]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/sunxi_nand.c
96f7370a404fa17b7228a128cb0fb7d598000b4b
[karo-tx-linux.git] / drivers / mtd / nand / sunxi_nand.c
1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *      https://github.com/yuq/sunxi-nfc-mtd
6  *      Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *      https://github.com/hno/Allwinner-Info
9  *      Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *      Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *      Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43
44 #define NFC_REG_CTL             0x0000
45 #define NFC_REG_ST              0x0004
46 #define NFC_REG_INT             0x0008
47 #define NFC_REG_TIMING_CTL      0x000C
48 #define NFC_REG_TIMING_CFG      0x0010
49 #define NFC_REG_ADDR_LOW        0x0014
50 #define NFC_REG_ADDR_HIGH       0x0018
51 #define NFC_REG_SECTOR_NUM      0x001C
52 #define NFC_REG_CNT             0x0020
53 #define NFC_REG_CMD             0x0024
54 #define NFC_REG_RCMD_SET        0x0028
55 #define NFC_REG_WCMD_SET        0x002C
56 #define NFC_REG_IO_DATA         0x0030
57 #define NFC_REG_ECC_CTL         0x0034
58 #define NFC_REG_ECC_ST          0x0038
59 #define NFC_REG_DEBUG           0x003C
60 #define NFC_REG_ECC_ERR_CNT(x)  ((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x)    (0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA      0x00A0
63 #define NFC_RAM0_BASE           0x0400
64 #define NFC_RAM1_BASE           0x0800
65
66 /* define bit use in NFC_CTL */
67 #define NFC_EN                  BIT(0)
68 #define NFC_RESET               BIT(1)
69 #define NFC_BUS_WIDTH_MSK       BIT(2)
70 #define NFC_BUS_WIDTH_8         (0 << 2)
71 #define NFC_BUS_WIDTH_16        (1 << 2)
72 #define NFC_RB_SEL_MSK          BIT(3)
73 #define NFC_RB_SEL(x)           ((x) << 3)
74 #define NFC_CE_SEL_MSK          GENMASK(26, 24)
75 #define NFC_CE_SEL(x)           ((x) << 24)
76 #define NFC_CE_CTL              BIT(6)
77 #define NFC_PAGE_SHIFT_MSK      GENMASK(11, 8)
78 #define NFC_PAGE_SHIFT(x)       (((x) < 10 ? 0 : (x) - 10) << 8)
79 #define NFC_SAM                 BIT(12)
80 #define NFC_RAM_METHOD          BIT(14)
81 #define NFC_DEBUG_CTL           BIT(31)
82
83 /* define bit use in NFC_ST */
84 #define NFC_RB_B2R              BIT(0)
85 #define NFC_CMD_INT_FLAG        BIT(1)
86 #define NFC_DMA_INT_FLAG        BIT(2)
87 #define NFC_CMD_FIFO_STATUS     BIT(3)
88 #define NFC_STA                 BIT(4)
89 #define NFC_NATCH_INT_FLAG      BIT(5)
90 #define NFC_RB_STATE(x)         BIT(x + 8)
91
92 /* define bit use in NFC_INT */
93 #define NFC_B2R_INT_ENABLE      BIT(0)
94 #define NFC_CMD_INT_ENABLE      BIT(1)
95 #define NFC_DMA_INT_ENABLE      BIT(2)
96 #define NFC_INT_MASK            (NFC_B2R_INT_ENABLE | \
97                                  NFC_CMD_INT_ENABLE | \
98                                  NFC_DMA_INT_ENABLE)
99
100 /* define bit use in NFC_TIMING_CTL */
101 #define NFC_TIMING_CTL_EDO      BIT(8)
102
103 /* define NFC_TIMING_CFG register layout */
104 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)             \
105         (((tWB) & 0x3) | (((tADL) & 0x3) << 2) |                \
106         (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |         \
107         (((tCAD) & 0x7) << 8))
108
109 /* define bit use in NFC_CMD */
110 #define NFC_CMD_LOW_BYTE_MSK    GENMASK(7, 0)
111 #define NFC_CMD_HIGH_BYTE_MSK   GENMASK(15, 8)
112 #define NFC_CMD(x)              (x)
113 #define NFC_ADR_NUM_MSK         GENMASK(18, 16)
114 #define NFC_ADR_NUM(x)          (((x) - 1) << 16)
115 #define NFC_SEND_ADR            BIT(19)
116 #define NFC_ACCESS_DIR          BIT(20)
117 #define NFC_DATA_TRANS          BIT(21)
118 #define NFC_SEND_CMD1           BIT(22)
119 #define NFC_WAIT_FLAG           BIT(23)
120 #define NFC_SEND_CMD2           BIT(24)
121 #define NFC_SEQ                 BIT(25)
122 #define NFC_DATA_SWAP_METHOD    BIT(26)
123 #define NFC_ROW_AUTO_INC        BIT(27)
124 #define NFC_SEND_CMD3           BIT(28)
125 #define NFC_SEND_CMD4           BIT(29)
126 #define NFC_CMD_TYPE_MSK        GENMASK(31, 30)
127 #define NFC_NORMAL_OP           (0 << 30)
128 #define NFC_ECC_OP              (1 << 30)
129 #define NFC_PAGE_OP             (2 << 30)
130
131 /* define bit use in NFC_RCMD_SET */
132 #define NFC_READ_CMD_MSK        GENMASK(7, 0)
133 #define NFC_RND_READ_CMD0_MSK   GENMASK(15, 8)
134 #define NFC_RND_READ_CMD1_MSK   GENMASK(23, 16)
135
136 /* define bit use in NFC_WCMD_SET */
137 #define NFC_PROGRAM_CMD_MSK     GENMASK(7, 0)
138 #define NFC_RND_WRITE_CMD_MSK   GENMASK(15, 8)
139 #define NFC_READ_CMD0_MSK       GENMASK(23, 16)
140 #define NFC_READ_CMD1_MSK       GENMASK(31, 24)
141
142 /* define bit use in NFC_ECC_CTL */
143 #define NFC_ECC_EN              BIT(0)
144 #define NFC_ECC_PIPELINE        BIT(3)
145 #define NFC_ECC_EXCEPTION       BIT(4)
146 #define NFC_ECC_BLOCK_SIZE_MSK  BIT(5)
147 #define NFC_RANDOM_EN           BIT(9)
148 #define NFC_RANDOM_DIRECTION    BIT(10)
149 #define NFC_ECC_MODE_MSK        GENMASK(15, 12)
150 #define NFC_ECC_MODE(x)         ((x) << 12)
151 #define NFC_RANDOM_SEED_MSK     GENMASK(30, 16)
152 #define NFC_RANDOM_SEED(x)      ((x) << 16)
153
154 /* define bit use in NFC_ECC_ST */
155 #define NFC_ECC_ERR(x)          BIT(x)
156 #define NFC_ECC_PAT_FOUND(x)    BIT(x + 16)
157 #define NFC_ECC_ERR_CNT(b, x)   (((x) >> ((b) * 8)) & 0xff)
158
159 #define NFC_DEFAULT_TIMEOUT_MS  1000
160
161 #define NFC_SRAM_SIZE           1024
162
163 #define NFC_MAX_CS              7
164
165 /*
166  * Ready/Busy detection type: describes the Ready/Busy detection modes
167  *
168  * @RB_NONE:    no external detection available, rely on STATUS command
169  *              and software timeouts
170  * @RB_NATIVE:  use sunxi NAND controller Ready/Busy support. The Ready/Busy
171  *              pin of the NAND flash chip must be connected to one of the
172  *              native NAND R/B pins (those which can be muxed to the NAND
173  *              Controller)
174  * @RB_GPIO:    use a simple GPIO to handle Ready/Busy status. The Ready/Busy
175  *              pin of the NAND flash chip must be connected to a GPIO capable
176  *              pin.
177  */
178 enum sunxi_nand_rb_type {
179         RB_NONE,
180         RB_NATIVE,
181         RB_GPIO,
182 };
183
184 /*
185  * Ready/Busy structure: stores information related to Ready/Busy detection
186  *
187  * @type:       the Ready/Busy detection mode
188  * @info:       information related to the R/B detection mode. Either a gpio
189  *              id or a native R/B id (those supported by the NAND controller).
190  */
191 struct sunxi_nand_rb {
192         enum sunxi_nand_rb_type type;
193         union {
194                 int gpio;
195                 int nativeid;
196         } info;
197 };
198
199 /*
200  * Chip Select structure: stores information related to NAND Chip Select
201  *
202  * @cs:         the NAND CS id used to communicate with a NAND Chip
203  * @rb:         the Ready/Busy description
204  */
205 struct sunxi_nand_chip_sel {
206         u8 cs;
207         struct sunxi_nand_rb rb;
208 };
209
210 /*
211  * sunxi HW ECC infos: stores information related to HW ECC support
212  *
213  * @mode:       the sunxi ECC mode field deduced from ECC requirements
214  * @layout:     the OOB layout depending on the ECC requirements and the
215  *              selected ECC mode
216  */
217 struct sunxi_nand_hw_ecc {
218         int mode;
219         struct nand_ecclayout layout;
220 };
221
222 /*
223  * NAND chip structure: stores NAND chip device related information
224  *
225  * @node:               used to store NAND chips into a list
226  * @nand:               base NAND chip structure
227  * @mtd:                base MTD structure
228  * @clk_rate:           clk_rate required for this NAND chip
229  * @timing_cfg          TIMING_CFG register value for this NAND chip
230  * @selected:           current active CS
231  * @nsels:              number of CS lines required by the NAND chip
232  * @sels:               array of CS lines descriptions
233  */
234 struct sunxi_nand_chip {
235         struct list_head node;
236         struct nand_chip nand;
237         struct mtd_info mtd;
238         unsigned long clk_rate;
239         u32 timing_cfg;
240         u32 timing_ctl;
241         int selected;
242         int nsels;
243         struct sunxi_nand_chip_sel sels[0];
244 };
245
246 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
247 {
248         return container_of(nand, struct sunxi_nand_chip, nand);
249 }
250
251 /*
252  * NAND Controller structure: stores sunxi NAND controller information
253  *
254  * @controller:         base controller structure
255  * @dev:                parent device (used to print error messages)
256  * @regs:               NAND controller registers
257  * @ahb_clk:            NAND Controller AHB clock
258  * @mod_clk:            NAND Controller mod clock
259  * @assigned_cs:        bitmask describing already assigned CS lines
260  * @clk_rate:           NAND controller current clock rate
261  * @chips:              a list containing all the NAND chips attached to
262  *                      this NAND controller
263  * @complete:           a completion object used to wait for NAND
264  *                      controller events
265  */
266 struct sunxi_nfc {
267         struct nand_hw_control controller;
268         struct device *dev;
269         void __iomem *regs;
270         struct clk *ahb_clk;
271         struct clk *mod_clk;
272         unsigned long assigned_cs;
273         unsigned long clk_rate;
274         struct list_head chips;
275         struct completion complete;
276 };
277
278 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
279 {
280         return container_of(ctrl, struct sunxi_nfc, controller);
281 }
282
283 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
284 {
285         struct sunxi_nfc *nfc = dev_id;
286         u32 st = readl(nfc->regs + NFC_REG_ST);
287         u32 ien = readl(nfc->regs + NFC_REG_INT);
288
289         if (!(ien & st))
290                 return IRQ_NONE;
291
292         if ((ien & st) == ien)
293                 complete(&nfc->complete);
294
295         writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
296         writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
297
298         return IRQ_HANDLED;
299 }
300
301 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
302                               unsigned int timeout_ms)
303 {
304         init_completion(&nfc->complete);
305
306         writel(flags, nfc->regs + NFC_REG_INT);
307
308         if (!timeout_ms)
309                 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
310
311         if (!wait_for_completion_timeout(&nfc->complete,
312                                          msecs_to_jiffies(timeout_ms))) {
313                 dev_err(nfc->dev, "wait interrupt timedout\n");
314                 return -ETIMEDOUT;
315         }
316
317         return 0;
318 }
319
320 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
321 {
322         unsigned long timeout = jiffies +
323                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
324
325         do {
326                 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
327                         return 0;
328         } while (time_before(jiffies, timeout));
329
330         dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
331         return -ETIMEDOUT;
332 }
333
334 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
335 {
336         unsigned long timeout = jiffies +
337                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
338
339         writel(0, nfc->regs + NFC_REG_ECC_CTL);
340         writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
341
342         do {
343                 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
344                         return 0;
345         } while (time_before(jiffies, timeout));
346
347         dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
348         return -ETIMEDOUT;
349 }
350
351 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
352 {
353         struct nand_chip *nand = mtd->priv;
354         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
355         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
356         struct sunxi_nand_rb *rb;
357         unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
358         int ret;
359
360         if (sunxi_nand->selected < 0)
361                 return 0;
362
363         rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
364
365         switch (rb->type) {
366         case RB_NATIVE:
367                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
368                          NFC_RB_STATE(rb->info.nativeid));
369                 if (ret)
370                         break;
371
372                 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
373                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
374                          NFC_RB_STATE(rb->info.nativeid));
375                 break;
376         case RB_GPIO:
377                 ret = gpio_get_value(rb->info.gpio);
378                 break;
379         case RB_NONE:
380         default:
381                 ret = 0;
382                 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
383                 break;
384         }
385
386         return ret;
387 }
388
389 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
390 {
391         struct nand_chip *nand = mtd->priv;
392         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
393         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
394         struct sunxi_nand_chip_sel *sel;
395         u32 ctl;
396
397         if (chip > 0 && chip >= sunxi_nand->nsels)
398                 return;
399
400         if (chip == sunxi_nand->selected)
401                 return;
402
403         ctl = readl(nfc->regs + NFC_REG_CTL) &
404               ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
405
406         if (chip >= 0) {
407                 sel = &sunxi_nand->sels[chip];
408
409                 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
410                        NFC_PAGE_SHIFT(nand->page_shift - 10);
411                 if (sel->rb.type == RB_NONE) {
412                         nand->dev_ready = NULL;
413                 } else {
414                         nand->dev_ready = sunxi_nfc_dev_ready;
415                         if (sel->rb.type == RB_NATIVE)
416                                 ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
417                 }
418
419                 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
420
421                 if (nfc->clk_rate != sunxi_nand->clk_rate) {
422                         clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
423                         nfc->clk_rate = sunxi_nand->clk_rate;
424                 }
425         }
426
427         writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
428         writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
429         writel(ctl, nfc->regs + NFC_REG_CTL);
430
431         sunxi_nand->selected = chip;
432 }
433
434 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
435 {
436         struct nand_chip *nand = mtd->priv;
437         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
438         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
439         int ret;
440         int cnt;
441         int offs = 0;
442         u32 tmp;
443
444         while (len > offs) {
445                 cnt = min(len - offs, NFC_SRAM_SIZE);
446
447                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
448                 if (ret)
449                         break;
450
451                 writel(cnt, nfc->regs + NFC_REG_CNT);
452                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
453                 writel(tmp, nfc->regs + NFC_REG_CMD);
454
455                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
456                 if (ret)
457                         break;
458
459                 if (buf)
460                         memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
461                                       cnt);
462                 offs += cnt;
463         }
464 }
465
466 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
467                                 int len)
468 {
469         struct nand_chip *nand = mtd->priv;
470         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
471         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
472         int ret;
473         int cnt;
474         int offs = 0;
475         u32 tmp;
476
477         while (len > offs) {
478                 cnt = min(len - offs, NFC_SRAM_SIZE);
479
480                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
481                 if (ret)
482                         break;
483
484                 writel(cnt, nfc->regs + NFC_REG_CNT);
485                 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
486                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
487                       NFC_ACCESS_DIR;
488                 writel(tmp, nfc->regs + NFC_REG_CMD);
489
490                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
491                 if (ret)
492                         break;
493
494                 offs += cnt;
495         }
496 }
497
498 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
499 {
500         uint8_t ret;
501
502         sunxi_nfc_read_buf(mtd, &ret, 1);
503
504         return ret;
505 }
506
507 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
508                                unsigned int ctrl)
509 {
510         struct nand_chip *nand = mtd->priv;
511         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
512         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
513         int ret;
514         u32 tmp;
515
516         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
517         if (ret)
518                 return;
519
520         if (ctrl & NAND_CTRL_CHANGE) {
521                 tmp = readl(nfc->regs + NFC_REG_CTL);
522                 if (ctrl & NAND_NCE)
523                         tmp |= NFC_CE_CTL;
524                 else
525                         tmp &= ~NFC_CE_CTL;
526                 writel(tmp, nfc->regs + NFC_REG_CTL);
527         }
528
529         if (dat == NAND_CMD_NONE)
530                 return;
531
532         if (ctrl & NAND_CLE) {
533                 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
534         } else {
535                 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
536                 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
537         }
538
539         sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
540 }
541
542 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
543 {
544         struct nand_chip *nand = mtd->priv;
545         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
546         struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
547         u32 ecc_ctl;
548
549         ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
550         ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
551                      NFC_ECC_BLOCK_SIZE_MSK);
552         ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
553
554         writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
555 }
556
557 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
558 {
559         struct nand_chip *nand = mtd->priv;
560         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
561
562         writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
563                nfc->regs + NFC_REG_ECC_CTL);
564 }
565
566 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
567 {
568         buf[0] = user_data;
569         buf[1] = user_data >> 8;
570         buf[2] = user_data >> 16;
571         buf[3] = user_data >> 24;
572 }
573
574 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
575                                        u8 *data, int data_off,
576                                        u8 *oob, int oob_off,
577                                        int *cur_off,
578                                        unsigned int *max_bitflips)
579 {
580         struct nand_chip *nand = mtd->priv;
581         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
582         struct nand_ecc_ctrl *ecc = &nand->ecc;
583         u32 status;
584         int ret;
585
586         if (*cur_off != data_off)
587                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
588
589         sunxi_nfc_read_buf(mtd, data, ecc->size);
590
591         if (data_off + ecc->size != oob_off)
592                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
593
594         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
595         if (ret)
596                 return ret;
597
598         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
599                nfc->regs + NFC_REG_CMD);
600
601         ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
602         if (ret)
603                 return ret;
604
605         status = readl(nfc->regs + NFC_REG_ECC_ST);
606         ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
607
608         memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
609
610         nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
611         sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);
612
613         if (status & NFC_ECC_ERR(0)) {
614                 ret = nand_check_erased_ecc_chunk(data, ecc->size,
615                                                   oob, ecc->bytes + 4,
616                                                   NULL, 0, ecc->strength);
617         } else {
618                 /*
619                  * The engine protects 4 bytes of OOB data per chunk.
620                  * Retrieve the corrected OOB bytes.
621                  */
622                 sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
623                                            oob);
624         }
625
626         if (ret < 0) {
627                 mtd->ecc_stats.failed++;
628         } else {
629                 mtd->ecc_stats.corrected += ret;
630                 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
631         }
632
633         *cur_off = oob_off + ecc->bytes + 4;
634
635         return 0;
636 }
637
638 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
639                                             u8 *oob, int *cur_off)
640 {
641         struct nand_chip *nand = mtd->priv;
642         struct nand_ecc_ctrl *ecc = &nand->ecc;
643         int offset = ((ecc->bytes + 4) * ecc->steps);
644         int len = mtd->oobsize - offset;
645
646         if (len <= 0)
647                 return;
648
649         if (*cur_off != offset)
650                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
651                               offset + mtd->writesize, -1);
652
653         sunxi_nfc_read_buf(mtd, oob + offset, len);
654
655         *cur_off = mtd->oobsize + mtd->writesize;
656 }
657
658 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
659 {
660         return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
661 }
662
663 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
664                                         const u8 *data, int data_off,
665                                         const u8 *oob, int oob_off,
666                                         int *cur_off)
667 {
668         struct nand_chip *nand = mtd->priv;
669         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
670         struct nand_ecc_ctrl *ecc = &nand->ecc;
671         int ret;
672
673         if (data_off != *cur_off)
674                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
675
676         sunxi_nfc_write_buf(mtd, data, ecc->size);
677
678         /* Fill OOB data in */
679         writel(sunxi_nfc_buf_to_user_data(oob),
680                nfc->regs + NFC_REG_USER_DATA(0));
681
682         if (data_off + ecc->size != oob_off)
683                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
684
685         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
686         if (ret)
687                 return ret;
688
689         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
690                NFC_ACCESS_DIR | NFC_ECC_OP,
691                nfc->regs + NFC_REG_CMD);
692
693         ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
694         if (ret)
695                 return ret;
696
697         *cur_off = oob_off + ecc->bytes + 4;
698
699         return 0;
700 }
701
702 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
703                                              u8 *oob, int *cur_off)
704 {
705         struct nand_chip *nand = mtd->priv;
706         struct nand_ecc_ctrl *ecc = &nand->ecc;
707         int offset = ((ecc->bytes + 4) * ecc->steps);
708         int len = mtd->oobsize - offset;
709
710         if (len <= 0)
711                 return;
712
713         if (*cur_off != offset)
714                 nand->cmdfunc(mtd, NAND_CMD_RNDIN,
715                               offset + mtd->writesize, -1);
716
717         sunxi_nfc_write_buf(mtd, oob + offset, len);
718
719         *cur_off = mtd->oobsize + mtd->writesize;
720 }
721
722 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
723                                       struct nand_chip *chip, uint8_t *buf,
724                                       int oob_required, int page)
725 {
726         struct nand_ecc_ctrl *ecc = &chip->ecc;
727         unsigned int max_bitflips = 0;
728         int ret, i, cur_off = 0;
729
730         sunxi_nfc_hw_ecc_enable(mtd);
731
732         for (i = 0; i < ecc->steps; i++) {
733                 int data_off = i * ecc->size;
734                 int oob_off = i * (ecc->bytes + 4);
735                 u8 *data = buf + data_off;
736                 u8 *oob = chip->oob_poi + oob_off;
737
738                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
739                                                   oob_off + mtd->writesize,
740                                                   &cur_off, &max_bitflips);
741                 if (ret)
742                         return ret;
743         }
744
745         if (oob_required)
746                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
747
748         sunxi_nfc_hw_ecc_disable(mtd);
749
750         return max_bitflips;
751 }
752
753 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
754                                        struct nand_chip *chip,
755                                        const uint8_t *buf, int oob_required,
756                                        int page)
757 {
758         struct nand_ecc_ctrl *ecc = &chip->ecc;
759         int ret, i, cur_off = 0;
760
761         sunxi_nfc_hw_ecc_enable(mtd);
762
763         for (i = 0; i < ecc->steps; i++) {
764                 int data_off = i * ecc->size;
765                 int oob_off = i * (ecc->bytes + 4);
766                 const u8 *data = buf + data_off;
767                 const u8 *oob = chip->oob_poi + oob_off;
768
769                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
770                                                    oob_off + mtd->writesize,
771                                                    &cur_off);
772                 if (ret)
773                         return ret;
774         }
775
776         if (oob_required)
777                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
778
779         sunxi_nfc_hw_ecc_disable(mtd);
780
781         return 0;
782 }
783
784 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
785                                                struct nand_chip *chip,
786                                                uint8_t *buf, int oob_required,
787                                                int page)
788 {
789         struct nand_ecc_ctrl *ecc = &chip->ecc;
790         unsigned int max_bitflips = 0;
791         int ret, i, cur_off = 0;
792
793         sunxi_nfc_hw_ecc_enable(mtd);
794
795         for (i = 0; i < ecc->steps; i++) {
796                 int data_off = i * (ecc->size + ecc->bytes + 4);
797                 int oob_off = data_off + ecc->size;
798                 u8 *data = buf + (i * ecc->size);
799                 u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
800
801                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
802                                                   oob_off, &cur_off,
803                                                   &max_bitflips);
804                 if (ret)
805                         return ret;
806         }
807
808         if (oob_required)
809                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
810
811         sunxi_nfc_hw_ecc_disable(mtd);
812
813         return max_bitflips;
814 }
815
816 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
817                                                 struct nand_chip *chip,
818                                                 const uint8_t *buf,
819                                                 int oob_required, int page)
820 {
821         struct nand_ecc_ctrl *ecc = &chip->ecc;
822         int ret, i, cur_off = 0;
823
824         sunxi_nfc_hw_ecc_enable(mtd);
825
826         for (i = 0; i < ecc->steps; i++) {
827                 int data_off = i * (ecc->size + ecc->bytes + 4);
828                 int oob_off = data_off + ecc->size;
829                 const u8 *data = buf + (i * ecc->size);
830                 const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
831
832                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
833                                                    oob, oob_off, &cur_off);
834                 if (ret)
835                         return ret;
836         }
837
838         if (oob_required)
839                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
840
841         sunxi_nfc_hw_ecc_disable(mtd);
842
843         return 0;
844 }
845
846 static const s32 tWB_lut[] = {6, 12, 16, 20};
847 static const s32 tRHW_lut[] = {4, 8, 12, 20};
848
849 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
850                 u32 clk_period)
851 {
852         u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
853         int i;
854
855         for (i = 0; i < lut_size; i++) {
856                 if (clk_cycles <= lut[i])
857                         return i;
858         }
859
860         /* Doesn't fit */
861         return -EINVAL;
862 }
863
864 #define sunxi_nand_lookup_timing(l, p, c) \
865                         _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
866
867 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
868                                        const struct nand_sdr_timings *timings)
869 {
870         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
871         u32 min_clk_period = 0;
872         s32 tWB, tADL, tWHR, tRHW, tCAD;
873
874         /* T1 <=> tCLS */
875         if (timings->tCLS_min > min_clk_period)
876                 min_clk_period = timings->tCLS_min;
877
878         /* T2 <=> tCLH */
879         if (timings->tCLH_min > min_clk_period)
880                 min_clk_period = timings->tCLH_min;
881
882         /* T3 <=> tCS */
883         if (timings->tCS_min > min_clk_period)
884                 min_clk_period = timings->tCS_min;
885
886         /* T4 <=> tCH */
887         if (timings->tCH_min > min_clk_period)
888                 min_clk_period = timings->tCH_min;
889
890         /* T5 <=> tWP */
891         if (timings->tWP_min > min_clk_period)
892                 min_clk_period = timings->tWP_min;
893
894         /* T6 <=> tWH */
895         if (timings->tWH_min > min_clk_period)
896                 min_clk_period = timings->tWH_min;
897
898         /* T7 <=> tALS */
899         if (timings->tALS_min > min_clk_period)
900                 min_clk_period = timings->tALS_min;
901
902         /* T8 <=> tDS */
903         if (timings->tDS_min > min_clk_period)
904                 min_clk_period = timings->tDS_min;
905
906         /* T9 <=> tDH */
907         if (timings->tDH_min > min_clk_period)
908                 min_clk_period = timings->tDH_min;
909
910         /* T10 <=> tRR */
911         if (timings->tRR_min > (min_clk_period * 3))
912                 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
913
914         /* T11 <=> tALH */
915         if (timings->tALH_min > min_clk_period)
916                 min_clk_period = timings->tALH_min;
917
918         /* T12 <=> tRP */
919         if (timings->tRP_min > min_clk_period)
920                 min_clk_period = timings->tRP_min;
921
922         /* T13 <=> tREH */
923         if (timings->tREH_min > min_clk_period)
924                 min_clk_period = timings->tREH_min;
925
926         /* T14 <=> tRC */
927         if (timings->tRC_min > (min_clk_period * 2))
928                 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
929
930         /* T15 <=> tWC */
931         if (timings->tWC_min > (min_clk_period * 2))
932                 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
933
934         /* T16 - T19 + tCAD */
935         tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
936                                         min_clk_period);
937         if (tWB < 0) {
938                 dev_err(nfc->dev, "unsupported tWB\n");
939                 return tWB;
940         }
941
942         tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
943         if (tADL > 3) {
944                 dev_err(nfc->dev, "unsupported tADL\n");
945                 return -EINVAL;
946         }
947
948         tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
949         if (tWHR > 3) {
950                 dev_err(nfc->dev, "unsupported tWHR\n");
951                 return -EINVAL;
952         }
953
954         tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
955                                         min_clk_period);
956         if (tRHW < 0) {
957                 dev_err(nfc->dev, "unsupported tRHW\n");
958                 return tRHW;
959         }
960
961         /*
962          * TODO: according to ONFI specs this value only applies for DDR NAND,
963          * but Allwinner seems to set this to 0x7. Mimic them for now.
964          */
965         tCAD = 0x7;
966
967         /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
968         chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
969
970         /*
971          * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
972          * output cycle timings shall be used if the host drives tRC less than
973          * 30 ns.
974          */
975         chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
976
977         /* Convert min_clk_period from picoseconds to nanoseconds */
978         min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
979
980         /*
981          * Convert min_clk_period into a clk frequency, then get the
982          * appropriate rate for the NAND controller IP given this formula
983          * (specified in the datasheet):
984          * nand clk_rate = 2 * min_clk_rate
985          */
986         chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
987
988         return 0;
989 }
990
991 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
992                                         struct device_node *np)
993 {
994         const struct nand_sdr_timings *timings;
995         int ret;
996         int mode;
997
998         mode = onfi_get_async_timing_mode(&chip->nand);
999         if (mode == ONFI_TIMING_MODE_UNKNOWN) {
1000                 mode = chip->nand.onfi_timing_mode_default;
1001         } else {
1002                 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003                 int i;
1004
1005                 mode = fls(mode) - 1;
1006                 if (mode < 0)
1007                         mode = 0;
1008
1009                 feature[0] = mode;
1010                 for (i = 0; i < chip->nsels; i++) {
1011                         chip->nand.select_chip(&chip->mtd, i);
1012                         ret = chip->nand.onfi_set_features(&chip->mtd,
1013                                                 &chip->nand,
1014                                                 ONFI_FEATURE_ADDR_TIMING_MODE,
1015                                                 feature);
1016                         chip->nand.select_chip(&chip->mtd, -1);
1017                         if (ret)
1018                                 return ret;
1019                 }
1020         }
1021
1022         timings = onfi_async_timing_mode_to_sdr_timings(mode);
1023         if (IS_ERR(timings))
1024                 return PTR_ERR(timings);
1025
1026         return sunxi_nand_chip_set_timings(chip, timings);
1027 }
1028
1029 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1030                                               struct nand_ecc_ctrl *ecc,
1031                                               struct device_node *np)
1032 {
1033         static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1034         struct nand_chip *nand = mtd->priv;
1035         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1036         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1037         struct sunxi_nand_hw_ecc *data;
1038         struct nand_ecclayout *layout;
1039         int nsectors;
1040         int ret;
1041         int i;
1042
1043         data = kzalloc(sizeof(*data), GFP_KERNEL);
1044         if (!data)
1045                 return -ENOMEM;
1046
1047         /* Add ECC info retrieval from DT */
1048         for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1049                 if (ecc->strength <= strengths[i])
1050                         break;
1051         }
1052
1053         if (i >= ARRAY_SIZE(strengths)) {
1054                 dev_err(nfc->dev, "unsupported strength\n");
1055                 ret = -ENOTSUPP;
1056                 goto err;
1057         }
1058
1059         data->mode = i;
1060
1061         /* HW ECC always request ECC bytes for 1024 bytes blocks */
1062         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1063
1064         /* HW ECC always work with even numbers of ECC bytes */
1065         ecc->bytes = ALIGN(ecc->bytes, 2);
1066
1067         layout = &data->layout;
1068         nsectors = mtd->writesize / ecc->size;
1069
1070         if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1071                 ret = -EINVAL;
1072                 goto err;
1073         }
1074
1075         layout->eccbytes = (ecc->bytes * nsectors);
1076
1077         ecc->layout = layout;
1078         ecc->priv = data;
1079
1080         return 0;
1081
1082 err:
1083         kfree(data);
1084
1085         return ret;
1086 }
1087
1088 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1089 {
1090         kfree(ecc->priv);
1091 }
1092
1093 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1094                                        struct nand_ecc_ctrl *ecc,
1095                                        struct device_node *np)
1096 {
1097         struct nand_ecclayout *layout;
1098         int nsectors;
1099         int i, j;
1100         int ret;
1101
1102         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1103         if (ret)
1104                 return ret;
1105
1106         ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1107         ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1108         layout = ecc->layout;
1109         nsectors = mtd->writesize / ecc->size;
1110
1111         for (i = 0; i < nsectors; i++) {
1112                 if (i) {
1113                         layout->oobfree[i].offset =
1114                                 layout->oobfree[i - 1].offset +
1115                                 layout->oobfree[i - 1].length +
1116                                 ecc->bytes;
1117                         layout->oobfree[i].length = 4;
1118                 } else {
1119                         /*
1120                          * The first 2 bytes are used for BB markers, hence we
1121                          * only have 2 bytes available in the first user data
1122                          * section.
1123                          */
1124                         layout->oobfree[i].length = 2;
1125                         layout->oobfree[i].offset = 2;
1126                 }
1127
1128                 for (j = 0; j < ecc->bytes; j++)
1129                         layout->eccpos[(ecc->bytes * i) + j] =
1130                                         layout->oobfree[i].offset +
1131                                         layout->oobfree[i].length + j;
1132         }
1133
1134         if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1135                 layout->oobfree[nsectors].offset =
1136                                 layout->oobfree[nsectors - 1].offset +
1137                                 layout->oobfree[nsectors - 1].length +
1138                                 ecc->bytes;
1139                 layout->oobfree[nsectors].length = mtd->oobsize -
1140                                 ((ecc->bytes + 4) * nsectors);
1141         }
1142
1143         return 0;
1144 }
1145
1146 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1147                                                 struct nand_ecc_ctrl *ecc,
1148                                                 struct device_node *np)
1149 {
1150         struct nand_ecclayout *layout;
1151         int nsectors;
1152         int i;
1153         int ret;
1154
1155         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1156         if (ret)
1157                 return ret;
1158
1159         ecc->prepad = 4;
1160         ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1161         ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1162
1163         layout = ecc->layout;
1164         nsectors = mtd->writesize / ecc->size;
1165
1166         for (i = 0; i < (ecc->bytes * nsectors); i++)
1167                 layout->eccpos[i] = i;
1168
1169         layout->oobfree[0].length = mtd->oobsize - i;
1170         layout->oobfree[0].offset = i;
1171
1172         return 0;
1173 }
1174
1175 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1176 {
1177         switch (ecc->mode) {
1178         case NAND_ECC_HW:
1179         case NAND_ECC_HW_SYNDROME:
1180                 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1181                 break;
1182         case NAND_ECC_NONE:
1183                 kfree(ecc->layout);
1184         default:
1185                 break;
1186         }
1187 }
1188
1189 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1190                                struct device_node *np)
1191 {
1192         struct nand_chip *nand = mtd->priv;
1193         int ret;
1194
1195         if (!ecc->size) {
1196                 ecc->size = nand->ecc_step_ds;
1197                 ecc->strength = nand->ecc_strength_ds;
1198         }
1199
1200         if (!ecc->size || !ecc->strength)
1201                 return -EINVAL;
1202
1203         switch (ecc->mode) {
1204         case NAND_ECC_SOFT_BCH:
1205                 break;
1206         case NAND_ECC_HW:
1207                 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1208                 if (ret)
1209                         return ret;
1210                 break;
1211         case NAND_ECC_HW_SYNDROME:
1212                 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1213                 if (ret)
1214                         return ret;
1215                 break;
1216         case NAND_ECC_NONE:
1217                 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1218                 if (!ecc->layout)
1219                         return -ENOMEM;
1220                 ecc->layout->oobfree[0].length = mtd->oobsize;
1221         case NAND_ECC_SOFT:
1222                 break;
1223         default:
1224                 return -EINVAL;
1225         }
1226
1227         return 0;
1228 }
1229
1230 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1231                                 struct device_node *np)
1232 {
1233         const struct nand_sdr_timings *timings;
1234         struct sunxi_nand_chip *chip;
1235         struct mtd_part_parser_data ppdata;
1236         struct mtd_info *mtd;
1237         struct nand_chip *nand;
1238         int nsels;
1239         int ret;
1240         int i;
1241         u32 tmp;
1242
1243         if (!of_get_property(np, "reg", &nsels))
1244                 return -EINVAL;
1245
1246         nsels /= sizeof(u32);
1247         if (!nsels) {
1248                 dev_err(dev, "invalid reg property size\n");
1249                 return -EINVAL;
1250         }
1251
1252         chip = devm_kzalloc(dev,
1253                             sizeof(*chip) +
1254                             (nsels * sizeof(struct sunxi_nand_chip_sel)),
1255                             GFP_KERNEL);
1256         if (!chip) {
1257                 dev_err(dev, "could not allocate chip\n");
1258                 return -ENOMEM;
1259         }
1260
1261         chip->nsels = nsels;
1262         chip->selected = -1;
1263
1264         for (i = 0; i < nsels; i++) {
1265                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1266                 if (ret) {
1267                         dev_err(dev, "could not retrieve reg property: %d\n",
1268                                 ret);
1269                         return ret;
1270                 }
1271
1272                 if (tmp > NFC_MAX_CS) {
1273                         dev_err(dev,
1274                                 "invalid reg value: %u (max CS = 7)\n",
1275                                 tmp);
1276                         return -EINVAL;
1277                 }
1278
1279                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1280                         dev_err(dev, "CS %d already assigned\n", tmp);
1281                         return -EINVAL;
1282                 }
1283
1284                 chip->sels[i].cs = tmp;
1285
1286                 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1287                     tmp < 2) {
1288                         chip->sels[i].rb.type = RB_NATIVE;
1289                         chip->sels[i].rb.info.nativeid = tmp;
1290                 } else {
1291                         ret = of_get_named_gpio(np, "rb-gpios", i);
1292                         if (ret >= 0) {
1293                                 tmp = ret;
1294                                 chip->sels[i].rb.type = RB_GPIO;
1295                                 chip->sels[i].rb.info.gpio = tmp;
1296                                 ret = devm_gpio_request(dev, tmp, "nand-rb");
1297                                 if (ret)
1298                                         return ret;
1299
1300                                 ret = gpio_direction_input(tmp);
1301                                 if (ret)
1302                                         return ret;
1303                         } else {
1304                                 chip->sels[i].rb.type = RB_NONE;
1305                         }
1306                 }
1307         }
1308
1309         timings = onfi_async_timing_mode_to_sdr_timings(0);
1310         if (IS_ERR(timings)) {
1311                 ret = PTR_ERR(timings);
1312                 dev_err(dev,
1313                         "could not retrieve timings for ONFI mode 0: %d\n",
1314                         ret);
1315                 return ret;
1316         }
1317
1318         ret = sunxi_nand_chip_set_timings(chip, timings);
1319         if (ret) {
1320                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1321                 return ret;
1322         }
1323
1324         nand = &chip->nand;
1325         /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1326         nand->chip_delay = 200;
1327         nand->controller = &nfc->controller;
1328         /*
1329          * Set the ECC mode to the default value in case nothing is specified
1330          * in the DT.
1331          */
1332         nand->ecc.mode = NAND_ECC_HW;
1333         nand->flash_node = np;
1334         nand->select_chip = sunxi_nfc_select_chip;
1335         nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1336         nand->read_buf = sunxi_nfc_read_buf;
1337         nand->write_buf = sunxi_nfc_write_buf;
1338         nand->read_byte = sunxi_nfc_read_byte;
1339
1340         mtd = &chip->mtd;
1341         mtd->dev.parent = dev;
1342         mtd->priv = nand;
1343
1344         ret = nand_scan_ident(mtd, nsels, NULL);
1345         if (ret)
1346                 return ret;
1347
1348         if (nand->bbt_options & NAND_BBT_USE_FLASH)
1349                 nand->bbt_options |= NAND_BBT_NO_OOB;
1350
1351         ret = sunxi_nand_chip_init_timings(chip, np);
1352         if (ret) {
1353                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1354                 return ret;
1355         }
1356
1357         ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1358         if (ret) {
1359                 dev_err(dev, "ECC init failed: %d\n", ret);
1360                 return ret;
1361         }
1362
1363         ret = nand_scan_tail(mtd);
1364         if (ret) {
1365                 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1366                 return ret;
1367         }
1368
1369         ppdata.of_node = np;
1370         ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1371         if (ret) {
1372                 dev_err(dev, "failed to register mtd device: %d\n", ret);
1373                 nand_release(mtd);
1374                 return ret;
1375         }
1376
1377         list_add_tail(&chip->node, &nfc->chips);
1378
1379         return 0;
1380 }
1381
1382 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1383 {
1384         struct device_node *np = dev->of_node;
1385         struct device_node *nand_np;
1386         int nchips = of_get_child_count(np);
1387         int ret;
1388
1389         if (nchips > 8) {
1390                 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1391                 return -EINVAL;
1392         }
1393
1394         for_each_child_of_node(np, nand_np) {
1395                 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1396                 if (ret)
1397                         return ret;
1398         }
1399
1400         return 0;
1401 }
1402
1403 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1404 {
1405         struct sunxi_nand_chip *chip;
1406
1407         while (!list_empty(&nfc->chips)) {
1408                 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1409                                         node);
1410                 nand_release(&chip->mtd);
1411                 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1412                 list_del(&chip->node);
1413         }
1414 }
1415
1416 static int sunxi_nfc_probe(struct platform_device *pdev)
1417 {
1418         struct device *dev = &pdev->dev;
1419         struct resource *r;
1420         struct sunxi_nfc *nfc;
1421         int irq;
1422         int ret;
1423
1424         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1425         if (!nfc)
1426                 return -ENOMEM;
1427
1428         nfc->dev = dev;
1429         spin_lock_init(&nfc->controller.lock);
1430         init_waitqueue_head(&nfc->controller.wq);
1431         INIT_LIST_HEAD(&nfc->chips);
1432
1433         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1434         nfc->regs = devm_ioremap_resource(dev, r);
1435         if (IS_ERR(nfc->regs))
1436                 return PTR_ERR(nfc->regs);
1437
1438         irq = platform_get_irq(pdev, 0);
1439         if (irq < 0) {
1440                 dev_err(dev, "failed to retrieve irq\n");
1441                 return irq;
1442         }
1443
1444         nfc->ahb_clk = devm_clk_get(dev, "ahb");
1445         if (IS_ERR(nfc->ahb_clk)) {
1446                 dev_err(dev, "failed to retrieve ahb clk\n");
1447                 return PTR_ERR(nfc->ahb_clk);
1448         }
1449
1450         ret = clk_prepare_enable(nfc->ahb_clk);
1451         if (ret)
1452                 return ret;
1453
1454         nfc->mod_clk = devm_clk_get(dev, "mod");
1455         if (IS_ERR(nfc->mod_clk)) {
1456                 dev_err(dev, "failed to retrieve mod clk\n");
1457                 ret = PTR_ERR(nfc->mod_clk);
1458                 goto out_ahb_clk_unprepare;
1459         }
1460
1461         ret = clk_prepare_enable(nfc->mod_clk);
1462         if (ret)
1463                 goto out_ahb_clk_unprepare;
1464
1465         ret = sunxi_nfc_rst(nfc);
1466         if (ret)
1467                 goto out_mod_clk_unprepare;
1468
1469         writel(0, nfc->regs + NFC_REG_INT);
1470         ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1471                                0, "sunxi-nand", nfc);
1472         if (ret)
1473                 goto out_mod_clk_unprepare;
1474
1475         platform_set_drvdata(pdev, nfc);
1476
1477         ret = sunxi_nand_chips_init(dev, nfc);
1478         if (ret) {
1479                 dev_err(dev, "failed to init nand chips\n");
1480                 goto out_mod_clk_unprepare;
1481         }
1482
1483         return 0;
1484
1485 out_mod_clk_unprepare:
1486         clk_disable_unprepare(nfc->mod_clk);
1487 out_ahb_clk_unprepare:
1488         clk_disable_unprepare(nfc->ahb_clk);
1489
1490         return ret;
1491 }
1492
1493 static int sunxi_nfc_remove(struct platform_device *pdev)
1494 {
1495         struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1496
1497         sunxi_nand_chips_cleanup(nfc);
1498
1499         return 0;
1500 }
1501
1502 static const struct of_device_id sunxi_nfc_ids[] = {
1503         { .compatible = "allwinner,sun4i-a10-nand" },
1504         { /* sentinel */ }
1505 };
1506 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1507
1508 static struct platform_driver sunxi_nfc_driver = {
1509         .driver = {
1510                 .name = "sunxi_nand",
1511                 .of_match_table = sunxi_nfc_ids,
1512         },
1513         .probe = sunxi_nfc_probe,
1514         .remove = sunxi_nfc_remove,
1515 };
1516 module_platform_driver(sunxi_nfc_driver);
1517
1518 MODULE_LICENSE("GPL v2");
1519 MODULE_AUTHOR("Boris BREZILLON");
1520 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1521 MODULE_ALIAS("platform:sunxi_nand");