]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/media/dvb-frontends/drxd_hard.c
Merge branch 'pm-wakeirq'
[karo-tx-linux.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA
21  * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
32
33 #include "dvb_frontend.h"
34 #include "drxd.h"
35 #include "drxd_firm.h"
36
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
39
40 #define CHUNK_SIZE 48
41
42 #define DRX_I2C_RMW           0x10
43 #define DRX_I2C_BROADCAST     0x20
44 #define DRX_I2C_CLEARCRC      0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS     0xC0
47 #define DRX_I2C_FLAGS         0xF0
48
49 #define DEFAULT_LOCK_TIMEOUT    1100
50
51 #define DRX_CHANNEL_AUTO 0
52 #define DRX_CHANNEL_HIGH 1
53 #define DRX_CHANNEL_LOW  2
54
55 #define DRX_LOCK_MPEG  1
56 #define DRX_LOCK_FEC   2
57 #define DRX_LOCK_DEMOD 4
58
59 /****************************************************************************/
60
61 enum CSCDState {
62         CSCD_INIT = 0,
63         CSCD_SET,
64         CSCD_SAVED
65 };
66
67 enum CDrxdState {
68         DRXD_UNINITIALIZED = 0,
69         DRXD_STOPPED,
70         DRXD_STARTED
71 };
72
73 enum AGC_CTRL_MODE {
74         AGC_CTRL_AUTO = 0,
75         AGC_CTRL_USER,
76         AGC_CTRL_OFF
77 };
78
79 enum OperationMode {
80         OM_Default,
81         OM_DVBT_Diversity_Front,
82         OM_DVBT_Diversity_End
83 };
84
85 struct SCfgAgc {
86         enum AGC_CTRL_MODE ctrlMode;
87         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
88         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
89         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
90         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
91         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
92
93         u16 R1;
94         u16 R2;
95         u16 R3;
96 };
97
98 struct SNoiseCal {
99         int cpOpt;
100         short cpNexpOfs;
101         short tdCal2k;
102         short tdCal8k;
103 };
104
105 enum app_env {
106         APPENV_STATIC = 0,
107         APPENV_PORTABLE = 1,
108         APPENV_MOBILE = 2
109 };
110
111 enum EIFFilter {
112         IFFILTER_SAW = 0,
113         IFFILTER_DISCRETE = 1
114 };
115
116 struct drxd_state {
117         struct dvb_frontend frontend;
118         struct dvb_frontend_ops ops;
119         struct dtv_frontend_properties props;
120
121         const struct firmware *fw;
122         struct device *dev;
123
124         struct i2c_adapter *i2c;
125         void *priv;
126         struct drxd_config config;
127
128         int i2c_access;
129         int init_done;
130         struct mutex mutex;
131
132         u8 chip_adr;
133         u16 hi_cfg_timing_div;
134         u16 hi_cfg_bridge_delay;
135         u16 hi_cfg_wakeup_key;
136         u16 hi_cfg_ctrl;
137
138         u16 intermediate_freq;
139         u16 osc_clock_freq;
140
141         enum CSCDState cscd_state;
142         enum CDrxdState drxd_state;
143
144         u16 sys_clock_freq;
145         s16 osc_clock_deviation;
146         u16 expected_sys_clock_freq;
147
148         u16 insert_rs_byte;
149         u16 enable_parallel;
150
151         int operation_mode;
152
153         struct SCfgAgc if_agc_cfg;
154         struct SCfgAgc rf_agc_cfg;
155
156         struct SNoiseCal noise_cal;
157
158         u32 fe_fs_add_incr;
159         u32 org_fe_fs_add_incr;
160         u16 current_fe_if_incr;
161
162         u16 m_FeAgRegAgPwd;
163         u16 m_FeAgRegAgAgcSio;
164
165         u16 m_EcOcRegOcModeLop;
166         u16 m_EcOcRegSncSncLvl;
167         u8 *m_InitAtomicRead;
168         u8 *m_HiI2cPatch;
169
170         u8 *m_ResetCEFR;
171         u8 *m_InitFE_1;
172         u8 *m_InitFE_2;
173         u8 *m_InitCP;
174         u8 *m_InitCE;
175         u8 *m_InitEQ;
176         u8 *m_InitSC;
177         u8 *m_InitEC;
178         u8 *m_ResetECRAM;
179         u8 *m_InitDiversityFront;
180         u8 *m_InitDiversityEnd;
181         u8 *m_DisableDiversity;
182         u8 *m_StartDiversityFront;
183         u8 *m_StartDiversityEnd;
184
185         u8 *m_DiversityDelay8MHZ;
186         u8 *m_DiversityDelay6MHZ;
187
188         u8 *microcode;
189         u32 microcode_length;
190
191         int type_A;
192         int PGA;
193         int diversity;
194         int tuner_mirrors;
195
196         enum app_env app_env_default;
197         enum app_env app_env_diversity;
198
199 };
200
201 /****************************************************************************/
202 /* I2C **********************************************************************/
203 /****************************************************************************/
204
205 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
206 {
207         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
208
209         if (i2c_transfer(adap, &msg, 1) != 1)
210                 return -1;
211         return 0;
212 }
213
214 static int i2c_read(struct i2c_adapter *adap,
215                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
216 {
217         struct i2c_msg msgs[2] = {
218                 {
219                         .addr = adr, .flags = 0,
220                         .buf = msg, .len = len
221                 }, {
222                         .addr = adr, .flags = I2C_M_RD,
223                         .buf = answ, .len = alen
224                 }
225         };
226         if (i2c_transfer(adap, msgs, 2) != 2)
227                 return -1;
228         return 0;
229 }
230
231 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
232 {
233         u64 tmp64;
234
235         tmp64 = (u64)a * (u64)b;
236         do_div(tmp64, c);
237
238         return (u32) tmp64;
239 }
240
241 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
242 {
243         u8 adr = state->config.demod_address;
244         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
245                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
246         };
247         u8 mm2[2];
248         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
249                 return -1;
250         if (data)
251                 *data = mm2[0] | (mm2[1] << 8);
252         return mm2[0] | (mm2[1] << 8);
253 }
254
255 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
256 {
257         u8 adr = state->config.demod_address;
258         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
259                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
260         };
261         u8 mm2[4];
262
263         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
264                 return -1;
265         if (data)
266                 *data =
267                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
268         return 0;
269 }
270
271 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
272 {
273         u8 adr = state->config.demod_address;
274         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
275                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
276                 data & 0xff, (data >> 8) & 0xff
277         };
278
279         if (i2c_write(state->i2c, adr, mm, 6) < 0)
280                 return -1;
281         return 0;
282 }
283
284 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
285 {
286         u8 adr = state->config.demod_address;
287         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
288                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
289                 data & 0xff, (data >> 8) & 0xff,
290                 (data >> 16) & 0xff, (data >> 24) & 0xff
291         };
292
293         if (i2c_write(state->i2c, adr, mm, 8) < 0)
294                 return -1;
295         return 0;
296 }
297
298 static int write_chunk(struct drxd_state *state,
299                        u32 reg, u8 *data, u32 len, u8 flags)
300 {
301         u8 adr = state->config.demod_address;
302         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
303                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
304         };
305         int i;
306
307         for (i = 0; i < len; i++)
308                 mm[4 + i] = data[i];
309         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
310                 printk(KERN_ERR "error in write_chunk\n");
311                 return -1;
312         }
313         return 0;
314 }
315
316 static int WriteBlock(struct drxd_state *state,
317                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
318 {
319         while (BlockSize > 0) {
320                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
321
322                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
323                         return -1;
324                 pBlock += Chunk;
325                 Address += (Chunk >> 1);
326                 BlockSize -= Chunk;
327         }
328         return 0;
329 }
330
331 static int WriteTable(struct drxd_state *state, u8 * pTable)
332 {
333         int status = 0;
334
335         if (pTable == NULL)
336                 return 0;
337
338         while (!status) {
339                 u16 Length;
340                 u32 Address = pTable[0] | (pTable[1] << 8) |
341                     (pTable[2] << 16) | (pTable[3] << 24);
342
343                 if (Address == 0xFFFFFFFF)
344                         break;
345                 pTable += sizeof(u32);
346
347                 Length = pTable[0] | (pTable[1] << 8);
348                 pTable += sizeof(u16);
349                 if (!Length)
350                         break;
351                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
352                 pTable += (Length * 2);
353         }
354         return status;
355 }
356
357 /****************************************************************************/
358 /****************************************************************************/
359 /****************************************************************************/
360
361 static int ResetCEFR(struct drxd_state *state)
362 {
363         return WriteTable(state, state->m_ResetCEFR);
364 }
365
366 static int InitCP(struct drxd_state *state)
367 {
368         return WriteTable(state, state->m_InitCP);
369 }
370
371 static int InitCE(struct drxd_state *state)
372 {
373         int status;
374         enum app_env AppEnv = state->app_env_default;
375
376         do {
377                 status = WriteTable(state, state->m_InitCE);
378                 if (status < 0)
379                         break;
380
381                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
382                     state->operation_mode == OM_DVBT_Diversity_End) {
383                         AppEnv = state->app_env_diversity;
384                 }
385                 if (AppEnv == APPENV_STATIC) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_PORTABLE) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
395                         if (status < 0)
396                                 break;
397                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
398                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
399                         if (status < 0)
400                                 break;
401                 }
402
403                 /* start ce */
404                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
405                 if (status < 0)
406                         break;
407         } while (0);
408         return status;
409 }
410
411 static int StopOC(struct drxd_state *state)
412 {
413         int status = 0;
414         u16 ocSyncLvl = 0;
415         u16 ocModeLop = state->m_EcOcRegOcModeLop;
416         u16 dtoIncLop = 0;
417         u16 dtoIncHip = 0;
418
419         do {
420                 /* Store output configuration */
421                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
422                 if (status < 0)
423                         break;
424                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
425                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
426                 /* m_EcOcRegOcModeLop = ocModeLop; */
427
428                 /* Flush FIFO (byte-boundary) at fixed rate */
429                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
430                 if (status < 0)
431                         break;
432                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
433                 if (status < 0)
434                         break;
435                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
436                 if (status < 0)
437                         break;
438                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
439                 if (status < 0)
440                         break;
441                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
442                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
443                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
444                 if (status < 0)
445                         break;
446                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
447                 if (status < 0)
448                         break;
449
450                 msleep(1);
451                 /* Output pins to '0' */
452                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
453                 if (status < 0)
454                         break;
455
456                 /* Force the OC out of sync */
457                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
458                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
459                 if (status < 0)
460                         break;
461                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
462                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
463                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
464                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
465                 if (status < 0)
466                         break;
467                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
468                 if (status < 0)
469                         break;
470                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
471                 if (status < 0)
472                         break;
473         } while (0);
474
475         return status;
476 }
477
478 static int StartOC(struct drxd_state *state)
479 {
480         int status = 0;
481
482         do {
483                 /* Stop OC */
484                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
485                 if (status < 0)
486                         break;
487
488                 /* Restore output configuration */
489                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
490                 if (status < 0)
491                         break;
492                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
493                 if (status < 0)
494                         break;
495
496                 /* Output pins active again */
497                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
498                 if (status < 0)
499                         break;
500
501                 /* Start OC */
502                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
503                 if (status < 0)
504                         break;
505         } while (0);
506         return status;
507 }
508
509 static int InitEQ(struct drxd_state *state)
510 {
511         return WriteTable(state, state->m_InitEQ);
512 }
513
514 static int InitEC(struct drxd_state *state)
515 {
516         return WriteTable(state, state->m_InitEC);
517 }
518
519 static int InitSC(struct drxd_state *state)
520 {
521         return WriteTable(state, state->m_InitSC);
522 }
523
524 static int InitAtomicRead(struct drxd_state *state)
525 {
526         return WriteTable(state, state->m_InitAtomicRead);
527 }
528
529 static int CorrectSysClockDeviation(struct drxd_state *state);
530
531 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
532 {
533         u16 ScRaRamLock = 0;
534         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
535                                     SC_RA_RAM_LOCK_FEC__M |
536                                     SC_RA_RAM_LOCK_DEMOD__M);
537         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
538                                    SC_RA_RAM_LOCK_DEMOD__M);
539         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
540
541         int status;
542
543         *pLockStatus = 0;
544
545         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
546         if (status < 0) {
547                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
548                 return status;
549         }
550
551         if (state->drxd_state != DRXD_STARTED)
552                 return 0;
553
554         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
555                 *pLockStatus |= DRX_LOCK_MPEG;
556                 CorrectSysClockDeviation(state);
557         }
558
559         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
560                 *pLockStatus |= DRX_LOCK_FEC;
561
562         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
563                 *pLockStatus |= DRX_LOCK_DEMOD;
564         return 0;
565 }
566
567 /****************************************************************************/
568
569 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
570 {
571         int status;
572
573         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
574                 return -1;
575
576         if (cfg->ctrlMode == AGC_CTRL_USER) {
577                 do {
578                         u16 FeAgRegPm1AgcWri;
579                         u16 FeAgRegAgModeLop;
580
581                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
582                         if (status < 0)
583                                 break;
584                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
585                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
586                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
587                         if (status < 0)
588                                 break;
589
590                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
591                                                   FE_AG_REG_PM1_AGC_WRI__M);
592                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
593                         if (status < 0)
594                                 break;
595                 } while (0);
596         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
597                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
598                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
599                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
600                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
601                     )
602                         return -1;
603                 do {
604                         u16 FeAgRegAgModeLop;
605                         u16 FeAgRegEgcSetLvl;
606                         u16 slope, offset;
607
608                         /* == Mode == */
609
610                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
611                         if (status < 0)
612                                 break;
613                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
614                         FeAgRegAgModeLop |=
615                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
616                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
617                         if (status < 0)
618                                 break;
619
620                         /* == Settle level == */
621
622                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
623                                                   FE_AG_REG_EGC_SET_LVL__M);
624                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
625                         if (status < 0)
626                                 break;
627
628                         /* == Min/Max == */
629
630                         slope = (u16) ((cfg->maxOutputLevel -
631                                         cfg->minOutputLevel) / 2);
632                         offset = (u16) ((cfg->maxOutputLevel +
633                                          cfg->minOutputLevel) / 2 - 511);
634
635                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
636                         if (status < 0)
637                                 break;
638                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
639                         if (status < 0)
640                                 break;
641
642                         /* == Speed == */
643                         {
644                                 const u16 maxRur = 8;
645                                 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
646                                 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
647                                         17, 18, 18, 19,
648                                         20, 21, 22, 23,
649                                         24, 26, 27, 28,
650                                         29, 31
651                                 };
652
653                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
654                                     (maxRur + 1);
655                                 u16 fineSpeed = (u16) (cfg->speed -
656                                                        ((cfg->speed /
657                                                          fineSteps) *
658                                                         fineSteps));
659                                 u16 invRurCount = (u16) (cfg->speed /
660                                                          fineSteps);
661                                 u16 rurCount;
662                                 if (invRurCount > maxRur) {
663                                         rurCount = 0;
664                                         fineSpeed += fineSteps;
665                                 } else {
666                                         rurCount = maxRur - invRurCount;
667                                 }
668
669                                 /*
670                                    fastInc = default *
671                                    (2^(fineSpeed/fineSteps))
672                                    => range[default...2*default>
673                                    slowInc = default *
674                                    (2^(fineSpeed/fineSteps))
675                                  */
676                                 {
677                                         u16 fastIncrDec =
678                                             fastIncrDecLUT[fineSpeed /
679                                                            ((fineSteps /
680                                                              (14 + 1)) + 1)];
681                                         u16 slowIncrDec =
682                                             slowIncrDecLUT[fineSpeed /
683                                                            (fineSteps /
684                                                             (3 + 1))];
685
686                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
687                                         if (status < 0)
688                                                 break;
689                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
690                                         if (status < 0)
691                                                 break;
692                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
693                                         if (status < 0)
694                                                 break;
695                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
696                                         if (status < 0)
697                                                 break;
698                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
699                                         if (status < 0)
700                                                 break;
701                                 }
702                         }
703                 } while (0);
704
705         } else {
706                 /* No OFF mode for IF control */
707                 return -1;
708         }
709         return status;
710 }
711
712 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
713 {
714         int status = 0;
715
716         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
717                 return -1;
718
719         if (cfg->ctrlMode == AGC_CTRL_USER) {
720                 do {
721                         u16 AgModeLop = 0;
722                         u16 level = (cfg->outputLevel);
723
724                         if (level == DRXD_FE_CTRL_MAX)
725                                 level++;
726
727                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
728                         if (status < 0)
729                                 break;
730
731                         /*==== Mode ====*/
732
733                         /* Powerdown PD2, WRI source */
734                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
735                         state->m_FeAgRegAgPwd |=
736                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
737                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
738                         if (status < 0)
739                                 break;
740
741                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
742                         if (status < 0)
743                                 break;
744                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
745                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
746                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
747                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
748                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
749                         if (status < 0)
750                                 break;
751
752                         /* enable AGC2 pin */
753                         {
754                                 u16 FeAgRegAgAgcSio = 0;
755                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
756                                 if (status < 0)
757                                         break;
758                                 FeAgRegAgAgcSio &=
759                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
760                                 FeAgRegAgAgcSio |=
761                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
762                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
763                                 if (status < 0)
764                                         break;
765                         }
766
767                 } while (0);
768         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
769                 u16 AgModeLop = 0;
770
771                 do {
772                         u16 level;
773                         /* Automatic control */
774                         /* Powerup PD2, AGC2 as output, TGC source */
775                         (state->m_FeAgRegAgPwd) &=
776                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
777                         (state->m_FeAgRegAgPwd) |=
778                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
779                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
780                         if (status < 0)
781                                 break;
782
783                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
784                         if (status < 0)
785                                 break;
786                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
787                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
788                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
789                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
790                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
791                         if (status < 0)
792                                 break;
793                         /* Settle level */
794                         level = (((cfg->settleLevel) >> 4) &
795                                  FE_AG_REG_TGC_SET_LVL__M);
796                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
797                         if (status < 0)
798                                 break;
799
800                         /* Min/max: don't care */
801
802                         /* Speed: TODO */
803
804                         /* enable AGC2 pin */
805                         {
806                                 u16 FeAgRegAgAgcSio = 0;
807                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
808                                 if (status < 0)
809                                         break;
810                                 FeAgRegAgAgcSio &=
811                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
812                                 FeAgRegAgAgcSio |=
813                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
814                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
815                                 if (status < 0)
816                                         break;
817                         }
818
819                 } while (0);
820         } else {
821                 u16 AgModeLop = 0;
822
823                 do {
824                         /* No RF AGC control */
825                         /* Powerdown PD2, AGC2 as output, WRI source */
826                         (state->m_FeAgRegAgPwd) &=
827                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
828                         (state->m_FeAgRegAgPwd) |=
829                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
830                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
831                         if (status < 0)
832                                 break;
833
834                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
835                         if (status < 0)
836                                 break;
837                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
838                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
839                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
840                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
841                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
842                         if (status < 0)
843                                 break;
844
845                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
846                         {
847                                 u16 FeAgRegAgAgcSio = 0;
848                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
849                                 if (status < 0)
850                                         break;
851                                 FeAgRegAgAgcSio &=
852                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
853                                 FeAgRegAgAgcSio |=
854                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
855                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
856                                 if (status < 0)
857                                         break;
858                         }
859                 } while (0);
860         }
861         return status;
862 }
863
864 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
865 {
866         int status = 0;
867
868         *pValue = 0;
869         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
870                 u16 Value;
871                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
872                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
873                 if (status >= 0) {
874                         /*           3.3V
875                            |
876                            R1
877                            |
878                            Vin - R3 - * -- Vout
879                            |
880                            R2
881                            |
882                            GND
883                          */
884                         u32 R1 = state->if_agc_cfg.R1;
885                         u32 R2 = state->if_agc_cfg.R2;
886                         u32 R3 = state->if_agc_cfg.R3;
887
888                         u32 Vmax, Rpar, Vmin, Vout;
889
890                         if (R2 == 0 && (R1 == 0 || R3 == 0))
891                                 return 0;
892
893                         Vmax = (3300 * R2) / (R1 + R2);
894                         Rpar = (R2 * R3) / (R3 + R2);
895                         Vmin = (3300 * Rpar) / (R1 + Rpar);
896                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
897
898                         *pValue = Vout;
899                 }
900         }
901         return status;
902 }
903
904 static int load_firmware(struct drxd_state *state, const char *fw_name)
905 {
906         const struct firmware *fw;
907
908         if (request_firmware(&fw, fw_name, state->dev) < 0) {
909                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
910                 return -EIO;
911         }
912
913         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
914         if (state->microcode == NULL) {
915                 release_firmware(fw);
916                 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
917                 return -ENOMEM;
918         }
919
920         state->microcode_length = fw->size;
921         release_firmware(fw);
922         return 0;
923 }
924
925 static int DownloadMicrocode(struct drxd_state *state,
926                              const u8 *pMCImage, u32 Length)
927 {
928         u8 *pSrc;
929         u32 Address;
930         u16 nBlocks;
931         u16 BlockSize;
932         u32 offset = 0;
933         int i, status = 0;
934
935         pSrc = (u8 *) pMCImage;
936         /* We're not using Flags */
937         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
938         pSrc += sizeof(u16);
939         offset += sizeof(u16);
940         nBlocks = (pSrc[0] << 8) | pSrc[1];
941         pSrc += sizeof(u16);
942         offset += sizeof(u16);
943
944         for (i = 0; i < nBlocks; i++) {
945                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
946                     (pSrc[2] << 8) | pSrc[3];
947                 pSrc += sizeof(u32);
948                 offset += sizeof(u32);
949
950                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
951                 pSrc += sizeof(u16);
952                 offset += sizeof(u16);
953
954                 /* We're not using Flags */
955                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
956                 pSrc += sizeof(u16);
957                 offset += sizeof(u16);
958
959                 /* We're not using BlockCRC */
960                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
961                 pSrc += sizeof(u16);
962                 offset += sizeof(u16);
963
964                 status = WriteBlock(state, Address, BlockSize,
965                                     pSrc, DRX_I2C_CLEARCRC);
966                 if (status < 0)
967                         break;
968                 pSrc += BlockSize;
969                 offset += BlockSize;
970         }
971
972         return status;
973 }
974
975 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
976 {
977         u32 nrRetries = 0;
978         u16 waitCmd;
979         int status;
980
981         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
982         if (status < 0)
983                 return status;
984
985         do {
986                 nrRetries += 1;
987                 if (nrRetries > DRXD_MAX_RETRIES) {
988                         status = -1;
989                         break;
990                 }
991                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
992         } while (waitCmd != 0);
993
994         if (status >= 0)
995                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
996         return status;
997 }
998
999 static int HI_CfgCommand(struct drxd_state *state)
1000 {
1001         int status = 0;
1002
1003         mutex_lock(&state->mutex);
1004         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1005         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1006         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1007         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1008         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1009
1010         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1011
1012         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1013             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1014                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1015                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1016         else
1017                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1018         mutex_unlock(&state->mutex);
1019         return status;
1020 }
1021
1022 static int InitHI(struct drxd_state *state)
1023 {
1024         state->hi_cfg_wakeup_key = (state->chip_adr);
1025         /* port/bridge/power down ctrl */
1026         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1027         return HI_CfgCommand(state);
1028 }
1029
1030 static int HI_ResetCommand(struct drxd_state *state)
1031 {
1032         int status;
1033
1034         mutex_lock(&state->mutex);
1035         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1036                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1037         if (status == 0)
1038                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1039         mutex_unlock(&state->mutex);
1040         msleep(1);
1041         return status;
1042 }
1043
1044 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1045 {
1046         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1047         if (bEnableBridge)
1048                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1049         else
1050                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1051
1052         return HI_CfgCommand(state);
1053 }
1054
1055 #define HI_TR_WRITE      0x9
1056 #define HI_TR_READ       0xA
1057 #define HI_TR_READ_WRITE 0xB
1058 #define HI_TR_BROADCAST  0x4
1059
1060 #if 0
1061 static int AtomicReadBlock(struct drxd_state *state,
1062                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1063 {
1064         int status;
1065         int i = 0;
1066
1067         /* Parameter check */
1068         if ((!pData) || ((DataSize & 1) != 0))
1069                 return -1;
1070
1071         mutex_lock(&state->mutex);
1072
1073         do {
1074                 /* Instruct HI to read n bytes */
1075                 /* TODO use proper names forthese egisters */
1076                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1077                 if (status < 0)
1078                         break;
1079                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1080                 if (status < 0)
1081                         break;
1082                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1083                 if (status < 0)
1084                         break;
1085                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1086                 if (status < 0)
1087                         break;
1088                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1089                 if (status < 0)
1090                         break;
1091
1092                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1093                 if (status < 0)
1094                         break;
1095
1096         } while (0);
1097
1098         if (status >= 0) {
1099                 for (i = 0; i < (DataSize / 2); i += 1) {
1100                         u16 word;
1101
1102                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1103                                         &word, 0);
1104                         if (status < 0)
1105                                 break;
1106                         pData[2 * i] = (u8) (word & 0xFF);
1107                         pData[(2 * i) + 1] = (u8) (word >> 8);
1108                 }
1109         }
1110         mutex_unlock(&state->mutex);
1111         return status;
1112 }
1113
1114 static int AtomicReadReg32(struct drxd_state *state,
1115                            u32 Addr, u32 *pData, u8 Flags)
1116 {
1117         u8 buf[sizeof(u32)];
1118         int status;
1119
1120         if (!pData)
1121                 return -1;
1122         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1123         *pData = (((u32) buf[0]) << 0) +
1124             (((u32) buf[1]) << 8) +
1125             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1126         return status;
1127 }
1128 #endif
1129
1130 static int StopAllProcessors(struct drxd_state *state)
1131 {
1132         return Write16(state, HI_COMM_EXEC__A,
1133                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1134 }
1135
1136 static int EnableAndResetMB(struct drxd_state *state)
1137 {
1138         if (state->type_A) {
1139                 /* disable? monitor bus observe @ EC_OC */
1140                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1141         }
1142
1143         /* do inverse broadcast, followed by explicit write to HI */
1144         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1145         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1146         return 0;
1147 }
1148
1149 static int InitCC(struct drxd_state *state)
1150 {
1151         if (state->osc_clock_freq == 0 ||
1152             state->osc_clock_freq > 20000 ||
1153             (state->osc_clock_freq % 4000) != 0) {
1154                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1155                 return -1;
1156         }
1157
1158         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1159         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1160                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1161         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1162         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1163         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1164
1165         return 0;
1166 }
1167
1168 static int ResetECOD(struct drxd_state *state)
1169 {
1170         int status = 0;
1171
1172         if (state->type_A)
1173                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1174         else
1175                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1176
1177         if (!(status < 0))
1178                 status = WriteTable(state, state->m_ResetECRAM);
1179         if (!(status < 0))
1180                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1181         return status;
1182 }
1183
1184 /* Configure PGA switch */
1185
1186 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1187 {
1188         int status;
1189         u16 AgModeLop = 0;
1190         u16 AgModeHip = 0;
1191         do {
1192                 if (pgaSwitch) {
1193                         /* PGA on */
1194                         /* fine gain */
1195                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1196                         if (status < 0)
1197                                 break;
1198                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1199                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1200                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1201                         if (status < 0)
1202                                 break;
1203
1204                         /* coarse gain */
1205                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1206                         if (status < 0)
1207                                 break;
1208                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1209                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1210                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1211                         if (status < 0)
1212                                 break;
1213
1214                         /* enable fine and coarse gain, enable AAF,
1215                            no ext resistor */
1216                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1217                         if (status < 0)
1218                                 break;
1219                 } else {
1220                         /* PGA off, bypass */
1221
1222                         /* fine gain */
1223                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1224                         if (status < 0)
1225                                 break;
1226                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1227                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1228                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1229                         if (status < 0)
1230                                 break;
1231
1232                         /* coarse gain */
1233                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1234                         if (status < 0)
1235                                 break;
1236                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1237                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1238                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1239                         if (status < 0)
1240                                 break;
1241
1242                         /* disable fine and coarse gain, enable AAF,
1243                            no ext resistor */
1244                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1245                         if (status < 0)
1246                                 break;
1247                 }
1248         } while (0);
1249         return status;
1250 }
1251
1252 static int InitFE(struct drxd_state *state)
1253 {
1254         int status;
1255
1256         do {
1257                 status = WriteTable(state, state->m_InitFE_1);
1258                 if (status < 0)
1259                         break;
1260
1261                 if (state->type_A) {
1262                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1263                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1264                                          0);
1265                 } else {
1266                         if (state->PGA)
1267                                 status = SetCfgPga(state, 0);
1268                         else
1269                                 status =
1270                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1271                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1272                                             0);
1273                 }
1274
1275                 if (status < 0)
1276                         break;
1277                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1278                 if (status < 0)
1279                         break;
1280                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1281                 if (status < 0)
1282                         break;
1283
1284                 status = WriteTable(state, state->m_InitFE_2);
1285                 if (status < 0)
1286                         break;
1287
1288         } while (0);
1289
1290         return status;
1291 }
1292
1293 static int InitFT(struct drxd_state *state)
1294 {
1295         /*
1296            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1297            SC stuff
1298          */
1299         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1300 }
1301
1302 static int SC_WaitForReady(struct drxd_state *state)
1303 {
1304         u16 curCmd;
1305         int i;
1306
1307         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308                 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1309                 if (status == 0 || curCmd == 0)
1310                         return status;
1311         }
1312         return -1;
1313 }
1314
1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1316 {
1317         int status = 0;
1318         u16 errCode;
1319
1320         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321         SC_WaitForReady(state);
1322
1323         Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1324
1325         if (errCode == 0xFFFF) {
1326                 printk(KERN_ERR "Command Error\n");
1327                 status = -1;
1328         }
1329
1330         return status;
1331 }
1332
1333 static int SC_ProcStartCommand(struct drxd_state *state,
1334                                u16 subCmd, u16 param0, u16 param1)
1335 {
1336         int status = 0;
1337         u16 scExec;
1338
1339         mutex_lock(&state->mutex);
1340         do {
1341                 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1342                 if (scExec != 1) {
1343                         status = -1;
1344                         break;
1345                 }
1346                 SC_WaitForReady(state);
1347                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1348                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1349                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1350
1351                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1352         } while (0);
1353         mutex_unlock(&state->mutex);
1354         return status;
1355 }
1356
1357 static int SC_SetPrefParamCommand(struct drxd_state *state,
1358                                   u16 subCmd, u16 param0, u16 param1)
1359 {
1360         int status;
1361
1362         mutex_lock(&state->mutex);
1363         do {
1364                 status = SC_WaitForReady(state);
1365                 if (status < 0)
1366                         break;
1367                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1368                 if (status < 0)
1369                         break;
1370                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1371                 if (status < 0)
1372                         break;
1373                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1374                 if (status < 0)
1375                         break;
1376
1377                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1378                 if (status < 0)
1379                         break;
1380         } while (0);
1381         mutex_unlock(&state->mutex);
1382         return status;
1383 }
1384
1385 #if 0
1386 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1387 {
1388         int status = 0;
1389
1390         mutex_lock(&state->mutex);
1391         do {
1392                 status = SC_WaitForReady(state);
1393                 if (status < 0)
1394                         break;
1395                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1396                 if (status < 0)
1397                         break;
1398                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1399                 if (status < 0)
1400                         break;
1401         } while (0);
1402         mutex_unlock(&state->mutex);
1403         return status;
1404 }
1405 #endif
1406
1407 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1408 {
1409         int status;
1410
1411         do {
1412                 u16 EcOcRegIprInvMpg = 0;
1413                 u16 EcOcRegOcModeLop = 0;
1414                 u16 EcOcRegOcModeHip = 0;
1415                 u16 EcOcRegOcMpgSio = 0;
1416
1417                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1418
1419                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1420                         if (bEnableOutput) {
1421                                 EcOcRegOcModeHip |=
1422                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1423                         } else
1424                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425                         EcOcRegOcModeLop |=
1426                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1427                 } else {
1428                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1429
1430                         if (bEnableOutput)
1431                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1432                         else
1433                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1434
1435                         /* Don't Insert RS Byte */
1436                         if (state->insert_rs_byte) {
1437                                 EcOcRegOcModeLop &=
1438                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1439                                 EcOcRegOcModeHip &=
1440                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1441                                 EcOcRegOcModeHip |=
1442                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1443                         } else {
1444                                 EcOcRegOcModeLop |=
1445                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1446                                 EcOcRegOcModeHip &=
1447                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1448                                 EcOcRegOcModeHip |=
1449                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1450                         }
1451
1452                         /* Mode = Parallel */
1453                         if (state->enable_parallel)
1454                                 EcOcRegOcModeLop &=
1455                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1456                         else
1457                                 EcOcRegOcModeLop |=
1458                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1459                 }
1460                 /* Invert Data */
1461                 /* EcOcRegIprInvMpg |= 0x00FF; */
1462                 EcOcRegIprInvMpg &= (~(0x00FF));
1463
1464                 /* Invert Error ( we don't use the pin ) */
1465                 /*  EcOcRegIprInvMpg |= 0x0100; */
1466                 EcOcRegIprInvMpg &= (~(0x0100));
1467
1468                 /* Invert Start ( we don't use the pin ) */
1469                 /* EcOcRegIprInvMpg |= 0x0200; */
1470                 EcOcRegIprInvMpg &= (~(0x0200));
1471
1472                 /* Invert Valid ( we don't use the pin ) */
1473                 /* EcOcRegIprInvMpg |= 0x0400; */
1474                 EcOcRegIprInvMpg &= (~(0x0400));
1475
1476                 /* Invert Clock */
1477                 /* EcOcRegIprInvMpg |= 0x0800; */
1478                 EcOcRegIprInvMpg &= (~(0x0800));
1479
1480                 /* EcOcRegOcModeLop =0x05; */
1481                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1482                 if (status < 0)
1483                         break;
1484                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1485                 if (status < 0)
1486                         break;
1487                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1488                 if (status < 0)
1489                         break;
1490                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1491                 if (status < 0)
1492                         break;
1493         } while (0);
1494         return status;
1495 }
1496
1497 static int SetDeviceTypeId(struct drxd_state *state)
1498 {
1499         int status = 0;
1500         u16 deviceId = 0;
1501
1502         do {
1503                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504                 if (status < 0)
1505                         break;
1506                 /* TODO: why twice? */
1507                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508                 if (status < 0)
1509                         break;
1510                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1511
1512                 state->type_A = 0;
1513                 state->PGA = 0;
1514                 state->diversity = 0;
1515                 if (deviceId == 0) {    /* on A2 only 3975 available */
1516                         state->type_A = 1;
1517                         printk(KERN_INFO "DRX3975D-A2\n");
1518                 } else {
1519                         deviceId >>= 12;
1520                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1521                         switch (deviceId) {
1522                         case 4:
1523                                 state->diversity = 1;
1524                         case 3:
1525                         case 7:
1526                                 state->PGA = 1;
1527                                 break;
1528                         case 6:
1529                                 state->diversity = 1;
1530                         case 5:
1531                         case 8:
1532                                 break;
1533                         default:
1534                                 status = -1;
1535                                 break;
1536                         }
1537                 }
1538         } while (0);
1539
1540         if (status < 0)
1541                 return status;
1542
1543         /* Init Table selection */
1544         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1545         state->m_InitSC = DRXD_InitSC;
1546         state->m_ResetECRAM = DRXD_ResetECRAM;
1547         if (state->type_A) {
1548                 state->m_ResetCEFR = DRXD_ResetCEFR;
1549                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1550                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1551                 state->m_InitCP = DRXD_InitCPA2;
1552                 state->m_InitCE = DRXD_InitCEA2;
1553                 state->m_InitEQ = DRXD_InitEQA2;
1554                 state->m_InitEC = DRXD_InitECA2;
1555                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1556                         return -EIO;
1557         } else {
1558                 state->m_ResetCEFR = NULL;
1559                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1560                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1561                 state->m_InitCP = DRXD_InitCPB1;
1562                 state->m_InitCE = DRXD_InitCEB1;
1563                 state->m_InitEQ = DRXD_InitEQB1;
1564                 state->m_InitEC = DRXD_InitECB1;
1565                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1566                         return -EIO;
1567         }
1568         if (state->diversity) {
1569                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1570                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1571                 state->m_DisableDiversity = DRXD_DisableDiversity;
1572                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1573                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1574                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1575                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1576         } else {
1577                 state->m_InitDiversityFront = NULL;
1578                 state->m_InitDiversityEnd = NULL;
1579                 state->m_DisableDiversity = NULL;
1580                 state->m_StartDiversityFront = NULL;
1581                 state->m_StartDiversityEnd = NULL;
1582                 state->m_DiversityDelay8MHZ = NULL;
1583                 state->m_DiversityDelay6MHZ = NULL;
1584         }
1585
1586         return status;
1587 }
1588
1589 static int CorrectSysClockDeviation(struct drxd_state *state)
1590 {
1591         int status;
1592         s32 incr = 0;
1593         s32 nomincr = 0;
1594         u32 bandwidth = 0;
1595         u32 sysClockInHz = 0;
1596         u32 sysClockFreq = 0;   /* in kHz */
1597         s16 oscClockDeviation;
1598         s16 Diff;
1599
1600         do {
1601                 /* Retrieve bandwidth and incr, sanity check */
1602
1603                 /* These accesses should be AtomicReadReg32, but that
1604                    causes trouble (at least for diversity */
1605                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1606                 if (status < 0)
1607                         break;
1608                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1609                 if (status < 0)
1610                         break;
1611
1612                 if (state->type_A) {
1613                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1614                                 break;
1615                 } else {
1616                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1617                                 break;
1618                 }
1619
1620                 switch (state->props.bandwidth_hz) {
1621                 case 8000000:
1622                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1623                         break;
1624                 case 7000000:
1625                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1626                         break;
1627                 case 6000000:
1628                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1629                         break;
1630                 default:
1631                         return -1;
1632                         break;
1633                 }
1634
1635                 /* Compute new sysclock value
1636                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1637                 incr += (1 << 23);
1638                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1639                 sysClockFreq = (u32) (sysClockInHz / 1000);
1640                 /* rounding */
1641                 if ((sysClockInHz % 1000) > 500)
1642                         sysClockFreq++;
1643
1644                 /* Compute clock deviation in ppm */
1645                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1646                                              (s32)
1647                                              (state->expected_sys_clock_freq)) *
1648                                             1000000L) /
1649                                            (s32)
1650                                            (state->expected_sys_clock_freq));
1651
1652                 Diff = oscClockDeviation - state->osc_clock_deviation;
1653                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654                 if (Diff >= -200 && Diff <= 200) {
1655                         state->sys_clock_freq = (u16) sysClockFreq;
1656                         if (oscClockDeviation != state->osc_clock_deviation) {
1657                                 if (state->config.osc_deviation) {
1658                                         state->config.osc_deviation(state->priv,
1659                                                                     oscClockDeviation,
1660                                                                     1);
1661                                         state->osc_clock_deviation =
1662                                             oscClockDeviation;
1663                                 }
1664                         }
1665                         /* switch OFF SRMM scan in SC */
1666                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1667                         if (status < 0)
1668                                 break;
1669                         /* overrule FE_IF internal value for
1670                            proper re-locking */
1671                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1672                         if (status < 0)
1673                                 break;
1674                         state->cscd_state = CSCD_SAVED;
1675                 }
1676         } while (0);
1677
1678         return status;
1679 }
1680
1681 static int DRX_Stop(struct drxd_state *state)
1682 {
1683         int status;
1684
1685         if (state->drxd_state != DRXD_STARTED)
1686                 return 0;
1687
1688         do {
1689                 if (state->cscd_state != CSCD_SAVED) {
1690                         u32 lock;
1691                         status = DRX_GetLockStatus(state, &lock);
1692                         if (status < 0)
1693                                 break;
1694                 }
1695
1696                 status = StopOC(state);
1697                 if (status < 0)
1698                         break;
1699
1700                 state->drxd_state = DRXD_STOPPED;
1701
1702                 status = ConfigureMPEGOutput(state, 0);
1703                 if (status < 0)
1704                         break;
1705
1706                 if (state->type_A) {
1707                         /* Stop relevant processors off the device */
1708                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1709                         if (status < 0)
1710                                 break;
1711
1712                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                         if (status < 0)
1714                                 break;
1715                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716                         if (status < 0)
1717                                 break;
1718                 } else {
1719                         /* Stop all processors except HI & CC & FE */
1720                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                         if (status < 0)
1722                                 break;
1723                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724                         if (status < 0)
1725                                 break;
1726                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727                         if (status < 0)
1728                                 break;
1729                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730                         if (status < 0)
1731                                 break;
1732                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733                         if (status < 0)
1734                                 break;
1735                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1736                         if (status < 0)
1737                                 break;
1738                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1739                         if (status < 0)
1740                                 break;
1741                 }
1742
1743         } while (0);
1744         return status;
1745 }
1746
1747 #if 0   /* Currently unused */
1748 static int SetOperationMode(struct drxd_state *state, int oMode)
1749 {
1750         int status;
1751
1752         do {
1753                 if (state->drxd_state != DRXD_STOPPED) {
1754                         status = -1;
1755                         break;
1756                 }
1757
1758                 if (oMode == state->operation_mode) {
1759                         status = 0;
1760                         break;
1761                 }
1762
1763                 if (oMode != OM_Default && !state->diversity) {
1764                         status = -1;
1765                         break;
1766                 }
1767
1768                 switch (oMode) {
1769                 case OM_DVBT_Diversity_Front:
1770                         status = WriteTable(state, state->m_InitDiversityFront);
1771                         break;
1772                 case OM_DVBT_Diversity_End:
1773                         status = WriteTable(state, state->m_InitDiversityEnd);
1774                         break;
1775                 case OM_Default:
1776                         /* We need to check how to
1777                            get DRXD out of diversity */
1778                 default:
1779                         status = WriteTable(state, state->m_DisableDiversity);
1780                         break;
1781                 }
1782         } while (0);
1783
1784         if (!status)
1785                 state->operation_mode = oMode;
1786         return status;
1787 }
1788 #endif
1789
1790 static int StartDiversity(struct drxd_state *state)
1791 {
1792         int status = 0;
1793         u16 rcControl;
1794
1795         do {
1796                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1797                         status = WriteTable(state, state->m_StartDiversityFront);
1798                         if (status < 0)
1799                                 break;
1800                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1801                         status = WriteTable(state, state->m_StartDiversityEnd);
1802                         if (status < 0)
1803                                 break;
1804                         if (state->props.bandwidth_hz == 8000000) {
1805                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1806                                 if (status < 0)
1807                                         break;
1808                         } else {
1809                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1810                                 if (status < 0)
1811                                         break;
1812                         }
1813
1814                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1815                         if (status < 0)
1816                                 break;
1817                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1818                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1819                             /*  combining enabled */
1820                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1821                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1822                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1823                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1824                         if (status < 0)
1825                                 break;
1826                 }
1827         } while (0);
1828         return status;
1829 }
1830
1831 static int SetFrequencyShift(struct drxd_state *state,
1832                              u32 offsetFreq, int channelMirrored)
1833 {
1834         int negativeShift = (state->tuner_mirrors == channelMirrored);
1835
1836         /* Handle all mirroring
1837          *
1838          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839          * feFsRegAddInc to 28 bits below
1840          * (if the result before masking is more than 28 bits, this means
1841          *  that the ADC is mirroring.
1842          * The masking is in fact the aliasing of the ADC)
1843          *
1844          */
1845
1846         /* Compute register value, unsigned computation */
1847         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1848                                          offsetFreq,
1849                                          1 << 28, state->sys_clock_freq);
1850         /* Remove integer part */
1851         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1852         if (negativeShift)
1853                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1854
1855         /* Save the frequency shift without tunerOffset compensation
1856            for CtrlGetChannel. */
1857         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1858                                              1 << 28, state->sys_clock_freq);
1859         /* Remove integer part */
1860         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1861         if (negativeShift)
1862                 state->org_fe_fs_add_incr = ((1L << 28) -
1863                                              state->org_fe_fs_add_incr);
1864
1865         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1866                        state->fe_fs_add_incr, 0);
1867 }
1868
1869 static int SetCfgNoiseCalibration(struct drxd_state *state,
1870                                   struct SNoiseCal *noiseCal)
1871 {
1872         u16 beOptEna;
1873         int status = 0;
1874
1875         do {
1876                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1877                 if (status < 0)
1878                         break;
1879                 if (noiseCal->cpOpt) {
1880                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1881                 } else {
1882                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1884                         if (status < 0)
1885                                 break;
1886                 }
1887                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1888                 if (status < 0)
1889                         break;
1890
1891                 if (!state->type_A) {
1892                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1893                         if (status < 0)
1894                                 break;
1895                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1896                         if (status < 0)
1897                                 break;
1898                 }
1899         } while (0);
1900
1901         return status;
1902 }
1903
1904 static int DRX_Start(struct drxd_state *state, s32 off)
1905 {
1906         struct dtv_frontend_properties *p = &state->props;
1907         int status;
1908
1909         u16 transmissionParams = 0;
1910         u16 operationMode = 0;
1911         u16 qpskTdTpsPwr = 0;
1912         u16 qam16TdTpsPwr = 0;
1913         u16 qam64TdTpsPwr = 0;
1914         u32 feIfIncr = 0;
1915         u32 bandwidth = 0;
1916         int mirrorFreqSpect;
1917
1918         u16 qpskSnCeGain = 0;
1919         u16 qam16SnCeGain = 0;
1920         u16 qam64SnCeGain = 0;
1921         u16 qpskIsGainMan = 0;
1922         u16 qam16IsGainMan = 0;
1923         u16 qam64IsGainMan = 0;
1924         u16 qpskIsGainExp = 0;
1925         u16 qam16IsGainExp = 0;
1926         u16 qam64IsGainExp = 0;
1927         u16 bandwidthParam = 0;
1928
1929         if (off < 0)
1930                 off = (off - 500) / 1000;
1931         else
1932                 off = (off + 500) / 1000;
1933
1934         do {
1935                 if (state->drxd_state != DRXD_STOPPED)
1936                         return -1;
1937                 status = ResetECOD(state);
1938                 if (status < 0)
1939                         break;
1940                 if (state->type_A) {
1941                         status = InitSC(state);
1942                         if (status < 0)
1943                                 break;
1944                 } else {
1945                         status = InitFT(state);
1946                         if (status < 0)
1947                                 break;
1948                         status = InitCP(state);
1949                         if (status < 0)
1950                                 break;
1951                         status = InitCE(state);
1952                         if (status < 0)
1953                                 break;
1954                         status = InitEQ(state);
1955                         if (status < 0)
1956                                 break;
1957                         status = InitSC(state);
1958                         if (status < 0)
1959                                 break;
1960                 }
1961
1962                 /* Restore current IF & RF AGC settings */
1963
1964                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1965                 if (status < 0)
1966                         break;
1967                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1968                 if (status < 0)
1969                         break;
1970
1971                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1972
1973                 switch (p->transmission_mode) {
1974                 default:        /* Not set, detect it automatically */
1975                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1976                         /* fall through , try first guess DRX_FFTMODE_8K */
1977                 case TRANSMISSION_MODE_8K:
1978                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1979                         if (state->type_A) {
1980                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1981                                 if (status < 0)
1982                                         break;
1983                                 qpskSnCeGain = 99;
1984                                 qam16SnCeGain = 83;
1985                                 qam64SnCeGain = 67;
1986                         }
1987                         break;
1988                 case TRANSMISSION_MODE_2K:
1989                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1990                         if (state->type_A) {
1991                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1992                                 if (status < 0)
1993                                         break;
1994                                 qpskSnCeGain = 97;
1995                                 qam16SnCeGain = 71;
1996                                 qam64SnCeGain = 65;
1997                         }
1998                         break;
1999                 }
2000
2001                 switch (p->guard_interval) {
2002                 case GUARD_INTERVAL_1_4:
2003                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2004                         break;
2005                 case GUARD_INTERVAL_1_8:
2006                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2007                         break;
2008                 case GUARD_INTERVAL_1_16:
2009                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2010                         break;
2011                 case GUARD_INTERVAL_1_32:
2012                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2013                         break;
2014                 default:        /* Not set, detect it automatically */
2015                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2016                         /* try first guess 1/4 */
2017                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2018                         break;
2019                 }
2020
2021                 switch (p->hierarchy) {
2022                 case HIERARCHY_1:
2023                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2024                         if (state->type_A) {
2025                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2026                                 if (status < 0)
2027                                         break;
2028                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2029                                 if (status < 0)
2030                                         break;
2031
2032                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2033                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2034                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2035
2036                                 qpskIsGainMan =
2037                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2038                                 qam16IsGainMan =
2039                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2040                                 qam64IsGainMan =
2041                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2042
2043                                 qpskIsGainExp =
2044                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2045                                 qam16IsGainExp =
2046                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2047                                 qam64IsGainExp =
2048                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2049                         }
2050                         break;
2051
2052                 case HIERARCHY_2:
2053                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2054                         if (state->type_A) {
2055                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2056                                 if (status < 0)
2057                                         break;
2058                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2059                                 if (status < 0)
2060                                         break;
2061
2062                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2063                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2064                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2065
2066                                 qpskIsGainMan =
2067                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2068                                 qam16IsGainMan =
2069                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2070                                 qam64IsGainMan =
2071                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2072
2073                                 qpskIsGainExp =
2074                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2075                                 qam16IsGainExp =
2076                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2077                                 qam64IsGainExp =
2078                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2079                         }
2080                         break;
2081                 case HIERARCHY_4:
2082                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2083                         if (state->type_A) {
2084                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2085                                 if (status < 0)
2086                                         break;
2087                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2088                                 if (status < 0)
2089                                         break;
2090
2091                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2092                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2093                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2094
2095                                 qpskIsGainMan =
2096                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2097                                 qam16IsGainMan =
2098                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2099                                 qam64IsGainMan =
2100                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2101
2102                                 qpskIsGainExp =
2103                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2104                                 qam16IsGainExp =
2105                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2106                                 qam64IsGainExp =
2107                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2108                         }
2109                         break;
2110                 case HIERARCHY_AUTO:
2111                 default:
2112                         /* Not set, detect it automatically, start with none */
2113                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2114                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2115                         if (state->type_A) {
2116                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2117                                 if (status < 0)
2118                                         break;
2119                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2120                                 if (status < 0)
2121                                         break;
2122
2123                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2124                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2125                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2126
2127                                 qpskIsGainMan =
2128                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2129                                 qam16IsGainMan =
2130                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2131                                 qam64IsGainMan =
2132                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2133
2134                                 qpskIsGainExp =
2135                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2136                                 qam16IsGainExp =
2137                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2138                                 qam64IsGainExp =
2139                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2140                         }
2141                         break;
2142                 }
2143                 status = status;
2144                 if (status < 0)
2145                         break;
2146
2147                 switch (p->modulation) {
2148                 default:
2149                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2150                         /* fall through , try first guess
2151                            DRX_CONSTELLATION_QAM64 */
2152                 case QAM_64:
2153                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2154                         if (state->type_A) {
2155                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2156                                 if (status < 0)
2157                                         break;
2158                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2159                                 if (status < 0)
2160                                         break;
2161                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2162                                 if (status < 0)
2163                                         break;
2164                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2165                                 if (status < 0)
2166                                         break;
2167                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2168                                 if (status < 0)
2169                                         break;
2170
2171                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2172                                 if (status < 0)
2173                                         break;
2174                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2175                                 if (status < 0)
2176                                         break;
2177                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2178                                 if (status < 0)
2179                                         break;
2180                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2181                                 if (status < 0)
2182                                         break;
2183                         }
2184                         break;
2185                 case QPSK:
2186                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2187                         if (state->type_A) {
2188                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2189                                 if (status < 0)
2190                                         break;
2191                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2192                                 if (status < 0)
2193                                         break;
2194                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2195                                 if (status < 0)
2196                                         break;
2197                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2198                                 if (status < 0)
2199                                         break;
2200                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2201                                 if (status < 0)
2202                                         break;
2203
2204                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2205                                 if (status < 0)
2206                                         break;
2207                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2208                                 if (status < 0)
2209                                         break;
2210                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2211                                 if (status < 0)
2212                                         break;
2213                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2214                                 if (status < 0)
2215                                         break;
2216                         }
2217                         break;
2218
2219                 case QAM_16:
2220                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2221                         if (state->type_A) {
2222                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2223                                 if (status < 0)
2224                                         break;
2225                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2226                                 if (status < 0)
2227                                         break;
2228                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2229                                 if (status < 0)
2230                                         break;
2231                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2232                                 if (status < 0)
2233                                         break;
2234                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2235                                 if (status < 0)
2236                                         break;
2237
2238                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2239                                 if (status < 0)
2240                                         break;
2241                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2242                                 if (status < 0)
2243                                         break;
2244                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2245                                 if (status < 0)
2246                                         break;
2247                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2248                                 if (status < 0)
2249                                         break;
2250                         }
2251                         break;
2252
2253                 }
2254                 status = status;
2255                 if (status < 0)
2256                         break;
2257
2258                 switch (DRX_CHANNEL_HIGH) {
2259                 default:
2260                 case DRX_CHANNEL_AUTO:
2261                 case DRX_CHANNEL_LOW:
2262                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2263                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2264                         if (status < 0)
2265                                 break;
2266                         break;
2267                 case DRX_CHANNEL_HIGH:
2268                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270                         if (status < 0)
2271                                 break;
2272                         break;
2273
2274                 }
2275
2276                 switch (p->code_rate_HP) {
2277                 case FEC_1_2:
2278                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2279                         if (state->type_A) {
2280                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2281                                 if (status < 0)
2282                                         break;
2283                         }
2284                         break;
2285                 default:
2286                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2287                 case FEC_2_3:
2288                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2289                         if (state->type_A) {
2290                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2291                                 if (status < 0)
2292                                         break;
2293                         }
2294                         break;
2295                 case FEC_3_4:
2296                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2297                         if (state->type_A) {
2298                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2299                                 if (status < 0)
2300                                         break;
2301                         }
2302                         break;
2303                 case FEC_5_6:
2304                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2305                         if (state->type_A) {
2306                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2307                                 if (status < 0)
2308                                         break;
2309                         }
2310                         break;
2311                 case FEC_7_8:
2312                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2313                         if (state->type_A) {
2314                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2315                                 if (status < 0)
2316                                         break;
2317                         }
2318                         break;
2319                 }
2320                 status = status;
2321                 if (status < 0)
2322                         break;
2323
2324                 /* First determine real bandwidth (Hz) */
2325                 /* Also set delay for impulse noise cruncher (only A2) */
2326                 /* Also set parameters for EC_OC fix, note
2327                    EC_OC_REG_TMD_HIL_MAR is changed
2328                    by SC for fix for some 8K,1/8 guard but is restored by
2329                    InitEC and ResetEC
2330                    functions */
2331                 switch (p->bandwidth_hz) {
2332                 case 0:
2333                         p->bandwidth_hz = 8000000;
2334                         /* fall through */
2335                 case 8000000:
2336                         /* (64/7)*(8/8)*1000000 */
2337                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2338
2339                         bandwidthParam = 0;
2340                         status = Write16(state,
2341                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2342                         break;
2343                 case 7000000:
2344                         /* (64/7)*(7/8)*1000000 */
2345                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2347                         status = Write16(state,
2348                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2349                         break;
2350                 case 6000000:
2351                         /* (64/7)*(6/8)*1000000 */
2352                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2354                         status = Write16(state,
2355                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2356                         break;
2357                 default:
2358                         status = -EINVAL;
2359                 }
2360                 if (status < 0)
2361                         break;
2362
2363                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2364                 if (status < 0)
2365                         break;
2366
2367                 {
2368                         u16 sc_config;
2369                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2370                         if (status < 0)
2371                                 break;
2372
2373                         /* enable SLAVE mode in 2k 1/32 to
2374                            prevent timing change glitches */
2375                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2377                                 /* enable slave */
2378                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2379                         } else {
2380                                 /* disable slave */
2381                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2382                         }
2383                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2384                         if (status < 0)
2385                                 break;
2386                 }
2387
2388                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2389                 if (status < 0)
2390                         break;
2391
2392                 if (state->cscd_state == CSCD_INIT) {
2393                         /* switch on SRMM scan in SC */
2394                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2395                         if (status < 0)
2396                                 break;
2397 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398                         state->cscd_state = CSCD_SET;
2399                 }
2400
2401                 /* Now compute FE_IF_REG_INCR */
2402                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405                                     (1ULL << 21), bandwidth) - (1 << 23);
2406                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2407                 if (status < 0)
2408                         break;
2409                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2410                 if (status < 0)
2411                         break;
2412                 /* Bandwidth setting done */
2413
2414                 /* Mirror & frequency offset */
2415                 SetFrequencyShift(state, off, mirrorFreqSpect);
2416
2417                 /* Start SC, write channel settings to SC */
2418
2419                 /* Enable SC after setting all other parameters */
2420                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2421                 if (status < 0)
2422                         break;
2423                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2424                 if (status < 0)
2425                         break;
2426
2427                 /* Write SC parameter registers, operation mode */
2428 #if 1
2429                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2431                                  SC_RA_RAM_OP_AUTO_CONST__M |
2432                                  SC_RA_RAM_OP_AUTO_HIER__M |
2433                                  SC_RA_RAM_OP_AUTO_RATE__M);
2434 #endif
2435                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2436                 if (status < 0)
2437                         break;
2438
2439                 /* Start correct processes to get in lock */
2440                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2441                 if (status < 0)
2442                         break;
2443
2444                 status = StartOC(state);
2445                 if (status < 0)
2446                         break;
2447
2448                 if (state->operation_mode != OM_Default) {
2449                         status = StartDiversity(state);
2450                         if (status < 0)
2451                                 break;
2452                 }
2453
2454                 state->drxd_state = DRXD_STARTED;
2455         } while (0);
2456
2457         return status;
2458 }
2459
2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2461 {
2462         u32 ulRfAgcOutputLevel = 0xffffffff;
2463         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2464         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2465         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2466         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2467         u32 ulRfAgcMode = 0;    /*2;   Off */
2468         u32 ulRfAgcR1 = 820;
2469         u32 ulRfAgcR2 = 2200;
2470         u32 ulRfAgcR3 = 150;
2471         u32 ulIfAgcMode = 0;    /* Auto */
2472         u32 ulIfAgcOutputLevel = 0xffffffff;
2473         u32 ulIfAgcSettleLevel = 0xffffffff;
2474         u32 ulIfAgcMinLevel = 0xffffffff;
2475         u32 ulIfAgcMaxLevel = 0xffffffff;
2476         u32 ulIfAgcSpeed = 0xffffffff;
2477         u32 ulIfAgcR1 = 820;
2478         u32 ulIfAgcR2 = 2200;
2479         u32 ulIfAgcR3 = 150;
2480         u32 ulClock = state->config.clock;
2481         u32 ulSerialMode = 0;
2482         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2483         u32 ulHiI2cDelay = HI_I2C_DELAY;
2484         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485         u32 ulHiI2cPatch = 0;
2486         u32 ulEnvironment = APPENV_PORTABLE;
2487         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488         u32 ulIFFilter = IFFILTER_SAW;
2489
2490         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491         state->if_agc_cfg.outputLevel = 0;
2492         state->if_agc_cfg.settleLevel = 140;
2493         state->if_agc_cfg.minOutputLevel = 0;
2494         state->if_agc_cfg.maxOutputLevel = 1023;
2495         state->if_agc_cfg.speed = 904;
2496
2497         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2500         }
2501
2502         if (ulIfAgcMode == 0 &&
2503             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2512         }
2513
2514         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2517
2518         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2521
2522         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523         /* rest of the RFAgcCfg structure currently unused */
2524         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2527         }
2528
2529         if (ulRfAgcMode == 0 &&
2530             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2539         }
2540
2541         if (ulRfAgcMode == 2)
2542                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2543
2544         if (ulEnvironment <= 2)
2545                 state->app_env_default = (enum app_env)
2546                     (ulEnvironment);
2547         if (ulEnvironmentDiversity <= 2)
2548                 state->app_env_diversity = (enum app_env)
2549                     (ulEnvironmentDiversity);
2550
2551         if (ulIFFilter == IFFILTER_DISCRETE) {
2552                 /* discrete filter */
2553                 state->noise_cal.cpOpt = 0;
2554                 state->noise_cal.cpNexpOfs = 40;
2555                 state->noise_cal.tdCal2k = -40;
2556                 state->noise_cal.tdCal8k = -24;
2557         } else {
2558                 /* SAW filter */
2559                 state->noise_cal.cpOpt = 1;
2560                 state->noise_cal.cpNexpOfs = 0;
2561                 state->noise_cal.tdCal2k = -21;
2562                 state->noise_cal.tdCal8k = -24;
2563         }
2564         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2565
2566         state->chip_adr = (state->config.demod_address << 1) | 1;
2567         switch (ulHiI2cPatch) {
2568         case 1:
2569                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2570                 break;
2571         case 3:
2572                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2573                 break;
2574         default:
2575                 state->m_HiI2cPatch = NULL;
2576         }
2577
2578         /* modify tuner and clock attributes */
2579         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580         /* expected system clock frequency in kHz */
2581         state->expected_sys_clock_freq = 48000;
2582         /* real system clock frequency in kHz */
2583         state->sys_clock_freq = 48000;
2584         state->osc_clock_freq = (u16) ulClock;
2585         state->osc_clock_deviation = 0;
2586         state->cscd_state = CSCD_INIT;
2587         state->drxd_state = DRXD_UNINITIALIZED;
2588
2589         state->PGA = 0;
2590         state->type_A = 0;
2591         state->tuner_mirrors = 0;
2592
2593         /* modify MPEG output attributes */
2594         state->insert_rs_byte = state->config.insert_rs_byte;
2595         state->enable_parallel = (ulSerialMode != 1);
2596
2597         /* Timing div, 250ns/Psys */
2598         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2599
2600         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601                                           ulHiI2cDelay) / 1000;
2602         /* Bridge delay, uses oscilator clock */
2603         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605                                             ulHiI2cBridgeDelay) / 1000;
2606
2607         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2610         return 0;
2611 }
2612
2613 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2614 {
2615         int status = 0;
2616         u32 driverVersion;
2617
2618         if (state->init_done)
2619                 return 0;
2620
2621         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2622
2623         do {
2624                 state->operation_mode = OM_Default;
2625
2626                 status = SetDeviceTypeId(state);
2627                 if (status < 0)
2628                         break;
2629
2630                 /* Apply I2c address patch to B1 */
2631                 if (!state->type_A && state->m_HiI2cPatch != NULL) {
2632                         status = WriteTable(state, state->m_HiI2cPatch);
2633                         if (status < 0)
2634                                 break;
2635                 }
2636
2637                 if (state->type_A) {
2638                         /* HI firmware patch for UIO readout,
2639                            avoid clearing of result register */
2640                         status = Write16(state, 0x43012D, 0x047f, 0);
2641                         if (status < 0)
2642                                 break;
2643                 }
2644
2645                 status = HI_ResetCommand(state);
2646                 if (status < 0)
2647                         break;
2648
2649                 status = StopAllProcessors(state);
2650                 if (status < 0)
2651                         break;
2652                 status = InitCC(state);
2653                 if (status < 0)
2654                         break;
2655
2656                 state->osc_clock_deviation = 0;
2657
2658                 if (state->config.osc_deviation)
2659                         state->osc_clock_deviation =
2660                             state->config.osc_deviation(state->priv, 0, 0);
2661                 {
2662                         /* Handle clock deviation */
2663                         s32 devB;
2664                         s32 devA = (s32) (state->osc_clock_deviation) *
2665                             (s32) (state->expected_sys_clock_freq);
2666                         /* deviation in kHz */
2667                         s32 deviation = (devA / (1000000L));
2668                         /* rounding, signed */
2669                         if (devA > 0)
2670                                 devB = (2);
2671                         else
2672                                 devB = (-2);
2673                         if ((devB * (devA % 1000000L) > 1000000L)) {
2674                                 /* add +1 or -1 */
2675                                 deviation += (devB / 2);
2676                         }
2677
2678                         state->sys_clock_freq =
2679                             (u16) ((state->expected_sys_clock_freq) +
2680                                    deviation);
2681                 }
2682                 status = InitHI(state);
2683                 if (status < 0)
2684                         break;
2685                 status = InitAtomicRead(state);
2686                 if (status < 0)
2687                         break;
2688
2689                 status = EnableAndResetMB(state);
2690                 if (status < 0)
2691                         break;
2692                 if (state->type_A) {
2693                         status = ResetCEFR(state);
2694                         if (status < 0)
2695                                 break;
2696                 }
2697                 if (fw) {
2698                         status = DownloadMicrocode(state, fw, fw_size);
2699                         if (status < 0)
2700                                 break;
2701                 } else {
2702                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2703                         if (status < 0)
2704                                 break;
2705                 }
2706
2707                 if (state->PGA) {
2708                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2709                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2710                 } else {
2711                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2712                 }
2713
2714                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2715
2716                 status = InitFE(state);
2717                 if (status < 0)
2718                         break;
2719                 status = InitFT(state);
2720                 if (status < 0)
2721                         break;
2722                 status = InitCP(state);
2723                 if (status < 0)
2724                         break;
2725                 status = InitCE(state);
2726                 if (status < 0)
2727                         break;
2728                 status = InitEQ(state);
2729                 if (status < 0)
2730                         break;
2731                 status = InitEC(state);
2732                 if (status < 0)
2733                         break;
2734                 status = InitSC(state);
2735                 if (status < 0)
2736                         break;
2737
2738                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2739                 if (status < 0)
2740                         break;
2741                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2742                 if (status < 0)
2743                         break;
2744
2745                 state->cscd_state = CSCD_INIT;
2746                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2747                 if (status < 0)
2748                         break;
2749                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2750                 if (status < 0)
2751                         break;
2752
2753                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2754                                  (VERSION_MAJOR % 10)) << 24;
2755                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2756                                   (VERSION_MINOR % 10)) << 16;
2757                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2758                     ((VERSION_PATCH / 100) << 8) +
2759                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2760
2761                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2762                 if (status < 0)
2763                         break;
2764
2765                 status = StopOC(state);
2766                 if (status < 0)
2767                         break;
2768
2769                 state->drxd_state = DRXD_STOPPED;
2770                 state->init_done = 1;
2771                 status = 0;
2772         } while (0);
2773         return status;
2774 }
2775
2776 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2777 {
2778         DRX_GetLockStatus(state, pLockStatus);
2779
2780         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2781         if (*pLockStatus & DRX_LOCK_FEC) {
2782                 ConfigureMPEGOutput(state, 1);
2783                 /* Get status again, in case we have MPEG lock now */
2784                 /*DRX_GetLockStatus(state, pLockStatus); */
2785         }
2786
2787         return 0;
2788 }
2789
2790 /****************************************************************************/
2791 /****************************************************************************/
2792 /****************************************************************************/
2793
2794 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2795 {
2796         struct drxd_state *state = fe->demodulator_priv;
2797         u32 value;
2798         int res;
2799
2800         res = ReadIFAgc(state, &value);
2801         if (res < 0)
2802                 *strength = 0;
2803         else
2804                 *strength = 0xffff - (value << 4);
2805         return 0;
2806 }
2807
2808 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2809 {
2810         struct drxd_state *state = fe->demodulator_priv;
2811         u32 lock;
2812
2813         DRXD_status(state, &lock);
2814         *status = 0;
2815         /* No MPEG lock in V255 firmware, bug ? */
2816 #if 1
2817         if (lock & DRX_LOCK_MPEG)
2818                 *status |= FE_HAS_LOCK;
2819 #else
2820         if (lock & DRX_LOCK_FEC)
2821                 *status |= FE_HAS_LOCK;
2822 #endif
2823         if (lock & DRX_LOCK_FEC)
2824                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2825         if (lock & DRX_LOCK_DEMOD)
2826                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2827
2828         return 0;
2829 }
2830
2831 static int drxd_init(struct dvb_frontend *fe)
2832 {
2833         struct drxd_state *state = fe->demodulator_priv;
2834
2835         return DRXD_init(state, NULL, 0);
2836 }
2837
2838 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2839 {
2840         struct drxd_state *state = fe->demodulator_priv;
2841
2842         if (state->config.disable_i2c_gate_ctrl == 1)
2843                 return 0;
2844
2845         return DRX_ConfigureI2CBridge(state, onoff);
2846 }
2847
2848 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2849                                   struct dvb_frontend_tune_settings *sets)
2850 {
2851         sets->min_delay_ms = 10000;
2852         sets->max_drift = 0;
2853         sets->step_size = 0;
2854         return 0;
2855 }
2856
2857 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2858 {
2859         *ber = 0;
2860         return 0;
2861 }
2862
2863 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2864 {
2865         *snr = 0;
2866         return 0;
2867 }
2868
2869 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2870 {
2871         *ucblocks = 0;
2872         return 0;
2873 }
2874
2875 static int drxd_sleep(struct dvb_frontend *fe)
2876 {
2877         struct drxd_state *state = fe->demodulator_priv;
2878
2879         ConfigureMPEGOutput(state, 0);
2880         return 0;
2881 }
2882
2883 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2884 {
2885         return drxd_config_i2c(fe, enable);
2886 }
2887
2888 static int drxd_set_frontend(struct dvb_frontend *fe)
2889 {
2890         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2891         struct drxd_state *state = fe->demodulator_priv;
2892         s32 off = 0;
2893
2894         state->props = *p;
2895         DRX_Stop(state);
2896
2897         if (fe->ops.tuner_ops.set_params) {
2898                 fe->ops.tuner_ops.set_params(fe);
2899                 if (fe->ops.i2c_gate_ctrl)
2900                         fe->ops.i2c_gate_ctrl(fe, 0);
2901         }
2902
2903         msleep(200);
2904
2905         return DRX_Start(state, off);
2906 }
2907
2908 static void drxd_release(struct dvb_frontend *fe)
2909 {
2910         struct drxd_state *state = fe->demodulator_priv;
2911
2912         kfree(state);
2913 }
2914
2915 static struct dvb_frontend_ops drxd_ops = {
2916         .delsys = { SYS_DVBT},
2917         .info = {
2918                  .name = "Micronas DRXD DVB-T",
2919                  .frequency_min = 47125000,
2920                  .frequency_max = 855250000,
2921                  .frequency_stepsize = 166667,
2922                  .frequency_tolerance = 0,
2923                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2924                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2925                  FE_CAN_FEC_AUTO |
2926                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2927                  FE_CAN_QAM_AUTO |
2928                  FE_CAN_TRANSMISSION_MODE_AUTO |
2929                  FE_CAN_GUARD_INTERVAL_AUTO |
2930                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2931
2932         .release = drxd_release,
2933         .init = drxd_init,
2934         .sleep = drxd_sleep,
2935         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2936
2937         .set_frontend = drxd_set_frontend,
2938         .get_tune_settings = drxd_get_tune_settings,
2939
2940         .read_status = drxd_read_status,
2941         .read_ber = drxd_read_ber,
2942         .read_signal_strength = drxd_read_signal_strength,
2943         .read_snr = drxd_read_snr,
2944         .read_ucblocks = drxd_read_ucblocks,
2945 };
2946
2947 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2948                                  void *priv, struct i2c_adapter *i2c,
2949                                  struct device *dev)
2950 {
2951         struct drxd_state *state = NULL;
2952
2953         state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2954         if (!state)
2955                 return NULL;
2956         memset(state, 0, sizeof(*state));
2957
2958         state->ops = drxd_ops;
2959         state->dev = dev;
2960         state->config = *config;
2961         state->i2c = i2c;
2962         state->priv = priv;
2963
2964         mutex_init(&state->mutex);
2965
2966         if (Read16(state, 0, NULL, 0) < 0)
2967                 goto error;
2968
2969         state->frontend.ops = drxd_ops;
2970         state->frontend.demodulator_priv = state;
2971         ConfigureMPEGOutput(state, 0);
2972         /* add few initialization to allow gate control */
2973         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2974         InitHI(state);
2975
2976         return &state->frontend;
2977
2978 error:
2979         printk(KERN_ERR "drxd: not found\n");
2980         kfree(state);
2981         return NULL;
2982 }
2983 EXPORT_SYMBOL(drxd_attach);
2984
2985 MODULE_DESCRIPTION("DRXD driver");
2986 MODULE_AUTHOR("Micronas");
2987 MODULE_LICENSE("GPL");