]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/ubi/wl.c
94ffdeb370c1dc1194ba5485b0f5a986d5248374
[karo-tx-linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         /* If no fastmap has been written and this WL entry can be used
335          * as anchor PEB, hold it back and return the second best WL entry
336          * such that fastmap can use the anchor PEB later. */
337         if (prev_e && !ubi->fm_disabled &&
338             !ubi->fm && e->pnum < UBI_FM_MAX_START)
339                 return prev_e;
340
341         return e;
342 }
343
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354                                                struct rb_root *root)
355 {
356         struct ubi_wl_entry *e, *first, *last;
357
358         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364                 /* If no fastmap has been written and this WL entry can be used
365                  * as anchor PEB, hold it back and return the second best
366                  * WL entry such that fastmap can use the anchor PEB later. */
367                 e = may_reserve_for_fm(ubi, e, root);
368         } else
369                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371         return e;
372 }
373
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384         struct ubi_wl_entry *e;
385
386         e = find_mean_wl_entry(ubi, &ubi->free);
387         if (!e) {
388                 ubi_err(ubi, "no free eraseblocks");
389                 return NULL;
390         }
391
392         self_check_in_wl_tree(ubi, e, &ubi->free);
393
394         /*
395          * Move the physical eraseblock to the protection queue where it will
396          * be protected from being moved for some time.
397          */
398         rb_erase(&e->u.rb, &ubi->free);
399         ubi->free_count--;
400         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402         return e;
403 }
404
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415         struct ubi_wl_entry *e;
416
417         e = ubi->lookuptbl[pnum];
418         if (!e)
419                 return -ENODEV;
420
421         if (self_check_in_pq(ubi, e))
422                 return -ENODEV;
423
424         list_del(&e->u.list);
425         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426         return 0;
427 }
428
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439                       int torture)
440 {
441         int err;
442         struct ubi_ec_hdr *ec_hdr;
443         unsigned long long ec = e->ec;
444
445         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447         err = self_check_ec(ubi, e->pnum, e->ec);
448         if (err)
449                 return -EINVAL;
450
451         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452         if (!ec_hdr)
453                 return -ENOMEM;
454
455         err = ubi_io_sync_erase(ubi, e->pnum, torture);
456         if (err < 0)
457                 goto out_free;
458
459         ec += err;
460         if (ec > UBI_MAX_ERASECOUNTER) {
461                 /*
462                  * Erase counter overflow. Upgrade UBI and use 64-bit
463                  * erase counters internally.
464                  */
465                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466                         e->pnum, ec);
467                 err = -EINVAL;
468                 goto out_free;
469         }
470
471         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473         ec_hdr->ec = cpu_to_be64(ec);
474
475         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476         if (err)
477                 goto out_free;
478
479         e->ec = ec;
480         spin_lock(&ubi->wl_lock);
481         if (e->ec > ubi->max_ec)
482                 ubi->max_ec = e->ec;
483         spin_unlock(&ubi->wl_lock);
484
485 out_free:
486         kfree(ec_hdr);
487         return err;
488 }
489
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500         struct ubi_wl_entry *e, *tmp;
501         int count;
502
503         /*
504          * There may be several protected physical eraseblock to remove,
505          * process them all.
506          */
507 repeat:
508         count = 0;
509         spin_lock(&ubi->wl_lock);
510         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511                 dbg_wl("PEB %d EC %d protection over, move to used tree",
512                         e->pnum, e->ec);
513
514                 list_del(&e->u.list);
515                 wl_tree_add(e, &ubi->used);
516                 if (count++ > 32) {
517                         /*
518                          * Let's be nice and avoid holding the spinlock for
519                          * too long.
520                          */
521                         spin_unlock(&ubi->wl_lock);
522                         cond_resched();
523                         goto repeat;
524                 }
525         }
526
527         ubi->pq_head += 1;
528         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529                 ubi->pq_head = 0;
530         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531         spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544         spin_lock(&ubi->wl_lock);
545         list_add_tail(&wrk->list, &ubi->works);
546         ubi_assert(ubi->works_count >= 0);
547         ubi->works_count += 1;
548         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549                 wake_up_process(ubi->bgt_thread);
550         spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         down_read(&ubi->work_sem);
564         __schedule_ubi_work(ubi, wrk);
565         up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569                         int shutdown);
570
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583                           int vol_id, int lnum, int torture)
584 {
585         struct ubi_work *wl_wrk;
586
587         ubi_assert(e);
588         ubi_assert(!is_fm_block(ubi, e->pnum));
589
590         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591                e->pnum, e->ec, torture);
592
593         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594         if (!wl_wrk)
595                 return -ENOMEM;
596
597         wl_wrk->func = &erase_worker;
598         wl_wrk->e = e;
599         wl_wrk->vol_id = vol_id;
600         wl_wrk->lnum = lnum;
601         wl_wrk->torture = torture;
602
603         schedule_ubi_work(ubi, wl_wrk);
604         return 0;
605 }
606
607 /**
608  * do_sync_erase - run the erase worker synchronously.
609  * @ubi: UBI device description object
610  * @e: the WL entry of the physical eraseblock to erase
611  * @vol_id: the volume ID that last used this PEB
612  * @lnum: the last used logical eraseblock number for the PEB
613  * @torture: if the physical eraseblock has to be tortured
614  *
615  */
616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617                          int vol_id, int lnum, int torture)
618 {
619         struct ubi_work *wl_wrk;
620
621         dbg_wl("sync erase of PEB %i", e->pnum);
622
623         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
624         if (!wl_wrk)
625                 return -ENOMEM;
626
627         wl_wrk->e = e;
628         wl_wrk->vol_id = vol_id;
629         wl_wrk->lnum = lnum;
630         wl_wrk->torture = torture;
631
632         return erase_worker(ubi, wl_wrk, 0);
633 }
634
635 /**
636  * wear_leveling_worker - wear-leveling worker function.
637  * @ubi: UBI device description object
638  * @wrk: the work object
639  * @shutdown: non-zero if the worker has to free memory and exit
640  * because the WL-subsystem is shutting down
641  *
642  * This function copies a more worn out physical eraseblock to a less worn out
643  * one. Returns zero in case of success and a negative error code in case of
644  * failure.
645  */
646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647                                 int shutdown)
648 {
649         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650         int vol_id = -1, lnum = -1;
651 #ifdef CONFIG_MTD_UBI_FASTMAP
652         int anchor = wrk->anchor;
653 #endif
654         struct ubi_wl_entry *e1, *e2;
655         struct ubi_vid_hdr *vid_hdr;
656
657         kfree(wrk);
658         if (shutdown)
659                 return 0;
660
661         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
662         if (!vid_hdr)
663                 return -ENOMEM;
664
665         mutex_lock(&ubi->move_mutex);
666         spin_lock(&ubi->wl_lock);
667         ubi_assert(!ubi->move_from && !ubi->move_to);
668         ubi_assert(!ubi->move_to_put);
669
670         if (!ubi->free.rb_node ||
671             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
672                 /*
673                  * No free physical eraseblocks? Well, they must be waiting in
674                  * the queue to be erased. Cancel movement - it will be
675                  * triggered again when a free physical eraseblock appears.
676                  *
677                  * No used physical eraseblocks? They must be temporarily
678                  * protected from being moved. They will be moved to the
679                  * @ubi->used tree later and the wear-leveling will be
680                  * triggered again.
681                  */
682                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
683                        !ubi->free.rb_node, !ubi->used.rb_node);
684                 goto out_cancel;
685         }
686
687 #ifdef CONFIG_MTD_UBI_FASTMAP
688         /* Check whether we need to produce an anchor PEB */
689         if (!anchor)
690                 anchor = !anchor_pebs_avalible(&ubi->free);
691
692         if (anchor) {
693                 e1 = find_anchor_wl_entry(&ubi->used);
694                 if (!e1)
695                         goto out_cancel;
696                 e2 = get_peb_for_wl(ubi);
697                 if (!e2)
698                         goto out_cancel;
699
700                 self_check_in_wl_tree(ubi, e1, &ubi->used);
701                 rb_erase(&e1->u.rb, &ubi->used);
702                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
703         } else if (!ubi->scrub.rb_node) {
704 #else
705         if (!ubi->scrub.rb_node) {
706 #endif
707                 /*
708                  * Now pick the least worn-out used physical eraseblock and a
709                  * highly worn-out free physical eraseblock. If the erase
710                  * counters differ much enough, start wear-leveling.
711                  */
712                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
713                 e2 = get_peb_for_wl(ubi);
714                 if (!e2)
715                         goto out_cancel;
716
717                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
718                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
719                                e1->ec, e2->ec);
720
721                         /* Give the unused PEB back */
722                         wl_tree_add(e2, &ubi->free);
723                         ubi->free_count++;
724                         goto out_cancel;
725                 }
726                 self_check_in_wl_tree(ubi, e1, &ubi->used);
727                 rb_erase(&e1->u.rb, &ubi->used);
728                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
729                        e1->pnum, e1->ec, e2->pnum, e2->ec);
730         } else {
731                 /* Perform scrubbing */
732                 scrubbing = 1;
733                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
734                 e2 = get_peb_for_wl(ubi);
735                 if (!e2)
736                         goto out_cancel;
737
738                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
739                 rb_erase(&e1->u.rb, &ubi->scrub);
740                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
741         }
742
743         ubi->move_from = e1;
744         ubi->move_to = e2;
745         spin_unlock(&ubi->wl_lock);
746
747         /*
748          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
749          * We so far do not know which logical eraseblock our physical
750          * eraseblock (@e1) belongs to. We have to read the volume identifier
751          * header first.
752          *
753          * Note, we are protected from this PEB being unmapped and erased. The
754          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
755          * which is being moved was unmapped.
756          */
757
758         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
759         if (err && err != UBI_IO_BITFLIPS) {
760                 if (err == UBI_IO_FF) {
761                         /*
762                          * We are trying to move PEB without a VID header. UBI
763                          * always write VID headers shortly after the PEB was
764                          * given, so we have a situation when it has not yet
765                          * had a chance to write it, because it was preempted.
766                          * So add this PEB to the protection queue so far,
767                          * because presumably more data will be written there
768                          * (including the missing VID header), and then we'll
769                          * move it.
770                          */
771                         dbg_wl("PEB %d has no VID header", e1->pnum);
772                         protect = 1;
773                         goto out_not_moved;
774                 } else if (err == UBI_IO_FF_BITFLIPS) {
775                         /*
776                          * The same situation as %UBI_IO_FF, but bit-flips were
777                          * detected. It is better to schedule this PEB for
778                          * scrubbing.
779                          */
780                         dbg_wl("PEB %d has no VID header but has bit-flips",
781                                e1->pnum);
782                         scrubbing = 1;
783                         goto out_not_moved;
784                 }
785
786                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
787                         err, e1->pnum);
788                 goto out_error;
789         }
790
791         vol_id = be32_to_cpu(vid_hdr->vol_id);
792         lnum = be32_to_cpu(vid_hdr->lnum);
793
794         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
795         if (err) {
796                 if (err == MOVE_CANCEL_RACE) {
797                         /*
798                          * The LEB has not been moved because the volume is
799                          * being deleted or the PEB has been put meanwhile. We
800                          * should prevent this PEB from being selected for
801                          * wear-leveling movement again, so put it to the
802                          * protection queue.
803                          */
804                         protect = 1;
805                         goto out_not_moved;
806                 }
807                 if (err == MOVE_RETRY) {
808                         scrubbing = 1;
809                         goto out_not_moved;
810                 }
811                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
812                     err == MOVE_TARGET_RD_ERR) {
813                         /*
814                          * Target PEB had bit-flips or write error - torture it.
815                          */
816                         torture = 1;
817                         goto out_not_moved;
818                 }
819
820                 if (err == MOVE_SOURCE_RD_ERR) {
821                         /*
822                          * An error happened while reading the source PEB. Do
823                          * not switch to R/O mode in this case, and give the
824                          * upper layers a possibility to recover from this,
825                          * e.g. by unmapping corresponding LEB. Instead, just
826                          * put this PEB to the @ubi->erroneous list to prevent
827                          * UBI from trying to move it over and over again.
828                          */
829                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
830                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
831                                         ubi->erroneous_peb_count);
832                                 goto out_error;
833                         }
834                         erroneous = 1;
835                         goto out_not_moved;
836                 }
837
838                 if (err < 0)
839                         goto out_error;
840
841                 ubi_assert(0);
842         }
843
844         /* The PEB has been successfully moved */
845         if (scrubbing)
846                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
847                         e1->pnum, vol_id, lnum, e2->pnum);
848         ubi_free_vid_hdr(ubi, vid_hdr);
849
850         spin_lock(&ubi->wl_lock);
851         if (!ubi->move_to_put) {
852                 wl_tree_add(e2, &ubi->used);
853                 e2 = NULL;
854         }
855         ubi->move_from = ubi->move_to = NULL;
856         ubi->move_to_put = ubi->wl_scheduled = 0;
857         spin_unlock(&ubi->wl_lock);
858
859         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
860         if (err) {
861                 if (e2)
862                         wl_entry_destroy(ubi, e2);
863                 goto out_ro;
864         }
865
866         if (e2) {
867                 /*
868                  * Well, the target PEB was put meanwhile, schedule it for
869                  * erasure.
870                  */
871                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
872                        e2->pnum, vol_id, lnum);
873                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
874                 if (err)
875                         goto out_ro;
876         }
877
878         dbg_wl("done");
879         mutex_unlock(&ubi->move_mutex);
880         return 0;
881
882         /*
883          * For some reasons the LEB was not moved, might be an error, might be
884          * something else. @e1 was not changed, so return it back. @e2 might
885          * have been changed, schedule it for erasure.
886          */
887 out_not_moved:
888         if (vol_id != -1)
889                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
890                        e1->pnum, vol_id, lnum, e2->pnum, err);
891         else
892                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
893                        e1->pnum, e2->pnum, err);
894         spin_lock(&ubi->wl_lock);
895         if (protect)
896                 prot_queue_add(ubi, e1);
897         else if (erroneous) {
898                 wl_tree_add(e1, &ubi->erroneous);
899                 ubi->erroneous_peb_count += 1;
900         } else if (scrubbing)
901                 wl_tree_add(e1, &ubi->scrub);
902         else
903                 wl_tree_add(e1, &ubi->used);
904         ubi_assert(!ubi->move_to_put);
905         ubi->move_from = ubi->move_to = NULL;
906         ubi->wl_scheduled = 0;
907         spin_unlock(&ubi->wl_lock);
908
909         ubi_free_vid_hdr(ubi, vid_hdr);
910         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
911         if (err)
912                 goto out_ro;
913
914         mutex_unlock(&ubi->move_mutex);
915         return 0;
916
917 out_error:
918         if (vol_id != -1)
919                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
920                         err, e1->pnum, e2->pnum);
921         else
922                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
923                         err, e1->pnum, vol_id, lnum, e2->pnum);
924         spin_lock(&ubi->wl_lock);
925         ubi->move_from = ubi->move_to = NULL;
926         ubi->move_to_put = ubi->wl_scheduled = 0;
927         spin_unlock(&ubi->wl_lock);
928
929         ubi_free_vid_hdr(ubi, vid_hdr);
930         wl_entry_destroy(ubi, e1);
931         wl_entry_destroy(ubi, e2);
932
933 out_ro:
934         ubi_ro_mode(ubi);
935         mutex_unlock(&ubi->move_mutex);
936         ubi_assert(err != 0);
937         return err < 0 ? err : -EIO;
938
939 out_cancel:
940         ubi->wl_scheduled = 0;
941         spin_unlock(&ubi->wl_lock);
942         mutex_unlock(&ubi->move_mutex);
943         ubi_free_vid_hdr(ubi, vid_hdr);
944         return 0;
945 }
946
947 /**
948  * ensure_wear_leveling - schedule wear-leveling if it is needed.
949  * @ubi: UBI device description object
950  * @nested: set to non-zero if this function is called from UBI worker
951  *
952  * This function checks if it is time to start wear-leveling and schedules it
953  * if yes. This function returns zero in case of success and a negative error
954  * code in case of failure.
955  */
956 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
957 {
958         int err = 0;
959         struct ubi_wl_entry *e1;
960         struct ubi_wl_entry *e2;
961         struct ubi_work *wrk;
962
963         spin_lock(&ubi->wl_lock);
964         if (ubi->wl_scheduled)
965                 /* Wear-leveling is already in the work queue */
966                 goto out_unlock;
967
968         /*
969          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
970          * the WL worker has to be scheduled anyway.
971          */
972         if (!ubi->scrub.rb_node) {
973                 if (!ubi->used.rb_node || !ubi->free.rb_node)
974                         /* No physical eraseblocks - no deal */
975                         goto out_unlock;
976
977                 /*
978                  * We schedule wear-leveling only if the difference between the
979                  * lowest erase counter of used physical eraseblocks and a high
980                  * erase counter of free physical eraseblocks is greater than
981                  * %UBI_WL_THRESHOLD.
982                  */
983                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
984                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
985
986                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
987                         goto out_unlock;
988                 dbg_wl("schedule wear-leveling");
989         } else
990                 dbg_wl("schedule scrubbing");
991
992         ubi->wl_scheduled = 1;
993         spin_unlock(&ubi->wl_lock);
994
995         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
996         if (!wrk) {
997                 err = -ENOMEM;
998                 goto out_cancel;
999         }
1000
1001         wrk->anchor = 0;
1002         wrk->func = &wear_leveling_worker;
1003         if (nested)
1004                 __schedule_ubi_work(ubi, wrk);
1005         else
1006                 schedule_ubi_work(ubi, wrk);
1007         return err;
1008
1009 out_cancel:
1010         spin_lock(&ubi->wl_lock);
1011         ubi->wl_scheduled = 0;
1012 out_unlock:
1013         spin_unlock(&ubi->wl_lock);
1014         return err;
1015 }
1016
1017 /**
1018  * erase_worker - physical eraseblock erase worker function.
1019  * @ubi: UBI device description object
1020  * @wl_wrk: the work object
1021  * @shutdown: non-zero if the worker has to free memory and exit
1022  * because the WL sub-system is shutting down
1023  *
1024  * This function erases a physical eraseblock and perform torture testing if
1025  * needed. It also takes care about marking the physical eraseblock bad if
1026  * needed. Returns zero in case of success and a negative error code in case of
1027  * failure.
1028  */
1029 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1030                         int shutdown)
1031 {
1032         struct ubi_wl_entry *e = wl_wrk->e;
1033         int pnum = e->pnum;
1034         int vol_id = wl_wrk->vol_id;
1035         int lnum = wl_wrk->lnum;
1036         int err, available_consumed = 0;
1037
1038         if (shutdown) {
1039                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1040                 kfree(wl_wrk);
1041                 wl_entry_destroy(ubi, e);
1042                 return 0;
1043         }
1044
1045         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1046                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1047
1048         ubi_assert(!is_fm_block(ubi, e->pnum));
1049
1050         err = sync_erase(ubi, e, wl_wrk->torture);
1051         if (!err) {
1052                 /* Fine, we've erased it successfully */
1053                 kfree(wl_wrk);
1054
1055                 spin_lock(&ubi->wl_lock);
1056                 wl_tree_add(e, &ubi->free);
1057                 ubi->free_count++;
1058                 spin_unlock(&ubi->wl_lock);
1059
1060                 /*
1061                  * One more erase operation has happened, take care about
1062                  * protected physical eraseblocks.
1063                  */
1064                 serve_prot_queue(ubi);
1065
1066                 /* And take care about wear-leveling */
1067                 err = ensure_wear_leveling(ubi, 1);
1068                 return err;
1069         }
1070
1071         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1072         kfree(wl_wrk);
1073
1074         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1075             err == -EBUSY) {
1076                 int err1;
1077
1078                 /* Re-schedule the LEB for erasure */
1079                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1080                 if (err1) {
1081                         err = err1;
1082                         goto out_ro;
1083                 }
1084                 return err;
1085         }
1086
1087         wl_entry_destroy(ubi, e);
1088         if (err != -EIO)
1089                 /*
1090                  * If this is not %-EIO, we have no idea what to do. Scheduling
1091                  * this physical eraseblock for erasure again would cause
1092                  * errors again and again. Well, lets switch to R/O mode.
1093                  */
1094                 goto out_ro;
1095
1096         /* It is %-EIO, the PEB went bad */
1097
1098         if (!ubi->bad_allowed) {
1099                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1100                 goto out_ro;
1101         }
1102
1103         spin_lock(&ubi->volumes_lock);
1104         if (ubi->beb_rsvd_pebs == 0) {
1105                 if (ubi->avail_pebs == 0) {
1106                         spin_unlock(&ubi->volumes_lock);
1107                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1108                         goto out_ro;
1109                 }
1110                 ubi->avail_pebs -= 1;
1111                 available_consumed = 1;
1112         }
1113         spin_unlock(&ubi->volumes_lock);
1114
1115         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1116         err = ubi_io_mark_bad(ubi, pnum);
1117         if (err)
1118                 goto out_ro;
1119
1120         spin_lock(&ubi->volumes_lock);
1121         if (ubi->beb_rsvd_pebs > 0) {
1122                 if (available_consumed) {
1123                         /*
1124                          * The amount of reserved PEBs increased since we last
1125                          * checked.
1126                          */
1127                         ubi->avail_pebs += 1;
1128                         available_consumed = 0;
1129                 }
1130                 ubi->beb_rsvd_pebs -= 1;
1131         }
1132         ubi->bad_peb_count += 1;
1133         ubi->good_peb_count -= 1;
1134         ubi_calculate_reserved(ubi);
1135         if (available_consumed)
1136                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1137         else if (ubi->beb_rsvd_pebs)
1138                 ubi_msg(ubi, "%d PEBs left in the reserve",
1139                         ubi->beb_rsvd_pebs);
1140         else
1141                 ubi_warn(ubi, "last PEB from the reserve was used");
1142         spin_unlock(&ubi->volumes_lock);
1143
1144         return err;
1145
1146 out_ro:
1147         if (available_consumed) {
1148                 spin_lock(&ubi->volumes_lock);
1149                 ubi->avail_pebs += 1;
1150                 spin_unlock(&ubi->volumes_lock);
1151         }
1152         ubi_ro_mode(ubi);
1153         return err;
1154 }
1155
1156 /**
1157  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1158  * @ubi: UBI device description object
1159  * @vol_id: the volume ID that last used this PEB
1160  * @lnum: the last used logical eraseblock number for the PEB
1161  * @pnum: physical eraseblock to return
1162  * @torture: if this physical eraseblock has to be tortured
1163  *
1164  * This function is called to return physical eraseblock @pnum to the pool of
1165  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1166  * occurred to this @pnum and it has to be tested. This function returns zero
1167  * in case of success, and a negative error code in case of failure.
1168  */
1169 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1170                    int pnum, int torture)
1171 {
1172         int err;
1173         struct ubi_wl_entry *e;
1174
1175         dbg_wl("PEB %d", pnum);
1176         ubi_assert(pnum >= 0);
1177         ubi_assert(pnum < ubi->peb_count);
1178
1179         down_read(&ubi->fm_protect);
1180
1181 retry:
1182         spin_lock(&ubi->wl_lock);
1183         e = ubi->lookuptbl[pnum];
1184         if (e == ubi->move_from) {
1185                 /*
1186                  * User is putting the physical eraseblock which was selected to
1187                  * be moved. It will be scheduled for erasure in the
1188                  * wear-leveling worker.
1189                  */
1190                 dbg_wl("PEB %d is being moved, wait", pnum);
1191                 spin_unlock(&ubi->wl_lock);
1192
1193                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1194                 mutex_lock(&ubi->move_mutex);
1195                 mutex_unlock(&ubi->move_mutex);
1196                 goto retry;
1197         } else if (e == ubi->move_to) {
1198                 /*
1199                  * User is putting the physical eraseblock which was selected
1200                  * as the target the data is moved to. It may happen if the EBA
1201                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1202                  * but the WL sub-system has not put the PEB to the "used" tree
1203                  * yet, but it is about to do this. So we just set a flag which
1204                  * will tell the WL worker that the PEB is not needed anymore
1205                  * and should be scheduled for erasure.
1206                  */
1207                 dbg_wl("PEB %d is the target of data moving", pnum);
1208                 ubi_assert(!ubi->move_to_put);
1209                 ubi->move_to_put = 1;
1210                 spin_unlock(&ubi->wl_lock);
1211                 up_read(&ubi->fm_protect);
1212                 return 0;
1213         } else {
1214                 if (in_wl_tree(e, &ubi->used)) {
1215                         self_check_in_wl_tree(ubi, e, &ubi->used);
1216                         rb_erase(&e->u.rb, &ubi->used);
1217                 } else if (in_wl_tree(e, &ubi->scrub)) {
1218                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1219                         rb_erase(&e->u.rb, &ubi->scrub);
1220                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1221                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1222                         rb_erase(&e->u.rb, &ubi->erroneous);
1223                         ubi->erroneous_peb_count -= 1;
1224                         ubi_assert(ubi->erroneous_peb_count >= 0);
1225                         /* Erroneous PEBs should be tortured */
1226                         torture = 1;
1227                 } else {
1228                         err = prot_queue_del(ubi, e->pnum);
1229                         if (err) {
1230                                 ubi_err(ubi, "PEB %d not found", pnum);
1231                                 ubi_ro_mode(ubi);
1232                                 spin_unlock(&ubi->wl_lock);
1233                                 up_read(&ubi->fm_protect);
1234                                 return err;
1235                         }
1236                 }
1237         }
1238         spin_unlock(&ubi->wl_lock);
1239
1240         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1241         if (err) {
1242                 spin_lock(&ubi->wl_lock);
1243                 wl_tree_add(e, &ubi->used);
1244                 spin_unlock(&ubi->wl_lock);
1245         }
1246
1247         up_read(&ubi->fm_protect);
1248         return err;
1249 }
1250
1251 /**
1252  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1253  * @ubi: UBI device description object
1254  * @pnum: the physical eraseblock to schedule
1255  *
1256  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1257  * needs scrubbing. This function schedules a physical eraseblock for
1258  * scrubbing which is done in background. This function returns zero in case of
1259  * success and a negative error code in case of failure.
1260  */
1261 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1262 {
1263         struct ubi_wl_entry *e;
1264
1265         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1266
1267 retry:
1268         spin_lock(&ubi->wl_lock);
1269         e = ubi->lookuptbl[pnum];
1270         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1271                                    in_wl_tree(e, &ubi->erroneous)) {
1272                 spin_unlock(&ubi->wl_lock);
1273                 return 0;
1274         }
1275
1276         if (e == ubi->move_to) {
1277                 /*
1278                  * This physical eraseblock was used to move data to. The data
1279                  * was moved but the PEB was not yet inserted to the proper
1280                  * tree. We should just wait a little and let the WL worker
1281                  * proceed.
1282                  */
1283                 spin_unlock(&ubi->wl_lock);
1284                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1285                 yield();
1286                 goto retry;
1287         }
1288
1289         if (in_wl_tree(e, &ubi->used)) {
1290                 self_check_in_wl_tree(ubi, e, &ubi->used);
1291                 rb_erase(&e->u.rb, &ubi->used);
1292         } else {
1293                 int err;
1294
1295                 err = prot_queue_del(ubi, e->pnum);
1296                 if (err) {
1297                         ubi_err(ubi, "PEB %d not found", pnum);
1298                         ubi_ro_mode(ubi);
1299                         spin_unlock(&ubi->wl_lock);
1300                         return err;
1301                 }
1302         }
1303
1304         wl_tree_add(e, &ubi->scrub);
1305         spin_unlock(&ubi->wl_lock);
1306
1307         /*
1308          * Technically scrubbing is the same as wear-leveling, so it is done
1309          * by the WL worker.
1310          */
1311         return ensure_wear_leveling(ubi, 0);
1312 }
1313
1314 /**
1315  * ubi_wl_flush - flush all pending works.
1316  * @ubi: UBI device description object
1317  * @vol_id: the volume id to flush for
1318  * @lnum: the logical eraseblock number to flush for
1319  *
1320  * This function executes all pending works for a particular volume id /
1321  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1322  * acts as a wildcard for all of the corresponding volume numbers or logical
1323  * eraseblock numbers. It returns zero in case of success and a negative error
1324  * code in case of failure.
1325  */
1326 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1327 {
1328         int err = 0;
1329         int found = 1;
1330
1331         /*
1332          * Erase while the pending works queue is not empty, but not more than
1333          * the number of currently pending works.
1334          */
1335         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1336                vol_id, lnum, ubi->works_count);
1337
1338         while (found) {
1339                 struct ubi_work *wrk, *tmp;
1340                 found = 0;
1341
1342                 down_read(&ubi->work_sem);
1343                 spin_lock(&ubi->wl_lock);
1344                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1345                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1346                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1347                                 list_del(&wrk->list);
1348                                 ubi->works_count -= 1;
1349                                 ubi_assert(ubi->works_count >= 0);
1350                                 spin_unlock(&ubi->wl_lock);
1351
1352                                 err = wrk->func(ubi, wrk, 0);
1353                                 if (err) {
1354                                         up_read(&ubi->work_sem);
1355                                         return err;
1356                                 }
1357
1358                                 spin_lock(&ubi->wl_lock);
1359                                 found = 1;
1360                                 break;
1361                         }
1362                 }
1363                 spin_unlock(&ubi->wl_lock);
1364                 up_read(&ubi->work_sem);
1365         }
1366
1367         /*
1368          * Make sure all the works which have been done in parallel are
1369          * finished.
1370          */
1371         down_write(&ubi->work_sem);
1372         up_write(&ubi->work_sem);
1373
1374         return err;
1375 }
1376
1377 /**
1378  * tree_destroy - destroy an RB-tree.
1379  * @ubi: UBI device description object
1380  * @root: the root of the tree to destroy
1381  */
1382 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1383 {
1384         struct rb_node *rb;
1385         struct ubi_wl_entry *e;
1386
1387         rb = root->rb_node;
1388         while (rb) {
1389                 if (rb->rb_left)
1390                         rb = rb->rb_left;
1391                 else if (rb->rb_right)
1392                         rb = rb->rb_right;
1393                 else {
1394                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1395
1396                         rb = rb_parent(rb);
1397                         if (rb) {
1398                                 if (rb->rb_left == &e->u.rb)
1399                                         rb->rb_left = NULL;
1400                                 else
1401                                         rb->rb_right = NULL;
1402                         }
1403
1404                         wl_entry_destroy(ubi, e);
1405                 }
1406         }
1407 }
1408
1409 /**
1410  * ubi_thread - UBI background thread.
1411  * @u: the UBI device description object pointer
1412  */
1413 int ubi_thread(void *u)
1414 {
1415         int failures = 0;
1416         struct ubi_device *ubi = u;
1417
1418         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1419                 ubi->bgt_name, task_pid_nr(current));
1420
1421         set_freezable();
1422         for (;;) {
1423                 int err;
1424
1425                 if (kthread_should_stop())
1426                         break;
1427
1428                 if (try_to_freeze())
1429                         continue;
1430
1431                 spin_lock(&ubi->wl_lock);
1432                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1433                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1434                         set_current_state(TASK_INTERRUPTIBLE);
1435                         spin_unlock(&ubi->wl_lock);
1436                         schedule();
1437                         continue;
1438                 }
1439                 spin_unlock(&ubi->wl_lock);
1440
1441                 err = do_work(ubi);
1442                 if (err) {
1443                         ubi_err(ubi, "%s: work failed with error code %d",
1444                                 ubi->bgt_name, err);
1445                         if (failures++ > WL_MAX_FAILURES) {
1446                                 /*
1447                                  * Too many failures, disable the thread and
1448                                  * switch to read-only mode.
1449                                  */
1450                                 ubi_msg(ubi, "%s: %d consecutive failures",
1451                                         ubi->bgt_name, WL_MAX_FAILURES);
1452                                 ubi_ro_mode(ubi);
1453                                 ubi->thread_enabled = 0;
1454                                 continue;
1455                         }
1456                 } else
1457                         failures = 0;
1458
1459                 cond_resched();
1460         }
1461
1462         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1463         return 0;
1464 }
1465
1466 /**
1467  * shutdown_work - shutdown all pending works.
1468  * @ubi: UBI device description object
1469  */
1470 static void shutdown_work(struct ubi_device *ubi)
1471 {
1472 #ifdef CONFIG_MTD_UBI_FASTMAP
1473         flush_work(&ubi->fm_work);
1474 #endif
1475         while (!list_empty(&ubi->works)) {
1476                 struct ubi_work *wrk;
1477
1478                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1479                 list_del(&wrk->list);
1480                 wrk->func(ubi, wrk, 1);
1481                 ubi->works_count -= 1;
1482                 ubi_assert(ubi->works_count >= 0);
1483         }
1484 }
1485
1486 /**
1487  * ubi_wl_init - initialize the WL sub-system using attaching information.
1488  * @ubi: UBI device description object
1489  * @ai: attaching information
1490  *
1491  * This function returns zero in case of success, and a negative error code in
1492  * case of failure.
1493  */
1494 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1495 {
1496         int err, i, reserved_pebs, found_pebs = 0;
1497         struct rb_node *rb1, *rb2;
1498         struct ubi_ainf_volume *av;
1499         struct ubi_ainf_peb *aeb, *tmp;
1500         struct ubi_wl_entry *e;
1501
1502         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1503         spin_lock_init(&ubi->wl_lock);
1504         mutex_init(&ubi->move_mutex);
1505         init_rwsem(&ubi->work_sem);
1506         ubi->max_ec = ai->max_ec;
1507         INIT_LIST_HEAD(&ubi->works);
1508
1509         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1510
1511         err = -ENOMEM;
1512         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1513         if (!ubi->lookuptbl)
1514                 return err;
1515
1516         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1517                 INIT_LIST_HEAD(&ubi->pq[i]);
1518         ubi->pq_head = 0;
1519
1520         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1521                 cond_resched();
1522
1523                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1524                 if (!e)
1525                         goto out_free;
1526
1527                 e->pnum = aeb->pnum;
1528                 e->ec = aeb->ec;
1529                 ubi_assert(!is_fm_block(ubi, e->pnum));
1530                 ubi->lookuptbl[e->pnum] = e;
1531                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1532                         wl_entry_destroy(ubi, e);
1533                         goto out_free;
1534                 }
1535
1536                 found_pebs++;
1537         }
1538
1539         ubi->free_count = 0;
1540         list_for_each_entry(aeb, &ai->free, u.list) {
1541                 cond_resched();
1542
1543                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1544                 if (!e)
1545                         goto out_free;
1546
1547                 e->pnum = aeb->pnum;
1548                 e->ec = aeb->ec;
1549                 ubi_assert(e->ec >= 0);
1550                 ubi_assert(!is_fm_block(ubi, e->pnum));
1551
1552                 wl_tree_add(e, &ubi->free);
1553                 ubi->free_count++;
1554
1555                 ubi->lookuptbl[e->pnum] = e;
1556
1557                 found_pebs++;
1558         }
1559
1560         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1561                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1562                         cond_resched();
1563
1564                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1565                         if (!e)
1566                                 goto out_free;
1567
1568                         e->pnum = aeb->pnum;
1569                         e->ec = aeb->ec;
1570                         ubi->lookuptbl[e->pnum] = e;
1571
1572                         if (!aeb->scrub) {
1573                                 dbg_wl("add PEB %d EC %d to the used tree",
1574                                        e->pnum, e->ec);
1575                                 wl_tree_add(e, &ubi->used);
1576                         } else {
1577                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1578                                        e->pnum, e->ec);
1579                                 wl_tree_add(e, &ubi->scrub);
1580                         }
1581
1582                         found_pebs++;
1583                 }
1584         }
1585
1586         dbg_wl("found %i PEBs", found_pebs);
1587
1588         if (ubi->fm) {
1589                 ubi_assert(ubi->good_peb_count == \
1590                            found_pebs + ubi->fm->used_blocks);
1591
1592                 for (i = 0; i < ubi->fm->used_blocks; i++) {
1593                         e = ubi->fm->e[i];
1594                         ubi->lookuptbl[e->pnum] = e;
1595                 }
1596         }
1597         else
1598                 ubi_assert(ubi->good_peb_count == found_pebs);
1599
1600         reserved_pebs = WL_RESERVED_PEBS;
1601         ubi_fastmap_init(ubi, &reserved_pebs);
1602
1603         if (ubi->avail_pebs < reserved_pebs) {
1604                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1605                         ubi->avail_pebs, reserved_pebs);
1606                 if (ubi->corr_peb_count)
1607                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1608                                 ubi->corr_peb_count);
1609                 goto out_free;
1610         }
1611         ubi->avail_pebs -= reserved_pebs;
1612         ubi->rsvd_pebs += reserved_pebs;
1613
1614         /* Schedule wear-leveling if needed */
1615         err = ensure_wear_leveling(ubi, 0);
1616         if (err)
1617                 goto out_free;
1618
1619         return 0;
1620
1621 out_free:
1622         shutdown_work(ubi);
1623         tree_destroy(ubi, &ubi->used);
1624         tree_destroy(ubi, &ubi->free);
1625         tree_destroy(ubi, &ubi->scrub);
1626         kfree(ubi->lookuptbl);
1627         return err;
1628 }
1629
1630 /**
1631  * protection_queue_destroy - destroy the protection queue.
1632  * @ubi: UBI device description object
1633  */
1634 static void protection_queue_destroy(struct ubi_device *ubi)
1635 {
1636         int i;
1637         struct ubi_wl_entry *e, *tmp;
1638
1639         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1640                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1641                         list_del(&e->u.list);
1642                         wl_entry_destroy(ubi, e);
1643                 }
1644         }
1645 }
1646
1647 /**
1648  * ubi_wl_close - close the wear-leveling sub-system.
1649  * @ubi: UBI device description object
1650  */
1651 void ubi_wl_close(struct ubi_device *ubi)
1652 {
1653         dbg_wl("close the WL sub-system");
1654         ubi_fastmap_close(ubi);
1655         shutdown_work(ubi);
1656         protection_queue_destroy(ubi);
1657         tree_destroy(ubi, &ubi->used);
1658         tree_destroy(ubi, &ubi->erroneous);
1659         tree_destroy(ubi, &ubi->free);
1660         tree_destroy(ubi, &ubi->scrub);
1661         kfree(ubi->lookuptbl);
1662 }
1663
1664 /**
1665  * self_check_ec - make sure that the erase counter of a PEB is correct.
1666  * @ubi: UBI device description object
1667  * @pnum: the physical eraseblock number to check
1668  * @ec: the erase counter to check
1669  *
1670  * This function returns zero if the erase counter of physical eraseblock @pnum
1671  * is equivalent to @ec, and a negative error code if not or if an error
1672  * occurred.
1673  */
1674 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1675 {
1676         int err;
1677         long long read_ec;
1678         struct ubi_ec_hdr *ec_hdr;
1679
1680         if (!ubi_dbg_chk_gen(ubi))
1681                 return 0;
1682
1683         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1684         if (!ec_hdr)
1685                 return -ENOMEM;
1686
1687         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1688         if (err && err != UBI_IO_BITFLIPS) {
1689                 /* The header does not have to exist */
1690                 err = 0;
1691                 goto out_free;
1692         }
1693
1694         read_ec = be64_to_cpu(ec_hdr->ec);
1695         if (ec != read_ec && read_ec - ec > 1) {
1696                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1697                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1698                 dump_stack();
1699                 err = 1;
1700         } else
1701                 err = 0;
1702
1703 out_free:
1704         kfree(ec_hdr);
1705         return err;
1706 }
1707
1708 /**
1709  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1710  * @ubi: UBI device description object
1711  * @e: the wear-leveling entry to check
1712  * @root: the root of the tree
1713  *
1714  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1715  * is not.
1716  */
1717 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1718                                  struct ubi_wl_entry *e, struct rb_root *root)
1719 {
1720         if (!ubi_dbg_chk_gen(ubi))
1721                 return 0;
1722
1723         if (in_wl_tree(e, root))
1724                 return 0;
1725
1726         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1727                 e->pnum, e->ec, root);
1728         dump_stack();
1729         return -EINVAL;
1730 }
1731
1732 /**
1733  * self_check_in_pq - check if wear-leveling entry is in the protection
1734  *                        queue.
1735  * @ubi: UBI device description object
1736  * @e: the wear-leveling entry to check
1737  *
1738  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1739  */
1740 static int self_check_in_pq(const struct ubi_device *ubi,
1741                             struct ubi_wl_entry *e)
1742 {
1743         struct ubi_wl_entry *p;
1744         int i;
1745
1746         if (!ubi_dbg_chk_gen(ubi))
1747                 return 0;
1748
1749         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1750                 list_for_each_entry(p, &ubi->pq[i], u.list)
1751                         if (p == e)
1752                                 return 0;
1753
1754         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1755                 e->pnum, e->ec);
1756         dump_stack();
1757         return -EINVAL;
1758 }
1759 #ifndef CONFIG_MTD_UBI_FASTMAP
1760 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1761 {
1762         struct ubi_wl_entry *e;
1763
1764         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1765         self_check_in_wl_tree(ubi, e, &ubi->free);
1766         ubi->free_count--;
1767         ubi_assert(ubi->free_count >= 0);
1768         rb_erase(&e->u.rb, &ubi->free);
1769
1770         return e;
1771 }
1772
1773 /**
1774  * produce_free_peb - produce a free physical eraseblock.
1775  * @ubi: UBI device description object
1776  *
1777  * This function tries to make a free PEB by means of synchronous execution of
1778  * pending works. This may be needed if, for example the background thread is
1779  * disabled. Returns zero in case of success and a negative error code in case
1780  * of failure.
1781  */
1782 static int produce_free_peb(struct ubi_device *ubi)
1783 {
1784         int err;
1785
1786         while (!ubi->free.rb_node && ubi->works_count) {
1787                 spin_unlock(&ubi->wl_lock);
1788
1789                 dbg_wl("do one work synchronously");
1790                 err = do_work(ubi);
1791
1792                 spin_lock(&ubi->wl_lock);
1793                 if (err)
1794                         return err;
1795         }
1796
1797         return 0;
1798 }
1799
1800 /**
1801  * ubi_wl_get_peb - get a physical eraseblock.
1802  * @ubi: UBI device description object
1803  *
1804  * This function returns a physical eraseblock in case of success and a
1805  * negative error code in case of failure.
1806  * Returns with ubi->fm_eba_sem held in read mode!
1807  */
1808 int ubi_wl_get_peb(struct ubi_device *ubi)
1809 {
1810         int err;
1811         struct ubi_wl_entry *e;
1812
1813 retry:
1814         down_read(&ubi->fm_eba_sem);
1815         spin_lock(&ubi->wl_lock);
1816         if (!ubi->free.rb_node) {
1817                 if (ubi->works_count == 0) {
1818                         ubi_err(ubi, "no free eraseblocks");
1819                         ubi_assert(list_empty(&ubi->works));
1820                         spin_unlock(&ubi->wl_lock);
1821                         return -ENOSPC;
1822                 }
1823
1824                 err = produce_free_peb(ubi);
1825                 if (err < 0) {
1826                         spin_unlock(&ubi->wl_lock);
1827                         return err;
1828                 }
1829                 spin_unlock(&ubi->wl_lock);
1830                 up_read(&ubi->fm_eba_sem);
1831                 goto retry;
1832
1833         }
1834         e = wl_get_wle(ubi);
1835         prot_queue_add(ubi, e);
1836         spin_unlock(&ubi->wl_lock);
1837
1838         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1839                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1840         if (err) {
1841                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1842                 return err;
1843         }
1844
1845         return e->pnum;
1846 }
1847 #else
1848 #include "fastmap-wl.c"
1849 #endif