]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
raid5: lockless access raid5 overrided bi_phys_segments
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (!rdev || test_bit(Faulty, &rdev->flags))
397                         degraded++;
398                 else if (test_bit(In_sync, &rdev->flags))
399                         ;
400                 else
401                         /* not in-sync or faulty.
402                          * If the reshape increases the number of devices,
403                          * this is being recovered by the reshape, so
404                          * this 'previous' section is not in_sync.
405                          * If the number of devices is being reduced however,
406                          * the device can only be part of the array if
407                          * we are reverting a reshape, so this section will
408                          * be in-sync.
409                          */
410                         if (conf->raid_disks >= conf->previous_raid_disks)
411                                 degraded++;
412         }
413         rcu_read_unlock();
414         if (conf->raid_disks == conf->previous_raid_disks)
415                 return degraded;
416         rcu_read_lock();
417         degraded2 = 0;
418         for (i = 0; i < conf->raid_disks; i++) {
419                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420                 if (!rdev || test_bit(Faulty, &rdev->flags))
421                         degraded2++;
422                 else if (test_bit(In_sync, &rdev->flags))
423                         ;
424                 else
425                         /* not in-sync or faulty.
426                          * If reshape increases the number of devices, this
427                          * section has already been recovered, else it
428                          * almost certainly hasn't.
429                          */
430                         if (conf->raid_disks <= conf->previous_raid_disks)
431                                 degraded2++;
432         }
433         rcu_read_unlock();
434         if (degraded2 > degraded)
435                 return degraded2;
436         return degraded;
437 }
438
439 static int has_failed(struct r5conf *conf)
440 {
441         int degraded;
442
443         if (conf->mddev->reshape_position == MaxSector)
444                 return conf->mddev->degraded > conf->max_degraded;
445
446         degraded = calc_degraded(conf);
447         if (degraded > conf->max_degraded)
448                 return 1;
449         return 0;
450 }
451
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454                   int previous, int noblock, int noquiesce)
455 {
456         struct stripe_head *sh;
457
458         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459
460         spin_lock_irq(&conf->device_lock);
461
462         do {
463                 wait_event_lock_irq(conf->wait_for_stripe,
464                                     conf->quiesce == 0 || noquiesce,
465                                     conf->device_lock, /* nothing */);
466                 sh = __find_stripe(conf, sector, conf->generation - previous);
467                 if (!sh) {
468                         if (!conf->inactive_blocked)
469                                 sh = get_free_stripe(conf);
470                         if (noblock && sh == NULL)
471                                 break;
472                         if (!sh) {
473                                 conf->inactive_blocked = 1;
474                                 wait_event_lock_irq(conf->wait_for_stripe,
475                                                     !list_empty(&conf->inactive_list) &&
476                                                     (atomic_read(&conf->active_stripes)
477                                                      < (conf->max_nr_stripes *3/4)
478                                                      || !conf->inactive_blocked),
479                                                     conf->device_lock,
480                                                     );
481                                 conf->inactive_blocked = 0;
482                         } else
483                                 init_stripe(sh, sector, previous);
484                 } else {
485                         if (atomic_read(&sh->count)) {
486                                 BUG_ON(!list_empty(&sh->lru)
487                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
488                         } else {
489                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
490                                         atomic_inc(&conf->active_stripes);
491                                 if (list_empty(&sh->lru) &&
492                                     !test_bit(STRIPE_EXPANDING, &sh->state))
493                                         BUG();
494                                 list_del_init(&sh->lru);
495                         }
496                 }
497         } while (sh == NULL);
498
499         if (sh)
500                 atomic_inc(&sh->count);
501
502         spin_unlock_irq(&conf->device_lock);
503         return sh;
504 }
505
506 /* Determine if 'data_offset' or 'new_data_offset' should be used
507  * in this stripe_head.
508  */
509 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
510 {
511         sector_t progress = conf->reshape_progress;
512         /* Need a memory barrier to make sure we see the value
513          * of conf->generation, or ->data_offset that was set before
514          * reshape_progress was updated.
515          */
516         smp_rmb();
517         if (progress == MaxSector)
518                 return 0;
519         if (sh->generation == conf->generation - 1)
520                 return 0;
521         /* We are in a reshape, and this is a new-generation stripe,
522          * so use new_data_offset.
523          */
524         return 1;
525 }
526
527 static void
528 raid5_end_read_request(struct bio *bi, int error);
529 static void
530 raid5_end_write_request(struct bio *bi, int error);
531
532 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
533 {
534         struct r5conf *conf = sh->raid_conf;
535         int i, disks = sh->disks;
536
537         might_sleep();
538
539         for (i = disks; i--; ) {
540                 int rw;
541                 int replace_only = 0;
542                 struct bio *bi, *rbi;
543                 struct md_rdev *rdev, *rrdev = NULL;
544                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
545                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
546                                 rw = WRITE_FUA;
547                         else
548                                 rw = WRITE;
549                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
550                         rw = READ;
551                 else if (test_and_clear_bit(R5_WantReplace,
552                                             &sh->dev[i].flags)) {
553                         rw = WRITE;
554                         replace_only = 1;
555                 } else
556                         continue;
557                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
558                         rw |= REQ_SYNC;
559
560                 bi = &sh->dev[i].req;
561                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
562
563                 bi->bi_rw = rw;
564                 rbi->bi_rw = rw;
565                 if (rw & WRITE) {
566                         bi->bi_end_io = raid5_end_write_request;
567                         rbi->bi_end_io = raid5_end_write_request;
568                 } else
569                         bi->bi_end_io = raid5_end_read_request;
570
571                 rcu_read_lock();
572                 rrdev = rcu_dereference(conf->disks[i].replacement);
573                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
574                 rdev = rcu_dereference(conf->disks[i].rdev);
575                 if (!rdev) {
576                         rdev = rrdev;
577                         rrdev = NULL;
578                 }
579                 if (rw & WRITE) {
580                         if (replace_only)
581                                 rdev = NULL;
582                         if (rdev == rrdev)
583                                 /* We raced and saw duplicates */
584                                 rrdev = NULL;
585                 } else {
586                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
587                                 rdev = rrdev;
588                         rrdev = NULL;
589                 }
590
591                 if (rdev && test_bit(Faulty, &rdev->flags))
592                         rdev = NULL;
593                 if (rdev)
594                         atomic_inc(&rdev->nr_pending);
595                 if (rrdev && test_bit(Faulty, &rrdev->flags))
596                         rrdev = NULL;
597                 if (rrdev)
598                         atomic_inc(&rrdev->nr_pending);
599                 rcu_read_unlock();
600
601                 /* We have already checked bad blocks for reads.  Now
602                  * need to check for writes.  We never accept write errors
603                  * on the replacement, so we don't to check rrdev.
604                  */
605                 while ((rw & WRITE) && rdev &&
606                        test_bit(WriteErrorSeen, &rdev->flags)) {
607                         sector_t first_bad;
608                         int bad_sectors;
609                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
610                                               &first_bad, &bad_sectors);
611                         if (!bad)
612                                 break;
613
614                         if (bad < 0) {
615                                 set_bit(BlockedBadBlocks, &rdev->flags);
616                                 if (!conf->mddev->external &&
617                                     conf->mddev->flags) {
618                                         /* It is very unlikely, but we might
619                                          * still need to write out the
620                                          * bad block log - better give it
621                                          * a chance*/
622                                         md_check_recovery(conf->mddev);
623                                 }
624                                 /*
625                                  * Because md_wait_for_blocked_rdev
626                                  * will dec nr_pending, we must
627                                  * increment it first.
628                                  */
629                                 atomic_inc(&rdev->nr_pending);
630                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
631                         } else {
632                                 /* Acknowledged bad block - skip the write */
633                                 rdev_dec_pending(rdev, conf->mddev);
634                                 rdev = NULL;
635                         }
636                 }
637
638                 if (rdev) {
639                         if (s->syncing || s->expanding || s->expanded
640                             || s->replacing)
641                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
642
643                         set_bit(STRIPE_IO_STARTED, &sh->state);
644
645                         bi->bi_bdev = rdev->bdev;
646                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
647                                 __func__, (unsigned long long)sh->sector,
648                                 bi->bi_rw, i);
649                         atomic_inc(&sh->count);
650                         if (use_new_offset(conf, sh))
651                                 bi->bi_sector = (sh->sector
652                                                  + rdev->new_data_offset);
653                         else
654                                 bi->bi_sector = (sh->sector
655                                                  + rdev->data_offset);
656                         bi->bi_flags = 1 << BIO_UPTODATE;
657                         bi->bi_idx = 0;
658                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
659                         bi->bi_io_vec[0].bv_offset = 0;
660                         bi->bi_size = STRIPE_SIZE;
661                         bi->bi_next = NULL;
662                         if (rrdev)
663                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
664                         generic_make_request(bi);
665                 }
666                 if (rrdev) {
667                         if (s->syncing || s->expanding || s->expanded
668                             || s->replacing)
669                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
670
671                         set_bit(STRIPE_IO_STARTED, &sh->state);
672
673                         rbi->bi_bdev = rrdev->bdev;
674                         pr_debug("%s: for %llu schedule op %ld on "
675                                  "replacement disc %d\n",
676                                 __func__, (unsigned long long)sh->sector,
677                                 rbi->bi_rw, i);
678                         atomic_inc(&sh->count);
679                         if (use_new_offset(conf, sh))
680                                 rbi->bi_sector = (sh->sector
681                                                   + rrdev->new_data_offset);
682                         else
683                                 rbi->bi_sector = (sh->sector
684                                                   + rrdev->data_offset);
685                         rbi->bi_flags = 1 << BIO_UPTODATE;
686                         rbi->bi_idx = 0;
687                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
688                         rbi->bi_io_vec[0].bv_offset = 0;
689                         rbi->bi_size = STRIPE_SIZE;
690                         rbi->bi_next = NULL;
691                         generic_make_request(rbi);
692                 }
693                 if (!rdev && !rrdev) {
694                         if (rw & WRITE)
695                                 set_bit(STRIPE_DEGRADED, &sh->state);
696                         pr_debug("skip op %ld on disc %d for sector %llu\n",
697                                 bi->bi_rw, i, (unsigned long long)sh->sector);
698                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
699                         set_bit(STRIPE_HANDLE, &sh->state);
700                 }
701         }
702 }
703
704 static struct dma_async_tx_descriptor *
705 async_copy_data(int frombio, struct bio *bio, struct page *page,
706         sector_t sector, struct dma_async_tx_descriptor *tx)
707 {
708         struct bio_vec *bvl;
709         struct page *bio_page;
710         int i;
711         int page_offset;
712         struct async_submit_ctl submit;
713         enum async_tx_flags flags = 0;
714
715         if (bio->bi_sector >= sector)
716                 page_offset = (signed)(bio->bi_sector - sector) * 512;
717         else
718                 page_offset = (signed)(sector - bio->bi_sector) * -512;
719
720         if (frombio)
721                 flags |= ASYNC_TX_FENCE;
722         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
723
724         bio_for_each_segment(bvl, bio, i) {
725                 int len = bvl->bv_len;
726                 int clen;
727                 int b_offset = 0;
728
729                 if (page_offset < 0) {
730                         b_offset = -page_offset;
731                         page_offset += b_offset;
732                         len -= b_offset;
733                 }
734
735                 if (len > 0 && page_offset + len > STRIPE_SIZE)
736                         clen = STRIPE_SIZE - page_offset;
737                 else
738                         clen = len;
739
740                 if (clen > 0) {
741                         b_offset += bvl->bv_offset;
742                         bio_page = bvl->bv_page;
743                         if (frombio)
744                                 tx = async_memcpy(page, bio_page, page_offset,
745                                                   b_offset, clen, &submit);
746                         else
747                                 tx = async_memcpy(bio_page, page, b_offset,
748                                                   page_offset, clen, &submit);
749                 }
750                 /* chain the operations */
751                 submit.depend_tx = tx;
752
753                 if (clen < len) /* hit end of page */
754                         break;
755                 page_offset +=  len;
756         }
757
758         return tx;
759 }
760
761 static void ops_complete_biofill(void *stripe_head_ref)
762 {
763         struct stripe_head *sh = stripe_head_ref;
764         struct bio *return_bi = NULL;
765         struct r5conf *conf = sh->raid_conf;
766         int i;
767
768         pr_debug("%s: stripe %llu\n", __func__,
769                 (unsigned long long)sh->sector);
770
771         /* clear completed biofills */
772         spin_lock_irq(&conf->device_lock);
773         for (i = sh->disks; i--; ) {
774                 struct r5dev *dev = &sh->dev[i];
775
776                 /* acknowledge completion of a biofill operation */
777                 /* and check if we need to reply to a read request,
778                  * new R5_Wantfill requests are held off until
779                  * !STRIPE_BIOFILL_RUN
780                  */
781                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
782                         struct bio *rbi, *rbi2;
783
784                         BUG_ON(!dev->read);
785                         rbi = dev->read;
786                         dev->read = NULL;
787                         while (rbi && rbi->bi_sector <
788                                 dev->sector + STRIPE_SECTORS) {
789                                 rbi2 = r5_next_bio(rbi, dev->sector);
790                                 if (!raid5_dec_bi_active_stripes(rbi)) {
791                                         rbi->bi_next = return_bi;
792                                         return_bi = rbi;
793                                 }
794                                 rbi = rbi2;
795                         }
796                 }
797         }
798         spin_unlock_irq(&conf->device_lock);
799         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
800
801         return_io(return_bi);
802
803         set_bit(STRIPE_HANDLE, &sh->state);
804         release_stripe(sh);
805 }
806
807 static void ops_run_biofill(struct stripe_head *sh)
808 {
809         struct dma_async_tx_descriptor *tx = NULL;
810         struct r5conf *conf = sh->raid_conf;
811         struct async_submit_ctl submit;
812         int i;
813
814         pr_debug("%s: stripe %llu\n", __func__,
815                 (unsigned long long)sh->sector);
816
817         for (i = sh->disks; i--; ) {
818                 struct r5dev *dev = &sh->dev[i];
819                 if (test_bit(R5_Wantfill, &dev->flags)) {
820                         struct bio *rbi;
821                         spin_lock_irq(&conf->device_lock);
822                         dev->read = rbi = dev->toread;
823                         dev->toread = NULL;
824                         spin_unlock_irq(&conf->device_lock);
825                         while (rbi && rbi->bi_sector <
826                                 dev->sector + STRIPE_SECTORS) {
827                                 tx = async_copy_data(0, rbi, dev->page,
828                                         dev->sector, tx);
829                                 rbi = r5_next_bio(rbi, dev->sector);
830                         }
831                 }
832         }
833
834         atomic_inc(&sh->count);
835         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
836         async_trigger_callback(&submit);
837 }
838
839 static void mark_target_uptodate(struct stripe_head *sh, int target)
840 {
841         struct r5dev *tgt;
842
843         if (target < 0)
844                 return;
845
846         tgt = &sh->dev[target];
847         set_bit(R5_UPTODATE, &tgt->flags);
848         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
849         clear_bit(R5_Wantcompute, &tgt->flags);
850 }
851
852 static void ops_complete_compute(void *stripe_head_ref)
853 {
854         struct stripe_head *sh = stripe_head_ref;
855
856         pr_debug("%s: stripe %llu\n", __func__,
857                 (unsigned long long)sh->sector);
858
859         /* mark the computed target(s) as uptodate */
860         mark_target_uptodate(sh, sh->ops.target);
861         mark_target_uptodate(sh, sh->ops.target2);
862
863         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
864         if (sh->check_state == check_state_compute_run)
865                 sh->check_state = check_state_compute_result;
866         set_bit(STRIPE_HANDLE, &sh->state);
867         release_stripe(sh);
868 }
869
870 /* return a pointer to the address conversion region of the scribble buffer */
871 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
872                                  struct raid5_percpu *percpu)
873 {
874         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
875 }
876
877 static struct dma_async_tx_descriptor *
878 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
879 {
880         int disks = sh->disks;
881         struct page **xor_srcs = percpu->scribble;
882         int target = sh->ops.target;
883         struct r5dev *tgt = &sh->dev[target];
884         struct page *xor_dest = tgt->page;
885         int count = 0;
886         struct dma_async_tx_descriptor *tx;
887         struct async_submit_ctl submit;
888         int i;
889
890         pr_debug("%s: stripe %llu block: %d\n",
891                 __func__, (unsigned long long)sh->sector, target);
892         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
893
894         for (i = disks; i--; )
895                 if (i != target)
896                         xor_srcs[count++] = sh->dev[i].page;
897
898         atomic_inc(&sh->count);
899
900         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
901                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
902         if (unlikely(count == 1))
903                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
904         else
905                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
906
907         return tx;
908 }
909
910 /* set_syndrome_sources - populate source buffers for gen_syndrome
911  * @srcs - (struct page *) array of size sh->disks
912  * @sh - stripe_head to parse
913  *
914  * Populates srcs in proper layout order for the stripe and returns the
915  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
916  * destination buffer is recorded in srcs[count] and the Q destination
917  * is recorded in srcs[count+1]].
918  */
919 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
920 {
921         int disks = sh->disks;
922         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
923         int d0_idx = raid6_d0(sh);
924         int count;
925         int i;
926
927         for (i = 0; i < disks; i++)
928                 srcs[i] = NULL;
929
930         count = 0;
931         i = d0_idx;
932         do {
933                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
934
935                 srcs[slot] = sh->dev[i].page;
936                 i = raid6_next_disk(i, disks);
937         } while (i != d0_idx);
938
939         return syndrome_disks;
940 }
941
942 static struct dma_async_tx_descriptor *
943 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
944 {
945         int disks = sh->disks;
946         struct page **blocks = percpu->scribble;
947         int target;
948         int qd_idx = sh->qd_idx;
949         struct dma_async_tx_descriptor *tx;
950         struct async_submit_ctl submit;
951         struct r5dev *tgt;
952         struct page *dest;
953         int i;
954         int count;
955
956         if (sh->ops.target < 0)
957                 target = sh->ops.target2;
958         else if (sh->ops.target2 < 0)
959                 target = sh->ops.target;
960         else
961                 /* we should only have one valid target */
962                 BUG();
963         BUG_ON(target < 0);
964         pr_debug("%s: stripe %llu block: %d\n",
965                 __func__, (unsigned long long)sh->sector, target);
966
967         tgt = &sh->dev[target];
968         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
969         dest = tgt->page;
970
971         atomic_inc(&sh->count);
972
973         if (target == qd_idx) {
974                 count = set_syndrome_sources(blocks, sh);
975                 blocks[count] = NULL; /* regenerating p is not necessary */
976                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
977                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978                                   ops_complete_compute, sh,
979                                   to_addr_conv(sh, percpu));
980                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
981         } else {
982                 /* Compute any data- or p-drive using XOR */
983                 count = 0;
984                 for (i = disks; i-- ; ) {
985                         if (i == target || i == qd_idx)
986                                 continue;
987                         blocks[count++] = sh->dev[i].page;
988                 }
989
990                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
991                                   NULL, ops_complete_compute, sh,
992                                   to_addr_conv(sh, percpu));
993                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
994         }
995
996         return tx;
997 }
998
999 static struct dma_async_tx_descriptor *
1000 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1001 {
1002         int i, count, disks = sh->disks;
1003         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1004         int d0_idx = raid6_d0(sh);
1005         int faila = -1, failb = -1;
1006         int target = sh->ops.target;
1007         int target2 = sh->ops.target2;
1008         struct r5dev *tgt = &sh->dev[target];
1009         struct r5dev *tgt2 = &sh->dev[target2];
1010         struct dma_async_tx_descriptor *tx;
1011         struct page **blocks = percpu->scribble;
1012         struct async_submit_ctl submit;
1013
1014         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1015                  __func__, (unsigned long long)sh->sector, target, target2);
1016         BUG_ON(target < 0 || target2 < 0);
1017         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1018         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1019
1020         /* we need to open-code set_syndrome_sources to handle the
1021          * slot number conversion for 'faila' and 'failb'
1022          */
1023         for (i = 0; i < disks ; i++)
1024                 blocks[i] = NULL;
1025         count = 0;
1026         i = d0_idx;
1027         do {
1028                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1029
1030                 blocks[slot] = sh->dev[i].page;
1031
1032                 if (i == target)
1033                         faila = slot;
1034                 if (i == target2)
1035                         failb = slot;
1036                 i = raid6_next_disk(i, disks);
1037         } while (i != d0_idx);
1038
1039         BUG_ON(faila == failb);
1040         if (failb < faila)
1041                 swap(faila, failb);
1042         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1043                  __func__, (unsigned long long)sh->sector, faila, failb);
1044
1045         atomic_inc(&sh->count);
1046
1047         if (failb == syndrome_disks+1) {
1048                 /* Q disk is one of the missing disks */
1049                 if (faila == syndrome_disks) {
1050                         /* Missing P+Q, just recompute */
1051                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1052                                           ops_complete_compute, sh,
1053                                           to_addr_conv(sh, percpu));
1054                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1055                                                   STRIPE_SIZE, &submit);
1056                 } else {
1057                         struct page *dest;
1058                         int data_target;
1059                         int qd_idx = sh->qd_idx;
1060
1061                         /* Missing D+Q: recompute D from P, then recompute Q */
1062                         if (target == qd_idx)
1063                                 data_target = target2;
1064                         else
1065                                 data_target = target;
1066
1067                         count = 0;
1068                         for (i = disks; i-- ; ) {
1069                                 if (i == data_target || i == qd_idx)
1070                                         continue;
1071                                 blocks[count++] = sh->dev[i].page;
1072                         }
1073                         dest = sh->dev[data_target].page;
1074                         init_async_submit(&submit,
1075                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1076                                           NULL, NULL, NULL,
1077                                           to_addr_conv(sh, percpu));
1078                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1079                                        &submit);
1080
1081                         count = set_syndrome_sources(blocks, sh);
1082                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1083                                           ops_complete_compute, sh,
1084                                           to_addr_conv(sh, percpu));
1085                         return async_gen_syndrome(blocks, 0, count+2,
1086                                                   STRIPE_SIZE, &submit);
1087                 }
1088         } else {
1089                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1090                                   ops_complete_compute, sh,
1091                                   to_addr_conv(sh, percpu));
1092                 if (failb == syndrome_disks) {
1093                         /* We're missing D+P. */
1094                         return async_raid6_datap_recov(syndrome_disks+2,
1095                                                        STRIPE_SIZE, faila,
1096                                                        blocks, &submit);
1097                 } else {
1098                         /* We're missing D+D. */
1099                         return async_raid6_2data_recov(syndrome_disks+2,
1100                                                        STRIPE_SIZE, faila, failb,
1101                                                        blocks, &submit);
1102                 }
1103         }
1104 }
1105
1106
1107 static void ops_complete_prexor(void *stripe_head_ref)
1108 {
1109         struct stripe_head *sh = stripe_head_ref;
1110
1111         pr_debug("%s: stripe %llu\n", __func__,
1112                 (unsigned long long)sh->sector);
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1117                struct dma_async_tx_descriptor *tx)
1118 {
1119         int disks = sh->disks;
1120         struct page **xor_srcs = percpu->scribble;
1121         int count = 0, pd_idx = sh->pd_idx, i;
1122         struct async_submit_ctl submit;
1123
1124         /* existing parity data subtracted */
1125         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1126
1127         pr_debug("%s: stripe %llu\n", __func__,
1128                 (unsigned long long)sh->sector);
1129
1130         for (i = disks; i--; ) {
1131                 struct r5dev *dev = &sh->dev[i];
1132                 /* Only process blocks that are known to be uptodate */
1133                 if (test_bit(R5_Wantdrain, &dev->flags))
1134                         xor_srcs[count++] = dev->page;
1135         }
1136
1137         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1138                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1139         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1140
1141         return tx;
1142 }
1143
1144 static struct dma_async_tx_descriptor *
1145 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1146 {
1147         int disks = sh->disks;
1148         int i;
1149
1150         pr_debug("%s: stripe %llu\n", __func__,
1151                 (unsigned long long)sh->sector);
1152
1153         for (i = disks; i--; ) {
1154                 struct r5dev *dev = &sh->dev[i];
1155                 struct bio *chosen;
1156
1157                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1158                         struct bio *wbi;
1159
1160                         spin_lock_irq(&sh->raid_conf->device_lock);
1161                         chosen = dev->towrite;
1162                         dev->towrite = NULL;
1163                         BUG_ON(dev->written);
1164                         wbi = dev->written = chosen;
1165                         spin_unlock_irq(&sh->raid_conf->device_lock);
1166
1167                         while (wbi && wbi->bi_sector <
1168                                 dev->sector + STRIPE_SECTORS) {
1169                                 if (wbi->bi_rw & REQ_FUA)
1170                                         set_bit(R5_WantFUA, &dev->flags);
1171                                 if (wbi->bi_rw & REQ_SYNC)
1172                                         set_bit(R5_SyncIO, &dev->flags);
1173                                 tx = async_copy_data(1, wbi, dev->page,
1174                                         dev->sector, tx);
1175                                 wbi = r5_next_bio(wbi, dev->sector);
1176                         }
1177                 }
1178         }
1179
1180         return tx;
1181 }
1182
1183 static void ops_complete_reconstruct(void *stripe_head_ref)
1184 {
1185         struct stripe_head *sh = stripe_head_ref;
1186         int disks = sh->disks;
1187         int pd_idx = sh->pd_idx;
1188         int qd_idx = sh->qd_idx;
1189         int i;
1190         bool fua = false, sync = false;
1191
1192         pr_debug("%s: stripe %llu\n", __func__,
1193                 (unsigned long long)sh->sector);
1194
1195         for (i = disks; i--; ) {
1196                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1197                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1198         }
1199
1200         for (i = disks; i--; ) {
1201                 struct r5dev *dev = &sh->dev[i];
1202
1203                 if (dev->written || i == pd_idx || i == qd_idx) {
1204                         set_bit(R5_UPTODATE, &dev->flags);
1205                         if (fua)
1206                                 set_bit(R5_WantFUA, &dev->flags);
1207                         if (sync)
1208                                 set_bit(R5_SyncIO, &dev->flags);
1209                 }
1210         }
1211
1212         if (sh->reconstruct_state == reconstruct_state_drain_run)
1213                 sh->reconstruct_state = reconstruct_state_drain_result;
1214         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1215                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1216         else {
1217                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1218                 sh->reconstruct_state = reconstruct_state_result;
1219         }
1220
1221         set_bit(STRIPE_HANDLE, &sh->state);
1222         release_stripe(sh);
1223 }
1224
1225 static void
1226 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1227                      struct dma_async_tx_descriptor *tx)
1228 {
1229         int disks = sh->disks;
1230         struct page **xor_srcs = percpu->scribble;
1231         struct async_submit_ctl submit;
1232         int count = 0, pd_idx = sh->pd_idx, i;
1233         struct page *xor_dest;
1234         int prexor = 0;
1235         unsigned long flags;
1236
1237         pr_debug("%s: stripe %llu\n", __func__,
1238                 (unsigned long long)sh->sector);
1239
1240         /* check if prexor is active which means only process blocks
1241          * that are part of a read-modify-write (written)
1242          */
1243         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1244                 prexor = 1;
1245                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1246                 for (i = disks; i--; ) {
1247                         struct r5dev *dev = &sh->dev[i];
1248                         if (dev->written)
1249                                 xor_srcs[count++] = dev->page;
1250                 }
1251         } else {
1252                 xor_dest = sh->dev[pd_idx].page;
1253                 for (i = disks; i--; ) {
1254                         struct r5dev *dev = &sh->dev[i];
1255                         if (i != pd_idx)
1256                                 xor_srcs[count++] = dev->page;
1257                 }
1258         }
1259
1260         /* 1/ if we prexor'd then the dest is reused as a source
1261          * 2/ if we did not prexor then we are redoing the parity
1262          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1263          * for the synchronous xor case
1264          */
1265         flags = ASYNC_TX_ACK |
1266                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1267
1268         atomic_inc(&sh->count);
1269
1270         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1271                           to_addr_conv(sh, percpu));
1272         if (unlikely(count == 1))
1273                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1274         else
1275                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1276 }
1277
1278 static void
1279 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1280                      struct dma_async_tx_descriptor *tx)
1281 {
1282         struct async_submit_ctl submit;
1283         struct page **blocks = percpu->scribble;
1284         int count;
1285
1286         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1287
1288         count = set_syndrome_sources(blocks, sh);
1289
1290         atomic_inc(&sh->count);
1291
1292         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1293                           sh, to_addr_conv(sh, percpu));
1294         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1295 }
1296
1297 static void ops_complete_check(void *stripe_head_ref)
1298 {
1299         struct stripe_head *sh = stripe_head_ref;
1300
1301         pr_debug("%s: stripe %llu\n", __func__,
1302                 (unsigned long long)sh->sector);
1303
1304         sh->check_state = check_state_check_result;
1305         set_bit(STRIPE_HANDLE, &sh->state);
1306         release_stripe(sh);
1307 }
1308
1309 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1310 {
1311         int disks = sh->disks;
1312         int pd_idx = sh->pd_idx;
1313         int qd_idx = sh->qd_idx;
1314         struct page *xor_dest;
1315         struct page **xor_srcs = percpu->scribble;
1316         struct dma_async_tx_descriptor *tx;
1317         struct async_submit_ctl submit;
1318         int count;
1319         int i;
1320
1321         pr_debug("%s: stripe %llu\n", __func__,
1322                 (unsigned long long)sh->sector);
1323
1324         count = 0;
1325         xor_dest = sh->dev[pd_idx].page;
1326         xor_srcs[count++] = xor_dest;
1327         for (i = disks; i--; ) {
1328                 if (i == pd_idx || i == qd_idx)
1329                         continue;
1330                 xor_srcs[count++] = sh->dev[i].page;
1331         }
1332
1333         init_async_submit(&submit, 0, NULL, NULL, NULL,
1334                           to_addr_conv(sh, percpu));
1335         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1336                            &sh->ops.zero_sum_result, &submit);
1337
1338         atomic_inc(&sh->count);
1339         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1340         tx = async_trigger_callback(&submit);
1341 }
1342
1343 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1344 {
1345         struct page **srcs = percpu->scribble;
1346         struct async_submit_ctl submit;
1347         int count;
1348
1349         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1350                 (unsigned long long)sh->sector, checkp);
1351
1352         count = set_syndrome_sources(srcs, sh);
1353         if (!checkp)
1354                 srcs[count] = NULL;
1355
1356         atomic_inc(&sh->count);
1357         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1358                           sh, to_addr_conv(sh, percpu));
1359         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1360                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1361 }
1362
1363 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1364 {
1365         int overlap_clear = 0, i, disks = sh->disks;
1366         struct dma_async_tx_descriptor *tx = NULL;
1367         struct r5conf *conf = sh->raid_conf;
1368         int level = conf->level;
1369         struct raid5_percpu *percpu;
1370         unsigned long cpu;
1371
1372         cpu = get_cpu();
1373         percpu = per_cpu_ptr(conf->percpu, cpu);
1374         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1375                 ops_run_biofill(sh);
1376                 overlap_clear++;
1377         }
1378
1379         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1380                 if (level < 6)
1381                         tx = ops_run_compute5(sh, percpu);
1382                 else {
1383                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1384                                 tx = ops_run_compute6_1(sh, percpu);
1385                         else
1386                                 tx = ops_run_compute6_2(sh, percpu);
1387                 }
1388                 /* terminate the chain if reconstruct is not set to be run */
1389                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1390                         async_tx_ack(tx);
1391         }
1392
1393         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1394                 tx = ops_run_prexor(sh, percpu, tx);
1395
1396         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1397                 tx = ops_run_biodrain(sh, tx);
1398                 overlap_clear++;
1399         }
1400
1401         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1402                 if (level < 6)
1403                         ops_run_reconstruct5(sh, percpu, tx);
1404                 else
1405                         ops_run_reconstruct6(sh, percpu, tx);
1406         }
1407
1408         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1409                 if (sh->check_state == check_state_run)
1410                         ops_run_check_p(sh, percpu);
1411                 else if (sh->check_state == check_state_run_q)
1412                         ops_run_check_pq(sh, percpu, 0);
1413                 else if (sh->check_state == check_state_run_pq)
1414                         ops_run_check_pq(sh, percpu, 1);
1415                 else
1416                         BUG();
1417         }
1418
1419         if (overlap_clear)
1420                 for (i = disks; i--; ) {
1421                         struct r5dev *dev = &sh->dev[i];
1422                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1423                                 wake_up(&sh->raid_conf->wait_for_overlap);
1424                 }
1425         put_cpu();
1426 }
1427
1428 #ifdef CONFIG_MULTICORE_RAID456
1429 static void async_run_ops(void *param, async_cookie_t cookie)
1430 {
1431         struct stripe_head *sh = param;
1432         unsigned long ops_request = sh->ops.request;
1433
1434         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1435         wake_up(&sh->ops.wait_for_ops);
1436
1437         __raid_run_ops(sh, ops_request);
1438         release_stripe(sh);
1439 }
1440
1441 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1442 {
1443         /* since handle_stripe can be called outside of raid5d context
1444          * we need to ensure sh->ops.request is de-staged before another
1445          * request arrives
1446          */
1447         wait_event(sh->ops.wait_for_ops,
1448                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1449         sh->ops.request = ops_request;
1450
1451         atomic_inc(&sh->count);
1452         async_schedule(async_run_ops, sh);
1453 }
1454 #else
1455 #define raid_run_ops __raid_run_ops
1456 #endif
1457
1458 static int grow_one_stripe(struct r5conf *conf)
1459 {
1460         struct stripe_head *sh;
1461         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1462         if (!sh)
1463                 return 0;
1464
1465         sh->raid_conf = conf;
1466         #ifdef CONFIG_MULTICORE_RAID456
1467         init_waitqueue_head(&sh->ops.wait_for_ops);
1468         #endif
1469
1470         if (grow_buffers(sh)) {
1471                 shrink_buffers(sh);
1472                 kmem_cache_free(conf->slab_cache, sh);
1473                 return 0;
1474         }
1475         /* we just created an active stripe so... */
1476         atomic_set(&sh->count, 1);
1477         atomic_inc(&conf->active_stripes);
1478         INIT_LIST_HEAD(&sh->lru);
1479         release_stripe(sh);
1480         return 1;
1481 }
1482
1483 static int grow_stripes(struct r5conf *conf, int num)
1484 {
1485         struct kmem_cache *sc;
1486         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1487
1488         if (conf->mddev->gendisk)
1489                 sprintf(conf->cache_name[0],
1490                         "raid%d-%s", conf->level, mdname(conf->mddev));
1491         else
1492                 sprintf(conf->cache_name[0],
1493                         "raid%d-%p", conf->level, conf->mddev);
1494         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1495
1496         conf->active_name = 0;
1497         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1498                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1499                                0, 0, NULL);
1500         if (!sc)
1501                 return 1;
1502         conf->slab_cache = sc;
1503         conf->pool_size = devs;
1504         while (num--)
1505                 if (!grow_one_stripe(conf))
1506                         return 1;
1507         return 0;
1508 }
1509
1510 /**
1511  * scribble_len - return the required size of the scribble region
1512  * @num - total number of disks in the array
1513  *
1514  * The size must be enough to contain:
1515  * 1/ a struct page pointer for each device in the array +2
1516  * 2/ room to convert each entry in (1) to its corresponding dma
1517  *    (dma_map_page()) or page (page_address()) address.
1518  *
1519  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1520  * calculate over all devices (not just the data blocks), using zeros in place
1521  * of the P and Q blocks.
1522  */
1523 static size_t scribble_len(int num)
1524 {
1525         size_t len;
1526
1527         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1528
1529         return len;
1530 }
1531
1532 static int resize_stripes(struct r5conf *conf, int newsize)
1533 {
1534         /* Make all the stripes able to hold 'newsize' devices.
1535          * New slots in each stripe get 'page' set to a new page.
1536          *
1537          * This happens in stages:
1538          * 1/ create a new kmem_cache and allocate the required number of
1539          *    stripe_heads.
1540          * 2/ gather all the old stripe_heads and tranfer the pages across
1541          *    to the new stripe_heads.  This will have the side effect of
1542          *    freezing the array as once all stripe_heads have been collected,
1543          *    no IO will be possible.  Old stripe heads are freed once their
1544          *    pages have been transferred over, and the old kmem_cache is
1545          *    freed when all stripes are done.
1546          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1547          *    we simple return a failre status - no need to clean anything up.
1548          * 4/ allocate new pages for the new slots in the new stripe_heads.
1549          *    If this fails, we don't bother trying the shrink the
1550          *    stripe_heads down again, we just leave them as they are.
1551          *    As each stripe_head is processed the new one is released into
1552          *    active service.
1553          *
1554          * Once step2 is started, we cannot afford to wait for a write,
1555          * so we use GFP_NOIO allocations.
1556          */
1557         struct stripe_head *osh, *nsh;
1558         LIST_HEAD(newstripes);
1559         struct disk_info *ndisks;
1560         unsigned long cpu;
1561         int err;
1562         struct kmem_cache *sc;
1563         int i;
1564
1565         if (newsize <= conf->pool_size)
1566                 return 0; /* never bother to shrink */
1567
1568         err = md_allow_write(conf->mddev);
1569         if (err)
1570                 return err;
1571
1572         /* Step 1 */
1573         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1574                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1575                                0, 0, NULL);
1576         if (!sc)
1577                 return -ENOMEM;
1578
1579         for (i = conf->max_nr_stripes; i; i--) {
1580                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1581                 if (!nsh)
1582                         break;
1583
1584                 nsh->raid_conf = conf;
1585                 #ifdef CONFIG_MULTICORE_RAID456
1586                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1587                 #endif
1588
1589                 list_add(&nsh->lru, &newstripes);
1590         }
1591         if (i) {
1592                 /* didn't get enough, give up */
1593                 while (!list_empty(&newstripes)) {
1594                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1595                         list_del(&nsh->lru);
1596                         kmem_cache_free(sc, nsh);
1597                 }
1598                 kmem_cache_destroy(sc);
1599                 return -ENOMEM;
1600         }
1601         /* Step 2 - Must use GFP_NOIO now.
1602          * OK, we have enough stripes, start collecting inactive
1603          * stripes and copying them over
1604          */
1605         list_for_each_entry(nsh, &newstripes, lru) {
1606                 spin_lock_irq(&conf->device_lock);
1607                 wait_event_lock_irq(conf->wait_for_stripe,
1608                                     !list_empty(&conf->inactive_list),
1609                                     conf->device_lock,
1610                                     );
1611                 osh = get_free_stripe(conf);
1612                 spin_unlock_irq(&conf->device_lock);
1613                 atomic_set(&nsh->count, 1);
1614                 for(i=0; i<conf->pool_size; i++)
1615                         nsh->dev[i].page = osh->dev[i].page;
1616                 for( ; i<newsize; i++)
1617                         nsh->dev[i].page = NULL;
1618                 kmem_cache_free(conf->slab_cache, osh);
1619         }
1620         kmem_cache_destroy(conf->slab_cache);
1621
1622         /* Step 3.
1623          * At this point, we are holding all the stripes so the array
1624          * is completely stalled, so now is a good time to resize
1625          * conf->disks and the scribble region
1626          */
1627         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1628         if (ndisks) {
1629                 for (i=0; i<conf->raid_disks; i++)
1630                         ndisks[i] = conf->disks[i];
1631                 kfree(conf->disks);
1632                 conf->disks = ndisks;
1633         } else
1634                 err = -ENOMEM;
1635
1636         get_online_cpus();
1637         conf->scribble_len = scribble_len(newsize);
1638         for_each_present_cpu(cpu) {
1639                 struct raid5_percpu *percpu;
1640                 void *scribble;
1641
1642                 percpu = per_cpu_ptr(conf->percpu, cpu);
1643                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1644
1645                 if (scribble) {
1646                         kfree(percpu->scribble);
1647                         percpu->scribble = scribble;
1648                 } else {
1649                         err = -ENOMEM;
1650                         break;
1651                 }
1652         }
1653         put_online_cpus();
1654
1655         /* Step 4, return new stripes to service */
1656         while(!list_empty(&newstripes)) {
1657                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1658                 list_del_init(&nsh->lru);
1659
1660                 for (i=conf->raid_disks; i < newsize; i++)
1661                         if (nsh->dev[i].page == NULL) {
1662                                 struct page *p = alloc_page(GFP_NOIO);
1663                                 nsh->dev[i].page = p;
1664                                 if (!p)
1665                                         err = -ENOMEM;
1666                         }
1667                 release_stripe(nsh);
1668         }
1669         /* critical section pass, GFP_NOIO no longer needed */
1670
1671         conf->slab_cache = sc;
1672         conf->active_name = 1-conf->active_name;
1673         conf->pool_size = newsize;
1674         return err;
1675 }
1676
1677 static int drop_one_stripe(struct r5conf *conf)
1678 {
1679         struct stripe_head *sh;
1680
1681         spin_lock_irq(&conf->device_lock);
1682         sh = get_free_stripe(conf);
1683         spin_unlock_irq(&conf->device_lock);
1684         if (!sh)
1685                 return 0;
1686         BUG_ON(atomic_read(&sh->count));
1687         shrink_buffers(sh);
1688         kmem_cache_free(conf->slab_cache, sh);
1689         atomic_dec(&conf->active_stripes);
1690         return 1;
1691 }
1692
1693 static void shrink_stripes(struct r5conf *conf)
1694 {
1695         while (drop_one_stripe(conf))
1696                 ;
1697
1698         if (conf->slab_cache)
1699                 kmem_cache_destroy(conf->slab_cache);
1700         conf->slab_cache = NULL;
1701 }
1702
1703 static void raid5_end_read_request(struct bio * bi, int error)
1704 {
1705         struct stripe_head *sh = bi->bi_private;
1706         struct r5conf *conf = sh->raid_conf;
1707         int disks = sh->disks, i;
1708         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1709         char b[BDEVNAME_SIZE];
1710         struct md_rdev *rdev = NULL;
1711         sector_t s;
1712
1713         for (i=0 ; i<disks; i++)
1714                 if (bi == &sh->dev[i].req)
1715                         break;
1716
1717         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1718                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1719                 uptodate);
1720         if (i == disks) {
1721                 BUG();
1722                 return;
1723         }
1724         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1725                 /* If replacement finished while this request was outstanding,
1726                  * 'replacement' might be NULL already.
1727                  * In that case it moved down to 'rdev'.
1728                  * rdev is not removed until all requests are finished.
1729                  */
1730                 rdev = conf->disks[i].replacement;
1731         if (!rdev)
1732                 rdev = conf->disks[i].rdev;
1733
1734         if (use_new_offset(conf, sh))
1735                 s = sh->sector + rdev->new_data_offset;
1736         else
1737                 s = sh->sector + rdev->data_offset;
1738         if (uptodate) {
1739                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1740                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1741                         /* Note that this cannot happen on a
1742                          * replacement device.  We just fail those on
1743                          * any error
1744                          */
1745                         printk_ratelimited(
1746                                 KERN_INFO
1747                                 "md/raid:%s: read error corrected"
1748                                 " (%lu sectors at %llu on %s)\n",
1749                                 mdname(conf->mddev), STRIPE_SECTORS,
1750                                 (unsigned long long)s,
1751                                 bdevname(rdev->bdev, b));
1752                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1753                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1754                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1755                 }
1756                 if (atomic_read(&rdev->read_errors))
1757                         atomic_set(&rdev->read_errors, 0);
1758         } else {
1759                 const char *bdn = bdevname(rdev->bdev, b);
1760                 int retry = 0;
1761                 int set_bad = 0;
1762
1763                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1764                 atomic_inc(&rdev->read_errors);
1765                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1766                         printk_ratelimited(
1767                                 KERN_WARNING
1768                                 "md/raid:%s: read error on replacement device "
1769                                 "(sector %llu on %s).\n",
1770                                 mdname(conf->mddev),
1771                                 (unsigned long long)s,
1772                                 bdn);
1773                 else if (conf->mddev->degraded >= conf->max_degraded) {
1774                         set_bad = 1;
1775                         printk_ratelimited(
1776                                 KERN_WARNING
1777                                 "md/raid:%s: read error not correctable "
1778                                 "(sector %llu on %s).\n",
1779                                 mdname(conf->mddev),
1780                                 (unsigned long long)s,
1781                                 bdn);
1782                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1783                         /* Oh, no!!! */
1784                         set_bad = 1;
1785                         printk_ratelimited(
1786                                 KERN_WARNING
1787                                 "md/raid:%s: read error NOT corrected!! "
1788                                 "(sector %llu on %s).\n",
1789                                 mdname(conf->mddev),
1790                                 (unsigned long long)s,
1791                                 bdn);
1792                 } else if (atomic_read(&rdev->read_errors)
1793                          > conf->max_nr_stripes)
1794                         printk(KERN_WARNING
1795                                "md/raid:%s: Too many read errors, failing device %s.\n",
1796                                mdname(conf->mddev), bdn);
1797                 else
1798                         retry = 1;
1799                 if (retry)
1800                         set_bit(R5_ReadError, &sh->dev[i].flags);
1801                 else {
1802                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1803                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1804                         if (!(set_bad
1805                               && test_bit(In_sync, &rdev->flags)
1806                               && rdev_set_badblocks(
1807                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1808                                 md_error(conf->mddev, rdev);
1809                 }
1810         }
1811         rdev_dec_pending(rdev, conf->mddev);
1812         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1813         set_bit(STRIPE_HANDLE, &sh->state);
1814         release_stripe(sh);
1815 }
1816
1817 static void raid5_end_write_request(struct bio *bi, int error)
1818 {
1819         struct stripe_head *sh = bi->bi_private;
1820         struct r5conf *conf = sh->raid_conf;
1821         int disks = sh->disks, i;
1822         struct md_rdev *uninitialized_var(rdev);
1823         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1824         sector_t first_bad;
1825         int bad_sectors;
1826         int replacement = 0;
1827
1828         for (i = 0 ; i < disks; i++) {
1829                 if (bi == &sh->dev[i].req) {
1830                         rdev = conf->disks[i].rdev;
1831                         break;
1832                 }
1833                 if (bi == &sh->dev[i].rreq) {
1834                         rdev = conf->disks[i].replacement;
1835                         if (rdev)
1836                                 replacement = 1;
1837                         else
1838                                 /* rdev was removed and 'replacement'
1839                                  * replaced it.  rdev is not removed
1840                                  * until all requests are finished.
1841                                  */
1842                                 rdev = conf->disks[i].rdev;
1843                         break;
1844                 }
1845         }
1846         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1847                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1848                 uptodate);
1849         if (i == disks) {
1850                 BUG();
1851                 return;
1852         }
1853
1854         if (replacement) {
1855                 if (!uptodate)
1856                         md_error(conf->mddev, rdev);
1857                 else if (is_badblock(rdev, sh->sector,
1858                                      STRIPE_SECTORS,
1859                                      &first_bad, &bad_sectors))
1860                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1861         } else {
1862                 if (!uptodate) {
1863                         set_bit(WriteErrorSeen, &rdev->flags);
1864                         set_bit(R5_WriteError, &sh->dev[i].flags);
1865                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1866                                 set_bit(MD_RECOVERY_NEEDED,
1867                                         &rdev->mddev->recovery);
1868                 } else if (is_badblock(rdev, sh->sector,
1869                                        STRIPE_SECTORS,
1870                                        &first_bad, &bad_sectors))
1871                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1872         }
1873         rdev_dec_pending(rdev, conf->mddev);
1874
1875         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1876                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1877         set_bit(STRIPE_HANDLE, &sh->state);
1878         release_stripe(sh);
1879 }
1880
1881 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1882         
1883 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1884 {
1885         struct r5dev *dev = &sh->dev[i];
1886
1887         bio_init(&dev->req);
1888         dev->req.bi_io_vec = &dev->vec;
1889         dev->req.bi_vcnt++;
1890         dev->req.bi_max_vecs++;
1891         dev->req.bi_private = sh;
1892         dev->vec.bv_page = dev->page;
1893
1894         bio_init(&dev->rreq);
1895         dev->rreq.bi_io_vec = &dev->rvec;
1896         dev->rreq.bi_vcnt++;
1897         dev->rreq.bi_max_vecs++;
1898         dev->rreq.bi_private = sh;
1899         dev->rvec.bv_page = dev->page;
1900
1901         dev->flags = 0;
1902         dev->sector = compute_blocknr(sh, i, previous);
1903 }
1904
1905 static void error(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907         char b[BDEVNAME_SIZE];
1908         struct r5conf *conf = mddev->private;
1909         unsigned long flags;
1910         pr_debug("raid456: error called\n");
1911
1912         spin_lock_irqsave(&conf->device_lock, flags);
1913         clear_bit(In_sync, &rdev->flags);
1914         mddev->degraded = calc_degraded(conf);
1915         spin_unlock_irqrestore(&conf->device_lock, flags);
1916         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1917
1918         set_bit(Blocked, &rdev->flags);
1919         set_bit(Faulty, &rdev->flags);
1920         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1921         printk(KERN_ALERT
1922                "md/raid:%s: Disk failure on %s, disabling device.\n"
1923                "md/raid:%s: Operation continuing on %d devices.\n",
1924                mdname(mddev),
1925                bdevname(rdev->bdev, b),
1926                mdname(mddev),
1927                conf->raid_disks - mddev->degraded);
1928 }
1929
1930 /*
1931  * Input: a 'big' sector number,
1932  * Output: index of the data and parity disk, and the sector # in them.
1933  */
1934 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1935                                      int previous, int *dd_idx,
1936                                      struct stripe_head *sh)
1937 {
1938         sector_t stripe, stripe2;
1939         sector_t chunk_number;
1940         unsigned int chunk_offset;
1941         int pd_idx, qd_idx;
1942         int ddf_layout = 0;
1943         sector_t new_sector;
1944         int algorithm = previous ? conf->prev_algo
1945                                  : conf->algorithm;
1946         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1947                                          : conf->chunk_sectors;
1948         int raid_disks = previous ? conf->previous_raid_disks
1949                                   : conf->raid_disks;
1950         int data_disks = raid_disks - conf->max_degraded;
1951
1952         /* First compute the information on this sector */
1953
1954         /*
1955          * Compute the chunk number and the sector offset inside the chunk
1956          */
1957         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1958         chunk_number = r_sector;
1959
1960         /*
1961          * Compute the stripe number
1962          */
1963         stripe = chunk_number;
1964         *dd_idx = sector_div(stripe, data_disks);
1965         stripe2 = stripe;
1966         /*
1967          * Select the parity disk based on the user selected algorithm.
1968          */
1969         pd_idx = qd_idx = -1;
1970         switch(conf->level) {
1971         case 4:
1972                 pd_idx = data_disks;
1973                 break;
1974         case 5:
1975                 switch (algorithm) {
1976                 case ALGORITHM_LEFT_ASYMMETRIC:
1977                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1978                         if (*dd_idx >= pd_idx)
1979                                 (*dd_idx)++;
1980                         break;
1981                 case ALGORITHM_RIGHT_ASYMMETRIC:
1982                         pd_idx = sector_div(stripe2, raid_disks);
1983                         if (*dd_idx >= pd_idx)
1984                                 (*dd_idx)++;
1985                         break;
1986                 case ALGORITHM_LEFT_SYMMETRIC:
1987                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1988                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1989                         break;
1990                 case ALGORITHM_RIGHT_SYMMETRIC:
1991                         pd_idx = sector_div(stripe2, raid_disks);
1992                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1993                         break;
1994                 case ALGORITHM_PARITY_0:
1995                         pd_idx = 0;
1996                         (*dd_idx)++;
1997                         break;
1998                 case ALGORITHM_PARITY_N:
1999                         pd_idx = data_disks;
2000                         break;
2001                 default:
2002                         BUG();
2003                 }
2004                 break;
2005         case 6:
2006
2007                 switch (algorithm) {
2008                 case ALGORITHM_LEFT_ASYMMETRIC:
2009                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2010                         qd_idx = pd_idx + 1;
2011                         if (pd_idx == raid_disks-1) {
2012                                 (*dd_idx)++;    /* Q D D D P */
2013                                 qd_idx = 0;
2014                         } else if (*dd_idx >= pd_idx)
2015                                 (*dd_idx) += 2; /* D D P Q D */
2016                         break;
2017                 case ALGORITHM_RIGHT_ASYMMETRIC:
2018                         pd_idx = sector_div(stripe2, raid_disks);
2019                         qd_idx = pd_idx + 1;
2020                         if (pd_idx == raid_disks-1) {
2021                                 (*dd_idx)++;    /* Q D D D P */
2022                                 qd_idx = 0;
2023                         } else if (*dd_idx >= pd_idx)
2024                                 (*dd_idx) += 2; /* D D P Q D */
2025                         break;
2026                 case ALGORITHM_LEFT_SYMMETRIC:
2027                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2028                         qd_idx = (pd_idx + 1) % raid_disks;
2029                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2030                         break;
2031                 case ALGORITHM_RIGHT_SYMMETRIC:
2032                         pd_idx = sector_div(stripe2, raid_disks);
2033                         qd_idx = (pd_idx + 1) % raid_disks;
2034                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2035                         break;
2036
2037                 case ALGORITHM_PARITY_0:
2038                         pd_idx = 0;
2039                         qd_idx = 1;
2040                         (*dd_idx) += 2;
2041                         break;
2042                 case ALGORITHM_PARITY_N:
2043                         pd_idx = data_disks;
2044                         qd_idx = data_disks + 1;
2045                         break;
2046
2047                 case ALGORITHM_ROTATING_ZERO_RESTART:
2048                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2049                          * of blocks for computing Q is different.
2050                          */
2051                         pd_idx = sector_div(stripe2, raid_disks);
2052                         qd_idx = pd_idx + 1;
2053                         if (pd_idx == raid_disks-1) {
2054                                 (*dd_idx)++;    /* Q D D D P */
2055                                 qd_idx = 0;
2056                         } else if (*dd_idx >= pd_idx)
2057                                 (*dd_idx) += 2; /* D D P Q D */
2058                         ddf_layout = 1;
2059                         break;
2060
2061                 case ALGORITHM_ROTATING_N_RESTART:
2062                         /* Same a left_asymmetric, by first stripe is
2063                          * D D D P Q  rather than
2064                          * Q D D D P
2065                          */
2066                         stripe2 += 1;
2067                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2068                         qd_idx = pd_idx + 1;
2069                         if (pd_idx == raid_disks-1) {
2070                                 (*dd_idx)++;    /* Q D D D P */
2071                                 qd_idx = 0;
2072                         } else if (*dd_idx >= pd_idx)
2073                                 (*dd_idx) += 2; /* D D P Q D */
2074                         ddf_layout = 1;
2075                         break;
2076
2077                 case ALGORITHM_ROTATING_N_CONTINUE:
2078                         /* Same as left_symmetric but Q is before P */
2079                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2080                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2081                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2082                         ddf_layout = 1;
2083                         break;
2084
2085                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2086                         /* RAID5 left_asymmetric, with Q on last device */
2087                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2088                         if (*dd_idx >= pd_idx)
2089                                 (*dd_idx)++;
2090                         qd_idx = raid_disks - 1;
2091                         break;
2092
2093                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2094                         pd_idx = sector_div(stripe2, raid_disks-1);
2095                         if (*dd_idx >= pd_idx)
2096                                 (*dd_idx)++;
2097                         qd_idx = raid_disks - 1;
2098                         break;
2099
2100                 case ALGORITHM_LEFT_SYMMETRIC_6:
2101                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2102                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2103                         qd_idx = raid_disks - 1;
2104                         break;
2105
2106                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2107                         pd_idx = sector_div(stripe2, raid_disks-1);
2108                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2109                         qd_idx = raid_disks - 1;
2110                         break;
2111
2112                 case ALGORITHM_PARITY_0_6:
2113                         pd_idx = 0;
2114                         (*dd_idx)++;
2115                         qd_idx = raid_disks - 1;
2116                         break;
2117
2118                 default:
2119                         BUG();
2120                 }
2121                 break;
2122         }
2123
2124         if (sh) {
2125                 sh->pd_idx = pd_idx;
2126                 sh->qd_idx = qd_idx;
2127                 sh->ddf_layout = ddf_layout;
2128         }
2129         /*
2130          * Finally, compute the new sector number
2131          */
2132         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2133         return new_sector;
2134 }
2135
2136
2137 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2138 {
2139         struct r5conf *conf = sh->raid_conf;
2140         int raid_disks = sh->disks;
2141         int data_disks = raid_disks - conf->max_degraded;
2142         sector_t new_sector = sh->sector, check;
2143         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2144                                          : conf->chunk_sectors;
2145         int algorithm = previous ? conf->prev_algo
2146                                  : conf->algorithm;
2147         sector_t stripe;
2148         int chunk_offset;
2149         sector_t chunk_number;
2150         int dummy1, dd_idx = i;
2151         sector_t r_sector;
2152         struct stripe_head sh2;
2153
2154
2155         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2156         stripe = new_sector;
2157
2158         if (i == sh->pd_idx)
2159                 return 0;
2160         switch(conf->level) {
2161         case 4: break;
2162         case 5:
2163                 switch (algorithm) {
2164                 case ALGORITHM_LEFT_ASYMMETRIC:
2165                 case ALGORITHM_RIGHT_ASYMMETRIC:
2166                         if (i > sh->pd_idx)
2167                                 i--;
2168                         break;
2169                 case ALGORITHM_LEFT_SYMMETRIC:
2170                 case ALGORITHM_RIGHT_SYMMETRIC:
2171                         if (i < sh->pd_idx)
2172                                 i += raid_disks;
2173                         i -= (sh->pd_idx + 1);
2174                         break;
2175                 case ALGORITHM_PARITY_0:
2176                         i -= 1;
2177                         break;
2178                 case ALGORITHM_PARITY_N:
2179                         break;
2180                 default:
2181                         BUG();
2182                 }
2183                 break;
2184         case 6:
2185                 if (i == sh->qd_idx)
2186                         return 0; /* It is the Q disk */
2187                 switch (algorithm) {
2188                 case ALGORITHM_LEFT_ASYMMETRIC:
2189                 case ALGORITHM_RIGHT_ASYMMETRIC:
2190                 case ALGORITHM_ROTATING_ZERO_RESTART:
2191                 case ALGORITHM_ROTATING_N_RESTART:
2192                         if (sh->pd_idx == raid_disks-1)
2193                                 i--;    /* Q D D D P */
2194                         else if (i > sh->pd_idx)
2195                                 i -= 2; /* D D P Q D */
2196                         break;
2197                 case ALGORITHM_LEFT_SYMMETRIC:
2198                 case ALGORITHM_RIGHT_SYMMETRIC:
2199                         if (sh->pd_idx == raid_disks-1)
2200                                 i--; /* Q D D D P */
2201                         else {
2202                                 /* D D P Q D */
2203                                 if (i < sh->pd_idx)
2204                                         i += raid_disks;
2205                                 i -= (sh->pd_idx + 2);
2206                         }
2207                         break;
2208                 case ALGORITHM_PARITY_0:
2209                         i -= 2;
2210                         break;
2211                 case ALGORITHM_PARITY_N:
2212                         break;
2213                 case ALGORITHM_ROTATING_N_CONTINUE:
2214                         /* Like left_symmetric, but P is before Q */
2215                         if (sh->pd_idx == 0)
2216                                 i--;    /* P D D D Q */
2217                         else {
2218                                 /* D D Q P D */
2219                                 if (i < sh->pd_idx)
2220                                         i += raid_disks;
2221                                 i -= (sh->pd_idx + 1);
2222                         }
2223                         break;
2224                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2225                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2226                         if (i > sh->pd_idx)
2227                                 i--;
2228                         break;
2229                 case ALGORITHM_LEFT_SYMMETRIC_6:
2230                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2231                         if (i < sh->pd_idx)
2232                                 i += data_disks + 1;
2233                         i -= (sh->pd_idx + 1);
2234                         break;
2235                 case ALGORITHM_PARITY_0_6:
2236                         i -= 1;
2237                         break;
2238                 default:
2239                         BUG();
2240                 }
2241                 break;
2242         }
2243
2244         chunk_number = stripe * data_disks + i;
2245         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2246
2247         check = raid5_compute_sector(conf, r_sector,
2248                                      previous, &dummy1, &sh2);
2249         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2250                 || sh2.qd_idx != sh->qd_idx) {
2251                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2252                        mdname(conf->mddev));
2253                 return 0;
2254         }
2255         return r_sector;
2256 }
2257
2258
2259 static void
2260 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2261                          int rcw, int expand)
2262 {
2263         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2264         struct r5conf *conf = sh->raid_conf;
2265         int level = conf->level;
2266
2267         if (rcw) {
2268                 /* if we are not expanding this is a proper write request, and
2269                  * there will be bios with new data to be drained into the
2270                  * stripe cache
2271                  */
2272                 if (!expand) {
2273                         sh->reconstruct_state = reconstruct_state_drain_run;
2274                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2275                 } else
2276                         sh->reconstruct_state = reconstruct_state_run;
2277
2278                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2279
2280                 for (i = disks; i--; ) {
2281                         struct r5dev *dev = &sh->dev[i];
2282
2283                         if (dev->towrite) {
2284                                 set_bit(R5_LOCKED, &dev->flags);
2285                                 set_bit(R5_Wantdrain, &dev->flags);
2286                                 if (!expand)
2287                                         clear_bit(R5_UPTODATE, &dev->flags);
2288                                 s->locked++;
2289                         }
2290                 }
2291                 if (s->locked + conf->max_degraded == disks)
2292                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2293                                 atomic_inc(&conf->pending_full_writes);
2294         } else {
2295                 BUG_ON(level == 6);
2296                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2297                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2298
2299                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2300                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2301                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2302                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2303
2304                 for (i = disks; i--; ) {
2305                         struct r5dev *dev = &sh->dev[i];
2306                         if (i == pd_idx)
2307                                 continue;
2308
2309                         if (dev->towrite &&
2310                             (test_bit(R5_UPTODATE, &dev->flags) ||
2311                              test_bit(R5_Wantcompute, &dev->flags))) {
2312                                 set_bit(R5_Wantdrain, &dev->flags);
2313                                 set_bit(R5_LOCKED, &dev->flags);
2314                                 clear_bit(R5_UPTODATE, &dev->flags);
2315                                 s->locked++;
2316                         }
2317                 }
2318         }
2319
2320         /* keep the parity disk(s) locked while asynchronous operations
2321          * are in flight
2322          */
2323         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2324         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2325         s->locked++;
2326
2327         if (level == 6) {
2328                 int qd_idx = sh->qd_idx;
2329                 struct r5dev *dev = &sh->dev[qd_idx];
2330
2331                 set_bit(R5_LOCKED, &dev->flags);
2332                 clear_bit(R5_UPTODATE, &dev->flags);
2333                 s->locked++;
2334         }
2335
2336         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2337                 __func__, (unsigned long long)sh->sector,
2338                 s->locked, s->ops_request);
2339 }
2340
2341 /*
2342  * Each stripe/dev can have one or more bion attached.
2343  * toread/towrite point to the first in a chain.
2344  * The bi_next chain must be in order.
2345  */
2346 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2347 {
2348         struct bio **bip;
2349         struct r5conf *conf = sh->raid_conf;
2350         int firstwrite=0;
2351
2352         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2353                 (unsigned long long)bi->bi_sector,
2354                 (unsigned long long)sh->sector);
2355
2356
2357         spin_lock_irq(&conf->device_lock);
2358         if (forwrite) {
2359                 bip = &sh->dev[dd_idx].towrite;
2360                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2361                         firstwrite = 1;
2362         } else
2363                 bip = &sh->dev[dd_idx].toread;
2364         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2365                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2366                         goto overlap;
2367                 bip = & (*bip)->bi_next;
2368         }
2369         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2370                 goto overlap;
2371
2372         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2373         if (*bip)
2374                 bi->bi_next = *bip;
2375         *bip = bi;
2376         raid5_inc_bi_active_stripes(bi);
2377
2378         if (forwrite) {
2379                 /* check if page is covered */
2380                 sector_t sector = sh->dev[dd_idx].sector;
2381                 for (bi=sh->dev[dd_idx].towrite;
2382                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2383                              bi && bi->bi_sector <= sector;
2384                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2385                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2386                                 sector = bi->bi_sector + (bi->bi_size>>9);
2387                 }
2388                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2389                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2390         }
2391         spin_unlock_irq(&conf->device_lock);
2392
2393         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2394                 (unsigned long long)(*bip)->bi_sector,
2395                 (unsigned long long)sh->sector, dd_idx);
2396
2397         if (conf->mddev->bitmap && firstwrite) {
2398                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2399                                   STRIPE_SECTORS, 0);
2400                 sh->bm_seq = conf->seq_flush+1;
2401                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2402         }
2403         return 1;
2404
2405  overlap:
2406         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2407         spin_unlock_irq(&conf->device_lock);
2408         return 0;
2409 }
2410
2411 static void end_reshape(struct r5conf *conf);
2412
2413 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2414                             struct stripe_head *sh)
2415 {
2416         int sectors_per_chunk =
2417                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2418         int dd_idx;
2419         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2420         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2421
2422         raid5_compute_sector(conf,
2423                              stripe * (disks - conf->max_degraded)
2424                              *sectors_per_chunk + chunk_offset,
2425                              previous,
2426                              &dd_idx, sh);
2427 }
2428
2429 static void
2430 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2431                                 struct stripe_head_state *s, int disks,
2432                                 struct bio **return_bi)
2433 {
2434         int i;
2435         for (i = disks; i--; ) {
2436                 struct bio *bi;
2437                 int bitmap_end = 0;
2438
2439                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2440                         struct md_rdev *rdev;
2441                         rcu_read_lock();
2442                         rdev = rcu_dereference(conf->disks[i].rdev);
2443                         if (rdev && test_bit(In_sync, &rdev->flags))
2444                                 atomic_inc(&rdev->nr_pending);
2445                         else
2446                                 rdev = NULL;
2447                         rcu_read_unlock();
2448                         if (rdev) {
2449                                 if (!rdev_set_badblocks(
2450                                             rdev,
2451                                             sh->sector,
2452                                             STRIPE_SECTORS, 0))
2453                                         md_error(conf->mddev, rdev);
2454                                 rdev_dec_pending(rdev, conf->mddev);
2455                         }
2456                 }
2457                 spin_lock_irq(&conf->device_lock);
2458                 /* fail all writes first */
2459                 bi = sh->dev[i].towrite;
2460                 sh->dev[i].towrite = NULL;
2461                 if (bi) {
2462                         s->to_write--;
2463                         bitmap_end = 1;
2464                 }
2465
2466                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2467                         wake_up(&conf->wait_for_overlap);
2468
2469                 while (bi && bi->bi_sector <
2470                         sh->dev[i].sector + STRIPE_SECTORS) {
2471                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2472                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2473                         if (!raid5_dec_bi_active_stripes(bi)) {
2474                                 md_write_end(conf->mddev);
2475                                 bi->bi_next = *return_bi;
2476                                 *return_bi = bi;
2477                         }
2478                         bi = nextbi;
2479                 }
2480                 /* and fail all 'written' */
2481                 bi = sh->dev[i].written;
2482                 sh->dev[i].written = NULL;
2483                 if (bi) bitmap_end = 1;
2484                 while (bi && bi->bi_sector <
2485                        sh->dev[i].sector + STRIPE_SECTORS) {
2486                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2487                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2488                         if (!raid5_dec_bi_active_stripes(bi)) {
2489                                 md_write_end(conf->mddev);
2490                                 bi->bi_next = *return_bi;
2491                                 *return_bi = bi;
2492                         }
2493                         bi = bi2;
2494                 }
2495
2496                 /* fail any reads if this device is non-operational and
2497                  * the data has not reached the cache yet.
2498                  */
2499                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2500                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2501                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2502                         bi = sh->dev[i].toread;
2503                         sh->dev[i].toread = NULL;
2504                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2505                                 wake_up(&conf->wait_for_overlap);
2506                         if (bi) s->to_read--;
2507                         while (bi && bi->bi_sector <
2508                                sh->dev[i].sector + STRIPE_SECTORS) {
2509                                 struct bio *nextbi =
2510                                         r5_next_bio(bi, sh->dev[i].sector);
2511                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2512                                 if (!raid5_dec_bi_active_stripes(bi)) {
2513                                         bi->bi_next = *return_bi;
2514                                         *return_bi = bi;
2515                                 }
2516                                 bi = nextbi;
2517                         }
2518                 }
2519                 spin_unlock_irq(&conf->device_lock);
2520                 if (bitmap_end)
2521                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2522                                         STRIPE_SECTORS, 0, 0);
2523                 /* If we were in the middle of a write the parity block might
2524                  * still be locked - so just clear all R5_LOCKED flags
2525                  */
2526                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2527         }
2528
2529         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2530                 if (atomic_dec_and_test(&conf->pending_full_writes))
2531                         md_wakeup_thread(conf->mddev->thread);
2532 }
2533
2534 static void
2535 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2536                    struct stripe_head_state *s)
2537 {
2538         int abort = 0;
2539         int i;
2540
2541         clear_bit(STRIPE_SYNCING, &sh->state);
2542         s->syncing = 0;
2543         s->replacing = 0;
2544         /* There is nothing more to do for sync/check/repair.
2545          * Don't even need to abort as that is handled elsewhere
2546          * if needed, and not always wanted e.g. if there is a known
2547          * bad block here.
2548          * For recover/replace we need to record a bad block on all
2549          * non-sync devices, or abort the recovery
2550          */
2551         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2552                 /* During recovery devices cannot be removed, so
2553                  * locking and refcounting of rdevs is not needed
2554                  */
2555                 for (i = 0; i < conf->raid_disks; i++) {
2556                         struct md_rdev *rdev = conf->disks[i].rdev;
2557                         if (rdev
2558                             && !test_bit(Faulty, &rdev->flags)
2559                             && !test_bit(In_sync, &rdev->flags)
2560                             && !rdev_set_badblocks(rdev, sh->sector,
2561                                                    STRIPE_SECTORS, 0))
2562                                 abort = 1;
2563                         rdev = conf->disks[i].replacement;
2564                         if (rdev
2565                             && !test_bit(Faulty, &rdev->flags)
2566                             && !test_bit(In_sync, &rdev->flags)
2567                             && !rdev_set_badblocks(rdev, sh->sector,
2568                                                    STRIPE_SECTORS, 0))
2569                                 abort = 1;
2570                 }
2571                 if (abort)
2572                         conf->recovery_disabled =
2573                                 conf->mddev->recovery_disabled;
2574         }
2575         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2576 }
2577
2578 static int want_replace(struct stripe_head *sh, int disk_idx)
2579 {
2580         struct md_rdev *rdev;
2581         int rv = 0;
2582         /* Doing recovery so rcu locking not required */
2583         rdev = sh->raid_conf->disks[disk_idx].replacement;
2584         if (rdev
2585             && !test_bit(Faulty, &rdev->flags)
2586             && !test_bit(In_sync, &rdev->flags)
2587             && (rdev->recovery_offset <= sh->sector
2588                 || rdev->mddev->recovery_cp <= sh->sector))
2589                 rv = 1;
2590
2591         return rv;
2592 }
2593
2594 /* fetch_block - checks the given member device to see if its data needs
2595  * to be read or computed to satisfy a request.
2596  *
2597  * Returns 1 when no more member devices need to be checked, otherwise returns
2598  * 0 to tell the loop in handle_stripe_fill to continue
2599  */
2600 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2601                        int disk_idx, int disks)
2602 {
2603         struct r5dev *dev = &sh->dev[disk_idx];
2604         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2605                                   &sh->dev[s->failed_num[1]] };
2606
2607         /* is the data in this block needed, and can we get it? */
2608         if (!test_bit(R5_LOCKED, &dev->flags) &&
2609             !test_bit(R5_UPTODATE, &dev->flags) &&
2610             (dev->toread ||
2611              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2612              s->syncing || s->expanding ||
2613              (s->replacing && want_replace(sh, disk_idx)) ||
2614              (s->failed >= 1 && fdev[0]->toread) ||
2615              (s->failed >= 2 && fdev[1]->toread) ||
2616              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2617               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2618              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2619                 /* we would like to get this block, possibly by computing it,
2620                  * otherwise read it if the backing disk is insync
2621                  */
2622                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2623                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2624                 if ((s->uptodate == disks - 1) &&
2625                     (s->failed && (disk_idx == s->failed_num[0] ||
2626                                    disk_idx == s->failed_num[1]))) {
2627                         /* have disk failed, and we're requested to fetch it;
2628                          * do compute it
2629                          */
2630                         pr_debug("Computing stripe %llu block %d\n",
2631                                (unsigned long long)sh->sector, disk_idx);
2632                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2633                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2634                         set_bit(R5_Wantcompute, &dev->flags);
2635                         sh->ops.target = disk_idx;
2636                         sh->ops.target2 = -1; /* no 2nd target */
2637                         s->req_compute = 1;
2638                         /* Careful: from this point on 'uptodate' is in the eye
2639                          * of raid_run_ops which services 'compute' operations
2640                          * before writes. R5_Wantcompute flags a block that will
2641                          * be R5_UPTODATE by the time it is needed for a
2642                          * subsequent operation.
2643                          */
2644                         s->uptodate++;
2645                         return 1;
2646                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2647                         /* Computing 2-failure is *very* expensive; only
2648                          * do it if failed >= 2
2649                          */
2650                         int other;
2651                         for (other = disks; other--; ) {
2652                                 if (other == disk_idx)
2653                                         continue;
2654                                 if (!test_bit(R5_UPTODATE,
2655                                       &sh->dev[other].flags))
2656                                         break;
2657                         }
2658                         BUG_ON(other < 0);
2659                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2660                                (unsigned long long)sh->sector,
2661                                disk_idx, other);
2662                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2663                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2664                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2665                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2666                         sh->ops.target = disk_idx;
2667                         sh->ops.target2 = other;
2668                         s->uptodate += 2;
2669                         s->req_compute = 1;
2670                         return 1;
2671                 } else if (test_bit(R5_Insync, &dev->flags)) {
2672                         set_bit(R5_LOCKED, &dev->flags);
2673                         set_bit(R5_Wantread, &dev->flags);
2674                         s->locked++;
2675                         pr_debug("Reading block %d (sync=%d)\n",
2676                                 disk_idx, s->syncing);
2677                 }
2678         }
2679
2680         return 0;
2681 }
2682
2683 /**
2684  * handle_stripe_fill - read or compute data to satisfy pending requests.
2685  */
2686 static void handle_stripe_fill(struct stripe_head *sh,
2687                                struct stripe_head_state *s,
2688                                int disks)
2689 {
2690         int i;
2691
2692         /* look for blocks to read/compute, skip this if a compute
2693          * is already in flight, or if the stripe contents are in the
2694          * midst of changing due to a write
2695          */
2696         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2697             !sh->reconstruct_state)
2698                 for (i = disks; i--; )
2699                         if (fetch_block(sh, s, i, disks))
2700                                 break;
2701         set_bit(STRIPE_HANDLE, &sh->state);
2702 }
2703
2704
2705 /* handle_stripe_clean_event
2706  * any written block on an uptodate or failed drive can be returned.
2707  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2708  * never LOCKED, so we don't need to test 'failed' directly.
2709  */
2710 static void handle_stripe_clean_event(struct r5conf *conf,
2711         struct stripe_head *sh, int disks, struct bio **return_bi)
2712 {
2713         int i;
2714         struct r5dev *dev;
2715
2716         for (i = disks; i--; )
2717                 if (sh->dev[i].written) {
2718                         dev = &sh->dev[i];
2719                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2720                                 test_bit(R5_UPTODATE, &dev->flags)) {
2721                                 /* We can return any write requests */
2722                                 struct bio *wbi, *wbi2;
2723                                 int bitmap_end = 0;
2724                                 pr_debug("Return write for disc %d\n", i);
2725                                 spin_lock_irq(&conf->device_lock);
2726                                 wbi = dev->written;
2727                                 dev->written = NULL;
2728                                 while (wbi && wbi->bi_sector <
2729                                         dev->sector + STRIPE_SECTORS) {
2730                                         wbi2 = r5_next_bio(wbi, dev->sector);
2731                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2732                                                 md_write_end(conf->mddev);
2733                                                 wbi->bi_next = *return_bi;
2734                                                 *return_bi = wbi;
2735                                         }
2736                                         wbi = wbi2;
2737                                 }
2738                                 if (dev->towrite == NULL)
2739                                         bitmap_end = 1;
2740                                 spin_unlock_irq(&conf->device_lock);
2741                                 if (bitmap_end)
2742                                         bitmap_endwrite(conf->mddev->bitmap,
2743                                                         sh->sector,
2744                                                         STRIPE_SECTORS,
2745                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2746                                                         0);
2747                         }
2748                 }
2749
2750         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2751                 if (atomic_dec_and_test(&conf->pending_full_writes))
2752                         md_wakeup_thread(conf->mddev->thread);
2753 }
2754
2755 static void handle_stripe_dirtying(struct r5conf *conf,
2756                                    struct stripe_head *sh,
2757                                    struct stripe_head_state *s,
2758                                    int disks)
2759 {
2760         int rmw = 0, rcw = 0, i;
2761         if (conf->max_degraded == 2) {
2762                 /* RAID6 requires 'rcw' in current implementation
2763                  * Calculate the real rcw later - for now fake it
2764                  * look like rcw is cheaper
2765                  */
2766                 rcw = 1; rmw = 2;
2767         } else for (i = disks; i--; ) {
2768                 /* would I have to read this buffer for read_modify_write */
2769                 struct r5dev *dev = &sh->dev[i];
2770                 if ((dev->towrite || i == sh->pd_idx) &&
2771                     !test_bit(R5_LOCKED, &dev->flags) &&
2772                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2773                       test_bit(R5_Wantcompute, &dev->flags))) {
2774                         if (test_bit(R5_Insync, &dev->flags))
2775                                 rmw++;
2776                         else
2777                                 rmw += 2*disks;  /* cannot read it */
2778                 }
2779                 /* Would I have to read this buffer for reconstruct_write */
2780                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2781                     !test_bit(R5_LOCKED, &dev->flags) &&
2782                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2783                     test_bit(R5_Wantcompute, &dev->flags))) {
2784                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2785                         else
2786                                 rcw += 2*disks;
2787                 }
2788         }
2789         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2790                 (unsigned long long)sh->sector, rmw, rcw);
2791         set_bit(STRIPE_HANDLE, &sh->state);
2792         if (rmw < rcw && rmw > 0)
2793                 /* prefer read-modify-write, but need to get some data */
2794                 for (i = disks; i--; ) {
2795                         struct r5dev *dev = &sh->dev[i];
2796                         if ((dev->towrite || i == sh->pd_idx) &&
2797                             !test_bit(R5_LOCKED, &dev->flags) &&
2798                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2799                             test_bit(R5_Wantcompute, &dev->flags)) &&
2800                             test_bit(R5_Insync, &dev->flags)) {
2801                                 if (
2802                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2803                                         pr_debug("Read_old block "
2804                                                 "%d for r-m-w\n", i);
2805                                         set_bit(R5_LOCKED, &dev->flags);
2806                                         set_bit(R5_Wantread, &dev->flags);
2807                                         s->locked++;
2808                                 } else {
2809                                         set_bit(STRIPE_DELAYED, &sh->state);
2810                                         set_bit(STRIPE_HANDLE, &sh->state);
2811                                 }
2812                         }
2813                 }
2814         if (rcw <= rmw && rcw > 0) {
2815                 /* want reconstruct write, but need to get some data */
2816                 rcw = 0;
2817                 for (i = disks; i--; ) {
2818                         struct r5dev *dev = &sh->dev[i];
2819                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2820                             i != sh->pd_idx && i != sh->qd_idx &&
2821                             !test_bit(R5_LOCKED, &dev->flags) &&
2822                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2823                               test_bit(R5_Wantcompute, &dev->flags))) {
2824                                 rcw++;
2825                                 if (!test_bit(R5_Insync, &dev->flags))
2826                                         continue; /* it's a failed drive */
2827                                 if (
2828                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2829                                         pr_debug("Read_old block "
2830                                                 "%d for Reconstruct\n", i);
2831                                         set_bit(R5_LOCKED, &dev->flags);
2832                                         set_bit(R5_Wantread, &dev->flags);
2833                                         s->locked++;
2834                                 } else {
2835                                         set_bit(STRIPE_DELAYED, &sh->state);
2836                                         set_bit(STRIPE_HANDLE, &sh->state);
2837                                 }
2838                         }
2839                 }
2840         }
2841         /* now if nothing is locked, and if we have enough data,
2842          * we can start a write request
2843          */
2844         /* since handle_stripe can be called at any time we need to handle the
2845          * case where a compute block operation has been submitted and then a
2846          * subsequent call wants to start a write request.  raid_run_ops only
2847          * handles the case where compute block and reconstruct are requested
2848          * simultaneously.  If this is not the case then new writes need to be
2849          * held off until the compute completes.
2850          */
2851         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2852             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2853             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2854                 schedule_reconstruction(sh, s, rcw == 0, 0);
2855 }
2856
2857 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2858                                 struct stripe_head_state *s, int disks)
2859 {
2860         struct r5dev *dev = NULL;
2861
2862         set_bit(STRIPE_HANDLE, &sh->state);
2863
2864         switch (sh->check_state) {
2865         case check_state_idle:
2866                 /* start a new check operation if there are no failures */
2867                 if (s->failed == 0) {
2868                         BUG_ON(s->uptodate != disks);
2869                         sh->check_state = check_state_run;
2870                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2871                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2872                         s->uptodate--;
2873                         break;
2874                 }
2875                 dev = &sh->dev[s->failed_num[0]];
2876                 /* fall through */
2877         case check_state_compute_result:
2878                 sh->check_state = check_state_idle;
2879                 if (!dev)
2880                         dev = &sh->dev[sh->pd_idx];
2881
2882                 /* check that a write has not made the stripe insync */
2883                 if (test_bit(STRIPE_INSYNC, &sh->state))
2884                         break;
2885
2886                 /* either failed parity check, or recovery is happening */
2887                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2888                 BUG_ON(s->uptodate != disks);
2889
2890                 set_bit(R5_LOCKED, &dev->flags);
2891                 s->locked++;
2892                 set_bit(R5_Wantwrite, &dev->flags);
2893
2894                 clear_bit(STRIPE_DEGRADED, &sh->state);
2895                 set_bit(STRIPE_INSYNC, &sh->state);
2896                 break;
2897         case check_state_run:
2898                 break; /* we will be called again upon completion */
2899         case check_state_check_result:
2900                 sh->check_state = check_state_idle;
2901
2902                 /* if a failure occurred during the check operation, leave
2903                  * STRIPE_INSYNC not set and let the stripe be handled again
2904                  */
2905                 if (s->failed)
2906                         break;
2907
2908                 /* handle a successful check operation, if parity is correct
2909                  * we are done.  Otherwise update the mismatch count and repair
2910                  * parity if !MD_RECOVERY_CHECK
2911                  */
2912                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2913                         /* parity is correct (on disc,
2914                          * not in buffer any more)
2915                          */
2916                         set_bit(STRIPE_INSYNC, &sh->state);
2917                 else {
2918                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2919                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2920                                 /* don't try to repair!! */
2921                                 set_bit(STRIPE_INSYNC, &sh->state);
2922                         else {
2923                                 sh->check_state = check_state_compute_run;
2924                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2925                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2926                                 set_bit(R5_Wantcompute,
2927                                         &sh->dev[sh->pd_idx].flags);
2928                                 sh->ops.target = sh->pd_idx;
2929                                 sh->ops.target2 = -1;
2930                                 s->uptodate++;
2931                         }
2932                 }
2933                 break;
2934         case check_state_compute_run:
2935                 break;
2936         default:
2937                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2938                        __func__, sh->check_state,
2939                        (unsigned long long) sh->sector);
2940                 BUG();
2941         }
2942 }
2943
2944
2945 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2946                                   struct stripe_head_state *s,
2947                                   int disks)
2948 {
2949         int pd_idx = sh->pd_idx;
2950         int qd_idx = sh->qd_idx;
2951         struct r5dev *dev;
2952
2953         set_bit(STRIPE_HANDLE, &sh->state);
2954
2955         BUG_ON(s->failed > 2);
2956
2957         /* Want to check and possibly repair P and Q.
2958          * However there could be one 'failed' device, in which
2959          * case we can only check one of them, possibly using the
2960          * other to generate missing data
2961          */
2962
2963         switch (sh->check_state) {
2964         case check_state_idle:
2965                 /* start a new check operation if there are < 2 failures */
2966                 if (s->failed == s->q_failed) {
2967                         /* The only possible failed device holds Q, so it
2968                          * makes sense to check P (If anything else were failed,
2969                          * we would have used P to recreate it).
2970                          */
2971                         sh->check_state = check_state_run;
2972                 }
2973                 if (!s->q_failed && s->failed < 2) {
2974                         /* Q is not failed, and we didn't use it to generate
2975                          * anything, so it makes sense to check it
2976                          */
2977                         if (sh->check_state == check_state_run)
2978                                 sh->check_state = check_state_run_pq;
2979                         else
2980                                 sh->check_state = check_state_run_q;
2981                 }
2982
2983                 /* discard potentially stale zero_sum_result */
2984                 sh->ops.zero_sum_result = 0;
2985
2986                 if (sh->check_state == check_state_run) {
2987                         /* async_xor_zero_sum destroys the contents of P */
2988                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2989                         s->uptodate--;
2990                 }
2991                 if (sh->check_state >= check_state_run &&
2992                     sh->check_state <= check_state_run_pq) {
2993                         /* async_syndrome_zero_sum preserves P and Q, so
2994                          * no need to mark them !uptodate here
2995                          */
2996                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2997                         break;
2998                 }
2999
3000                 /* we have 2-disk failure */
3001                 BUG_ON(s->failed != 2);
3002                 /* fall through */
3003         case check_state_compute_result:
3004                 sh->check_state = check_state_idle;
3005
3006                 /* check that a write has not made the stripe insync */
3007                 if (test_bit(STRIPE_INSYNC, &sh->state))
3008                         break;
3009
3010                 /* now write out any block on a failed drive,
3011                  * or P or Q if they were recomputed
3012                  */
3013                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3014                 if (s->failed == 2) {
3015                         dev = &sh->dev[s->failed_num[1]];
3016                         s->locked++;
3017                         set_bit(R5_LOCKED, &dev->flags);
3018                         set_bit(R5_Wantwrite, &dev->flags);
3019                 }
3020                 if (s->failed >= 1) {
3021                         dev = &sh->dev[s->failed_num[0]];
3022                         s->locked++;
3023                         set_bit(R5_LOCKED, &dev->flags);
3024                         set_bit(R5_Wantwrite, &dev->flags);
3025                 }
3026                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3027                         dev = &sh->dev[pd_idx];
3028                         s->locked++;
3029                         set_bit(R5_LOCKED, &dev->flags);
3030                         set_bit(R5_Wantwrite, &dev->flags);
3031                 }
3032                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3033                         dev = &sh->dev[qd_idx];
3034                         s->locked++;
3035                         set_bit(R5_LOCKED, &dev->flags);
3036                         set_bit(R5_Wantwrite, &dev->flags);
3037                 }
3038                 clear_bit(STRIPE_DEGRADED, &sh->state);
3039
3040                 set_bit(STRIPE_INSYNC, &sh->state);
3041                 break;
3042         case check_state_run:
3043         case check_state_run_q:
3044         case check_state_run_pq:
3045                 break; /* we will be called again upon completion */
3046         case check_state_check_result:
3047                 sh->check_state = check_state_idle;
3048
3049                 /* handle a successful check operation, if parity is correct
3050                  * we are done.  Otherwise update the mismatch count and repair
3051                  * parity if !MD_RECOVERY_CHECK
3052                  */
3053                 if (sh->ops.zero_sum_result == 0) {
3054                         /* both parities are correct */
3055                         if (!s->failed)
3056                                 set_bit(STRIPE_INSYNC, &sh->state);
3057                         else {
3058                                 /* in contrast to the raid5 case we can validate
3059                                  * parity, but still have a failure to write
3060                                  * back
3061                                  */
3062                                 sh->check_state = check_state_compute_result;
3063                                 /* Returning at this point means that we may go
3064                                  * off and bring p and/or q uptodate again so
3065                                  * we make sure to check zero_sum_result again
3066                                  * to verify if p or q need writeback
3067                                  */
3068                         }
3069                 } else {
3070                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3071                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3072                                 /* don't try to repair!! */
3073                                 set_bit(STRIPE_INSYNC, &sh->state);
3074                         else {
3075                                 int *target = &sh->ops.target;
3076
3077                                 sh->ops.target = -1;
3078                                 sh->ops.target2 = -1;
3079                                 sh->check_state = check_state_compute_run;
3080                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3081                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3082                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3083                                         set_bit(R5_Wantcompute,
3084                                                 &sh->dev[pd_idx].flags);
3085                                         *target = pd_idx;
3086                                         target = &sh->ops.target2;
3087                                         s->uptodate++;
3088                                 }
3089                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3090                                         set_bit(R5_Wantcompute,
3091                                                 &sh->dev[qd_idx].flags);
3092                                         *target = qd_idx;
3093                                         s->uptodate++;
3094                                 }
3095                         }
3096                 }
3097                 break;
3098         case check_state_compute_run:
3099                 break;
3100         default:
3101                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3102                        __func__, sh->check_state,
3103                        (unsigned long long) sh->sector);
3104                 BUG();
3105         }
3106 }
3107
3108 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3109 {
3110         int i;
3111
3112         /* We have read all the blocks in this stripe and now we need to
3113          * copy some of them into a target stripe for expand.
3114          */
3115         struct dma_async_tx_descriptor *tx = NULL;
3116         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3117         for (i = 0; i < sh->disks; i++)
3118                 if (i != sh->pd_idx && i != sh->qd_idx) {
3119                         int dd_idx, j;
3120                         struct stripe_head *sh2;
3121                         struct async_submit_ctl submit;
3122
3123                         sector_t bn = compute_blocknr(sh, i, 1);
3124                         sector_t s = raid5_compute_sector(conf, bn, 0,
3125                                                           &dd_idx, NULL);
3126                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3127                         if (sh2 == NULL)
3128                                 /* so far only the early blocks of this stripe
3129                                  * have been requested.  When later blocks
3130                                  * get requested, we will try again
3131                                  */
3132                                 continue;
3133                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3134                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3135                                 /* must have already done this block */
3136                                 release_stripe(sh2);
3137                                 continue;
3138                         }
3139
3140                         /* place all the copies on one channel */
3141                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3142                         tx = async_memcpy(sh2->dev[dd_idx].page,
3143                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3144                                           &submit);
3145
3146                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3147                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3148                         for (j = 0; j < conf->raid_disks; j++)
3149                                 if (j != sh2->pd_idx &&
3150                                     j != sh2->qd_idx &&
3151                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3152                                         break;
3153                         if (j == conf->raid_disks) {
3154                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3155                                 set_bit(STRIPE_HANDLE, &sh2->state);
3156                         }
3157                         release_stripe(sh2);
3158
3159                 }
3160         /* done submitting copies, wait for them to complete */
3161         if (tx) {
3162                 async_tx_ack(tx);
3163                 dma_wait_for_async_tx(tx);
3164         }
3165 }
3166
3167 /*
3168  * handle_stripe - do things to a stripe.
3169  *
3170  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3171  * state of various bits to see what needs to be done.
3172  * Possible results:
3173  *    return some read requests which now have data
3174  *    return some write requests which are safely on storage
3175  *    schedule a read on some buffers
3176  *    schedule a write of some buffers
3177  *    return confirmation of parity correctness
3178  *
3179  */
3180
3181 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3182 {
3183         struct r5conf *conf = sh->raid_conf;
3184         int disks = sh->disks;
3185         struct r5dev *dev;
3186         int i;
3187         int do_recovery = 0;
3188
3189         memset(s, 0, sizeof(*s));
3190
3191         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3192         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3193         s->failed_num[0] = -1;
3194         s->failed_num[1] = -1;
3195
3196         /* Now to look around and see what can be done */
3197         rcu_read_lock();
3198         spin_lock_irq(&conf->device_lock);
3199         for (i=disks; i--; ) {
3200                 struct md_rdev *rdev;
3201                 sector_t first_bad;
3202                 int bad_sectors;
3203                 int is_bad = 0;
3204
3205                 dev = &sh->dev[i];
3206
3207                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3208                          i, dev->flags,
3209                          dev->toread, dev->towrite, dev->written);
3210                 /* maybe we can reply to a read
3211                  *
3212                  * new wantfill requests are only permitted while
3213                  * ops_complete_biofill is guaranteed to be inactive
3214                  */
3215                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3216                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3217                         set_bit(R5_Wantfill, &dev->flags);
3218
3219                 /* now count some things */
3220                 if (test_bit(R5_LOCKED, &dev->flags))
3221                         s->locked++;
3222                 if (test_bit(R5_UPTODATE, &dev->flags))
3223                         s->uptodate++;
3224                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3225                         s->compute++;
3226                         BUG_ON(s->compute > 2);
3227                 }
3228
3229                 if (test_bit(R5_Wantfill, &dev->flags))
3230                         s->to_fill++;
3231                 else if (dev->toread)
3232                         s->to_read++;
3233                 if (dev->towrite) {
3234                         s->to_write++;
3235                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3236                                 s->non_overwrite++;
3237                 }
3238                 if (dev->written)
3239                         s->written++;
3240                 /* Prefer to use the replacement for reads, but only
3241                  * if it is recovered enough and has no bad blocks.
3242                  */
3243                 rdev = rcu_dereference(conf->disks[i].replacement);
3244                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3245                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3246                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3247                                  &first_bad, &bad_sectors))
3248                         set_bit(R5_ReadRepl, &dev->flags);
3249                 else {
3250                         if (rdev)
3251                                 set_bit(R5_NeedReplace, &dev->flags);
3252                         rdev = rcu_dereference(conf->disks[i].rdev);
3253                         clear_bit(R5_ReadRepl, &dev->flags);
3254                 }
3255                 if (rdev && test_bit(Faulty, &rdev->flags))
3256                         rdev = NULL;
3257                 if (rdev) {
3258                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3259                                              &first_bad, &bad_sectors);
3260                         if (s->blocked_rdev == NULL
3261                             && (test_bit(Blocked, &rdev->flags)
3262                                 || is_bad < 0)) {
3263                                 if (is_bad < 0)
3264                                         set_bit(BlockedBadBlocks,
3265                                                 &rdev->flags);
3266                                 s->blocked_rdev = rdev;
3267                                 atomic_inc(&rdev->nr_pending);
3268                         }
3269                 }
3270                 clear_bit(R5_Insync, &dev->flags);
3271                 if (!rdev)
3272                         /* Not in-sync */;
3273                 else if (is_bad) {
3274                         /* also not in-sync */
3275                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3276                             test_bit(R5_UPTODATE, &dev->flags)) {
3277                                 /* treat as in-sync, but with a read error
3278                                  * which we can now try to correct
3279                                  */
3280                                 set_bit(R5_Insync, &dev->flags);
3281                                 set_bit(R5_ReadError, &dev->flags);
3282                         }
3283                 } else if (test_bit(In_sync, &rdev->flags))
3284                         set_bit(R5_Insync, &dev->flags);
3285                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3286                         /* in sync if before recovery_offset */
3287                         set_bit(R5_Insync, &dev->flags);
3288                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3289                          test_bit(R5_Expanded, &dev->flags))
3290                         /* If we've reshaped into here, we assume it is Insync.
3291                          * We will shortly update recovery_offset to make
3292                          * it official.
3293                          */
3294                         set_bit(R5_Insync, &dev->flags);
3295
3296                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3297                         /* This flag does not apply to '.replacement'
3298                          * only to .rdev, so make sure to check that*/
3299                         struct md_rdev *rdev2 = rcu_dereference(
3300                                 conf->disks[i].rdev);
3301                         if (rdev2 == rdev)
3302                                 clear_bit(R5_Insync, &dev->flags);
3303                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3304                                 s->handle_bad_blocks = 1;
3305                                 atomic_inc(&rdev2->nr_pending);
3306                         } else
3307                                 clear_bit(R5_WriteError, &dev->flags);
3308                 }
3309                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3310                         /* This flag does not apply to '.replacement'
3311                          * only to .rdev, so make sure to check that*/
3312                         struct md_rdev *rdev2 = rcu_dereference(
3313                                 conf->disks[i].rdev);
3314                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3315                                 s->handle_bad_blocks = 1;
3316                                 atomic_inc(&rdev2->nr_pending);
3317                         } else
3318                                 clear_bit(R5_MadeGood, &dev->flags);
3319                 }
3320                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3321                         struct md_rdev *rdev2 = rcu_dereference(
3322                                 conf->disks[i].replacement);
3323                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3324                                 s->handle_bad_blocks = 1;
3325                                 atomic_inc(&rdev2->nr_pending);
3326                         } else
3327                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3328                 }
3329                 if (!test_bit(R5_Insync, &dev->flags)) {
3330                         /* The ReadError flag will just be confusing now */
3331                         clear_bit(R5_ReadError, &dev->flags);
3332                         clear_bit(R5_ReWrite, &dev->flags);
3333                 }
3334                 if (test_bit(R5_ReadError, &dev->flags))
3335                         clear_bit(R5_Insync, &dev->flags);
3336                 if (!test_bit(R5_Insync, &dev->flags)) {
3337                         if (s->failed < 2)
3338                                 s->failed_num[s->failed] = i;
3339                         s->failed++;
3340                         if (rdev && !test_bit(Faulty, &rdev->flags))
3341                                 do_recovery = 1;
3342                 }
3343         }
3344         spin_unlock_irq(&conf->device_lock);
3345         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3346                 /* If there is a failed device being replaced,
3347                  *     we must be recovering.
3348                  * else if we are after recovery_cp, we must be syncing
3349                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3350                  * else we can only be replacing
3351                  * sync and recovery both need to read all devices, and so
3352                  * use the same flag.
3353                  */
3354                 if (do_recovery ||
3355                     sh->sector >= conf->mddev->recovery_cp ||
3356                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3357                         s->syncing = 1;
3358                 else
3359                         s->replacing = 1;
3360         }
3361         rcu_read_unlock();
3362 }
3363
3364 static void handle_stripe(struct stripe_head *sh)
3365 {
3366         struct stripe_head_state s;
3367         struct r5conf *conf = sh->raid_conf;
3368         int i;
3369         int prexor;
3370         int disks = sh->disks;
3371         struct r5dev *pdev, *qdev;
3372
3373         clear_bit(STRIPE_HANDLE, &sh->state);
3374         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3375                 /* already being handled, ensure it gets handled
3376                  * again when current action finishes */
3377                 set_bit(STRIPE_HANDLE, &sh->state);
3378                 return;
3379         }
3380
3381         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3382                 set_bit(STRIPE_SYNCING, &sh->state);
3383                 clear_bit(STRIPE_INSYNC, &sh->state);
3384         }
3385         clear_bit(STRIPE_DELAYED, &sh->state);
3386
3387         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3388                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3389                (unsigned long long)sh->sector, sh->state,
3390                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3391                sh->check_state, sh->reconstruct_state);
3392
3393         analyse_stripe(sh, &s);
3394
3395         if (s.handle_bad_blocks) {
3396                 set_bit(STRIPE_HANDLE, &sh->state);
3397                 goto finish;
3398         }
3399
3400         if (unlikely(s.blocked_rdev)) {
3401                 if (s.syncing || s.expanding || s.expanded ||
3402                     s.replacing || s.to_write || s.written) {
3403                         set_bit(STRIPE_HANDLE, &sh->state);
3404                         goto finish;
3405                 }
3406                 /* There is nothing for the blocked_rdev to block */
3407                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3408                 s.blocked_rdev = NULL;
3409         }
3410
3411         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3412                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3413                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3414         }
3415
3416         pr_debug("locked=%d uptodate=%d to_read=%d"
3417                " to_write=%d failed=%d failed_num=%d,%d\n",
3418                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3419                s.failed_num[0], s.failed_num[1]);
3420         /* check if the array has lost more than max_degraded devices and,
3421          * if so, some requests might need to be failed.
3422          */
3423         if (s.failed > conf->max_degraded) {
3424                 sh->check_state = 0;
3425                 sh->reconstruct_state = 0;
3426                 if (s.to_read+s.to_write+s.written)
3427                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3428                 if (s.syncing + s.replacing)
3429                         handle_failed_sync(conf, sh, &s);
3430         }
3431
3432         /*
3433          * might be able to return some write requests if the parity blocks
3434          * are safe, or on a failed drive
3435          */
3436         pdev = &sh->dev[sh->pd_idx];
3437         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3438                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3439         qdev = &sh->dev[sh->qd_idx];
3440         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3441                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3442                 || conf->level < 6;
3443
3444         if (s.written &&
3445             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3446                              && !test_bit(R5_LOCKED, &pdev->flags)
3447                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3448             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3449                              && !test_bit(R5_LOCKED, &qdev->flags)
3450                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3451                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3452
3453         /* Now we might consider reading some blocks, either to check/generate
3454          * parity, or to satisfy requests
3455          * or to load a block that is being partially written.
3456          */
3457         if (s.to_read || s.non_overwrite
3458             || (conf->level == 6 && s.to_write && s.failed)
3459             || (s.syncing && (s.uptodate + s.compute < disks))
3460             || s.replacing
3461             || s.expanding)
3462                 handle_stripe_fill(sh, &s, disks);
3463
3464         /* Now we check to see if any write operations have recently
3465          * completed
3466          */
3467         prexor = 0;
3468         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3469                 prexor = 1;
3470         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3471             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3472                 sh->reconstruct_state = reconstruct_state_idle;
3473
3474                 /* All the 'written' buffers and the parity block are ready to
3475                  * be written back to disk
3476                  */
3477                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3478                 BUG_ON(sh->qd_idx >= 0 &&
3479                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3480                 for (i = disks; i--; ) {
3481                         struct r5dev *dev = &sh->dev[i];
3482                         if (test_bit(R5_LOCKED, &dev->flags) &&
3483                                 (i == sh->pd_idx || i == sh->qd_idx ||
3484                                  dev->written)) {
3485                                 pr_debug("Writing block %d\n", i);
3486                                 set_bit(R5_Wantwrite, &dev->flags);
3487                                 if (prexor)
3488                                         continue;
3489                                 if (!test_bit(R5_Insync, &dev->flags) ||
3490                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3491                                      s.failed == 0))
3492                                         set_bit(STRIPE_INSYNC, &sh->state);
3493                         }
3494                 }
3495                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3496                         s.dec_preread_active = 1;
3497         }
3498
3499         /* Now to consider new write requests and what else, if anything
3500          * should be read.  We do not handle new writes when:
3501          * 1/ A 'write' operation (copy+xor) is already in flight.
3502          * 2/ A 'check' operation is in flight, as it may clobber the parity
3503          *    block.
3504          */
3505         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3506                 handle_stripe_dirtying(conf, sh, &s, disks);
3507
3508         /* maybe we need to check and possibly fix the parity for this stripe
3509          * Any reads will already have been scheduled, so we just see if enough
3510          * data is available.  The parity check is held off while parity
3511          * dependent operations are in flight.
3512          */
3513         if (sh->check_state ||
3514             (s.syncing && s.locked == 0 &&
3515              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3516              !test_bit(STRIPE_INSYNC, &sh->state))) {
3517                 if (conf->level == 6)
3518                         handle_parity_checks6(conf, sh, &s, disks);
3519                 else
3520                         handle_parity_checks5(conf, sh, &s, disks);
3521         }
3522
3523         if (s.replacing && s.locked == 0
3524             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3525                 /* Write out to replacement devices where possible */
3526                 for (i = 0; i < conf->raid_disks; i++)
3527                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3528                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3529                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3530                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3531                                 s.locked++;
3532                         }
3533                 set_bit(STRIPE_INSYNC, &sh->state);
3534         }
3535         if ((s.syncing || s.replacing) && s.locked == 0 &&
3536             test_bit(STRIPE_INSYNC, &sh->state)) {
3537                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3538                 clear_bit(STRIPE_SYNCING, &sh->state);
3539         }
3540
3541         /* If the failed drives are just a ReadError, then we might need
3542          * to progress the repair/check process
3543          */
3544         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3545                 for (i = 0; i < s.failed; i++) {
3546                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3547                         if (test_bit(R5_ReadError, &dev->flags)
3548                             && !test_bit(R5_LOCKED, &dev->flags)
3549                             && test_bit(R5_UPTODATE, &dev->flags)
3550                                 ) {
3551                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3552                                         set_bit(R5_Wantwrite, &dev->flags);
3553                                         set_bit(R5_ReWrite, &dev->flags);
3554                                         set_bit(R5_LOCKED, &dev->flags);
3555                                         s.locked++;
3556                                 } else {
3557                                         /* let's read it back */
3558                                         set_bit(R5_Wantread, &dev->flags);
3559                                         set_bit(R5_LOCKED, &dev->flags);
3560                                         s.locked++;
3561                                 }
3562                         }
3563                 }
3564
3565
3566         /* Finish reconstruct operations initiated by the expansion process */
3567         if (sh->reconstruct_state == reconstruct_state_result) {
3568                 struct stripe_head *sh_src
3569                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3570                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3571                         /* sh cannot be written until sh_src has been read.
3572                          * so arrange for sh to be delayed a little
3573                          */
3574                         set_bit(STRIPE_DELAYED, &sh->state);
3575                         set_bit(STRIPE_HANDLE, &sh->state);
3576                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3577                                               &sh_src->state))
3578                                 atomic_inc(&conf->preread_active_stripes);
3579                         release_stripe(sh_src);
3580                         goto finish;
3581                 }
3582                 if (sh_src)
3583                         release_stripe(sh_src);
3584
3585                 sh->reconstruct_state = reconstruct_state_idle;
3586                 clear_bit(STRIPE_EXPANDING, &sh->state);
3587                 for (i = conf->raid_disks; i--; ) {
3588                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3589                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3590                         s.locked++;
3591                 }
3592         }
3593
3594         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3595             !sh->reconstruct_state) {
3596                 /* Need to write out all blocks after computing parity */
3597                 sh->disks = conf->raid_disks;
3598                 stripe_set_idx(sh->sector, conf, 0, sh);
3599                 schedule_reconstruction(sh, &s, 1, 1);
3600         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3601                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3602                 atomic_dec(&conf->reshape_stripes);
3603                 wake_up(&conf->wait_for_overlap);
3604                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3605         }
3606
3607         if (s.expanding && s.locked == 0 &&
3608             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3609                 handle_stripe_expansion(conf, sh);
3610
3611 finish:
3612         /* wait for this device to become unblocked */
3613         if (unlikely(s.blocked_rdev)) {
3614                 if (conf->mddev->external)
3615                         md_wait_for_blocked_rdev(s.blocked_rdev,
3616                                                  conf->mddev);
3617                 else
3618                         /* Internal metadata will immediately
3619                          * be written by raid5d, so we don't
3620                          * need to wait here.
3621                          */
3622                         rdev_dec_pending(s.blocked_rdev,
3623                                          conf->mddev);
3624         }
3625
3626         if (s.handle_bad_blocks)
3627                 for (i = disks; i--; ) {
3628                         struct md_rdev *rdev;
3629                         struct r5dev *dev = &sh->dev[i];
3630                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3631                                 /* We own a safe reference to the rdev */
3632                                 rdev = conf->disks[i].rdev;
3633                                 if (!rdev_set_badblocks(rdev, sh->sector,
3634                                                         STRIPE_SECTORS, 0))
3635                                         md_error(conf->mddev, rdev);
3636                                 rdev_dec_pending(rdev, conf->mddev);
3637                         }
3638                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3639                                 rdev = conf->disks[i].rdev;
3640                                 rdev_clear_badblocks(rdev, sh->sector,
3641                                                      STRIPE_SECTORS, 0);
3642                                 rdev_dec_pending(rdev, conf->mddev);
3643                         }
3644                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3645                                 rdev = conf->disks[i].replacement;
3646                                 if (!rdev)
3647                                         /* rdev have been moved down */
3648                                         rdev = conf->disks[i].rdev;
3649                                 rdev_clear_badblocks(rdev, sh->sector,
3650                                                      STRIPE_SECTORS, 0);
3651                                 rdev_dec_pending(rdev, conf->mddev);
3652                         }
3653                 }
3654
3655         if (s.ops_request)
3656                 raid_run_ops(sh, s.ops_request);
3657
3658         ops_run_io(sh, &s);
3659
3660         if (s.dec_preread_active) {
3661                 /* We delay this until after ops_run_io so that if make_request
3662                  * is waiting on a flush, it won't continue until the writes
3663                  * have actually been submitted.
3664                  */
3665                 atomic_dec(&conf->preread_active_stripes);
3666                 if (atomic_read(&conf->preread_active_stripes) <
3667                     IO_THRESHOLD)
3668                         md_wakeup_thread(conf->mddev->thread);
3669         }
3670
3671         return_io(s.return_bi);
3672
3673         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3674 }
3675
3676 static void raid5_activate_delayed(struct r5conf *conf)
3677 {
3678         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3679                 while (!list_empty(&conf->delayed_list)) {
3680                         struct list_head *l = conf->delayed_list.next;
3681                         struct stripe_head *sh;
3682                         sh = list_entry(l, struct stripe_head, lru);
3683                         list_del_init(l);
3684                         clear_bit(STRIPE_DELAYED, &sh->state);
3685                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3686                                 atomic_inc(&conf->preread_active_stripes);
3687                         list_add_tail(&sh->lru, &conf->hold_list);
3688                 }
3689         }
3690 }
3691
3692 static void activate_bit_delay(struct r5conf *conf)
3693 {
3694         /* device_lock is held */
3695         struct list_head head;
3696         list_add(&head, &conf->bitmap_list);
3697         list_del_init(&conf->bitmap_list);
3698         while (!list_empty(&head)) {
3699                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3700                 list_del_init(&sh->lru);
3701                 atomic_inc(&sh->count);
3702                 __release_stripe(conf, sh);
3703         }
3704 }
3705
3706 int md_raid5_congested(struct mddev *mddev, int bits)
3707 {
3708         struct r5conf *conf = mddev->private;
3709
3710         /* No difference between reads and writes.  Just check
3711          * how busy the stripe_cache is
3712          */
3713
3714         if (conf->inactive_blocked)
3715                 return 1;
3716         if (conf->quiesce)
3717                 return 1;
3718         if (list_empty_careful(&conf->inactive_list))
3719                 return 1;
3720
3721         return 0;
3722 }
3723 EXPORT_SYMBOL_GPL(md_raid5_congested);
3724
3725 static int raid5_congested(void *data, int bits)
3726 {
3727         struct mddev *mddev = data;
3728
3729         return mddev_congested(mddev, bits) ||
3730                 md_raid5_congested(mddev, bits);
3731 }
3732
3733 /* We want read requests to align with chunks where possible,
3734  * but write requests don't need to.
3735  */
3736 static int raid5_mergeable_bvec(struct request_queue *q,
3737                                 struct bvec_merge_data *bvm,
3738                                 struct bio_vec *biovec)
3739 {
3740         struct mddev *mddev = q->queuedata;
3741         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3742         int max;
3743         unsigned int chunk_sectors = mddev->chunk_sectors;
3744         unsigned int bio_sectors = bvm->bi_size >> 9;
3745
3746         if ((bvm->bi_rw & 1) == WRITE)
3747                 return biovec->bv_len; /* always allow writes to be mergeable */
3748
3749         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3750                 chunk_sectors = mddev->new_chunk_sectors;
3751         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3752         if (max < 0) max = 0;
3753         if (max <= biovec->bv_len && bio_sectors == 0)
3754                 return biovec->bv_len;
3755         else
3756                 return max;
3757 }
3758
3759
3760 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3761 {
3762         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3763         unsigned int chunk_sectors = mddev->chunk_sectors;
3764         unsigned int bio_sectors = bio->bi_size >> 9;
3765
3766         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3767                 chunk_sectors = mddev->new_chunk_sectors;
3768         return  chunk_sectors >=
3769                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3770 }
3771
3772 /*
3773  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3774  *  later sampled by raid5d.
3775  */
3776 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3777 {
3778         unsigned long flags;
3779
3780         spin_lock_irqsave(&conf->device_lock, flags);
3781
3782         bi->bi_next = conf->retry_read_aligned_list;
3783         conf->retry_read_aligned_list = bi;
3784
3785         spin_unlock_irqrestore(&conf->device_lock, flags);
3786         md_wakeup_thread(conf->mddev->thread);
3787 }
3788
3789
3790 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3791 {
3792         struct bio *bi;
3793
3794         bi = conf->retry_read_aligned;
3795         if (bi) {
3796                 conf->retry_read_aligned = NULL;
3797                 return bi;
3798         }
3799         bi = conf->retry_read_aligned_list;
3800         if(bi) {
3801                 conf->retry_read_aligned_list = bi->bi_next;
3802                 bi->bi_next = NULL;
3803                 /*
3804                  * this sets the active strip count to 1 and the processed
3805                  * strip count to zero (upper 8 bits)
3806                  */
3807                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3808         }
3809
3810         return bi;
3811 }
3812
3813
3814 /*
3815  *  The "raid5_align_endio" should check if the read succeeded and if it
3816  *  did, call bio_endio on the original bio (having bio_put the new bio
3817  *  first).
3818  *  If the read failed..
3819  */
3820 static void raid5_align_endio(struct bio *bi, int error)
3821 {
3822         struct bio* raid_bi  = bi->bi_private;
3823         struct mddev *mddev;
3824         struct r5conf *conf;
3825         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3826         struct md_rdev *rdev;
3827
3828         bio_put(bi);
3829
3830         rdev = (void*)raid_bi->bi_next;
3831         raid_bi->bi_next = NULL;
3832         mddev = rdev->mddev;
3833         conf = mddev->private;
3834
3835         rdev_dec_pending(rdev, conf->mddev);
3836
3837         if (!error && uptodate) {
3838                 bio_endio(raid_bi, 0);
3839                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3840                         wake_up(&conf->wait_for_stripe);
3841                 return;
3842         }
3843
3844
3845         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3846
3847         add_bio_to_retry(raid_bi, conf);
3848 }
3849
3850 static int bio_fits_rdev(struct bio *bi)
3851 {
3852         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3853
3854         if ((bi->bi_size>>9) > queue_max_sectors(q))
3855                 return 0;
3856         blk_recount_segments(q, bi);
3857         if (bi->bi_phys_segments > queue_max_segments(q))
3858                 return 0;
3859
3860         if (q->merge_bvec_fn)
3861                 /* it's too hard to apply the merge_bvec_fn at this stage,
3862                  * just just give up
3863                  */
3864                 return 0;
3865
3866         return 1;
3867 }
3868
3869
3870 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3871 {
3872         struct r5conf *conf = mddev->private;
3873         int dd_idx;
3874         struct bio* align_bi;
3875         struct md_rdev *rdev;
3876         sector_t end_sector;
3877
3878         if (!in_chunk_boundary(mddev, raid_bio)) {
3879                 pr_debug("chunk_aligned_read : non aligned\n");
3880                 return 0;
3881         }
3882         /*
3883          * use bio_clone_mddev to make a copy of the bio
3884          */
3885         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3886         if (!align_bi)
3887                 return 0;
3888         /*
3889          *   set bi_end_io to a new function, and set bi_private to the
3890          *     original bio.
3891          */
3892         align_bi->bi_end_io  = raid5_align_endio;
3893         align_bi->bi_private = raid_bio;
3894         /*
3895          *      compute position
3896          */
3897         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3898                                                     0,
3899                                                     &dd_idx, NULL);
3900
3901         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3902         rcu_read_lock();
3903         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3904         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3905             rdev->recovery_offset < end_sector) {
3906                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3907                 if (rdev &&
3908                     (test_bit(Faulty, &rdev->flags) ||
3909                     !(test_bit(In_sync, &rdev->flags) ||
3910                       rdev->recovery_offset >= end_sector)))
3911                         rdev = NULL;
3912         }
3913         if (rdev) {
3914                 sector_t first_bad;
3915                 int bad_sectors;
3916
3917                 atomic_inc(&rdev->nr_pending);
3918                 rcu_read_unlock();
3919                 raid_bio->bi_next = (void*)rdev;
3920                 align_bi->bi_bdev =  rdev->bdev;
3921                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3922
3923                 if (!bio_fits_rdev(align_bi) ||
3924                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3925                                 &first_bad, &bad_sectors)) {
3926                         /* too big in some way, or has a known bad block */
3927                         bio_put(align_bi);
3928                         rdev_dec_pending(rdev, mddev);
3929                         return 0;
3930                 }
3931
3932                 /* No reshape active, so we can trust rdev->data_offset */
3933                 align_bi->bi_sector += rdev->data_offset;
3934
3935                 spin_lock_irq(&conf->device_lock);
3936                 wait_event_lock_irq(conf->wait_for_stripe,
3937                                     conf->quiesce == 0,
3938                                     conf->device_lock, /* nothing */);
3939                 atomic_inc(&conf->active_aligned_reads);
3940                 spin_unlock_irq(&conf->device_lock);
3941
3942                 generic_make_request(align_bi);
3943                 return 1;
3944         } else {
3945                 rcu_read_unlock();
3946                 bio_put(align_bi);
3947                 return 0;
3948         }
3949 }
3950
3951 /* __get_priority_stripe - get the next stripe to process
3952  *
3953  * Full stripe writes are allowed to pass preread active stripes up until
3954  * the bypass_threshold is exceeded.  In general the bypass_count
3955  * increments when the handle_list is handled before the hold_list; however, it
3956  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3957  * stripe with in flight i/o.  The bypass_count will be reset when the
3958  * head of the hold_list has changed, i.e. the head was promoted to the
3959  * handle_list.
3960  */
3961 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3962 {
3963         struct stripe_head *sh;
3964
3965         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3966                   __func__,
3967                   list_empty(&conf->handle_list) ? "empty" : "busy",
3968                   list_empty(&conf->hold_list) ? "empty" : "busy",
3969                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3970
3971         if (!list_empty(&conf->handle_list)) {
3972                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3973
3974                 if (list_empty(&conf->hold_list))
3975                         conf->bypass_count = 0;
3976                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3977                         if (conf->hold_list.next == conf->last_hold)
3978                                 conf->bypass_count++;
3979                         else {
3980                                 conf->last_hold = conf->hold_list.next;
3981                                 conf->bypass_count -= conf->bypass_threshold;
3982                                 if (conf->bypass_count < 0)
3983                                         conf->bypass_count = 0;
3984                         }
3985                 }
3986         } else if (!list_empty(&conf->hold_list) &&
3987                    ((conf->bypass_threshold &&
3988                      conf->bypass_count > conf->bypass_threshold) ||
3989                     atomic_read(&conf->pending_full_writes) == 0)) {
3990                 sh = list_entry(conf->hold_list.next,
3991                                 typeof(*sh), lru);
3992                 conf->bypass_count -= conf->bypass_threshold;
3993                 if (conf->bypass_count < 0)
3994                         conf->bypass_count = 0;
3995         } else
3996                 return NULL;
3997
3998         list_del_init(&sh->lru);
3999         atomic_inc(&sh->count);
4000         BUG_ON(atomic_read(&sh->count) != 1);
4001         return sh;
4002 }
4003
4004 static void make_request(struct mddev *mddev, struct bio * bi)
4005 {
4006         struct r5conf *conf = mddev->private;
4007         int dd_idx;
4008         sector_t new_sector;
4009         sector_t logical_sector, last_sector;
4010         struct stripe_head *sh;
4011         const int rw = bio_data_dir(bi);
4012         int remaining;
4013
4014         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4015                 md_flush_request(mddev, bi);
4016                 return;
4017         }
4018
4019         md_write_start(mddev, bi);
4020
4021         if (rw == READ &&
4022              mddev->reshape_position == MaxSector &&
4023              chunk_aligned_read(mddev,bi))
4024                 return;
4025
4026         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4027         last_sector = bi->bi_sector + (bi->bi_size>>9);
4028         bi->bi_next = NULL;
4029         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4030
4031         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4032                 DEFINE_WAIT(w);
4033                 int previous;
4034
4035         retry:
4036                 previous = 0;
4037                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4038                 if (unlikely(conf->reshape_progress != MaxSector)) {
4039                         /* spinlock is needed as reshape_progress may be
4040                          * 64bit on a 32bit platform, and so it might be
4041                          * possible to see a half-updated value
4042                          * Of course reshape_progress could change after
4043                          * the lock is dropped, so once we get a reference
4044                          * to the stripe that we think it is, we will have
4045                          * to check again.
4046                          */
4047                         spin_lock_irq(&conf->device_lock);
4048                         if (mddev->reshape_backwards
4049                             ? logical_sector < conf->reshape_progress
4050                             : logical_sector >= conf->reshape_progress) {
4051                                 previous = 1;
4052                         } else {
4053                                 if (mddev->reshape_backwards
4054                                     ? logical_sector < conf->reshape_safe
4055                                     : logical_sector >= conf->reshape_safe) {
4056                                         spin_unlock_irq(&conf->device_lock);
4057                                         schedule();
4058                                         goto retry;
4059                                 }
4060                         }
4061                         spin_unlock_irq(&conf->device_lock);
4062                 }
4063
4064                 new_sector = raid5_compute_sector(conf, logical_sector,
4065                                                   previous,
4066                                                   &dd_idx, NULL);
4067                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4068                         (unsigned long long)new_sector, 
4069                         (unsigned long long)logical_sector);
4070
4071                 sh = get_active_stripe(conf, new_sector, previous,
4072                                        (bi->bi_rw&RWA_MASK), 0);
4073                 if (sh) {
4074                         if (unlikely(previous)) {
4075                                 /* expansion might have moved on while waiting for a
4076                                  * stripe, so we must do the range check again.
4077                                  * Expansion could still move past after this
4078                                  * test, but as we are holding a reference to
4079                                  * 'sh', we know that if that happens,
4080                                  *  STRIPE_EXPANDING will get set and the expansion
4081                                  * won't proceed until we finish with the stripe.
4082                                  */
4083                                 int must_retry = 0;
4084                                 spin_lock_irq(&conf->device_lock);
4085                                 if (mddev->reshape_backwards
4086                                     ? logical_sector >= conf->reshape_progress
4087                                     : logical_sector < conf->reshape_progress)
4088                                         /* mismatch, need to try again */
4089                                         must_retry = 1;
4090                                 spin_unlock_irq(&conf->device_lock);
4091                                 if (must_retry) {
4092                                         release_stripe(sh);
4093                                         schedule();
4094                                         goto retry;
4095                                 }
4096                         }
4097
4098                         if (rw == WRITE &&
4099                             logical_sector >= mddev->suspend_lo &&
4100                             logical_sector < mddev->suspend_hi) {
4101                                 release_stripe(sh);
4102                                 /* As the suspend_* range is controlled by
4103                                  * userspace, we want an interruptible
4104                                  * wait.
4105                                  */
4106                                 flush_signals(current);
4107                                 prepare_to_wait(&conf->wait_for_overlap,
4108                                                 &w, TASK_INTERRUPTIBLE);
4109                                 if (logical_sector >= mddev->suspend_lo &&
4110                                     logical_sector < mddev->suspend_hi)
4111                                         schedule();
4112                                 goto retry;
4113                         }
4114
4115                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4116                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4117                                 /* Stripe is busy expanding or
4118                                  * add failed due to overlap.  Flush everything
4119                                  * and wait a while
4120                                  */
4121                                 md_wakeup_thread(mddev->thread);
4122                                 release_stripe(sh);
4123                                 schedule();
4124                                 goto retry;
4125                         }
4126                         finish_wait(&conf->wait_for_overlap, &w);
4127                         set_bit(STRIPE_HANDLE, &sh->state);
4128                         clear_bit(STRIPE_DELAYED, &sh->state);
4129                         if ((bi->bi_rw & REQ_SYNC) &&
4130                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4131                                 atomic_inc(&conf->preread_active_stripes);
4132                         mddev_check_plugged(mddev);
4133                         release_stripe(sh);
4134                 } else {
4135                         /* cannot get stripe for read-ahead, just give-up */
4136                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4137                         finish_wait(&conf->wait_for_overlap, &w);
4138                         break;
4139                 }
4140         }
4141
4142         remaining = raid5_dec_bi_active_stripes(bi);
4143         if (remaining == 0) {
4144
4145                 if ( rw == WRITE )
4146                         md_write_end(mddev);
4147
4148                 bio_endio(bi, 0);
4149         }
4150 }
4151
4152 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4153
4154 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4155 {
4156         /* reshaping is quite different to recovery/resync so it is
4157          * handled quite separately ... here.
4158          *
4159          * On each call to sync_request, we gather one chunk worth of
4160          * destination stripes and flag them as expanding.
4161          * Then we find all the source stripes and request reads.
4162          * As the reads complete, handle_stripe will copy the data
4163          * into the destination stripe and release that stripe.
4164          */
4165         struct r5conf *conf = mddev->private;
4166         struct stripe_head *sh;
4167         sector_t first_sector, last_sector;
4168         int raid_disks = conf->previous_raid_disks;
4169         int data_disks = raid_disks - conf->max_degraded;
4170         int new_data_disks = conf->raid_disks - conf->max_degraded;
4171         int i;
4172         int dd_idx;
4173         sector_t writepos, readpos, safepos;
4174         sector_t stripe_addr;
4175         int reshape_sectors;
4176         struct list_head stripes;
4177
4178         if (sector_nr == 0) {
4179                 /* If restarting in the middle, skip the initial sectors */
4180                 if (mddev->reshape_backwards &&
4181                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4182                         sector_nr = raid5_size(mddev, 0, 0)
4183                                 - conf->reshape_progress;
4184                 } else if (!mddev->reshape_backwards &&
4185                            conf->reshape_progress > 0)
4186                         sector_nr = conf->reshape_progress;
4187                 sector_div(sector_nr, new_data_disks);
4188                 if (sector_nr) {
4189                         mddev->curr_resync_completed = sector_nr;
4190                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4191                         *skipped = 1;
4192                         return sector_nr;
4193                 }
4194         }
4195
4196         /* We need to process a full chunk at a time.
4197          * If old and new chunk sizes differ, we need to process the
4198          * largest of these
4199          */
4200         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4201                 reshape_sectors = mddev->new_chunk_sectors;
4202         else
4203                 reshape_sectors = mddev->chunk_sectors;
4204
4205         /* We update the metadata at least every 10 seconds, or when
4206          * the data about to be copied would over-write the source of
4207          * the data at the front of the range.  i.e. one new_stripe
4208          * along from reshape_progress new_maps to after where
4209          * reshape_safe old_maps to
4210          */
4211         writepos = conf->reshape_progress;
4212         sector_div(writepos, new_data_disks);
4213         readpos = conf->reshape_progress;
4214         sector_div(readpos, data_disks);
4215         safepos = conf->reshape_safe;
4216         sector_div(safepos, data_disks);
4217         if (mddev->reshape_backwards) {
4218                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4219                 readpos += reshape_sectors;
4220                 safepos += reshape_sectors;
4221         } else {
4222                 writepos += reshape_sectors;
4223                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4224                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4225         }
4226
4227         /* Having calculated the 'writepos' possibly use it
4228          * to set 'stripe_addr' which is where we will write to.
4229          */
4230         if (mddev->reshape_backwards) {
4231                 BUG_ON(conf->reshape_progress == 0);
4232                 stripe_addr = writepos;
4233                 BUG_ON((mddev->dev_sectors &
4234                         ~((sector_t)reshape_sectors - 1))
4235                        - reshape_sectors - stripe_addr
4236                        != sector_nr);
4237         } else {
4238                 BUG_ON(writepos != sector_nr + reshape_sectors);
4239                 stripe_addr = sector_nr;
4240         }
4241
4242         /* 'writepos' is the most advanced device address we might write.
4243          * 'readpos' is the least advanced device address we might read.
4244          * 'safepos' is the least address recorded in the metadata as having
4245          *     been reshaped.
4246          * If there is a min_offset_diff, these are adjusted either by
4247          * increasing the safepos/readpos if diff is negative, or
4248          * increasing writepos if diff is positive.
4249          * If 'readpos' is then behind 'writepos', there is no way that we can
4250          * ensure safety in the face of a crash - that must be done by userspace
4251          * making a backup of the data.  So in that case there is no particular
4252          * rush to update metadata.
4253          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4254          * update the metadata to advance 'safepos' to match 'readpos' so that
4255          * we can be safe in the event of a crash.
4256          * So we insist on updating metadata if safepos is behind writepos and
4257          * readpos is beyond writepos.
4258          * In any case, update the metadata every 10 seconds.
4259          * Maybe that number should be configurable, but I'm not sure it is
4260          * worth it.... maybe it could be a multiple of safemode_delay???
4261          */
4262         if (conf->min_offset_diff < 0) {
4263                 safepos += -conf->min_offset_diff;
4264                 readpos += -conf->min_offset_diff;
4265         } else
4266                 writepos += conf->min_offset_diff;
4267
4268         if ((mddev->reshape_backwards
4269              ? (safepos > writepos && readpos < writepos)
4270              : (safepos < writepos && readpos > writepos)) ||
4271             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4272                 /* Cannot proceed until we've updated the superblock... */
4273                 wait_event(conf->wait_for_overlap,
4274                            atomic_read(&conf->reshape_stripes)==0);
4275                 mddev->reshape_position = conf->reshape_progress;
4276                 mddev->curr_resync_completed = sector_nr;
4277                 conf->reshape_checkpoint = jiffies;
4278                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4279                 md_wakeup_thread(mddev->thread);
4280                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4281                            kthread_should_stop());
4282                 spin_lock_irq(&conf->device_lock);
4283                 conf->reshape_safe = mddev->reshape_position;
4284                 spin_unlock_irq(&conf->device_lock);
4285                 wake_up(&conf->wait_for_overlap);
4286                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4287         }
4288
4289         INIT_LIST_HEAD(&stripes);
4290         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4291                 int j;
4292                 int skipped_disk = 0;
4293                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4294                 set_bit(STRIPE_EXPANDING, &sh->state);
4295                 atomic_inc(&conf->reshape_stripes);
4296                 /* If any of this stripe is beyond the end of the old
4297                  * array, then we need to zero those blocks
4298                  */
4299                 for (j=sh->disks; j--;) {
4300                         sector_t s;
4301                         if (j == sh->pd_idx)
4302                                 continue;
4303                         if (conf->level == 6 &&
4304                             j == sh->qd_idx)
4305                                 continue;
4306                         s = compute_blocknr(sh, j, 0);
4307                         if (s < raid5_size(mddev, 0, 0)) {
4308                                 skipped_disk = 1;
4309                                 continue;
4310                         }
4311                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4312                         set_bit(R5_Expanded, &sh->dev[j].flags);
4313                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4314                 }
4315                 if (!skipped_disk) {
4316                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4317                         set_bit(STRIPE_HANDLE, &sh->state);
4318                 }
4319                 list_add(&sh->lru, &stripes);
4320         }
4321         spin_lock_irq(&conf->device_lock);
4322         if (mddev->reshape_backwards)
4323                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4324         else
4325                 conf->reshape_progress += reshape_sectors * new_data_disks;
4326         spin_unlock_irq(&conf->device_lock);
4327         /* Ok, those stripe are ready. We can start scheduling
4328          * reads on the source stripes.
4329          * The source stripes are determined by mapping the first and last
4330          * block on the destination stripes.
4331          */
4332         first_sector =
4333                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4334                                      1, &dd_idx, NULL);
4335         last_sector =
4336                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4337                                             * new_data_disks - 1),
4338                                      1, &dd_idx, NULL);
4339         if (last_sector >= mddev->dev_sectors)
4340                 last_sector = mddev->dev_sectors - 1;
4341         while (first_sector <= last_sector) {
4342                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4343                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4344                 set_bit(STRIPE_HANDLE, &sh->state);
4345                 release_stripe(sh);
4346                 first_sector += STRIPE_SECTORS;
4347         }
4348         /* Now that the sources are clearly marked, we can release
4349          * the destination stripes
4350          */
4351         while (!list_empty(&stripes)) {
4352                 sh = list_entry(stripes.next, struct stripe_head, lru);
4353                 list_del_init(&sh->lru);
4354                 release_stripe(sh);
4355         }
4356         /* If this takes us to the resync_max point where we have to pause,
4357          * then we need to write out the superblock.
4358          */
4359         sector_nr += reshape_sectors;
4360         if ((sector_nr - mddev->curr_resync_completed) * 2
4361             >= mddev->resync_max - mddev->curr_resync_completed) {
4362                 /* Cannot proceed until we've updated the superblock... */
4363                 wait_event(conf->wait_for_overlap,
4364                            atomic_read(&conf->reshape_stripes) == 0);
4365                 mddev->reshape_position = conf->reshape_progress;
4366                 mddev->curr_resync_completed = sector_nr;
4367                 conf->reshape_checkpoint = jiffies;
4368                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4369                 md_wakeup_thread(mddev->thread);
4370                 wait_event(mddev->sb_wait,
4371                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4372                            || kthread_should_stop());
4373                 spin_lock_irq(&conf->device_lock);
4374                 conf->reshape_safe = mddev->reshape_position;
4375                 spin_unlock_irq(&conf->device_lock);
4376                 wake_up(&conf->wait_for_overlap);
4377                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4378         }
4379         return reshape_sectors;
4380 }
4381
4382 /* FIXME go_faster isn't used */
4383 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4384 {
4385         struct r5conf *conf = mddev->private;
4386         struct stripe_head *sh;
4387         sector_t max_sector = mddev->dev_sectors;
4388         sector_t sync_blocks;
4389         int still_degraded = 0;
4390         int i;
4391
4392         if (sector_nr >= max_sector) {
4393                 /* just being told to finish up .. nothing much to do */
4394
4395                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4396                         end_reshape(conf);
4397                         return 0;
4398                 }
4399
4400                 if (mddev->curr_resync < max_sector) /* aborted */
4401                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4402                                         &sync_blocks, 1);
4403                 else /* completed sync */
4404                         conf->fullsync = 0;
4405                 bitmap_close_sync(mddev->bitmap);
4406
4407                 return 0;
4408         }
4409
4410         /* Allow raid5_quiesce to complete */
4411         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4412
4413         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4414                 return reshape_request(mddev, sector_nr, skipped);
4415
4416         /* No need to check resync_max as we never do more than one
4417          * stripe, and as resync_max will always be on a chunk boundary,
4418          * if the check in md_do_sync didn't fire, there is no chance
4419          * of overstepping resync_max here
4420          */
4421
4422         /* if there is too many failed drives and we are trying
4423          * to resync, then assert that we are finished, because there is
4424          * nothing we can do.
4425          */
4426         if (mddev->degraded >= conf->max_degraded &&
4427             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4428                 sector_t rv = mddev->dev_sectors - sector_nr;
4429                 *skipped = 1;
4430                 return rv;
4431         }
4432         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4433             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4434             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4435                 /* we can skip this block, and probably more */
4436                 sync_blocks /= STRIPE_SECTORS;
4437                 *skipped = 1;
4438                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4439         }
4440
4441         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4442
4443         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4444         if (sh == NULL) {
4445                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4446                 /* make sure we don't swamp the stripe cache if someone else
4447                  * is trying to get access
4448                  */
4449                 schedule_timeout_uninterruptible(1);
4450         }
4451         /* Need to check if array will still be degraded after recovery/resync
4452          * We don't need to check the 'failed' flag as when that gets set,
4453          * recovery aborts.
4454          */
4455         for (i = 0; i < conf->raid_disks; i++)
4456                 if (conf->disks[i].rdev == NULL)
4457                         still_degraded = 1;
4458
4459         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4460
4461         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4462
4463         handle_stripe(sh);
4464         release_stripe(sh);
4465
4466         return STRIPE_SECTORS;
4467 }
4468
4469 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4470 {
4471         /* We may not be able to submit a whole bio at once as there
4472          * may not be enough stripe_heads available.
4473          * We cannot pre-allocate enough stripe_heads as we may need
4474          * more than exist in the cache (if we allow ever large chunks).
4475          * So we do one stripe head at a time and record in
4476          * ->bi_hw_segments how many have been done.
4477          *
4478          * We *know* that this entire raid_bio is in one chunk, so
4479          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4480          */
4481         struct stripe_head *sh;
4482         int dd_idx;
4483         sector_t sector, logical_sector, last_sector;
4484         int scnt = 0;
4485         int remaining;
4486         int handled = 0;
4487
4488         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4489         sector = raid5_compute_sector(conf, logical_sector,
4490                                       0, &dd_idx, NULL);
4491         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4492
4493         for (; logical_sector < last_sector;
4494              logical_sector += STRIPE_SECTORS,
4495                      sector += STRIPE_SECTORS,
4496                      scnt++) {
4497
4498                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4499                         /* already done this stripe */
4500                         continue;
4501
4502                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4503
4504                 if (!sh) {
4505                         /* failed to get a stripe - must wait */
4506                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4507                         conf->retry_read_aligned = raid_bio;
4508                         return handled;
4509                 }
4510
4511                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4512                         release_stripe(sh);
4513                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4514                         conf->retry_read_aligned = raid_bio;
4515                         return handled;
4516                 }
4517
4518                 handle_stripe(sh);
4519                 release_stripe(sh);
4520                 handled++;
4521         }
4522         remaining = raid5_dec_bi_active_stripes(raid_bio);
4523         if (remaining == 0)
4524                 bio_endio(raid_bio, 0);
4525         if (atomic_dec_and_test(&conf->active_aligned_reads))
4526                 wake_up(&conf->wait_for_stripe);
4527         return handled;
4528 }
4529
4530
4531 /*
4532  * This is our raid5 kernel thread.
4533  *
4534  * We scan the hash table for stripes which can be handled now.
4535  * During the scan, completed stripes are saved for us by the interrupt
4536  * handler, so that they will not have to wait for our next wakeup.
4537  */
4538 static void raid5d(struct mddev *mddev)
4539 {
4540         struct stripe_head *sh;
4541         struct r5conf *conf = mddev->private;
4542         int handled;
4543         struct blk_plug plug;
4544
4545         pr_debug("+++ raid5d active\n");
4546
4547         md_check_recovery(mddev);
4548
4549         blk_start_plug(&plug);
4550         handled = 0;
4551         spin_lock_irq(&conf->device_lock);
4552         while (1) {
4553                 struct bio *bio;
4554
4555                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4556                     !list_empty(&conf->bitmap_list)) {
4557                         /* Now is a good time to flush some bitmap updates */
4558                         conf->seq_flush++;
4559                         spin_unlock_irq(&conf->device_lock);
4560                         bitmap_unplug(mddev->bitmap);
4561                         spin_lock_irq(&conf->device_lock);
4562                         conf->seq_write = conf->seq_flush;
4563                         activate_bit_delay(conf);
4564                 }
4565                 if (atomic_read(&mddev->plug_cnt) == 0)
4566                         raid5_activate_delayed(conf);
4567
4568                 while ((bio = remove_bio_from_retry(conf))) {
4569                         int ok;
4570                         spin_unlock_irq(&conf->device_lock);
4571                         ok = retry_aligned_read(conf, bio);
4572                         spin_lock_irq(&conf->device_lock);
4573                         if (!ok)
4574                                 break;
4575                         handled++;
4576                 }
4577
4578                 sh = __get_priority_stripe(conf);
4579
4580                 if (!sh)
4581                         break;
4582                 spin_unlock_irq(&conf->device_lock);
4583                 
4584                 handled++;
4585                 handle_stripe(sh);
4586                 release_stripe(sh);
4587                 cond_resched();
4588
4589                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4590                         md_check_recovery(mddev);
4591
4592                 spin_lock_irq(&conf->device_lock);
4593         }
4594         pr_debug("%d stripes handled\n", handled);
4595
4596         spin_unlock_irq(&conf->device_lock);
4597
4598         async_tx_issue_pending_all();
4599         blk_finish_plug(&plug);
4600
4601         pr_debug("--- raid5d inactive\n");
4602 }
4603
4604 static ssize_t
4605 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4606 {
4607         struct r5conf *conf = mddev->private;
4608         if (conf)
4609                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4610         else
4611                 return 0;
4612 }
4613
4614 int
4615 raid5_set_cache_size(struct mddev *mddev, int size)
4616 {
4617         struct r5conf *conf = mddev->private;
4618         int err;
4619
4620         if (size <= 16 || size > 32768)
4621                 return -EINVAL;
4622         while (size < conf->max_nr_stripes) {
4623                 if (drop_one_stripe(conf))
4624                         conf->max_nr_stripes--;
4625                 else
4626                         break;
4627         }
4628         err = md_allow_write(mddev);
4629         if (err)
4630                 return err;
4631         while (size > conf->max_nr_stripes) {
4632                 if (grow_one_stripe(conf))
4633                         conf->max_nr_stripes++;
4634                 else break;
4635         }
4636         return 0;
4637 }
4638 EXPORT_SYMBOL(raid5_set_cache_size);
4639
4640 static ssize_t
4641 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4642 {
4643         struct r5conf *conf = mddev->private;
4644         unsigned long new;
4645         int err;
4646
4647         if (len >= PAGE_SIZE)
4648                 return -EINVAL;
4649         if (!conf)
4650                 return -ENODEV;
4651
4652         if (strict_strtoul(page, 10, &new))
4653                 return -EINVAL;
4654         err = raid5_set_cache_size(mddev, new);
4655         if (err)
4656                 return err;
4657         return len;
4658 }
4659
4660 static struct md_sysfs_entry
4661 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4662                                 raid5_show_stripe_cache_size,
4663                                 raid5_store_stripe_cache_size);
4664
4665 static ssize_t
4666 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4667 {
4668         struct r5conf *conf = mddev->private;
4669         if (conf)
4670                 return sprintf(page, "%d\n", conf->bypass_threshold);
4671         else
4672                 return 0;
4673 }
4674
4675 static ssize_t
4676 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4677 {
4678         struct r5conf *conf = mddev->private;
4679         unsigned long new;
4680         if (len >= PAGE_SIZE)
4681                 return -EINVAL;
4682         if (!conf)
4683                 return -ENODEV;
4684
4685         if (strict_strtoul(page, 10, &new))
4686                 return -EINVAL;
4687         if (new > conf->max_nr_stripes)
4688                 return -EINVAL;
4689         conf->bypass_threshold = new;
4690         return len;
4691 }
4692
4693 static struct md_sysfs_entry
4694 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4695                                         S_IRUGO | S_IWUSR,
4696                                         raid5_show_preread_threshold,
4697                                         raid5_store_preread_threshold);
4698
4699 static ssize_t
4700 stripe_cache_active_show(struct mddev *mddev, char *page)
4701 {
4702         struct r5conf *conf = mddev->private;
4703         if (conf)
4704                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4705         else
4706                 return 0;
4707 }
4708
4709 static struct md_sysfs_entry
4710 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4711
4712 static struct attribute *raid5_attrs[] =  {
4713         &raid5_stripecache_size.attr,
4714         &raid5_stripecache_active.attr,
4715         &raid5_preread_bypass_threshold.attr,
4716         NULL,
4717 };
4718 static struct attribute_group raid5_attrs_group = {
4719         .name = NULL,
4720         .attrs = raid5_attrs,
4721 };
4722
4723 static sector_t
4724 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4725 {
4726         struct r5conf *conf = mddev->private;
4727
4728         if (!sectors)
4729                 sectors = mddev->dev_sectors;
4730         if (!raid_disks)
4731                 /* size is defined by the smallest of previous and new size */
4732                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4733
4734         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4735         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4736         return sectors * (raid_disks - conf->max_degraded);
4737 }
4738
4739 static void raid5_free_percpu(struct r5conf *conf)
4740 {
4741         struct raid5_percpu *percpu;
4742         unsigned long cpu;
4743
4744         if (!conf->percpu)
4745                 return;
4746
4747         get_online_cpus();
4748         for_each_possible_cpu(cpu) {
4749                 percpu = per_cpu_ptr(conf->percpu, cpu);
4750                 safe_put_page(percpu->spare_page);
4751                 kfree(percpu->scribble);
4752         }
4753 #ifdef CONFIG_HOTPLUG_CPU
4754         unregister_cpu_notifier(&conf->cpu_notify);
4755 #endif
4756         put_online_cpus();
4757
4758         free_percpu(conf->percpu);
4759 }
4760
4761 static void free_conf(struct r5conf *conf)
4762 {
4763         shrink_stripes(conf);
4764         raid5_free_percpu(conf);
4765         kfree(conf->disks);
4766         kfree(conf->stripe_hashtbl);
4767         kfree(conf);
4768 }
4769
4770 #ifdef CONFIG_HOTPLUG_CPU
4771 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4772                               void *hcpu)
4773 {
4774         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4775         long cpu = (long)hcpu;
4776         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4777
4778         switch (action) {
4779         case CPU_UP_PREPARE:
4780         case CPU_UP_PREPARE_FROZEN:
4781                 if (conf->level == 6 && !percpu->spare_page)
4782                         percpu->spare_page = alloc_page(GFP_KERNEL);
4783                 if (!percpu->scribble)
4784                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4785
4786                 if (!percpu->scribble ||
4787                     (conf->level == 6 && !percpu->spare_page)) {
4788                         safe_put_page(percpu->spare_page);
4789                         kfree(percpu->scribble);
4790                         pr_err("%s: failed memory allocation for cpu%ld\n",
4791                                __func__, cpu);
4792                         return notifier_from_errno(-ENOMEM);
4793                 }
4794                 break;
4795         case CPU_DEAD:
4796         case CPU_DEAD_FROZEN:
4797                 safe_put_page(percpu->spare_page);
4798                 kfree(percpu->scribble);
4799                 percpu->spare_page = NULL;
4800                 percpu->scribble = NULL;
4801                 break;
4802         default:
4803                 break;
4804         }
4805         return NOTIFY_OK;
4806 }
4807 #endif
4808
4809 static int raid5_alloc_percpu(struct r5conf *conf)
4810 {
4811         unsigned long cpu;
4812         struct page *spare_page;
4813         struct raid5_percpu __percpu *allcpus;
4814         void *scribble;
4815         int err;
4816
4817         allcpus = alloc_percpu(struct raid5_percpu);
4818         if (!allcpus)
4819                 return -ENOMEM;
4820         conf->percpu = allcpus;
4821
4822         get_online_cpus();
4823         err = 0;
4824         for_each_present_cpu(cpu) {
4825                 if (conf->level == 6) {
4826                         spare_page = alloc_page(GFP_KERNEL);
4827                         if (!spare_page) {
4828                                 err = -ENOMEM;
4829                                 break;
4830                         }
4831                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4832                 }
4833                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4834                 if (!scribble) {
4835                         err = -ENOMEM;
4836                         break;
4837                 }
4838                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4839         }
4840 #ifdef CONFIG_HOTPLUG_CPU
4841         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4842         conf->cpu_notify.priority = 0;
4843         if (err == 0)
4844                 err = register_cpu_notifier(&conf->cpu_notify);
4845 #endif
4846         put_online_cpus();
4847
4848         return err;
4849 }
4850
4851 static struct r5conf *setup_conf(struct mddev *mddev)
4852 {
4853         struct r5conf *conf;
4854         int raid_disk, memory, max_disks;
4855         struct md_rdev *rdev;
4856         struct disk_info *disk;
4857         char pers_name[6];
4858
4859         if (mddev->new_level != 5
4860             && mddev->new_level != 4
4861             && mddev->new_level != 6) {
4862                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4863                        mdname(mddev), mddev->new_level);
4864                 return ERR_PTR(-EIO);
4865         }
4866         if ((mddev->new_level == 5
4867              && !algorithm_valid_raid5(mddev->new_layout)) ||
4868             (mddev->new_level == 6
4869              && !algorithm_valid_raid6(mddev->new_layout))) {
4870                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4871                        mdname(mddev), mddev->new_layout);
4872                 return ERR_PTR(-EIO);
4873         }
4874         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4875                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4876                        mdname(mddev), mddev->raid_disks);
4877                 return ERR_PTR(-EINVAL);
4878         }
4879
4880         if (!mddev->new_chunk_sectors ||
4881             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4882             !is_power_of_2(mddev->new_chunk_sectors)) {
4883                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4884                        mdname(mddev), mddev->new_chunk_sectors << 9);
4885                 return ERR_PTR(-EINVAL);
4886         }
4887
4888         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4889         if (conf == NULL)
4890                 goto abort;
4891         spin_lock_init(&conf->device_lock);
4892         init_waitqueue_head(&conf->wait_for_stripe);
4893         init_waitqueue_head(&conf->wait_for_overlap);
4894         INIT_LIST_HEAD(&conf->handle_list);
4895         INIT_LIST_HEAD(&conf->hold_list);
4896         INIT_LIST_HEAD(&conf->delayed_list);
4897         INIT_LIST_HEAD(&conf->bitmap_list);
4898         INIT_LIST_HEAD(&conf->inactive_list);
4899         atomic_set(&conf->active_stripes, 0);
4900         atomic_set(&conf->preread_active_stripes, 0);
4901         atomic_set(&conf->active_aligned_reads, 0);
4902         conf->bypass_threshold = BYPASS_THRESHOLD;
4903         conf->recovery_disabled = mddev->recovery_disabled - 1;
4904
4905         conf->raid_disks = mddev->raid_disks;
4906         if (mddev->reshape_position == MaxSector)
4907                 conf->previous_raid_disks = mddev->raid_disks;
4908         else
4909                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4910         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4911         conf->scribble_len = scribble_len(max_disks);
4912
4913         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4914                               GFP_KERNEL);
4915         if (!conf->disks)
4916                 goto abort;
4917
4918         conf->mddev = mddev;
4919
4920         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4921                 goto abort;
4922
4923         conf->level = mddev->new_level;
4924         if (raid5_alloc_percpu(conf) != 0)
4925                 goto abort;
4926
4927         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4928
4929         rdev_for_each(rdev, mddev) {
4930                 raid_disk = rdev->raid_disk;
4931                 if (raid_disk >= max_disks
4932                     || raid_disk < 0)
4933                         continue;
4934                 disk = conf->disks + raid_disk;
4935
4936                 if (test_bit(Replacement, &rdev->flags)) {
4937                         if (disk->replacement)
4938                                 goto abort;
4939                         disk->replacement = rdev;
4940                 } else {
4941                         if (disk->rdev)
4942                                 goto abort;
4943                         disk->rdev = rdev;
4944                 }
4945
4946                 if (test_bit(In_sync, &rdev->flags)) {
4947                         char b[BDEVNAME_SIZE];
4948                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4949                                " disk %d\n",
4950                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4951                 } else if (rdev->saved_raid_disk != raid_disk)
4952                         /* Cannot rely on bitmap to complete recovery */
4953                         conf->fullsync = 1;
4954         }
4955
4956         conf->chunk_sectors = mddev->new_chunk_sectors;
4957         conf->level = mddev->new_level;
4958         if (conf->level == 6)
4959                 conf->max_degraded = 2;
4960         else
4961                 conf->max_degraded = 1;
4962         conf->algorithm = mddev->new_layout;
4963         conf->max_nr_stripes = NR_STRIPES;
4964         conf->reshape_progress = mddev->reshape_position;
4965         if (conf->reshape_progress != MaxSector) {
4966                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4967                 conf->prev_algo = mddev->layout;
4968         }
4969
4970         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4971                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4972         if (grow_stripes(conf, conf->max_nr_stripes)) {
4973                 printk(KERN_ERR
4974                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4975                        mdname(mddev), memory);
4976                 goto abort;
4977         } else
4978                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4979                        mdname(mddev), memory);
4980
4981         sprintf(pers_name, "raid%d", mddev->new_level);
4982         conf->thread = md_register_thread(raid5d, mddev, pers_name);
4983         if (!conf->thread) {
4984                 printk(KERN_ERR
4985                        "md/raid:%s: couldn't allocate thread.\n",
4986                        mdname(mddev));
4987                 goto abort;
4988         }
4989
4990         return conf;
4991
4992  abort:
4993         if (conf) {
4994                 free_conf(conf);
4995                 return ERR_PTR(-EIO);
4996         } else
4997                 return ERR_PTR(-ENOMEM);
4998 }
4999
5000
5001 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5002 {
5003         switch (algo) {
5004         case ALGORITHM_PARITY_0:
5005                 if (raid_disk < max_degraded)
5006                         return 1;
5007                 break;
5008         case ALGORITHM_PARITY_N:
5009                 if (raid_disk >= raid_disks - max_degraded)
5010                         return 1;
5011                 break;
5012         case ALGORITHM_PARITY_0_6:
5013                 if (raid_disk == 0 || 
5014                     raid_disk == raid_disks - 1)
5015                         return 1;
5016                 break;
5017         case ALGORITHM_LEFT_ASYMMETRIC_6:
5018         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5019         case ALGORITHM_LEFT_SYMMETRIC_6:
5020         case ALGORITHM_RIGHT_SYMMETRIC_6:
5021                 if (raid_disk == raid_disks - 1)
5022                         return 1;
5023         }
5024         return 0;
5025 }
5026
5027 static int run(struct mddev *mddev)
5028 {
5029         struct r5conf *conf;
5030         int working_disks = 0;
5031         int dirty_parity_disks = 0;
5032         struct md_rdev *rdev;
5033         sector_t reshape_offset = 0;
5034         int i;
5035         long long min_offset_diff = 0;
5036         int first = 1;
5037
5038         if (mddev->recovery_cp != MaxSector)
5039                 printk(KERN_NOTICE "md/raid:%s: not clean"
5040                        " -- starting background reconstruction\n",
5041                        mdname(mddev));
5042
5043         rdev_for_each(rdev, mddev) {
5044                 long long diff;
5045                 if (rdev->raid_disk < 0)
5046                         continue;
5047                 diff = (rdev->new_data_offset - rdev->data_offset);
5048                 if (first) {
5049                         min_offset_diff = diff;
5050                         first = 0;
5051                 } else if (mddev->reshape_backwards &&
5052                          diff < min_offset_diff)
5053                         min_offset_diff = diff;
5054                 else if (!mddev->reshape_backwards &&
5055                          diff > min_offset_diff)
5056                         min_offset_diff = diff;
5057         }
5058
5059         if (mddev->reshape_position != MaxSector) {
5060                 /* Check that we can continue the reshape.
5061                  * Difficulties arise if the stripe we would write to
5062                  * next is at or after the stripe we would read from next.
5063                  * For a reshape that changes the number of devices, this
5064                  * is only possible for a very short time, and mdadm makes
5065                  * sure that time appears to have past before assembling
5066                  * the array.  So we fail if that time hasn't passed.
5067                  * For a reshape that keeps the number of devices the same
5068                  * mdadm must be monitoring the reshape can keeping the
5069                  * critical areas read-only and backed up.  It will start
5070                  * the array in read-only mode, so we check for that.
5071                  */
5072                 sector_t here_new, here_old;
5073                 int old_disks;
5074                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5075
5076                 if (mddev->new_level != mddev->level) {
5077                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5078                                "required - aborting.\n",
5079                                mdname(mddev));
5080                         return -EINVAL;
5081                 }
5082                 old_disks = mddev->raid_disks - mddev->delta_disks;
5083                 /* reshape_position must be on a new-stripe boundary, and one
5084                  * further up in new geometry must map after here in old
5085                  * geometry.
5086                  */
5087                 here_new = mddev->reshape_position;
5088                 if (sector_div(here_new, mddev->new_chunk_sectors *
5089                                (mddev->raid_disks - max_degraded))) {
5090                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5091                                "on a stripe boundary\n", mdname(mddev));
5092                         return -EINVAL;
5093                 }
5094                 reshape_offset = here_new * mddev->new_chunk_sectors;
5095                 /* here_new is the stripe we will write to */
5096                 here_old = mddev->reshape_position;
5097                 sector_div(here_old, mddev->chunk_sectors *
5098                            (old_disks-max_degraded));
5099                 /* here_old is the first stripe that we might need to read
5100                  * from */
5101                 if (mddev->delta_disks == 0) {
5102                         if ((here_new * mddev->new_chunk_sectors !=
5103                              here_old * mddev->chunk_sectors)) {
5104                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5105                                        " confused - aborting\n", mdname(mddev));
5106                                 return -EINVAL;
5107                         }
5108                         /* We cannot be sure it is safe to start an in-place
5109                          * reshape.  It is only safe if user-space is monitoring
5110                          * and taking constant backups.
5111                          * mdadm always starts a situation like this in
5112                          * readonly mode so it can take control before
5113                          * allowing any writes.  So just check for that.
5114                          */
5115                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5116                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5117                                 /* not really in-place - so OK */;
5118                         else if (mddev->ro == 0) {
5119                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5120                                        "must be started in read-only mode "
5121                                        "- aborting\n",
5122                                        mdname(mddev));
5123                                 return -EINVAL;
5124                         }
5125                 } else if (mddev->reshape_backwards
5126                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5127                        here_old * mddev->chunk_sectors)
5128                     : (here_new * mddev->new_chunk_sectors >=
5129                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5130                         /* Reading from the same stripe as writing to - bad */
5131                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5132                                "auto-recovery - aborting.\n",
5133                                mdname(mddev));
5134                         return -EINVAL;
5135                 }
5136                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5137                        mdname(mddev));
5138                 /* OK, we should be able to continue; */
5139         } else {
5140                 BUG_ON(mddev->level != mddev->new_level);
5141                 BUG_ON(mddev->layout != mddev->new_layout);
5142                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5143                 BUG_ON(mddev->delta_disks != 0);
5144         }
5145
5146         if (mddev->private == NULL)
5147                 conf = setup_conf(mddev);
5148         else
5149                 conf = mddev->private;
5150
5151         if (IS_ERR(conf))
5152                 return PTR_ERR(conf);
5153
5154         conf->min_offset_diff = min_offset_diff;
5155         mddev->thread = conf->thread;
5156         conf->thread = NULL;
5157         mddev->private = conf;
5158
5159         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5160              i++) {
5161                 rdev = conf->disks[i].rdev;
5162                 if (!rdev && conf->disks[i].replacement) {
5163                         /* The replacement is all we have yet */
5164                         rdev = conf->disks[i].replacement;
5165                         conf->disks[i].replacement = NULL;
5166                         clear_bit(Replacement, &rdev->flags);
5167                         conf->disks[i].rdev = rdev;
5168                 }
5169                 if (!rdev)
5170                         continue;
5171                 if (conf->disks[i].replacement &&
5172                     conf->reshape_progress != MaxSector) {
5173                         /* replacements and reshape simply do not mix. */
5174                         printk(KERN_ERR "md: cannot handle concurrent "
5175                                "replacement and reshape.\n");
5176                         goto abort;
5177                 }
5178                 if (test_bit(In_sync, &rdev->flags)) {
5179                         working_disks++;
5180                         continue;
5181                 }
5182                 /* This disc is not fully in-sync.  However if it
5183                  * just stored parity (beyond the recovery_offset),
5184                  * when we don't need to be concerned about the
5185                  * array being dirty.
5186                  * When reshape goes 'backwards', we never have
5187                  * partially completed devices, so we only need
5188                  * to worry about reshape going forwards.
5189                  */
5190                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5191                 if (mddev->major_version == 0 &&
5192                     mddev->minor_version > 90)
5193                         rdev->recovery_offset = reshape_offset;
5194                         
5195                 if (rdev->recovery_offset < reshape_offset) {
5196                         /* We need to check old and new layout */
5197                         if (!only_parity(rdev->raid_disk,
5198                                          conf->algorithm,
5199                                          conf->raid_disks,
5200                                          conf->max_degraded))
5201                                 continue;
5202                 }
5203                 if (!only_parity(rdev->raid_disk,
5204                                  conf->prev_algo,
5205                                  conf->previous_raid_disks,
5206                                  conf->max_degraded))
5207                         continue;
5208                 dirty_parity_disks++;
5209         }
5210
5211         /*
5212          * 0 for a fully functional array, 1 or 2 for a degraded array.
5213          */
5214         mddev->degraded = calc_degraded(conf);
5215
5216         if (has_failed(conf)) {
5217                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5218                         " (%d/%d failed)\n",
5219                         mdname(mddev), mddev->degraded, conf->raid_disks);
5220                 goto abort;
5221         }
5222
5223         /* device size must be a multiple of chunk size */
5224         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5225         mddev->resync_max_sectors = mddev->dev_sectors;
5226
5227         if (mddev->degraded > dirty_parity_disks &&
5228             mddev->recovery_cp != MaxSector) {
5229                 if (mddev->ok_start_degraded)
5230                         printk(KERN_WARNING
5231                                "md/raid:%s: starting dirty degraded array"
5232                                " - data corruption possible.\n",
5233                                mdname(mddev));
5234                 else {
5235                         printk(KERN_ERR
5236                                "md/raid:%s: cannot start dirty degraded array.\n",
5237                                mdname(mddev));
5238                         goto abort;
5239                 }
5240         }
5241
5242         if (mddev->degraded == 0)
5243                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5244                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5245                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5246                        mddev->new_layout);
5247         else
5248                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5249                        " out of %d devices, algorithm %d\n",
5250                        mdname(mddev), conf->level,
5251                        mddev->raid_disks - mddev->degraded,
5252                        mddev->raid_disks, mddev->new_layout);
5253
5254         print_raid5_conf(conf);
5255
5256         if (conf->reshape_progress != MaxSector) {
5257                 conf->reshape_safe = conf->reshape_progress;
5258                 atomic_set(&conf->reshape_stripes, 0);
5259                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5260                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5261                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5262                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5263                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5264                                                         "reshape");
5265         }
5266
5267
5268         /* Ok, everything is just fine now */
5269         if (mddev->to_remove == &raid5_attrs_group)
5270                 mddev->to_remove = NULL;
5271         else if (mddev->kobj.sd &&
5272             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5273                 printk(KERN_WARNING
5274                        "raid5: failed to create sysfs attributes for %s\n",
5275                        mdname(mddev));
5276         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5277
5278         if (mddev->queue) {
5279                 int chunk_size;
5280                 /* read-ahead size must cover two whole stripes, which
5281                  * is 2 * (datadisks) * chunksize where 'n' is the
5282                  * number of raid devices
5283                  */
5284                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5285                 int stripe = data_disks *
5286                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5287                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5288                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5289
5290                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5291
5292                 mddev->queue->backing_dev_info.congested_data = mddev;
5293                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5294
5295                 chunk_size = mddev->chunk_sectors << 9;
5296                 blk_queue_io_min(mddev->queue, chunk_size);
5297                 blk_queue_io_opt(mddev->queue, chunk_size *
5298                                  (conf->raid_disks - conf->max_degraded));
5299
5300                 rdev_for_each(rdev, mddev) {
5301                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5302                                           rdev->data_offset << 9);
5303                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5304                                           rdev->new_data_offset << 9);
5305                 }
5306         }
5307
5308         return 0;
5309 abort:
5310         md_unregister_thread(&mddev->thread);
5311         print_raid5_conf(conf);
5312         free_conf(conf);
5313         mddev->private = NULL;
5314         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5315         return -EIO;
5316 }
5317
5318 static int stop(struct mddev *mddev)
5319 {
5320         struct r5conf *conf = mddev->private;
5321
5322         md_unregister_thread(&mddev->thread);
5323         if (mddev->queue)
5324                 mddev->queue->backing_dev_info.congested_fn = NULL;
5325         free_conf(conf);
5326         mddev->private = NULL;
5327         mddev->to_remove = &raid5_attrs_group;
5328         return 0;
5329 }
5330
5331 static void status(struct seq_file *seq, struct mddev *mddev)
5332 {
5333         struct r5conf *conf = mddev->private;
5334         int i;
5335
5336         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5337                 mddev->chunk_sectors / 2, mddev->layout);
5338         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5339         for (i = 0; i < conf->raid_disks; i++)
5340                 seq_printf (seq, "%s",
5341                                conf->disks[i].rdev &&
5342                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5343         seq_printf (seq, "]");
5344 }
5345
5346 static void print_raid5_conf (struct r5conf *conf)
5347 {
5348         int i;
5349         struct disk_info *tmp;
5350
5351         printk(KERN_DEBUG "RAID conf printout:\n");
5352         if (!conf) {
5353                 printk("(conf==NULL)\n");
5354                 return;
5355         }
5356         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5357                conf->raid_disks,
5358                conf->raid_disks - conf->mddev->degraded);
5359
5360         for (i = 0; i < conf->raid_disks; i++) {
5361                 char b[BDEVNAME_SIZE];
5362                 tmp = conf->disks + i;
5363                 if (tmp->rdev)
5364                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5365                                i, !test_bit(Faulty, &tmp->rdev->flags),
5366                                bdevname(tmp->rdev->bdev, b));
5367         }
5368 }
5369
5370 static int raid5_spare_active(struct mddev *mddev)
5371 {
5372         int i;
5373         struct r5conf *conf = mddev->private;
5374         struct disk_info *tmp;
5375         int count = 0;
5376         unsigned long flags;
5377
5378         for (i = 0; i < conf->raid_disks; i++) {
5379                 tmp = conf->disks + i;
5380                 if (tmp->replacement
5381                     && tmp->replacement->recovery_offset == MaxSector
5382                     && !test_bit(Faulty, &tmp->replacement->flags)
5383                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5384                         /* Replacement has just become active. */
5385                         if (!tmp->rdev
5386                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5387                                 count++;
5388                         if (tmp->rdev) {
5389                                 /* Replaced device not technically faulty,
5390                                  * but we need to be sure it gets removed
5391                                  * and never re-added.
5392                                  */
5393                                 set_bit(Faulty, &tmp->rdev->flags);
5394                                 sysfs_notify_dirent_safe(
5395                                         tmp->rdev->sysfs_state);
5396                         }
5397                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5398                 } else if (tmp->rdev
5399                     && tmp->rdev->recovery_offset == MaxSector
5400                     && !test_bit(Faulty, &tmp->rdev->flags)
5401                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5402                         count++;
5403                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5404                 }
5405         }
5406         spin_lock_irqsave(&conf->device_lock, flags);
5407         mddev->degraded = calc_degraded(conf);
5408         spin_unlock_irqrestore(&conf->device_lock, flags);
5409         print_raid5_conf(conf);
5410         return count;
5411 }
5412
5413 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5414 {
5415         struct r5conf *conf = mddev->private;
5416         int err = 0;
5417         int number = rdev->raid_disk;
5418         struct md_rdev **rdevp;
5419         struct disk_info *p = conf->disks + number;
5420
5421         print_raid5_conf(conf);
5422         if (rdev == p->rdev)
5423                 rdevp = &p->rdev;
5424         else if (rdev == p->replacement)
5425                 rdevp = &p->replacement;
5426         else
5427                 return 0;
5428
5429         if (number >= conf->raid_disks &&
5430             conf->reshape_progress == MaxSector)
5431                 clear_bit(In_sync, &rdev->flags);
5432
5433         if (test_bit(In_sync, &rdev->flags) ||
5434             atomic_read(&rdev->nr_pending)) {
5435                 err = -EBUSY;
5436                 goto abort;
5437         }
5438         /* Only remove non-faulty devices if recovery
5439          * isn't possible.
5440          */
5441         if (!test_bit(Faulty, &rdev->flags) &&
5442             mddev->recovery_disabled != conf->recovery_disabled &&
5443             !has_failed(conf) &&
5444             (!p->replacement || p->replacement == rdev) &&
5445             number < conf->raid_disks) {
5446                 err = -EBUSY;
5447                 goto abort;
5448         }
5449         *rdevp = NULL;
5450         synchronize_rcu();
5451         if (atomic_read(&rdev->nr_pending)) {
5452                 /* lost the race, try later */
5453                 err = -EBUSY;
5454                 *rdevp = rdev;
5455         } else if (p->replacement) {
5456                 /* We must have just cleared 'rdev' */
5457                 p->rdev = p->replacement;
5458                 clear_bit(Replacement, &p->replacement->flags);
5459                 smp_mb(); /* Make sure other CPUs may see both as identical
5460                            * but will never see neither - if they are careful
5461                            */
5462                 p->replacement = NULL;
5463                 clear_bit(WantReplacement, &rdev->flags);
5464         } else
5465                 /* We might have just removed the Replacement as faulty-
5466                  * clear the bit just in case
5467                  */
5468                 clear_bit(WantReplacement, &rdev->flags);
5469 abort:
5470
5471         print_raid5_conf(conf);
5472         return err;
5473 }
5474
5475 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5476 {
5477         struct r5conf *conf = mddev->private;
5478         int err = -EEXIST;
5479         int disk;
5480         struct disk_info *p;
5481         int first = 0;
5482         int last = conf->raid_disks - 1;
5483
5484         if (mddev->recovery_disabled == conf->recovery_disabled)
5485                 return -EBUSY;
5486
5487         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5488                 /* no point adding a device */
5489                 return -EINVAL;
5490
5491         if (rdev->raid_disk >= 0)
5492                 first = last = rdev->raid_disk;
5493
5494         /*
5495          * find the disk ... but prefer rdev->saved_raid_disk
5496          * if possible.
5497          */
5498         if (rdev->saved_raid_disk >= 0 &&
5499             rdev->saved_raid_disk >= first &&
5500             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5501                 first = rdev->saved_raid_disk;
5502
5503         for (disk = first; disk <= last; disk++) {
5504                 p = conf->disks + disk;
5505                 if (p->rdev == NULL) {
5506                         clear_bit(In_sync, &rdev->flags);
5507                         rdev->raid_disk = disk;
5508                         err = 0;
5509                         if (rdev->saved_raid_disk != disk)
5510                                 conf->fullsync = 1;
5511                         rcu_assign_pointer(p->rdev, rdev);
5512                         goto out;
5513                 }
5514         }
5515         for (disk = first; disk <= last; disk++) {
5516                 p = conf->disks + disk;
5517                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5518                     p->replacement == NULL) {
5519                         clear_bit(In_sync, &rdev->flags);
5520                         set_bit(Replacement, &rdev->flags);
5521                         rdev->raid_disk = disk;
5522                         err = 0;
5523                         conf->fullsync = 1;
5524                         rcu_assign_pointer(p->replacement, rdev);
5525                         break;
5526                 }
5527         }
5528 out:
5529         print_raid5_conf(conf);
5530         return err;
5531 }
5532
5533 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5534 {
5535         /* no resync is happening, and there is enough space
5536          * on all devices, so we can resize.
5537          * We need to make sure resync covers any new space.
5538          * If the array is shrinking we should possibly wait until
5539          * any io in the removed space completes, but it hardly seems
5540          * worth it.
5541          */
5542         sector_t newsize;
5543         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5544         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5545         if (mddev->external_size &&
5546             mddev->array_sectors > newsize)
5547                 return -EINVAL;
5548         if (mddev->bitmap) {
5549                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5550                 if (ret)
5551                         return ret;
5552         }
5553         md_set_array_sectors(mddev, newsize);
5554         set_capacity(mddev->gendisk, mddev->array_sectors);
5555         revalidate_disk(mddev->gendisk);
5556         if (sectors > mddev->dev_sectors &&
5557             mddev->recovery_cp > mddev->dev_sectors) {
5558                 mddev->recovery_cp = mddev->dev_sectors;
5559                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5560         }
5561         mddev->dev_sectors = sectors;
5562         mddev->resync_max_sectors = sectors;
5563         return 0;
5564 }
5565
5566 static int check_stripe_cache(struct mddev *mddev)
5567 {
5568         /* Can only proceed if there are plenty of stripe_heads.
5569          * We need a minimum of one full stripe,, and for sensible progress
5570          * it is best to have about 4 times that.
5571          * If we require 4 times, then the default 256 4K stripe_heads will
5572          * allow for chunk sizes up to 256K, which is probably OK.
5573          * If the chunk size is greater, user-space should request more
5574          * stripe_heads first.
5575          */
5576         struct r5conf *conf = mddev->private;
5577         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5578             > conf->max_nr_stripes ||
5579             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5580             > conf->max_nr_stripes) {
5581                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5582                        mdname(mddev),
5583                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5584                         / STRIPE_SIZE)*4);
5585                 return 0;
5586         }
5587         return 1;
5588 }
5589
5590 static int check_reshape(struct mddev *mddev)
5591 {
5592         struct r5conf *conf = mddev->private;
5593
5594         if (mddev->delta_disks == 0 &&
5595             mddev->new_layout == mddev->layout &&
5596             mddev->new_chunk_sectors == mddev->chunk_sectors)
5597                 return 0; /* nothing to do */
5598         if (has_failed(conf))
5599                 return -EINVAL;
5600         if (mddev->delta_disks < 0) {
5601                 /* We might be able to shrink, but the devices must
5602                  * be made bigger first.
5603                  * For raid6, 4 is the minimum size.
5604                  * Otherwise 2 is the minimum
5605                  */
5606                 int min = 2;
5607                 if (mddev->level == 6)
5608                         min = 4;
5609                 if (mddev->raid_disks + mddev->delta_disks < min)
5610                         return -EINVAL;
5611         }
5612
5613         if (!check_stripe_cache(mddev))
5614                 return -ENOSPC;
5615
5616         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5617 }
5618
5619 static int raid5_start_reshape(struct mddev *mddev)
5620 {
5621         struct r5conf *conf = mddev->private;
5622         struct md_rdev *rdev;
5623         int spares = 0;
5624         unsigned long flags;
5625
5626         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5627                 return -EBUSY;
5628
5629         if (!check_stripe_cache(mddev))
5630                 return -ENOSPC;
5631
5632         if (has_failed(conf))
5633                 return -EINVAL;
5634
5635         rdev_for_each(rdev, mddev) {
5636                 if (!test_bit(In_sync, &rdev->flags)
5637                     && !test_bit(Faulty, &rdev->flags))
5638                         spares++;
5639         }
5640
5641         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5642                 /* Not enough devices even to make a degraded array
5643                  * of that size
5644                  */
5645                 return -EINVAL;
5646
5647         /* Refuse to reduce size of the array.  Any reductions in
5648          * array size must be through explicit setting of array_size
5649          * attribute.
5650          */
5651         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5652             < mddev->array_sectors) {
5653                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5654                        "before number of disks\n", mdname(mddev));
5655                 return -EINVAL;
5656         }
5657
5658         atomic_set(&conf->reshape_stripes, 0);
5659         spin_lock_irq(&conf->device_lock);
5660         conf->previous_raid_disks = conf->raid_disks;
5661         conf->raid_disks += mddev->delta_disks;
5662         conf->prev_chunk_sectors = conf->chunk_sectors;
5663         conf->chunk_sectors = mddev->new_chunk_sectors;
5664         conf->prev_algo = conf->algorithm;
5665         conf->algorithm = mddev->new_layout;
5666         conf->generation++;
5667         /* Code that selects data_offset needs to see the generation update
5668          * if reshape_progress has been set - so a memory barrier needed.
5669          */
5670         smp_mb();
5671         if (mddev->reshape_backwards)
5672                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5673         else
5674                 conf->reshape_progress = 0;
5675         conf->reshape_safe = conf->reshape_progress;
5676         spin_unlock_irq(&conf->device_lock);
5677
5678         /* Add some new drives, as many as will fit.
5679          * We know there are enough to make the newly sized array work.
5680          * Don't add devices if we are reducing the number of
5681          * devices in the array.  This is because it is not possible
5682          * to correctly record the "partially reconstructed" state of
5683          * such devices during the reshape and confusion could result.
5684          */
5685         if (mddev->delta_disks >= 0) {
5686                 rdev_for_each(rdev, mddev)
5687                         if (rdev->raid_disk < 0 &&
5688                             !test_bit(Faulty, &rdev->flags)) {
5689                                 if (raid5_add_disk(mddev, rdev) == 0) {
5690                                         if (rdev->raid_disk
5691                                             >= conf->previous_raid_disks)
5692                                                 set_bit(In_sync, &rdev->flags);
5693                                         else
5694                                                 rdev->recovery_offset = 0;
5695
5696                                         if (sysfs_link_rdev(mddev, rdev))
5697                                                 /* Failure here is OK */;
5698                                 }
5699                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5700                                    && !test_bit(Faulty, &rdev->flags)) {
5701                                 /* This is a spare that was manually added */
5702                                 set_bit(In_sync, &rdev->flags);
5703                         }
5704
5705                 /* When a reshape changes the number of devices,
5706                  * ->degraded is measured against the larger of the
5707                  * pre and post number of devices.
5708                  */
5709                 spin_lock_irqsave(&conf->device_lock, flags);
5710                 mddev->degraded = calc_degraded(conf);
5711                 spin_unlock_irqrestore(&conf->device_lock, flags);
5712         }
5713         mddev->raid_disks = conf->raid_disks;
5714         mddev->reshape_position = conf->reshape_progress;
5715         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5716
5717         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5718         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5719         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5720         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5721         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5722                                                 "reshape");
5723         if (!mddev->sync_thread) {
5724                 mddev->recovery = 0;
5725                 spin_lock_irq(&conf->device_lock);
5726                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5727                 rdev_for_each(rdev, mddev)
5728                         rdev->new_data_offset = rdev->data_offset;
5729                 smp_wmb();
5730                 conf->reshape_progress = MaxSector;
5731                 mddev->reshape_position = MaxSector;
5732                 spin_unlock_irq(&conf->device_lock);
5733                 return -EAGAIN;
5734         }
5735         conf->reshape_checkpoint = jiffies;
5736         md_wakeup_thread(mddev->sync_thread);
5737         md_new_event(mddev);
5738         return 0;
5739 }
5740
5741 /* This is called from the reshape thread and should make any
5742  * changes needed in 'conf'
5743  */
5744 static void end_reshape(struct r5conf *conf)
5745 {
5746
5747         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5748                 struct md_rdev *rdev;
5749
5750                 spin_lock_irq(&conf->device_lock);
5751                 conf->previous_raid_disks = conf->raid_disks;
5752                 rdev_for_each(rdev, conf->mddev)
5753                         rdev->data_offset = rdev->new_data_offset;
5754                 smp_wmb();
5755                 conf->reshape_progress = MaxSector;
5756                 spin_unlock_irq(&conf->device_lock);
5757                 wake_up(&conf->wait_for_overlap);
5758
5759                 /* read-ahead size must cover two whole stripes, which is
5760                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5761                  */
5762                 if (conf->mddev->queue) {
5763                         int data_disks = conf->raid_disks - conf->max_degraded;
5764                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5765                                                    / PAGE_SIZE);
5766                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5767                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5768                 }
5769         }
5770 }
5771
5772 /* This is called from the raid5d thread with mddev_lock held.
5773  * It makes config changes to the device.
5774  */
5775 static void raid5_finish_reshape(struct mddev *mddev)
5776 {
5777         struct r5conf *conf = mddev->private;
5778
5779         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5780
5781                 if (mddev->delta_disks > 0) {
5782                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5783                         set_capacity(mddev->gendisk, mddev->array_sectors);
5784                         revalidate_disk(mddev->gendisk);
5785                 } else {
5786                         int d;
5787                         spin_lock_irq(&conf->device_lock);
5788                         mddev->degraded = calc_degraded(conf);
5789                         spin_unlock_irq(&conf->device_lock);
5790                         for (d = conf->raid_disks ;
5791                              d < conf->raid_disks - mddev->delta_disks;
5792                              d++) {
5793                                 struct md_rdev *rdev = conf->disks[d].rdev;
5794                                 if (rdev)
5795                                         clear_bit(In_sync, &rdev->flags);
5796                                 rdev = conf->disks[d].replacement;
5797                                 if (rdev)
5798                                         clear_bit(In_sync, &rdev->flags);
5799                         }
5800                 }
5801                 mddev->layout = conf->algorithm;
5802                 mddev->chunk_sectors = conf->chunk_sectors;
5803                 mddev->reshape_position = MaxSector;
5804                 mddev->delta_disks = 0;
5805                 mddev->reshape_backwards = 0;
5806         }
5807 }
5808
5809 static void raid5_quiesce(struct mddev *mddev, int state)
5810 {
5811         struct r5conf *conf = mddev->private;
5812
5813         switch(state) {
5814         case 2: /* resume for a suspend */
5815                 wake_up(&conf->wait_for_overlap);
5816                 break;
5817
5818         case 1: /* stop all writes */
5819                 spin_lock_irq(&conf->device_lock);
5820                 /* '2' tells resync/reshape to pause so that all
5821                  * active stripes can drain
5822                  */
5823                 conf->quiesce = 2;
5824                 wait_event_lock_irq(conf->wait_for_stripe,
5825                                     atomic_read(&conf->active_stripes) == 0 &&
5826                                     atomic_read(&conf->active_aligned_reads) == 0,
5827                                     conf->device_lock, /* nothing */);
5828                 conf->quiesce = 1;
5829                 spin_unlock_irq(&conf->device_lock);
5830                 /* allow reshape to continue */
5831                 wake_up(&conf->wait_for_overlap);
5832                 break;
5833
5834         case 0: /* re-enable writes */
5835                 spin_lock_irq(&conf->device_lock);
5836                 conf->quiesce = 0;
5837                 wake_up(&conf->wait_for_stripe);
5838                 wake_up(&conf->wait_for_overlap);
5839                 spin_unlock_irq(&conf->device_lock);
5840                 break;
5841         }
5842 }
5843
5844
5845 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5846 {
5847         struct r0conf *raid0_conf = mddev->private;
5848         sector_t sectors;
5849
5850         /* for raid0 takeover only one zone is supported */
5851         if (raid0_conf->nr_strip_zones > 1) {
5852                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5853                        mdname(mddev));
5854                 return ERR_PTR(-EINVAL);
5855         }
5856
5857         sectors = raid0_conf->strip_zone[0].zone_end;
5858         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5859         mddev->dev_sectors = sectors;
5860         mddev->new_level = level;
5861         mddev->new_layout = ALGORITHM_PARITY_N;
5862         mddev->new_chunk_sectors = mddev->chunk_sectors;
5863         mddev->raid_disks += 1;
5864         mddev->delta_disks = 1;
5865         /* make sure it will be not marked as dirty */
5866         mddev->recovery_cp = MaxSector;
5867
5868         return setup_conf(mddev);
5869 }
5870
5871
5872 static void *raid5_takeover_raid1(struct mddev *mddev)
5873 {
5874         int chunksect;
5875
5876         if (mddev->raid_disks != 2 ||
5877             mddev->degraded > 1)
5878                 return ERR_PTR(-EINVAL);
5879
5880         /* Should check if there are write-behind devices? */
5881
5882         chunksect = 64*2; /* 64K by default */
5883
5884         /* The array must be an exact multiple of chunksize */
5885         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5886                 chunksect >>= 1;
5887
5888         if ((chunksect<<9) < STRIPE_SIZE)
5889                 /* array size does not allow a suitable chunk size */
5890                 return ERR_PTR(-EINVAL);
5891
5892         mddev->new_level = 5;
5893         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5894         mddev->new_chunk_sectors = chunksect;
5895
5896         return setup_conf(mddev);
5897 }
5898
5899 static void *raid5_takeover_raid6(struct mddev *mddev)
5900 {
5901         int new_layout;
5902
5903         switch (mddev->layout) {
5904         case ALGORITHM_LEFT_ASYMMETRIC_6:
5905                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5906                 break;
5907         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5908                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5909                 break;
5910         case ALGORITHM_LEFT_SYMMETRIC_6:
5911                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5912                 break;
5913         case ALGORITHM_RIGHT_SYMMETRIC_6:
5914                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5915                 break;
5916         case ALGORITHM_PARITY_0_6:
5917                 new_layout = ALGORITHM_PARITY_0;
5918                 break;
5919         case ALGORITHM_PARITY_N:
5920                 new_layout = ALGORITHM_PARITY_N;
5921                 break;
5922         default:
5923                 return ERR_PTR(-EINVAL);
5924         }
5925         mddev->new_level = 5;
5926         mddev->new_layout = new_layout;
5927         mddev->delta_disks = -1;
5928         mddev->raid_disks -= 1;
5929         return setup_conf(mddev);
5930 }
5931
5932
5933 static int raid5_check_reshape(struct mddev *mddev)
5934 {
5935         /* For a 2-drive array, the layout and chunk size can be changed
5936          * immediately as not restriping is needed.
5937          * For larger arrays we record the new value - after validation
5938          * to be used by a reshape pass.
5939          */
5940         struct r5conf *conf = mddev->private;
5941         int new_chunk = mddev->new_chunk_sectors;
5942
5943         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5944                 return -EINVAL;
5945         if (new_chunk > 0) {
5946                 if (!is_power_of_2(new_chunk))
5947                         return -EINVAL;
5948                 if (new_chunk < (PAGE_SIZE>>9))
5949                         return -EINVAL;
5950                 if (mddev->array_sectors & (new_chunk-1))
5951                         /* not factor of array size */
5952                         return -EINVAL;
5953         }
5954
5955         /* They look valid */
5956
5957         if (mddev->raid_disks == 2) {
5958                 /* can make the change immediately */
5959                 if (mddev->new_layout >= 0) {
5960                         conf->algorithm = mddev->new_layout;
5961                         mddev->layout = mddev->new_layout;
5962                 }
5963                 if (new_chunk > 0) {
5964                         conf->chunk_sectors = new_chunk ;
5965                         mddev->chunk_sectors = new_chunk;
5966                 }
5967                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5968                 md_wakeup_thread(mddev->thread);
5969         }
5970         return check_reshape(mddev);
5971 }
5972
5973 static int raid6_check_reshape(struct mddev *mddev)
5974 {
5975         int new_chunk = mddev->new_chunk_sectors;
5976
5977         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5978                 return -EINVAL;
5979         if (new_chunk > 0) {
5980                 if (!is_power_of_2(new_chunk))
5981                         return -EINVAL;
5982                 if (new_chunk < (PAGE_SIZE >> 9))
5983                         return -EINVAL;
5984                 if (mddev->array_sectors & (new_chunk-1))
5985                         /* not factor of array size */
5986                         return -EINVAL;
5987         }
5988
5989         /* They look valid */
5990         return check_reshape(mddev);
5991 }
5992
5993 static void *raid5_takeover(struct mddev *mddev)
5994 {
5995         /* raid5 can take over:
5996          *  raid0 - if there is only one strip zone - make it a raid4 layout
5997          *  raid1 - if there are two drives.  We need to know the chunk size
5998          *  raid4 - trivial - just use a raid4 layout.
5999          *  raid6 - Providing it is a *_6 layout
6000          */
6001         if (mddev->level == 0)
6002                 return raid45_takeover_raid0(mddev, 5);
6003         if (mddev->level == 1)
6004                 return raid5_takeover_raid1(mddev);
6005         if (mddev->level == 4) {
6006                 mddev->new_layout = ALGORITHM_PARITY_N;
6007                 mddev->new_level = 5;
6008                 return setup_conf(mddev);
6009         }
6010         if (mddev->level == 6)
6011                 return raid5_takeover_raid6(mddev);
6012
6013         return ERR_PTR(-EINVAL);
6014 }
6015
6016 static void *raid4_takeover(struct mddev *mddev)
6017 {
6018         /* raid4 can take over:
6019          *  raid0 - if there is only one strip zone
6020          *  raid5 - if layout is right
6021          */
6022         if (mddev->level == 0)
6023                 return raid45_takeover_raid0(mddev, 4);
6024         if (mddev->level == 5 &&
6025             mddev->layout == ALGORITHM_PARITY_N) {
6026                 mddev->new_layout = 0;
6027                 mddev->new_level = 4;
6028                 return setup_conf(mddev);
6029         }
6030         return ERR_PTR(-EINVAL);
6031 }
6032
6033 static struct md_personality raid5_personality;
6034
6035 static void *raid6_takeover(struct mddev *mddev)
6036 {
6037         /* Currently can only take over a raid5.  We map the
6038          * personality to an equivalent raid6 personality
6039          * with the Q block at the end.
6040          */
6041         int new_layout;
6042
6043         if (mddev->pers != &raid5_personality)
6044                 return ERR_PTR(-EINVAL);
6045         if (mddev->degraded > 1)
6046                 return ERR_PTR(-EINVAL);
6047         if (mddev->raid_disks > 253)
6048                 return ERR_PTR(-EINVAL);
6049         if (mddev->raid_disks < 3)
6050                 return ERR_PTR(-EINVAL);
6051
6052         switch (mddev->layout) {
6053         case ALGORITHM_LEFT_ASYMMETRIC:
6054                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6055                 break;
6056         case ALGORITHM_RIGHT_ASYMMETRIC:
6057                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6058                 break;
6059         case ALGORITHM_LEFT_SYMMETRIC:
6060                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6061                 break;
6062         case ALGORITHM_RIGHT_SYMMETRIC:
6063                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6064                 break;
6065         case ALGORITHM_PARITY_0:
6066                 new_layout = ALGORITHM_PARITY_0_6;
6067                 break;
6068         case ALGORITHM_PARITY_N:
6069                 new_layout = ALGORITHM_PARITY_N;
6070                 break;
6071         default:
6072                 return ERR_PTR(-EINVAL);
6073         }
6074         mddev->new_level = 6;
6075         mddev->new_layout = new_layout;
6076         mddev->delta_disks = 1;
6077         mddev->raid_disks += 1;
6078         return setup_conf(mddev);
6079 }
6080
6081
6082 static struct md_personality raid6_personality =
6083 {
6084         .name           = "raid6",
6085         .level          = 6,
6086         .owner          = THIS_MODULE,
6087         .make_request   = make_request,
6088         .run            = run,
6089         .stop           = stop,
6090         .status         = status,
6091         .error_handler  = error,
6092         .hot_add_disk   = raid5_add_disk,
6093         .hot_remove_disk= raid5_remove_disk,
6094         .spare_active   = raid5_spare_active,
6095         .sync_request   = sync_request,
6096         .resize         = raid5_resize,
6097         .size           = raid5_size,
6098         .check_reshape  = raid6_check_reshape,
6099         .start_reshape  = raid5_start_reshape,
6100         .finish_reshape = raid5_finish_reshape,
6101         .quiesce        = raid5_quiesce,
6102         .takeover       = raid6_takeover,
6103 };
6104 static struct md_personality raid5_personality =
6105 {
6106         .name           = "raid5",
6107         .level          = 5,
6108         .owner          = THIS_MODULE,
6109         .make_request   = make_request,
6110         .run            = run,
6111         .stop           = stop,
6112         .status         = status,
6113         .error_handler  = error,
6114         .hot_add_disk   = raid5_add_disk,
6115         .hot_remove_disk= raid5_remove_disk,
6116         .spare_active   = raid5_spare_active,
6117         .sync_request   = sync_request,
6118         .resize         = raid5_resize,
6119         .size           = raid5_size,
6120         .check_reshape  = raid5_check_reshape,
6121         .start_reshape  = raid5_start_reshape,
6122         .finish_reshape = raid5_finish_reshape,
6123         .quiesce        = raid5_quiesce,
6124         .takeover       = raid5_takeover,
6125 };
6126
6127 static struct md_personality raid4_personality =
6128 {
6129         .name           = "raid4",
6130         .level          = 4,
6131         .owner          = THIS_MODULE,
6132         .make_request   = make_request,
6133         .run            = run,
6134         .stop           = stop,
6135         .status         = status,
6136         .error_handler  = error,
6137         .hot_add_disk   = raid5_add_disk,
6138         .hot_remove_disk= raid5_remove_disk,
6139         .spare_active   = raid5_spare_active,
6140         .sync_request   = sync_request,
6141         .resize         = raid5_resize,
6142         .size           = raid5_size,
6143         .check_reshape  = raid5_check_reshape,
6144         .start_reshape  = raid5_start_reshape,
6145         .finish_reshape = raid5_finish_reshape,
6146         .quiesce        = raid5_quiesce,
6147         .takeover       = raid4_takeover,
6148 };
6149
6150 static int __init raid5_init(void)
6151 {
6152         register_md_personality(&raid6_personality);
6153         register_md_personality(&raid5_personality);
6154         register_md_personality(&raid4_personality);
6155         return 0;
6156 }
6157
6158 static void raid5_exit(void)
6159 {
6160         unregister_md_personality(&raid6_personality);
6161         unregister_md_personality(&raid5_personality);
6162         unregister_md_personality(&raid4_personality);
6163 }
6164
6165 module_init(raid5_init);
6166 module_exit(raid5_exit);
6167 MODULE_LICENSE("GPL");
6168 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6169 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6170 MODULE_ALIAS("md-raid5");
6171 MODULE_ALIAS("md-raid4");
6172 MODULE_ALIAS("md-level-5");
6173 MODULE_ALIAS("md-level-4");
6174 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6175 MODULE_ALIAS("md-raid6");
6176 MODULE_ALIAS("md-level-6");
6177
6178 /* This used to be two separate modules, they were: */
6179 MODULE_ALIAS("raid5");
6180 MODULE_ALIAS("raid6");