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3218                 ti->error = "Invalid block size";
3219                 r = -EINVAL;
3220                 goto out;
3221         }
3222
3223         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3224                 ti->error = "Invalid low water mark";
3225                 r = -EINVAL;
3226                 goto out;
3227         }
3228
3229         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3230         if (!pt) {
3231                 r = -ENOMEM;
3232                 goto out;
3233         }
3234
3235         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3236                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3237         if (IS_ERR(pool)) {
3238                 r = PTR_ERR(pool);
3239                 goto out_free_pt;
3240         }
3241
3242         /*
3243          * 'pool_created' reflects whether this is the first table load.
3244          * Top level discard support is not allowed to be changed after
3245          * initial load.  This would require a pool reload to trigger thin
3246          * device changes.
3247          */
3248         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3249                 ti->error = "Discard support cannot be disabled once enabled";
3250                 r = -EINVAL;
3251                 goto out_flags_changed;
3252         }
3253
3254         pt->pool = pool;
3255         pt->ti = ti;
3256         pt->metadata_dev = metadata_dev;
3257         pt->data_dev = data_dev;
3258         pt->low_water_blocks = low_water_blocks;
3259         pt->adjusted_pf = pt->requested_pf = pf;
3260         ti->num_flush_bios = 1;
3261
3262         /*
3263          * Only need to enable discards if the pool should pass
3264          * them down to the data device.  The thin device's discard
3265          * processing will cause mappings to be removed from the btree.
3266          */
3267         if (pf.discard_enabled && pf.discard_passdown) {
3268                 ti->num_discard_bios = 1;
3269
3270                 /*
3271                  * Setting 'discards_supported' circumvents the normal
3272                  * stacking of discard limits (this keeps the pool and
3273                  * thin devices' discard limits consistent).
3274                  */
3275                 ti->discards_supported = true;
3276         }
3277         ti->private = pt;
3278
3279         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280                                                 calc_metadata_threshold(pt),
3281                                                 metadata_low_callback,
3282                                                 pool);
3283         if (r)
3284                 goto out_flags_changed;
3285
3286         pt->callbacks.congested_fn = pool_is_congested;
3287         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288
3289         mutex_unlock(&dm_thin_pool_table.mutex);
3290
3291         return 0;
3292
3293 out_flags_changed:
3294         __pool_dec(pool);
3295 out_free_pt:
3296         kfree(pt);
3297 out:
3298         dm_put_device(ti, data_dev);
3299 out_metadata:
3300         dm_put_device(ti, metadata_dev);
3301 out_unlock:
3302         mutex_unlock(&dm_thin_pool_table.mutex);
3303
3304         return r;
3305 }
3306
3307 static int pool_map(struct dm_target *ti, struct bio *bio)
3308 {
3309         int r;
3310         struct pool_c *pt = ti->private;
3311         struct pool *pool = pt->pool;
3312         unsigned long flags;
3313
3314         /*
3315          * As this is a singleton target, ti->begin is always zero.
3316          */
3317         spin_lock_irqsave(&pool->lock, flags);
3318         bio->bi_bdev = pt->data_dev->bdev;
3319         r = DM_MAPIO_REMAPPED;
3320         spin_unlock_irqrestore(&pool->lock, flags);
3321
3322         return r;
3323 }
3324
3325 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326 {
3327         int r;
3328         struct pool_c *pt = ti->private;
3329         struct pool *pool = pt->pool;
3330         sector_t data_size = ti->len;
3331         dm_block_t sb_data_size;
3332
3333         *need_commit = false;
3334
3335         (void) sector_div(data_size, pool->sectors_per_block);
3336
3337         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338         if (r) {
3339                 DMERR("%s: failed to retrieve data device size",
3340                       dm_device_name(pool->pool_md));
3341                 return r;
3342         }
3343
3344         if (data_size < sb_data_size) {
3345                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346                       dm_device_name(pool->pool_md),
3347                       (unsigned long long)data_size, sb_data_size);
3348                 return -EINVAL;
3349
3350         } else if (data_size > sb_data_size) {
3351                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3352                         DMERR("%s: unable to grow the data device until repaired.",
3353                               dm_device_name(pool->pool_md));
3354                         return 0;
3355                 }
3356
3357                 if (sb_data_size)
3358                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3359                                dm_device_name(pool->pool_md),
3360                                sb_data_size, (unsigned long long)data_size);
3361                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362                 if (r) {
3363                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364                         return r;
3365                 }
3366
3367                 *need_commit = true;
3368         }
3369
3370         return 0;
3371 }
3372
3373 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374 {
3375         int r;
3376         struct pool_c *pt = ti->private;
3377         struct pool *pool = pt->pool;
3378         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379
3380         *need_commit = false;
3381
3382         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383
3384         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385         if (r) {
3386                 DMERR("%s: failed to retrieve metadata device size",
3387                       dm_device_name(pool->pool_md));
3388                 return r;
3389         }
3390
3391         if (metadata_dev_size < sb_metadata_dev_size) {
3392                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393                       dm_device_name(pool->pool_md),
3394                       metadata_dev_size, sb_metadata_dev_size);
3395                 return -EINVAL;
3396
3397         } else if (metadata_dev_size > sb_metadata_dev_size) {
3398                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3399                         DMERR("%s: unable to grow the metadata device until repaired.",
3400                               dm_device_name(pool->pool_md));
3401                         return 0;
3402                 }
3403
3404                 warn_if_metadata_device_too_big(pool->md_dev);
3405                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406                        dm_device_name(pool->pool_md),
3407                        sb_metadata_dev_size, metadata_dev_size);
3408                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409                 if (r) {
3410                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411                         return r;
3412                 }
3413
3414                 *need_commit = true;
3415         }
3416
3417         return 0;
3418 }
3419
3420 /*
3421  * Retrieves the number of blocks of the data device from
3422  * the superblock and compares it to the actual device size,
3423  * thus resizing the data device in case it has grown.
3424  *
3425  * This both copes with opening preallocated data devices in the ctr
3426  * being followed by a resume
3427  * -and-
3428  * calling the resume method individually after userspace has
3429  * grown the data device in reaction to a table event.
3430  */
3431 static int pool_preresume(struct dm_target *ti)
3432 {
3433         int r;
3434         bool need_commit1, need_commit2;
3435         struct pool_c *pt = ti->private;
3436         struct pool *pool = pt->pool;
3437
3438         /*
3439          * Take control of the pool object.
3440          */
3441         r = bind_control_target(pool, ti);
3442         if (r)
3443                 return r;
3444
3445         r = maybe_resize_data_dev(ti, &need_commit1);
3446         if (r)
3447                 return r;
3448
3449         r = maybe_resize_metadata_dev(ti, &need_commit2);
3450         if (r)
3451                 return r;
3452
3453         if (need_commit1 || need_commit2)
3454                 (void) commit(pool);
3455
3456         return 0;
3457 }
3458
3459 static void pool_suspend_active_thins(struct pool *pool)
3460 {
3461         struct thin_c *tc;
3462
3463         /* Suspend all active thin devices */
3464         tc = get_first_thin(pool);
3465         while (tc) {
3466                 dm_internal_suspend_noflush(tc->thin_md);
3467                 tc = get_next_thin(pool, tc);
3468         }
3469 }
3470
3471 static void pool_resume_active_thins(struct pool *pool)
3472 {
3473         struct thin_c *tc;
3474
3475         /* Resume all active thin devices */
3476         tc = get_first_thin(pool);
3477         while (tc) {
3478                 dm_internal_resume(tc->thin_md);
3479                 tc = get_next_thin(pool, tc);
3480         }
3481 }
3482
3483 static void pool_resume(struct dm_target *ti)
3484 {
3485         struct pool_c *pt = ti->private;
3486         struct pool *pool = pt->pool;
3487         unsigned long flags;
3488
3489         /*
3490          * Must requeue active_thins' bios and then resume
3491          * active_thins _before_ clearing 'suspend' flag.
3492          */
3493         requeue_bios(pool);
3494         pool_resume_active_thins(pool);
3495
3496         spin_lock_irqsave(&pool->lock, flags);
3497         pool->low_water_triggered = false;
3498         pool->suspended = false;
3499         spin_unlock_irqrestore(&pool->lock, flags);
3500
3501         do_waker(&pool->waker.work);
3502 }
3503
3504 static void pool_presuspend(struct dm_target *ti)
3505 {
3506         struct pool_c *pt = ti->private;
3507         struct pool *pool = pt->pool;
3508         unsigned long flags;
3509
3510         spin_lock_irqsave(&pool->lock, flags);
3511         pool->suspended = true;
3512         spin_unlock_irqrestore(&pool->lock, flags);
3513
3514         pool_suspend_active_thins(pool);
3515 }
3516
3517 static void pool_presuspend_undo(struct dm_target *ti)
3518 {
3519         struct pool_c *pt = ti->private;
3520         struct pool *pool = pt->pool;
3521         unsigned long flags;
3522
3523         pool_resume_active_thins(pool);
3524
3525         spin_lock_irqsave(&pool->lock, flags);
3526         pool->suspended = false;
3527         spin_unlock_irqrestore(&pool->lock, flags);
3528 }
3529
3530 static void pool_postsuspend(struct dm_target *ti)
3531 {
3532         struct pool_c *pt = ti->private;
3533         struct pool *pool = pt->pool;
3534
3535         cancel_delayed_work_sync(&pool->waker);
3536         cancel_delayed_work_sync(&pool->no_space_timeout);
3537         flush_workqueue(pool->wq);
3538         (void) commit(pool);
3539 }
3540
3541 static int check_arg_count(unsigned argc, unsigned args_required)
3542 {
3543         if (argc != args_required) {
3544                 DMWARN("Message received with %u arguments instead of %u.",
3545                        argc, args_required);
3546                 return -EINVAL;
3547         }
3548
3549         return 0;
3550 }
3551
3552 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553 {
3554         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555             *dev_id <= MAX_DEV_ID)
3556                 return 0;
3557
3558         if (warning)
3559                 DMWARN("Message received with invalid device id: %s", arg);
3560
3561         return -EINVAL;
3562 }
3563
3564 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565 {
3566         dm_thin_id dev_id;
3567         int r;
3568
3569         r = check_arg_count(argc, 2);
3570         if (r)
3571                 return r;
3572
3573         r = read_dev_id(argv[1], &dev_id, 1);
3574         if (r)
3575                 return r;
3576
3577         r = dm_pool_create_thin(pool->pmd, dev_id);
3578         if (r) {
3579                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580                        argv[1]);
3581                 return r;
3582         }
3583
3584         return 0;
3585 }
3586
3587 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589         dm_thin_id dev_id;
3590         dm_thin_id origin_dev_id;
3591         int r;
3592
3593         r = check_arg_count(argc, 3);
3594         if (r)
3595                 return r;
3596
3597         r = read_dev_id(argv[1], &dev_id, 1);
3598         if (r)
3599                 return r;
3600
3601         r = read_dev_id(argv[2], &origin_dev_id, 1);
3602         if (r)
3603                 return r;
3604
3605         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606         if (r) {
3607                 DMWARN("Creation of new snapshot %s of device %s failed.",
3608                        argv[1], argv[2]);
3609                 return r;
3610         }
3611
3612         return 0;
3613 }
3614
3615 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617         dm_thin_id dev_id;
3618         int r;
3619
3620         r = check_arg_count(argc, 2);
3621         if (r)
3622                 return r;
3623
3624         r = read_dev_id(argv[1], &dev_id, 1);
3625         if (r)
3626                 return r;
3627
3628         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629         if (r)
3630                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3631
3632         return r;
3633 }
3634
3635 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636 {
3637         dm_thin_id old_id, new_id;
3638         int r;
3639
3640         r = check_arg_count(argc, 3);
3641         if (r)
3642                 return r;
3643
3644         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646                 return -EINVAL;
3647         }
3648
3649         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651                 return -EINVAL;
3652         }
3653
3654         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655         if (r) {
3656                 DMWARN("Failed to change transaction id from %s to %s.",
3657                        argv[1], argv[2]);
3658                 return r;
3659         }
3660
3661         return 0;
3662 }
3663
3664 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666         int r;
3667
3668         r = check_arg_count(argc, 1);
3669         if (r)
3670                 return r;
3671
3672         (void) commit(pool);
3673
3674         r = dm_pool_reserve_metadata_snap(pool->pmd);
3675         if (r)
3676                 DMWARN("reserve_metadata_snap message failed.");
3677
3678         return r;
3679 }
3680
3681 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682 {
3683         int r;
3684
3685         r = check_arg_count(argc, 1);
3686         if (r)
3687                 return r;
3688
3689         r = dm_pool_release_metadata_snap(pool->pmd);
3690         if (r)
3691                 DMWARN("release_metadata_snap message failed.");
3692
3693         return r;
3694 }
3695
3696 /*
3697  * Messages supported:
3698  *   create_thin        <dev_id>
3699  *   create_snap        <dev_id> <origin_id>
3700  *   delete             <dev_id>
3701  *   set_transaction_id <current_trans_id> <new_trans_id>
3702  *   reserve_metadata_snap
3703  *   release_metadata_snap
3704  */
3705 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706 {
3707         int r = -EINVAL;
3708         struct pool_c *pt = ti->private;
3709         struct pool *pool = pt->pool;
3710
3711         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713                       dm_device_name(pool->pool_md));
3714                 return -EOPNOTSUPP;
3715         }
3716
3717         if (!strcasecmp(argv[0], "create_thin"))
3718                 r = process_create_thin_mesg(argc, argv, pool);
3719
3720         else if (!strcasecmp(argv[0], "create_snap"))
3721                 r = process_create_snap_mesg(argc, argv, pool);
3722
3723         else if (!strcasecmp(argv[0], "delete"))
3724                 r = process_delete_mesg(argc, argv, pool);
3725
3726         else if (!strcasecmp(argv[0], "set_transaction_id"))
3727                 r = process_set_transaction_id_mesg(argc, argv, pool);
3728
3729         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731
3732         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3734
3735         else
3736                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737
3738         if (!r)
3739                 (void) commit(pool);
3740
3741         return r;
3742 }
3743
3744 static void emit_flags(struct pool_features *pf, char *result,
3745                        unsigned sz, unsigned maxlen)
3746 {
3747         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749                 pf->error_if_no_space;
3750         DMEMIT("%u ", count);
3751
3752         if (!pf->zero_new_blocks)
3753                 DMEMIT("skip_block_zeroing ");
3754
3755         if (!pf->discard_enabled)
3756                 DMEMIT("ignore_discard ");
3757
3758         if (!pf->discard_passdown)
3759                 DMEMIT("no_discard_passdown ");
3760
3761         if (pf->mode == PM_READ_ONLY)
3762                 DMEMIT("read_only ");
3763
3764         if (pf->error_if_no_space)
3765                 DMEMIT("error_if_no_space ");
3766 }
3767
3768 /*
3769  * Status line is:
3770  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3771  *    <used data sectors>/<total data sectors> <held metadata root>
3772  *    <pool mode> <discard config> <no space config> <needs_check>
3773  */
3774 static void pool_status(struct dm_target *ti, status_type_t type,
3775                         unsigned status_flags, char *result, unsigned maxlen)
3776 {
3777         int r;
3778         unsigned sz = 0;
3779         uint64_t transaction_id;
3780         dm_block_t nr_free_blocks_data;
3781         dm_block_t nr_free_blocks_metadata;
3782         dm_block_t nr_blocks_data;
3783         dm_block_t nr_blocks_metadata;
3784         dm_block_t held_root;
3785         char buf[BDEVNAME_SIZE];
3786         char buf2[BDEVNAME_SIZE];
3787         struct pool_c *pt = ti->private;
3788         struct pool *pool = pt->pool;
3789
3790         switch (type) {
3791         case STATUSTYPE_INFO:
3792                 if (get_pool_mode(pool) == PM_FAIL) {
3793                         DMEMIT("Fail");
3794                         break;
3795                 }
3796
3797                 /* Commit to ensure statistics aren't out-of-date */
3798                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799                         (void) commit(pool);
3800
3801                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802                 if (r) {
3803                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804                               dm_device_name(pool->pool_md), r);
3805                         goto err;
3806                 }
3807
3808                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809                 if (r) {
3810                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811                               dm_device_name(pool->pool_md), r);
3812                         goto err;
3813                 }
3814
3815                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816                 if (r) {
3817                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818                               dm_device_name(pool->pool_md), r);
3819                         goto err;
3820                 }
3821
3822                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823                 if (r) {
3824                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3825                               dm_device_name(pool->pool_md), r);
3826                         goto err;
3827                 }
3828
3829                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830                 if (r) {
3831                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832                               dm_device_name(pool->pool_md), r);
3833                         goto err;
3834                 }
3835
3836                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837                 if (r) {
3838                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839                               dm_device_name(pool->pool_md), r);
3840                         goto err;
3841                 }
3842
3843                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3844                        (unsigned long long)transaction_id,
3845                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846                        (unsigned long long)nr_blocks_metadata,
3847                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848                        (unsigned long long)nr_blocks_data);
3849
3850                 if (held_root)
3851                         DMEMIT("%llu ", held_root);
3852                 else
3853                         DMEMIT("- ");
3854
3855                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856                         DMEMIT("out_of_data_space ");
3857                 else if (pool->pf.mode == PM_READ_ONLY)
3858                         DMEMIT("ro ");
3859                 else
3860                         DMEMIT("rw ");
3861
3862                 if (!pool->pf.discard_enabled)
3863                         DMEMIT("ignore_discard ");
3864                 else if (pool->pf.discard_passdown)
3865                         DMEMIT("discard_passdown ");
3866                 else
3867                         DMEMIT("no_discard_passdown ");
3868
3869                 if (pool->pf.error_if_no_space)
3870                         DMEMIT("error_if_no_space ");
3871                 else
3872                         DMEMIT("queue_if_no_space ");
3873
3874                 if (dm_pool_metadata_needs_check(pool->pmd))
3875                         DMEMIT("needs_check ");
3876                 else
3877                         DMEMIT("- ");
3878
3879                 break;
3880
3881         case STATUSTYPE_TABLE:
3882                 DMEMIT("%s %s %lu %llu ",
3883                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885                        (unsigned long)pool->sectors_per_block,
3886                        (unsigned long long)pt->low_water_blocks);
3887                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3888                 break;
3889         }
3890         return;
3891
3892 err:
3893         DMEMIT("Error");
3894 }
3895
3896 static int pool_iterate_devices(struct dm_target *ti,
3897                                 iterate_devices_callout_fn fn, void *data)
3898 {
3899         struct pool_c *pt = ti->private;
3900
3901         return fn(ti, pt->data_dev, 0, ti->len, data);
3902 }
3903
3904 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905 {
3906         struct pool_c *pt = ti->private;
3907         struct pool *pool = pt->pool;
3908         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909
3910         /*
3911          * If max_sectors is smaller than pool->sectors_per_block adjust it
3912          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913          * This is especially beneficial when the pool's data device is a RAID
3914          * device that has a full stripe width that matches pool->sectors_per_block
3915          * -- because even though partial RAID stripe-sized IOs will be issued to a
3916          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3917          *    boundary.. which avoids additional partial RAID stripe writes cascading
3918          */
3919         if (limits->max_sectors < pool->sectors_per_block) {
3920                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922                                 limits->max_sectors--;
3923                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924                 }
3925         }
3926
3927         /*
3928          * If the system-determined stacked limits are compatible with the
3929          * pool's blocksize (io_opt is a factor) do not override them.
3930          */
3931         if (io_opt_sectors < pool->sectors_per_block ||
3932             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935                 else
3936                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938         }
3939
3940         /*
3941          * pt->adjusted_pf is a staging area for the actual features to use.
3942          * They get transferred to the live pool in bind_control_target()
3943          * called from pool_preresume().
3944          */
3945         if (!pt->adjusted_pf.discard_enabled) {
3946                 /*
3947                  * Must explicitly disallow stacking discard limits otherwise the
3948                  * block layer will stack them if pool's data device has support.
3949                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950                  * user to see that, so make sure to set all discard limits to 0.
3951                  */
3952                 limits->discard_granularity = 0;
3953                 return;
3954         }
3955
3956         disable_passdown_if_not_supported(pt);
3957
3958         /*
3959          * The pool uses the same discard limits as the underlying data
3960          * device.  DM core has already set this up.
3961          */
3962 }
3963
3964 static struct target_type pool_target = {
3965         .name = "thin-pool",
3966         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967                     DM_TARGET_IMMUTABLE,
3968         .version = {1, 19, 0},
3969         .module = THIS_MODULE,
3970         .ctr = pool_ctr,
3971         .dtr = pool_dtr,
3972         .map = pool_map,
3973         .presuspend = pool_presuspend,
3974         .presuspend_undo = pool_presuspend_undo,
3975         .postsuspend = pool_postsuspend,
3976         .preresume = pool_preresume,
3977         .resume = pool_resume,
3978         .message = pool_message,
3979         .status = pool_status,
3980         .iterate_devices = pool_iterate_devices,
3981         .io_hints = pool_io_hints,
3982 };
3983
3984 /*----------------------------------------------------------------
3985  * Thin target methods
3986  *--------------------------------------------------------------*/
3987 static void thin_get(struct thin_c *tc)
3988 {
3989         atomic_inc(&tc->refcount);
3990 }
3991
3992 static void thin_put(struct thin_c *tc)
3993 {
3994         if (atomic_dec_and_test(&tc->refcount))
3995                 complete(&tc->can_destroy);
3996 }
3997
3998 static void thin_dtr(struct dm_target *ti)
3999 {
4000         struct thin_c *tc = ti->private;
4001         unsigned long flags;
4002
4003         spin_lock_irqsave(&tc->pool->lock, flags);
4004         list_del_rcu(&tc->list);
4005         spin_unlock_irqrestore(&tc->pool->lock, flags);
4006         synchronize_rcu();
4007
4008         thin_put(tc);
4009         wait_for_completion(&tc->can_destroy);
4010
4011         mutex_lock(&dm_thin_pool_table.mutex);
4012
4013         __pool_dec(tc->pool);
4014         dm_pool_close_thin_device(tc->td);
4015         dm_put_device(ti, tc->pool_dev);
4016         if (tc->origin_dev)
4017                 dm_put_device(ti, tc->origin_dev);
4018         kfree(tc);
4019
4020         mutex_unlock(&dm_thin_pool_table.mutex);
4021 }
4022
4023 /*
4024  * Thin target parameters:
4025  *
4026  * <pool_dev> <dev_id> [origin_dev]
4027  *
4028  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029  * dev_id: the internal device identifier
4030  * origin_dev: a device external to the pool that should act as the origin
4031  *
4032  * If the pool device has discards disabled, they get disabled for the thin
4033  * device as well.
4034  */
4035 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036 {
4037         int r;
4038         struct thin_c *tc;
4039         struct dm_dev *pool_dev, *origin_dev;
4040         struct mapped_device *pool_md;
4041         unsigned long flags;
4042
4043         mutex_lock(&dm_thin_pool_table.mutex);
4044
4045         if (argc != 2 && argc != 3) {
4046                 ti->error = "Invalid argument count";
4047                 r = -EINVAL;
4048                 goto out_unlock;
4049         }
4050
4051         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052         if (!tc) {
4053                 ti->error = "Out of memory";
4054                 r = -ENOMEM;
4055                 goto out_unlock;
4056         }
4057         tc->thin_md = dm_table_get_md(ti->table);
4058         spin_lock_init(&tc->lock);
4059         INIT_LIST_HEAD(&tc->deferred_cells);
4060         bio_list_init(&tc->deferred_bio_list);
4061         bio_list_init(&tc->retry_on_resume_list);
4062         tc->sort_bio_list = RB_ROOT;
4063
4064         if (argc == 3) {
4065                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066                 if (r) {
4067                         ti->error = "Error opening origin device";
4068                         goto bad_origin_dev;
4069                 }
4070                 tc->origin_dev = origin_dev;
4071         }
4072
4073         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074         if (r) {
4075                 ti->error = "Error opening pool device";
4076                 goto bad_pool_dev;
4077         }
4078         tc->pool_dev = pool_dev;
4079
4080         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081                 ti->error = "Invalid device id";
4082                 r = -EINVAL;
4083                 goto bad_common;
4084         }
4085
4086         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087         if (!pool_md) {
4088                 ti->error = "Couldn't get pool mapped device";
4089                 r = -EINVAL;
4090                 goto bad_common;
4091         }
4092
4093         tc->pool = __pool_table_lookup(pool_md);
4094         if (!tc->pool) {
4095                 ti->error = "Couldn't find pool object";
4096                 r = -EINVAL;
4097                 goto bad_pool_lookup;
4098         }
4099         __pool_inc(tc->pool);
4100
4101         if (get_pool_mode(tc->pool) == PM_FAIL) {
4102                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4103                 r = -EINVAL;
4104                 goto bad_pool;
4105         }
4106
4107         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108         if (r) {
4109                 ti->error = "Couldn't open thin internal device";
4110                 goto bad_pool;
4111         }
4112
4113         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114         if (r)
4115                 goto bad;
4116
4117         ti->num_flush_bios = 1;
4118         ti->flush_supported = true;
4119         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120
4121         /* In case the pool supports discards, pass them on. */
4122         if (tc->pool->pf.discard_enabled) {
4123                 ti->discards_supported = true;
4124                 ti->num_discard_bios = 1;
4125                 ti->split_discard_bios = false;
4126         }
4127
4128         mutex_unlock(&dm_thin_pool_table.mutex);
4129
4130         spin_lock_irqsave(&tc->pool->lock, flags);
4131         if (tc->pool->suspended) {
4132                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4133                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4134                 ti->error = "Unable to activate thin device while pool is suspended";
4135                 r = -EINVAL;
4136                 goto bad;
4137         }
4138         atomic_set(&tc->refcount, 1);
4139         init_completion(&tc->can_destroy);
4140         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4141         spin_unlock_irqrestore(&tc->pool->lock, flags);
4142         /*
4143          * This synchronize_rcu() call is needed here otherwise we risk a
4144          * wake_worker() call finding no bios to process (because the newly
4145          * added tc isn't yet visible).  So this reduces latency since we
4146          * aren't then dependent on the periodic commit to wake_worker().
4147          */
4148         synchronize_rcu();
4149
4150         dm_put(pool_md);
4151
4152         return 0;
4153
4154 bad:
4155         dm_pool_close_thin_device(tc->td);
4156 bad_pool:
4157         __pool_dec(tc->pool);
4158 bad_pool_lookup:
4159         dm_put(pool_md);
4160 bad_common:
4161         dm_put_device(ti, tc->pool_dev);
4162 bad_pool_dev:
4163         if (tc->origin_dev)
4164                 dm_put_device(ti, tc->origin_dev);
4165 bad_origin_dev:
4166         kfree(tc);
4167 out_unlock:
4168         mutex_unlock(&dm_thin_pool_table.mutex);
4169
4170         return r;
4171 }
4172
4173 static int thin_map(struct dm_target *ti, struct bio *bio)
4174 {
4175         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4176
4177         return thin_bio_map(ti, bio);
4178 }
4179
4180 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4181 {
4182         unsigned long flags;
4183         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4184         struct list_head work;
4185         struct dm_thin_new_mapping *m, *tmp;
4186         struct pool *pool = h->tc->pool;
4187
4188         if (h->shared_read_entry) {
4189                 INIT_LIST_HEAD(&work);
4190                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4191
4192                 spin_lock_irqsave(&pool->lock, flags);
4193                 list_for_each_entry_safe(m, tmp, &work, list) {
4194                         list_del(&m->list);
4195                         __complete_mapping_preparation(m);
4196                 }
4197                 spin_unlock_irqrestore(&pool->lock, flags);
4198         }
4199
4200         if (h->all_io_entry) {
4201                 INIT_LIST_HEAD(&work);
4202                 dm_deferred_entry_dec(h->all_io_entry, &work);
4203                 if (!list_empty(&work)) {
4204                         spin_lock_irqsave(&pool->lock, flags);
4205                         list_for_each_entry_safe(m, tmp, &work, list)
4206                                 list_add_tail(&m->list, &pool->prepared_discards);
4207                         spin_unlock_irqrestore(&pool->lock, flags);
4208                         wake_worker(pool);
4209                 }
4210         }
4211
4212         if (h->cell)
4213                 cell_defer_no_holder(h->tc, h->cell);
4214
4215         return 0;
4216 }
4217
4218 static void thin_presuspend(struct dm_target *ti)
4219 {
4220         struct thin_c *tc = ti->private;
4221
4222         if (dm_noflush_suspending(ti))
4223                 noflush_work(tc, do_noflush_start);
4224 }
4225
4226 static void thin_postsuspend(struct dm_target *ti)
4227 {
4228         struct thin_c *tc = ti->private;
4229
4230         /*
4231          * The dm_noflush_suspending flag has been cleared by now, so
4232          * unfortunately we must always run this.
4233          */
4234         noflush_work(tc, do_noflush_stop);
4235 }
4236
4237 static int thin_preresume(struct dm_target *ti)
4238 {
4239         struct thin_c *tc = ti->private;
4240
4241         if (tc->origin_dev)
4242                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4243
4244         return 0;
4245 }
4246
4247 /*
4248  * <nr mapped sectors> <highest mapped sector>
4249  */
4250 static void thin_status(struct dm_target *ti, status_type_t type,
4251                         unsigned status_flags, char *result, unsigned maxlen)
4252 {
4253         int r;
4254         ssize_t sz = 0;
4255         dm_block_t mapped, highest;
4256         char buf[BDEVNAME_SIZE];
4257         struct thin_c *tc = ti->private;
4258
4259         if (get_pool_mode(tc->pool) == PM_FAIL) {
4260                 DMEMIT("Fail");
4261                 return;
4262         }
4263
4264         if (!tc->td)
4265                 DMEMIT("-");
4266         else {
4267                 switch (type) {
4268                 case STATUSTYPE_INFO:
4269                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4270                         if (r) {
4271                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4272                                 goto err;
4273                         }
4274
4275                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4276                         if (r < 0) {
4277                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4278                                 goto err;
4279                         }
4280
4281                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4282                         if (r)
4283                                 DMEMIT("%llu", ((highest + 1) *
4284                                                 tc->pool->sectors_per_block) - 1);
4285                         else
4286                                 DMEMIT("-");
4287                         break;
4288
4289                 case STATUSTYPE_TABLE:
4290                         DMEMIT("%s %lu",
4291                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4292                                (unsigned long) tc->dev_id);
4293                         if (tc->origin_dev)
4294                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4295                         break;
4296                 }
4297         }
4298
4299         return;
4300
4301 err:
4302         DMEMIT("Error");
4303 }
4304
4305 static int thin_iterate_devices(struct dm_target *ti,
4306                                 iterate_devices_callout_fn fn, void *data)
4307 {
4308         sector_t blocks;
4309         struct thin_c *tc = ti->private;
4310         struct pool *pool = tc->pool;
4311
4312         /*
4313          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4314          * we follow a more convoluted path through to the pool's target.
4315          */
4316         if (!pool->ti)
4317                 return 0;       /* nothing is bound */
4318
4319         blocks = pool->ti->len;
4320         (void) sector_div(blocks, pool->sectors_per_block);
4321         if (blocks)
4322                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323
4324         return 0;
4325 }
4326
4327 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328 {
4329         struct thin_c *tc = ti->private;
4330         struct pool *pool = tc->pool;
4331
4332         if (!pool->pf.discard_enabled)
4333                 return;
4334
4335         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4336         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4337 }
4338
4339 static struct target_type thin_target = {
4340         .name = "thin",
4341         .version = {1, 19, 0},
4342         .module = THIS_MODULE,
4343         .ctr = thin_ctr,
4344         .dtr = thin_dtr,
4345         .map = thin_map,
4346         .end_io = thin_endio,
4347         .preresume = thin_preresume,
4348         .presuspend = thin_presuspend,
4349         .postsuspend = thin_postsuspend,
4350         .status = thin_status,
4351         .iterate_devices = thin_iterate_devices,
4352         .io_hints = thin_io_hints,
4353 };
4354
4355 /*----------------------------------------------------------------*/
4356
4357 static int __init dm_thin_init(void)
4358 {
4359         int r;
4360
4361         pool_table_init();
4362
4363         r = dm_register_target(&thin_target);
4364         if (r)
4365                 return r;
4366
4367         r = dm_register_target(&pool_target);
4368         if (r)
4369                 goto bad_pool_target;
4370
4371         r = -ENOMEM;
4372
4373         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4374         if (!_new_mapping_cache)
4375                 goto bad_new_mapping_cache;
4376
4377         return 0;
4378
4379 bad_new_mapping_cache:
4380         dm_unregister_target(&pool_target);
4381 bad_pool_target:
4382         dm_unregister_target(&thin_target);
4383
4384         return r;
4385 }
4386
4387 static void dm_thin_exit(void)
4388 {
4389         dm_unregister_target(&thin_target);
4390         dm_unregister_target(&pool_target);
4391
4392         kmem_cache_destroy(_new_mapping_cache);
4393 }
4394
4395 module_init(dm_thin_init);
4396 module_exit(dm_thin_exit);
4397
4398 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4399 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4400
4401 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4402 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4403 MODULE_LICENSE("GPL");