]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/cxgb3/cxgb3_main.c
Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[karo-tx-linux.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63         MAX_TXQ_ENTRIES = 16384,
64         MAX_CTRL_TXQ_ENTRIES = 1024,
65         MAX_RSPQ_ENTRIES = 16384,
66         MAX_RX_BUFFERS = 16384,
67         MAX_RX_JUMBO_BUFFERS = 16384,
68         MIN_TXQ_ENTRIES = 4,
69         MIN_CTRL_TXQ_ENTRIES = 4,
70         MIN_RSPQ_ENTRIES = 32,
71         MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86         CH_DEVICE(0x20, 0),     /* PE9000 */
87         CH_DEVICE(0x21, 1),     /* T302E */
88         CH_DEVICE(0x22, 2),     /* T310E */
89         CH_DEVICE(0x23, 3),     /* T320X */
90         CH_DEVICE(0x24, 1),     /* T302X */
91         CH_DEVICE(0x25, 3),     /* T320E */
92         CH_DEVICE(0x26, 2),     /* T310X */
93         CH_DEVICE(0x30, 2),     /* T3B10 */
94         CH_DEVICE(0x31, 3),     /* T3B20 */
95         CH_DEVICE(0x32, 1),     /* T3B02 */
96         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
97         CH_DEVICE(0x36, 3),     /* S320E-CR */
98         CH_DEVICE(0x37, 7),     /* N320E-G2 */
99         {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148  *      link_report - show link status and link speed/duplex
149  *      @p: the port whose settings are to be reported
150  *
151  *      Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155         if (!netif_carrier_ok(dev))
156                 printk(KERN_INFO "%s: link down\n", dev->name);
157         else {
158                 const char *s = "10Mbps";
159                 const struct port_info *p = netdev_priv(dev);
160
161                 switch (p->link_config.speed) {
162                 case SPEED_10000:
163                         s = "10Gbps";
164                         break;
165                 case SPEED_1000:
166                         s = "1000Mbps";
167                         break;
168                 case SPEED_100:
169                         s = "100Mbps";
170                         break;
171                 }
172
173                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175         }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179                                  struct port_info *pi)
180 {
181         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182                          F_ENDROPPKT);
183         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189                                   struct port_info *pi)
190 {
191         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192                          F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197         struct net_device *dev = adap->port[port_id];
198         struct port_info *pi = netdev_priv(dev);
199
200         if (state == netif_carrier_ok(dev))
201                 return;
202
203         if (state) {
204                 struct cmac *mac = &pi->mac;
205
206                 netif_carrier_on(dev);
207
208                 disable_tx_fifo_drain(adap, pi);
209
210                 /* Clear local faults */
211                 t3_xgm_intr_disable(adap, pi->port_id);
212                 t3_read_reg(adap, A_XGM_INT_STATUS +
213                                     pi->mac.offset);
214                 t3_write_reg(adap,
215                              A_XGM_INT_CAUSE + pi->mac.offset,
216                              F_XGM_INT);
217
218                 t3_set_reg_field(adap,
219                                  A_XGM_INT_ENABLE +
220                                  pi->mac.offset,
221                                  F_XGM_INT, F_XGM_INT);
222                 t3_xgm_intr_enable(adap, pi->port_id);
223
224                 t3_mac_enable(mac, MAC_DIRECTION_TX);
225         } else {
226                 netif_carrier_off(dev);
227
228                 /* Flush TX FIFO */
229                 enable_tx_fifo_drain(adap, pi);
230         }
231         link_report(dev);
232 }
233
234 /**
235  *      t3_os_link_changed - handle link status changes
236  *      @adapter: the adapter associated with the link change
237  *      @port_id: the port index whose limk status has changed
238  *      @link_stat: the new status of the link
239  *      @speed: the new speed setting
240  *      @duplex: the new duplex setting
241  *      @pause: the new flow-control setting
242  *
243  *      This is the OS-dependent handler for link status changes.  The OS
244  *      neutral handler takes care of most of the processing for these events,
245  *      then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248                         int speed, int duplex, int pause)
249 {
250         struct net_device *dev = adapter->port[port_id];
251         struct port_info *pi = netdev_priv(dev);
252         struct cmac *mac = &pi->mac;
253
254         /* Skip changes from disabled ports. */
255         if (!netif_running(dev))
256                 return;
257
258         if (link_stat != netif_carrier_ok(dev)) {
259                 if (link_stat) {
260                         disable_tx_fifo_drain(adapter, pi);
261
262                         t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264                         /* Clear local faults */
265                         t3_xgm_intr_disable(adapter, pi->port_id);
266                         t3_read_reg(adapter, A_XGM_INT_STATUS +
267                                     pi->mac.offset);
268                         t3_write_reg(adapter,
269                                      A_XGM_INT_CAUSE + pi->mac.offset,
270                                      F_XGM_INT);
271
272                         t3_set_reg_field(adapter,
273                                          A_XGM_INT_ENABLE + pi->mac.offset,
274                                          F_XGM_INT, F_XGM_INT);
275                         t3_xgm_intr_enable(adapter, pi->port_id);
276
277                         netif_carrier_on(dev);
278                 } else {
279                         netif_carrier_off(dev);
280
281                         t3_xgm_intr_disable(adapter, pi->port_id);
282                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283                         t3_set_reg_field(adapter,
284                                          A_XGM_INT_ENABLE + pi->mac.offset,
285                                          F_XGM_INT, 0);
286
287                         if (is_10G(adapter))
288                                 pi->phy.ops->power_down(&pi->phy, 1);
289
290                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291                         t3_mac_disable(mac, MAC_DIRECTION_RX);
292                         t3_link_start(&pi->phy, mac, &pi->link_config);
293
294                         /* Flush TX FIFO */
295                         enable_tx_fifo_drain(adapter, pi);
296                 }
297
298                 link_report(dev);
299         }
300 }
301
302 /**
303  *      t3_os_phymod_changed - handle PHY module changes
304  *      @phy: the PHY reporting the module change
305  *      @mod_type: new module type
306  *
307  *      This is the OS-dependent handler for PHY module changes.  It is
308  *      invoked when a PHY module is removed or inserted for any OS-specific
309  *      processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313         static const char *mod_str[] = {
314                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315         };
316
317         const struct net_device *dev = adap->port[port_id];
318         const struct port_info *pi = netdev_priv(dev);
319
320         if (pi->phy.modtype == phy_modtype_none)
321                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322         else
323                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324                        mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329         struct port_info *pi = netdev_priv(dev);
330
331         t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335  *      link_start - enable a port
336  *      @dev: the device to enable
337  *
338  *      Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         t3_mac_reset(mac);
346         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350         t3_mac_set_rx_mode(mac, dev);
351         t3_link_start(&pi->phy, mac, &pi->link_config);
352         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357         if (adapter->flags & USING_MSIX) {
358                 pci_disable_msix(adapter->pdev);
359                 adapter->flags &= ~USING_MSIX;
360         } else if (adapter->flags & USING_MSI) {
361                 pci_disable_msi(adapter->pdev);
362                 adapter->flags &= ~USING_MSI;
363         }
364 }
365
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371         t3_slow_intr_handler(cookie);
372         return IRQ_HANDLED;
373 }
374
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383         adap->msix_info[0].desc[n] = 0;
384
385         for_each_port(adap, j) {
386                 struct net_device *d = adap->port[j];
387                 const struct port_info *pi = netdev_priv(d);
388
389                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390                         snprintf(adap->msix_info[msi_idx].desc, n,
391                                  "%s-%d", d->name, pi->first_qset + i);
392                         adap->msix_info[msi_idx].desc[n] = 0;
393                 }
394         }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399         int i, j, err, qidx = 0;
400
401         for_each_port(adap, i) {
402                 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404                 for (j = 0; j < nqsets; ++j) {
405                         err = request_irq(adap->msix_info[qidx + 1].vec,
406                                           t3_intr_handler(adap,
407                                                           adap->sge.qs[qidx].
408                                                           rspq.polling), 0,
409                                           adap->msix_info[qidx + 1].desc,
410                                           &adap->sge.qs[qidx]);
411                         if (err) {
412                                 while (--qidx >= 0)
413                                         free_irq(adap->msix_info[qidx + 1].vec,
414                                                  &adap->sge.qs[qidx]);
415                                 return err;
416                         }
417                         qidx++;
418                 }
419         }
420         return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425         if (adapter->flags & USING_MSIX) {
426                 int i, n = 0;
427
428                 free_irq(adapter->msix_info[0].vec, adapter);
429                 for_each_port(adapter, i)
430                         n += adap2pinfo(adapter, i)->nqsets;
431
432                 for (i = 0; i < n; ++i)
433                         free_irq(adapter->msix_info[i + 1].vec,
434                                  &adapter->sge.qs[i]);
435         } else
436                 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440                               unsigned long n)
441 {
442         int attempts = 10;
443
444         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445                 if (!--attempts)
446                         return -ETIMEDOUT;
447                 msleep(10);
448         }
449         return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454         int i;
455         struct sk_buff *skb;
456         struct cpl_set_tcb_field *greq;
457         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459         t3_tp_set_offload_mode(adap, 1);
460
461         for (i = 0; i < 16; i++) {
462                 struct cpl_smt_write_req *req;
463
464                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465                 if (!skb)
466                         skb = adap->nofail_skb;
467                 if (!skb)
468                         goto alloc_skb_fail;
469
470                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471                 memset(req, 0, sizeof(*req));
472                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474                 req->mtu_idx = NMTUS - 1;
475                 req->iff = i;
476                 t3_mgmt_tx(adap, skb);
477                 if (skb == adap->nofail_skb) {
478                         await_mgmt_replies(adap, cnt, i + 1);
479                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480                         if (!adap->nofail_skb)
481                                 goto alloc_skb_fail;
482                 }
483         }
484
485         for (i = 0; i < 2048; i++) {
486                 struct cpl_l2t_write_req *req;
487
488                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489                 if (!skb)
490                         skb = adap->nofail_skb;
491                 if (!skb)
492                         goto alloc_skb_fail;
493
494                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495                 memset(req, 0, sizeof(*req));
496                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498                 req->params = htonl(V_L2T_W_IDX(i));
499                 t3_mgmt_tx(adap, skb);
500                 if (skb == adap->nofail_skb) {
501                         await_mgmt_replies(adap, cnt, 16 + i + 1);
502                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503                         if (!adap->nofail_skb)
504                                 goto alloc_skb_fail;
505                 }
506         }
507
508         for (i = 0; i < 2048; i++) {
509                 struct cpl_rte_write_req *req;
510
511                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512                 if (!skb)
513                         skb = adap->nofail_skb;
514                 if (!skb)
515                         goto alloc_skb_fail;
516
517                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518                 memset(req, 0, sizeof(*req));
519                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522                 t3_mgmt_tx(adap, skb);
523                 if (skb == adap->nofail_skb) {
524                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526                         if (!adap->nofail_skb)
527                                 goto alloc_skb_fail;
528                 }
529         }
530
531         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532         if (!skb)
533                 skb = adap->nofail_skb;
534         if (!skb)
535                 goto alloc_skb_fail;
536
537         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538         memset(greq, 0, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585
586         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593         int i, j;
594
595         for (i = 0; i < SGE_QSETS; i++) {
596                 struct sge_qset *qs = &adap->sge.qs[i];
597
598                 if (qs->adap)
599                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
600                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601         }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606         int i;
607
608         for (i = 0; i < SGE_QSETS; i++) {
609                 struct sge_qset *qs = &adap->sge.qs[i];
610
611                 if (qs->adap)
612                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613                                        64);
614         }
615
616         /*
617          * netif_napi_add() can be called only once per napi_struct because it
618          * adds each new napi_struct to a list.  Be careful not to call it a
619          * second time, e.g., during EEH recovery, by making a note of it.
620          */
621         adap->flags |= NAPI_INIT;
622 }
623
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631         int i;
632
633         for (i = 0; i < SGE_QSETS; i++)
634                 if (adap->sge.qs[i].adap)
635                         napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640         int i;
641         for (i = 0; i < SGE_QSETS; i++)
642                 if (adap->sge.qs[i].adap)
643                         napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647  *      set_qset_lro - Turn a queue set's LRO capability on and off
648  *      @dev: the device the qset is attached to
649  *      @qset_idx: the queue set index
650  *      @val: the LRO switch
651  *
652  *      Sets LRO on or off for a particular queue set.
653  *      the device's features flag is updated to reflect the LRO
654  *      capability when all queues belonging to the device are
655  *      in the same state.
656  */
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659         struct port_info *pi = netdev_priv(dev);
660         struct adapter *adapter = pi->adapter;
661
662         adapter->params.sge.qset[qset_idx].lro = !!val;
663         adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
668  *      @adap: the adapter
669  *
670  *      Determines how many sets of SGE queues to use and initializes them.
671  *      We support multiple queue sets per port if we have MSI-X, otherwise
672  *      just one queue set per port.
673  */
674 static int setup_sge_qsets(struct adapter *adap)
675 {
676         int i, j, err, irq_idx = 0, qset_idx = 0;
677         unsigned int ntxq = SGE_TXQ_PER_SET;
678
679         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680                 irq_idx = -1;
681
682         for_each_port(adap, i) {
683                 struct net_device *dev = adap->port[i];
684                 struct port_info *pi = netdev_priv(dev);
685
686                 pi->qs = &adap->sge.qs[pi->first_qset];
687                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
690                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691                                                              irq_idx,
692                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
693                                 netdev_get_tx_queue(dev, j));
694                         if (err) {
695                                 t3_free_sge_resources(adap);
696                                 return err;
697                         }
698                 }
699         }
700
701         return 0;
702 }
703
704 static ssize_t attr_show(struct device *d, char *buf,
705                          ssize_t(*format) (struct net_device *, char *))
706 {
707         ssize_t len;
708
709         /* Synchronize with ioctls that may shut down the device */
710         rtnl_lock();
711         len = (*format) (to_net_dev(d), buf);
712         rtnl_unlock();
713         return len;
714 }
715
716 static ssize_t attr_store(struct device *d,
717                           const char *buf, size_t len,
718                           ssize_t(*set) (struct net_device *, unsigned int),
719                           unsigned int min_val, unsigned int max_val)
720 {
721         char *endp;
722         ssize_t ret;
723         unsigned int val;
724
725         if (!capable(CAP_NET_ADMIN))
726                 return -EPERM;
727
728         val = simple_strtoul(buf, &endp, 0);
729         if (endp == buf || val < min_val || val > max_val)
730                 return -EINVAL;
731
732         rtnl_lock();
733         ret = (*set) (to_net_dev(d), val);
734         if (!ret)
735                 ret = len;
736         rtnl_unlock();
737         return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743         struct port_info *pi = netdev_priv(dev); \
744         struct adapter *adap = pi->adapter; \
745         return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748                            char *buf) \
749 { \
750         return attr_show(d, buf, format_##name); \
751 }
752
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755         struct port_info *pi = netdev_priv(dev);
756         struct adapter *adap = pi->adapter;
757         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759         if (adap->flags & FULL_INIT_DONE)
760                 return -EBUSY;
761         if (val && adap->params.rev == 0)
762                 return -EINVAL;
763         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764             min_tids)
765                 return -EINVAL;
766         adap->params.mc5.nfilters = val;
767         return 0;
768 }
769
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771                               const char *buf, size_t len)
772 {
773         return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778         struct port_info *pi = netdev_priv(dev);
779         struct adapter *adap = pi->adapter;
780
781         if (adap->flags & FULL_INIT_DONE)
782                 return -EBUSY;
783         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784             MC5_MIN_TIDS)
785                 return -EINVAL;
786         adap->params.mc5.nservers = val;
787         return 0;
788 }
789
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791                               const char *buf, size_t len)
792 {
793         return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809         &dev_attr_cam_size.attr,
810         &dev_attr_nfilters.attr,
811         &dev_attr_nservers.attr,
812         NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
817 static ssize_t tm_attr_show(struct device *d,
818                             char *buf, int sched)
819 {
820         struct port_info *pi = netdev_priv(to_net_dev(d));
821         struct adapter *adap = pi->adapter;
822         unsigned int v, addr, bpt, cpt;
823         ssize_t len;
824
825         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826         rtnl_lock();
827         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829         if (sched & 1)
830                 v >>= 16;
831         bpt = (v >> 8) & 0xff;
832         cpt = v & 0xff;
833         if (!cpt)
834                 len = sprintf(buf, "disabled\n");
835         else {
836                 v = (adap->params.vpd.cclk * 1000) / cpt;
837                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838         }
839         rtnl_unlock();
840         return len;
841 }
842
843 static ssize_t tm_attr_store(struct device *d,
844                              const char *buf, size_t len, int sched)
845 {
846         struct port_info *pi = netdev_priv(to_net_dev(d));
847         struct adapter *adap = pi->adapter;
848         unsigned int val;
849         char *endp;
850         ssize_t ret;
851
852         if (!capable(CAP_NET_ADMIN))
853                 return -EPERM;
854
855         val = simple_strtoul(buf, &endp, 0);
856         if (endp == buf || val > 10000000)
857                 return -EINVAL;
858
859         rtnl_lock();
860         ret = t3_config_sched(adap, val, sched);
861         if (!ret)
862                 ret = len;
863         rtnl_unlock();
864         return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869                            char *buf) \
870 { \
871         return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874                             const char *buf, size_t len) \
875 { \
876         return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890         &dev_attr_sched0.attr,
891         &dev_attr_sched1.attr,
892         &dev_attr_sched2.attr,
893         &dev_attr_sched3.attr,
894         &dev_attr_sched4.attr,
895         &dev_attr_sched5.attr,
896         &dev_attr_sched6.attr,
897         &dev_attr_sched7.attr,
898         NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904  * Sends an sk_buff to an offload queue driver
905  * after dealing with any active network taps.
906  */
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909         int ret;
910
911         local_bh_disable();
912         ret = t3_offload_tx(tdev, skb);
913         local_bh_enable();
914         return ret;
915 }
916
917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919         struct cpl_smt_write_req *req;
920         struct port_info *pi = netdev_priv(adapter->port[idx]);
921         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923         if (!skb)
924                 return -ENOMEM;
925
926         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
930         req->iff = idx;
931         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933         skb->priority = 1;
934         offload_tx(&adapter->tdev, skb);
935         return 0;
936 }
937
938 static int init_smt(struct adapter *adapter)
939 {
940         int i;
941
942         for_each_port(adapter, i)
943             write_smt_entry(adapter, i);
944         return 0;
945 }
946
947 static void init_port_mtus(struct adapter *adapter)
948 {
949         unsigned int mtus = adapter->port[0]->mtu;
950
951         if (adapter->port[1])
952                 mtus |= adapter->port[1]->mtu << 16;
953         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957                               int hi, int port)
958 {
959         struct sk_buff *skb;
960         struct mngt_pktsched_wr *req;
961         int ret;
962
963         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964         if (!skb)
965                 skb = adap->nofail_skb;
966         if (!skb)
967                 return -ENOMEM;
968
969         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972         req->sched = sched;
973         req->idx = qidx;
974         req->min = lo;
975         req->max = hi;
976         req->binding = port;
977         ret = t3_mgmt_tx(adap, skb);
978         if (skb == adap->nofail_skb) {
979                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980                                              GFP_KERNEL);
981                 if (!adap->nofail_skb)
982                         ret = -ENOMEM;
983         }
984
985         return ret;
986 }
987
988 static int bind_qsets(struct adapter *adap)
989 {
990         int i, j, err = 0;
991
992         for_each_port(adap, i) {
993                 const struct port_info *pi = adap2pinfo(adap, i);
994
995                 for (j = 0; j < pi->nqsets; ++j) {
996                         int ret = send_pktsched_cmd(adap, 1,
997                                                     pi->first_qset + j, -1,
998                                                     -1, i);
999                         if (ret)
1000                                 err = ret;
1001                 }
1002         }
1003
1004         return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
1008         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
1011         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025         const char *fw_name = NULL;
1026
1027         switch (edc_idx) {
1028         case EDC_OPT_AEL2005:
1029                 fw_name = AEL2005_OPT_EDC_NAME;
1030                 break;
1031         case EDC_TWX_AEL2005:
1032                 fw_name = AEL2005_TWX_EDC_NAME;
1033                 break;
1034         case EDC_TWX_AEL2020:
1035                 fw_name = AEL2020_TWX_EDC_NAME;
1036                 break;
1037         }
1038         return fw_name;
1039 }
1040
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043         struct adapter *adapter = phy->adapter;
1044         const struct firmware *fw;
1045         char buf[64];
1046         u32 csum;
1047         const __be32 *p;
1048         u16 *cache = phy->phy_cache;
1049         int i, ret;
1050
1051         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054         if (ret < 0) {
1055                 dev_err(&adapter->pdev->dev,
1056                         "could not upgrade firmware: unable to load %s\n",
1057                         buf);
1058                 return ret;
1059         }
1060
1061         /* check size, take checksum in account */
1062         if (fw->size > size + 4) {
1063                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064                        (unsigned int)fw->size, size + 4);
1065                 ret = -EINVAL;
1066         }
1067
1068         /* compute checksum */
1069         p = (const __be32 *)fw->data;
1070         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071                 csum += ntohl(p[i]);
1072
1073         if (csum != 0xffffffff) {
1074                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075                        csum);
1076                 ret = -EINVAL;
1077         }
1078
1079         for (i = 0; i < size / 4 ; i++) {
1080                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082         }
1083
1084         release_firmware(fw);
1085
1086         return ret;
1087 }
1088
1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091         int ret;
1092         const struct firmware *fw;
1093         struct device *dev = &adap->pdev->dev;
1094
1095         ret = request_firmware(&fw, FW_FNAME, dev);
1096         if (ret < 0) {
1097                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098                         FW_FNAME);
1099                 return ret;
1100         }
1101         ret = t3_load_fw(adap, fw->data, fw->size);
1102         release_firmware(fw);
1103
1104         if (ret == 0)
1105                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107         else
1108                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111         return ret;
1112 }
1113
1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116         char rev = 0;
1117
1118         switch(adapter->params.rev) {
1119         case T3_REV_B:
1120         case T3_REV_B2:
1121                 rev = 'b';
1122                 break;
1123         case T3_REV_C:
1124                 rev = 'c';
1125                 break;
1126         }
1127         return rev;
1128 }
1129
1130 static int update_tpsram(struct adapter *adap)
1131 {
1132         const struct firmware *tpsram;
1133         char buf[64];
1134         struct device *dev = &adap->pdev->dev;
1135         int ret;
1136         char rev;
1137
1138         rev = t3rev2char(adap);
1139         if (!rev)
1140                 return 0;
1141
1142         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144         ret = request_firmware(&tpsram, buf, dev);
1145         if (ret < 0) {
1146                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147                         buf);
1148                 return ret;
1149         }
1150
1151         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152         if (ret)
1153                 goto release_tpsram;
1154
1155         ret = t3_set_proto_sram(adap, tpsram->data);
1156         if (ret == 0)
1157                 dev_info(dev,
1158                          "successful update of protocol engine "
1159                          "to %d.%d.%d\n",
1160                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161         else
1162                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164         if (ret)
1165                 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168         release_firmware(tpsram);
1169
1170         return ret;
1171 }
1172
1173 /**
1174  *      cxgb_up - enable the adapter
1175  *      @adapter: adapter being enabled
1176  *
1177  *      Called when the first port is enabled, this function performs the
1178  *      actions necessary to make an adapter operational, such as completing
1179  *      the initialization of HW modules, and enabling interrupts.
1180  *
1181  *      Must be called with the rtnl lock held.
1182  */
1183 static int cxgb_up(struct adapter *adap)
1184 {
1185         int err;
1186
1187         if (!(adap->flags & FULL_INIT_DONE)) {
1188                 err = t3_check_fw_version(adap);
1189                 if (err == -EINVAL) {
1190                         err = upgrade_fw(adap);
1191                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194                 }
1195
1196                 err = t3_check_tpsram_version(adap);
1197                 if (err == -EINVAL) {
1198                         err = update_tpsram(adap);
1199                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202                 }
1203
1204                 /*
1205                  * Clear interrupts now to catch errors if t3_init_hw fails.
1206                  * We clear them again later as initialization may trigger
1207                  * conditions that can interrupt.
1208                  */
1209                 t3_intr_clear(adap);
1210
1211                 err = t3_init_hw(adap, 0);
1212                 if (err)
1213                         goto out;
1214
1215                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218                 err = setup_sge_qsets(adap);
1219                 if (err)
1220                         goto out;
1221
1222                 setup_rss(adap);
1223                 if (!(adap->flags & NAPI_INIT))
1224                         init_napi(adap);
1225
1226                 t3_start_sge_timers(adap);
1227                 adap->flags |= FULL_INIT_DONE;
1228         }
1229
1230         t3_intr_clear(adap);
1231
1232         if (adap->flags & USING_MSIX) {
1233                 name_msix_vecs(adap);
1234                 err = request_irq(adap->msix_info[0].vec,
1235                                   t3_async_intr_handler, 0,
1236                                   adap->msix_info[0].desc, adap);
1237                 if (err)
1238                         goto irq_err;
1239
1240                 err = request_msix_data_irqs(adap);
1241                 if (err) {
1242                         free_irq(adap->msix_info[0].vec, adap);
1243                         goto irq_err;
1244                 }
1245         } else if ((err = request_irq(adap->pdev->irq,
1246                                       t3_intr_handler(adap,
1247                                                       adap->sge.qs[0].rspq.
1248                                                       polling),
1249                                       (adap->flags & USING_MSI) ?
1250                                        0 : IRQF_SHARED,
1251                                       adap->name, adap)))
1252                 goto irq_err;
1253
1254         enable_all_napi(adap);
1255         t3_sge_start(adap);
1256         t3_intr_enable(adap);
1257
1258         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259             is_offload(adap) && init_tp_parity(adap) == 0)
1260                 adap->flags |= TP_PARITY_INIT;
1261
1262         if (adap->flags & TP_PARITY_INIT) {
1263                 t3_write_reg(adap, A_TP_INT_CAUSE,
1264                              F_CMCACHEPERR | F_ARPLUTPERR);
1265                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266         }
1267
1268         if (!(adap->flags & QUEUES_BOUND)) {
1269                 int ret = bind_qsets(adap);
1270
1271                 if (ret < 0) {
1272                         CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1273                         t3_intr_disable(adap);
1274                         free_irq_resources(adap);
1275                         err = ret;
1276                         goto out;
1277                 }
1278                 adap->flags |= QUEUES_BOUND;
1279         }
1280
1281 out:
1282         return err;
1283 irq_err:
1284         CH_ERR(adap, "request_irq failed, err %d\n", err);
1285         goto out;
1286 }
1287
1288 /*
1289  * Release resources when all the ports and offloading have been stopped.
1290  */
1291 static void cxgb_down(struct adapter *adapter, int on_wq)
1292 {
1293         t3_sge_stop(adapter);
1294         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1295         t3_intr_disable(adapter);
1296         spin_unlock_irq(&adapter->work_lock);
1297
1298         free_irq_resources(adapter);
1299         quiesce_rx(adapter);
1300         t3_sge_stop(adapter);
1301         if (!on_wq)
1302                 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1303 }
1304
1305 static void schedule_chk_task(struct adapter *adap)
1306 {
1307         unsigned int timeo;
1308
1309         timeo = adap->params.linkpoll_period ?
1310             (HZ * adap->params.linkpoll_period) / 10 :
1311             adap->params.stats_update_period * HZ;
1312         if (timeo)
1313                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1314 }
1315
1316 static int offload_open(struct net_device *dev)
1317 {
1318         struct port_info *pi = netdev_priv(dev);
1319         struct adapter *adapter = pi->adapter;
1320         struct t3cdev *tdev = dev2t3cdev(dev);
1321         int adap_up = adapter->open_device_map & PORT_MASK;
1322         int err;
1323
1324         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1325                 return 0;
1326
1327         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1328                 goto out;
1329
1330         t3_tp_set_offload_mode(adapter, 1);
1331         tdev->lldev = adapter->port[0];
1332         err = cxgb3_offload_activate(adapter);
1333         if (err)
1334                 goto out;
1335
1336         init_port_mtus(adapter);
1337         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1338                      adapter->params.b_wnd,
1339                      adapter->params.rev == 0 ?
1340                      adapter->port[0]->mtu : 0xffff);
1341         init_smt(adapter);
1342
1343         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1344                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1345
1346         /* Call back all registered clients */
1347         cxgb3_add_clients(tdev);
1348
1349 out:
1350         /* restore them in case the offload module has changed them */
1351         if (err) {
1352                 t3_tp_set_offload_mode(adapter, 0);
1353                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1354                 cxgb3_set_dummy_ops(tdev);
1355         }
1356         return err;
1357 }
1358
1359 static int offload_close(struct t3cdev *tdev)
1360 {
1361         struct adapter *adapter = tdev2adap(tdev);
1362
1363         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1364                 return 0;
1365
1366         /* Call back all registered clients */
1367         cxgb3_remove_clients(tdev);
1368
1369         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1370
1371         /* Flush work scheduled while releasing TIDs */
1372         flush_scheduled_work();
1373
1374         tdev->lldev = NULL;
1375         cxgb3_set_dummy_ops(tdev);
1376         t3_tp_set_offload_mode(adapter, 0);
1377         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1378
1379         if (!adapter->open_device_map)
1380                 cxgb_down(adapter, 0);
1381
1382         cxgb3_offload_deactivate(adapter);
1383         return 0;
1384 }
1385
1386 static int cxgb_open(struct net_device *dev)
1387 {
1388         struct port_info *pi = netdev_priv(dev);
1389         struct adapter *adapter = pi->adapter;
1390         int other_ports = adapter->open_device_map & PORT_MASK;
1391         int err;
1392
1393         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1394                 return err;
1395
1396         set_bit(pi->port_id, &adapter->open_device_map);
1397         if (is_offload(adapter) && !ofld_disable) {
1398                 err = offload_open(dev);
1399                 if (err)
1400                         printk(KERN_WARNING
1401                                "Could not initialize offload capabilities\n");
1402         }
1403
1404         netif_set_real_num_tx_queues(dev, pi->nqsets);
1405         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1406         if (err)
1407                 return err;
1408         link_start(dev);
1409         t3_port_intr_enable(adapter, pi->port_id);
1410         netif_tx_start_all_queues(dev);
1411         if (!other_ports)
1412                 schedule_chk_task(adapter);
1413
1414         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1415         return 0;
1416 }
1417
1418 static int __cxgb_close(struct net_device *dev, int on_wq)
1419 {
1420         struct port_info *pi = netdev_priv(dev);
1421         struct adapter *adapter = pi->adapter;
1422
1423         
1424         if (!adapter->open_device_map)
1425                 return 0;
1426
1427         /* Stop link fault interrupts */
1428         t3_xgm_intr_disable(adapter, pi->port_id);
1429         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1430
1431         t3_port_intr_disable(adapter, pi->port_id);
1432         netif_tx_stop_all_queues(dev);
1433         pi->phy.ops->power_down(&pi->phy, 1);
1434         netif_carrier_off(dev);
1435         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1436
1437         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1438         clear_bit(pi->port_id, &adapter->open_device_map);
1439         spin_unlock_irq(&adapter->work_lock);
1440
1441         if (!(adapter->open_device_map & PORT_MASK))
1442                 cancel_delayed_work_sync(&adapter->adap_check_task);
1443
1444         if (!adapter->open_device_map)
1445                 cxgb_down(adapter, on_wq);
1446
1447         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1448         return 0;
1449 }
1450
1451 static int cxgb_close(struct net_device *dev)
1452 {
1453         return __cxgb_close(dev, 0);
1454 }
1455
1456 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1457 {
1458         struct port_info *pi = netdev_priv(dev);
1459         struct adapter *adapter = pi->adapter;
1460         struct net_device_stats *ns = &pi->netstats;
1461         const struct mac_stats *pstats;
1462
1463         spin_lock(&adapter->stats_lock);
1464         pstats = t3_mac_update_stats(&pi->mac);
1465         spin_unlock(&adapter->stats_lock);
1466
1467         ns->tx_bytes = pstats->tx_octets;
1468         ns->tx_packets = pstats->tx_frames;
1469         ns->rx_bytes = pstats->rx_octets;
1470         ns->rx_packets = pstats->rx_frames;
1471         ns->multicast = pstats->rx_mcast_frames;
1472
1473         ns->tx_errors = pstats->tx_underrun;
1474         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1475             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1476             pstats->rx_fifo_ovfl;
1477
1478         /* detailed rx_errors */
1479         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1480         ns->rx_over_errors = 0;
1481         ns->rx_crc_errors = pstats->rx_fcs_errs;
1482         ns->rx_frame_errors = pstats->rx_symbol_errs;
1483         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1484         ns->rx_missed_errors = pstats->rx_cong_drops;
1485
1486         /* detailed tx_errors */
1487         ns->tx_aborted_errors = 0;
1488         ns->tx_carrier_errors = 0;
1489         ns->tx_fifo_errors = pstats->tx_underrun;
1490         ns->tx_heartbeat_errors = 0;
1491         ns->tx_window_errors = 0;
1492         return ns;
1493 }
1494
1495 static u32 get_msglevel(struct net_device *dev)
1496 {
1497         struct port_info *pi = netdev_priv(dev);
1498         struct adapter *adapter = pi->adapter;
1499
1500         return adapter->msg_enable;
1501 }
1502
1503 static void set_msglevel(struct net_device *dev, u32 val)
1504 {
1505         struct port_info *pi = netdev_priv(dev);
1506         struct adapter *adapter = pi->adapter;
1507
1508         adapter->msg_enable = val;
1509 }
1510
1511 static char stats_strings[][ETH_GSTRING_LEN] = {
1512         "TxOctetsOK         ",
1513         "TxFramesOK         ",
1514         "TxMulticastFramesOK",
1515         "TxBroadcastFramesOK",
1516         "TxPauseFrames      ",
1517         "TxUnderrun         ",
1518         "TxExtUnderrun      ",
1519
1520         "TxFrames64         ",
1521         "TxFrames65To127    ",
1522         "TxFrames128To255   ",
1523         "TxFrames256To511   ",
1524         "TxFrames512To1023  ",
1525         "TxFrames1024To1518 ",
1526         "TxFrames1519ToMax  ",
1527
1528         "RxOctetsOK         ",
1529         "RxFramesOK         ",
1530         "RxMulticastFramesOK",
1531         "RxBroadcastFramesOK",
1532         "RxPauseFrames      ",
1533         "RxFCSErrors        ",
1534         "RxSymbolErrors     ",
1535         "RxShortErrors      ",
1536         "RxJabberErrors     ",
1537         "RxLengthErrors     ",
1538         "RxFIFOoverflow     ",
1539
1540         "RxFrames64         ",
1541         "RxFrames65To127    ",
1542         "RxFrames128To255   ",
1543         "RxFrames256To511   ",
1544         "RxFrames512To1023  ",
1545         "RxFrames1024To1518 ",
1546         "RxFrames1519ToMax  ",
1547
1548         "PhyFIFOErrors      ",
1549         "TSO                ",
1550         "VLANextractions    ",
1551         "VLANinsertions     ",
1552         "TxCsumOffload      ",
1553         "RxCsumGood         ",
1554         "LroAggregated      ",
1555         "LroFlushed         ",
1556         "LroNoDesc          ",
1557         "RxDrops            ",
1558
1559         "CheckTXEnToggled   ",
1560         "CheckResets        ",
1561
1562         "LinkFaults         ",
1563 };
1564
1565 static int get_sset_count(struct net_device *dev, int sset)
1566 {
1567         switch (sset) {
1568         case ETH_SS_STATS:
1569                 return ARRAY_SIZE(stats_strings);
1570         default:
1571                 return -EOPNOTSUPP;
1572         }
1573 }
1574
1575 #define T3_REGMAP_SIZE (3 * 1024)
1576
1577 static int get_regs_len(struct net_device *dev)
1578 {
1579         return T3_REGMAP_SIZE;
1580 }
1581
1582 static int get_eeprom_len(struct net_device *dev)
1583 {
1584         return EEPROMSIZE;
1585 }
1586
1587 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1588 {
1589         struct port_info *pi = netdev_priv(dev);
1590         struct adapter *adapter = pi->adapter;
1591         u32 fw_vers = 0;
1592         u32 tp_vers = 0;
1593
1594         spin_lock(&adapter->stats_lock);
1595         t3_get_fw_version(adapter, &fw_vers);
1596         t3_get_tp_version(adapter, &tp_vers);
1597         spin_unlock(&adapter->stats_lock);
1598
1599         strcpy(info->driver, DRV_NAME);
1600         strcpy(info->version, DRV_VERSION);
1601         strcpy(info->bus_info, pci_name(adapter->pdev));
1602         if (!fw_vers)
1603                 strcpy(info->fw_version, "N/A");
1604         else {
1605                 snprintf(info->fw_version, sizeof(info->fw_version),
1606                          "%s %u.%u.%u TP %u.%u.%u",
1607                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1608                          G_FW_VERSION_MAJOR(fw_vers),
1609                          G_FW_VERSION_MINOR(fw_vers),
1610                          G_FW_VERSION_MICRO(fw_vers),
1611                          G_TP_VERSION_MAJOR(tp_vers),
1612                          G_TP_VERSION_MINOR(tp_vers),
1613                          G_TP_VERSION_MICRO(tp_vers));
1614         }
1615 }
1616
1617 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1618 {
1619         if (stringset == ETH_SS_STATS)
1620                 memcpy(data, stats_strings, sizeof(stats_strings));
1621 }
1622
1623 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1624                                             struct port_info *p, int idx)
1625 {
1626         int i;
1627         unsigned long tot = 0;
1628
1629         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1630                 tot += adapter->sge.qs[i].port_stats[idx];
1631         return tot;
1632 }
1633
1634 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1635                       u64 *data)
1636 {
1637         struct port_info *pi = netdev_priv(dev);
1638         struct adapter *adapter = pi->adapter;
1639         const struct mac_stats *s;
1640
1641         spin_lock(&adapter->stats_lock);
1642         s = t3_mac_update_stats(&pi->mac);
1643         spin_unlock(&adapter->stats_lock);
1644
1645         *data++ = s->tx_octets;
1646         *data++ = s->tx_frames;
1647         *data++ = s->tx_mcast_frames;
1648         *data++ = s->tx_bcast_frames;
1649         *data++ = s->tx_pause;
1650         *data++ = s->tx_underrun;
1651         *data++ = s->tx_fifo_urun;
1652
1653         *data++ = s->tx_frames_64;
1654         *data++ = s->tx_frames_65_127;
1655         *data++ = s->tx_frames_128_255;
1656         *data++ = s->tx_frames_256_511;
1657         *data++ = s->tx_frames_512_1023;
1658         *data++ = s->tx_frames_1024_1518;
1659         *data++ = s->tx_frames_1519_max;
1660
1661         *data++ = s->rx_octets;
1662         *data++ = s->rx_frames;
1663         *data++ = s->rx_mcast_frames;
1664         *data++ = s->rx_bcast_frames;
1665         *data++ = s->rx_pause;
1666         *data++ = s->rx_fcs_errs;
1667         *data++ = s->rx_symbol_errs;
1668         *data++ = s->rx_short;
1669         *data++ = s->rx_jabber;
1670         *data++ = s->rx_too_long;
1671         *data++ = s->rx_fifo_ovfl;
1672
1673         *data++ = s->rx_frames_64;
1674         *data++ = s->rx_frames_65_127;
1675         *data++ = s->rx_frames_128_255;
1676         *data++ = s->rx_frames_256_511;
1677         *data++ = s->rx_frames_512_1023;
1678         *data++ = s->rx_frames_1024_1518;
1679         *data++ = s->rx_frames_1519_max;
1680
1681         *data++ = pi->phy.fifo_errors;
1682
1683         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1684         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1685         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1686         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1687         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1688         *data++ = 0;
1689         *data++ = 0;
1690         *data++ = 0;
1691         *data++ = s->rx_cong_drops;
1692
1693         *data++ = s->num_toggled;
1694         *data++ = s->num_resets;
1695
1696         *data++ = s->link_faults;
1697 }
1698
1699 static inline void reg_block_dump(struct adapter *ap, void *buf,
1700                                   unsigned int start, unsigned int end)
1701 {
1702         u32 *p = buf + start;
1703
1704         for (; start <= end; start += sizeof(u32))
1705                 *p++ = t3_read_reg(ap, start);
1706 }
1707
1708 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1709                      void *buf)
1710 {
1711         struct port_info *pi = netdev_priv(dev);
1712         struct adapter *ap = pi->adapter;
1713
1714         /*
1715          * Version scheme:
1716          * bits 0..9: chip version
1717          * bits 10..15: chip revision
1718          * bit 31: set for PCIe cards
1719          */
1720         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1721
1722         /*
1723          * We skip the MAC statistics registers because they are clear-on-read.
1724          * Also reading multi-register stats would need to synchronize with the
1725          * periodic mac stats accumulation.  Hard to justify the complexity.
1726          */
1727         memset(buf, 0, T3_REGMAP_SIZE);
1728         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1729         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1730         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1731         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1732         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1733         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1734                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1735         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1736                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1737 }
1738
1739 static int restart_autoneg(struct net_device *dev)
1740 {
1741         struct port_info *p = netdev_priv(dev);
1742
1743         if (!netif_running(dev))
1744                 return -EAGAIN;
1745         if (p->link_config.autoneg != AUTONEG_ENABLE)
1746                 return -EINVAL;
1747         p->phy.ops->autoneg_restart(&p->phy);
1748         return 0;
1749 }
1750
1751 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1752 {
1753         struct port_info *pi = netdev_priv(dev);
1754         struct adapter *adapter = pi->adapter;
1755         int i;
1756
1757         if (data == 0)
1758                 data = 2;
1759
1760         for (i = 0; i < data * 2; i++) {
1761                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1762                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1763                 if (msleep_interruptible(500))
1764                         break;
1765         }
1766         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1767                          F_GPIO0_OUT_VAL);
1768         return 0;
1769 }
1770
1771 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1772 {
1773         struct port_info *p = netdev_priv(dev);
1774
1775         cmd->supported = p->link_config.supported;
1776         cmd->advertising = p->link_config.advertising;
1777
1778         if (netif_carrier_ok(dev)) {
1779                 cmd->speed = p->link_config.speed;
1780                 cmd->duplex = p->link_config.duplex;
1781         } else {
1782                 cmd->speed = -1;
1783                 cmd->duplex = -1;
1784         }
1785
1786         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1787         cmd->phy_address = p->phy.mdio.prtad;
1788         cmd->transceiver = XCVR_EXTERNAL;
1789         cmd->autoneg = p->link_config.autoneg;
1790         cmd->maxtxpkt = 0;
1791         cmd->maxrxpkt = 0;
1792         return 0;
1793 }
1794
1795 static int speed_duplex_to_caps(int speed, int duplex)
1796 {
1797         int cap = 0;
1798
1799         switch (speed) {
1800         case SPEED_10:
1801                 if (duplex == DUPLEX_FULL)
1802                         cap = SUPPORTED_10baseT_Full;
1803                 else
1804                         cap = SUPPORTED_10baseT_Half;
1805                 break;
1806         case SPEED_100:
1807                 if (duplex == DUPLEX_FULL)
1808                         cap = SUPPORTED_100baseT_Full;
1809                 else
1810                         cap = SUPPORTED_100baseT_Half;
1811                 break;
1812         case SPEED_1000:
1813                 if (duplex == DUPLEX_FULL)
1814                         cap = SUPPORTED_1000baseT_Full;
1815                 else
1816                         cap = SUPPORTED_1000baseT_Half;
1817                 break;
1818         case SPEED_10000:
1819                 if (duplex == DUPLEX_FULL)
1820                         cap = SUPPORTED_10000baseT_Full;
1821         }
1822         return cap;
1823 }
1824
1825 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1826                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1827                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1828                       ADVERTISED_10000baseT_Full)
1829
1830 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1831 {
1832         struct port_info *p = netdev_priv(dev);
1833         struct link_config *lc = &p->link_config;
1834
1835         if (!(lc->supported & SUPPORTED_Autoneg)) {
1836                 /*
1837                  * PHY offers a single speed/duplex.  See if that's what's
1838                  * being requested.
1839                  */
1840                 if (cmd->autoneg == AUTONEG_DISABLE) {
1841                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1842                         if (lc->supported & cap)
1843                                 return 0;
1844                 }
1845                 return -EINVAL;
1846         }
1847
1848         if (cmd->autoneg == AUTONEG_DISABLE) {
1849                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1850
1851                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1852                         return -EINVAL;
1853                 lc->requested_speed = cmd->speed;
1854                 lc->requested_duplex = cmd->duplex;
1855                 lc->advertising = 0;
1856         } else {
1857                 cmd->advertising &= ADVERTISED_MASK;
1858                 cmd->advertising &= lc->supported;
1859                 if (!cmd->advertising)
1860                         return -EINVAL;
1861                 lc->requested_speed = SPEED_INVALID;
1862                 lc->requested_duplex = DUPLEX_INVALID;
1863                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1864         }
1865         lc->autoneg = cmd->autoneg;
1866         if (netif_running(dev))
1867                 t3_link_start(&p->phy, &p->mac, lc);
1868         return 0;
1869 }
1870
1871 static void get_pauseparam(struct net_device *dev,
1872                            struct ethtool_pauseparam *epause)
1873 {
1874         struct port_info *p = netdev_priv(dev);
1875
1876         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1877         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1878         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1879 }
1880
1881 static int set_pauseparam(struct net_device *dev,
1882                           struct ethtool_pauseparam *epause)
1883 {
1884         struct port_info *p = netdev_priv(dev);
1885         struct link_config *lc = &p->link_config;
1886
1887         if (epause->autoneg == AUTONEG_DISABLE)
1888                 lc->requested_fc = 0;
1889         else if (lc->supported & SUPPORTED_Autoneg)
1890                 lc->requested_fc = PAUSE_AUTONEG;
1891         else
1892                 return -EINVAL;
1893
1894         if (epause->rx_pause)
1895                 lc->requested_fc |= PAUSE_RX;
1896         if (epause->tx_pause)
1897                 lc->requested_fc |= PAUSE_TX;
1898         if (lc->autoneg == AUTONEG_ENABLE) {
1899                 if (netif_running(dev))
1900                         t3_link_start(&p->phy, &p->mac, lc);
1901         } else {
1902                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1903                 if (netif_running(dev))
1904                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1905         }
1906         return 0;
1907 }
1908
1909 static u32 get_rx_csum(struct net_device *dev)
1910 {
1911         struct port_info *p = netdev_priv(dev);
1912
1913         return p->rx_offload & T3_RX_CSUM;
1914 }
1915
1916 static int set_rx_csum(struct net_device *dev, u32 data)
1917 {
1918         struct port_info *p = netdev_priv(dev);
1919
1920         if (data) {
1921                 p->rx_offload |= T3_RX_CSUM;
1922         } else {
1923                 int i;
1924
1925                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1926                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1927                         set_qset_lro(dev, i, 0);
1928         }
1929         return 0;
1930 }
1931
1932 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1933 {
1934         struct port_info *pi = netdev_priv(dev);
1935         struct adapter *adapter = pi->adapter;
1936         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1937
1938         e->rx_max_pending = MAX_RX_BUFFERS;
1939         e->rx_mini_max_pending = 0;
1940         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1941         e->tx_max_pending = MAX_TXQ_ENTRIES;
1942
1943         e->rx_pending = q->fl_size;
1944         e->rx_mini_pending = q->rspq_size;
1945         e->rx_jumbo_pending = q->jumbo_size;
1946         e->tx_pending = q->txq_size[0];
1947 }
1948
1949 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1950 {
1951         struct port_info *pi = netdev_priv(dev);
1952         struct adapter *adapter = pi->adapter;
1953         struct qset_params *q;
1954         int i;
1955
1956         if (e->rx_pending > MAX_RX_BUFFERS ||
1957             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1958             e->tx_pending > MAX_TXQ_ENTRIES ||
1959             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1960             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1961             e->rx_pending < MIN_FL_ENTRIES ||
1962             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1963             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1964                 return -EINVAL;
1965
1966         if (adapter->flags & FULL_INIT_DONE)
1967                 return -EBUSY;
1968
1969         q = &adapter->params.sge.qset[pi->first_qset];
1970         for (i = 0; i < pi->nqsets; ++i, ++q) {
1971                 q->rspq_size = e->rx_mini_pending;
1972                 q->fl_size = e->rx_pending;
1973                 q->jumbo_size = e->rx_jumbo_pending;
1974                 q->txq_size[0] = e->tx_pending;
1975                 q->txq_size[1] = e->tx_pending;
1976                 q->txq_size[2] = e->tx_pending;
1977         }
1978         return 0;
1979 }
1980
1981 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1982 {
1983         struct port_info *pi = netdev_priv(dev);
1984         struct adapter *adapter = pi->adapter;
1985         struct qset_params *qsp = &adapter->params.sge.qset[0];
1986         struct sge_qset *qs = &adapter->sge.qs[0];
1987
1988         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1989                 return -EINVAL;
1990
1991         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1992         t3_update_qset_coalesce(qs, qsp);
1993         return 0;
1994 }
1995
1996 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1997 {
1998         struct port_info *pi = netdev_priv(dev);
1999         struct adapter *adapter = pi->adapter;
2000         struct qset_params *q = adapter->params.sge.qset;
2001
2002         c->rx_coalesce_usecs = q->coalesce_usecs;
2003         return 0;
2004 }
2005
2006 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2007                       u8 * data)
2008 {
2009         struct port_info *pi = netdev_priv(dev);
2010         struct adapter *adapter = pi->adapter;
2011         int i, err = 0;
2012
2013         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2014         if (!buf)
2015                 return -ENOMEM;
2016
2017         e->magic = EEPROM_MAGIC;
2018         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2019                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2020
2021         if (!err)
2022                 memcpy(data, buf + e->offset, e->len);
2023         kfree(buf);
2024         return err;
2025 }
2026
2027 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2028                       u8 * data)
2029 {
2030         struct port_info *pi = netdev_priv(dev);
2031         struct adapter *adapter = pi->adapter;
2032         u32 aligned_offset, aligned_len;
2033         __le32 *p;
2034         u8 *buf;
2035         int err;
2036
2037         if (eeprom->magic != EEPROM_MAGIC)
2038                 return -EINVAL;
2039
2040         aligned_offset = eeprom->offset & ~3;
2041         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2042
2043         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2044                 buf = kmalloc(aligned_len, GFP_KERNEL);
2045                 if (!buf)
2046                         return -ENOMEM;
2047                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2048                 if (!err && aligned_len > 4)
2049                         err = t3_seeprom_read(adapter,
2050                                               aligned_offset + aligned_len - 4,
2051                                               (__le32 *) & buf[aligned_len - 4]);
2052                 if (err)
2053                         goto out;
2054                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2055         } else
2056                 buf = data;
2057
2058         err = t3_seeprom_wp(adapter, 0);
2059         if (err)
2060                 goto out;
2061
2062         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2063                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2064                 aligned_offset += 4;
2065         }
2066
2067         if (!err)
2068                 err = t3_seeprom_wp(adapter, 1);
2069 out:
2070         if (buf != data)
2071                 kfree(buf);
2072         return err;
2073 }
2074
2075 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2076 {
2077         wol->supported = 0;
2078         wol->wolopts = 0;
2079         memset(&wol->sopass, 0, sizeof(wol->sopass));
2080 }
2081
2082 static const struct ethtool_ops cxgb_ethtool_ops = {
2083         .get_settings = get_settings,
2084         .set_settings = set_settings,
2085         .get_drvinfo = get_drvinfo,
2086         .get_msglevel = get_msglevel,
2087         .set_msglevel = set_msglevel,
2088         .get_ringparam = get_sge_param,
2089         .set_ringparam = set_sge_param,
2090         .get_coalesce = get_coalesce,
2091         .set_coalesce = set_coalesce,
2092         .get_eeprom_len = get_eeprom_len,
2093         .get_eeprom = get_eeprom,
2094         .set_eeprom = set_eeprom,
2095         .get_pauseparam = get_pauseparam,
2096         .set_pauseparam = set_pauseparam,
2097         .get_rx_csum = get_rx_csum,
2098         .set_rx_csum = set_rx_csum,
2099         .set_tx_csum = ethtool_op_set_tx_csum,
2100         .set_sg = ethtool_op_set_sg,
2101         .get_link = ethtool_op_get_link,
2102         .get_strings = get_strings,
2103         .phys_id = cxgb3_phys_id,
2104         .nway_reset = restart_autoneg,
2105         .get_sset_count = get_sset_count,
2106         .get_ethtool_stats = get_stats,
2107         .get_regs_len = get_regs_len,
2108         .get_regs = get_regs,
2109         .get_wol = get_wol,
2110         .set_tso = ethtool_op_set_tso,
2111 };
2112
2113 static int in_range(int val, int lo, int hi)
2114 {
2115         return val < 0 || (val <= hi && val >= lo);
2116 }
2117
2118 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2119 {
2120         struct port_info *pi = netdev_priv(dev);
2121         struct adapter *adapter = pi->adapter;
2122         u32 cmd;
2123         int ret;
2124
2125         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2126                 return -EFAULT;
2127
2128         switch (cmd) {
2129         case CHELSIO_SET_QSET_PARAMS:{
2130                 int i;
2131                 struct qset_params *q;
2132                 struct ch_qset_params t;
2133                 int q1 = pi->first_qset;
2134                 int nqsets = pi->nqsets;
2135
2136                 if (!capable(CAP_NET_ADMIN))
2137                         return -EPERM;
2138                 if (copy_from_user(&t, useraddr, sizeof(t)))
2139                         return -EFAULT;
2140                 if (t.qset_idx >= SGE_QSETS)
2141                         return -EINVAL;
2142                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2143                     !in_range(t.cong_thres, 0, 255) ||
2144                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2145                               MAX_TXQ_ENTRIES) ||
2146                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2147                               MAX_TXQ_ENTRIES) ||
2148                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2149                               MAX_CTRL_TXQ_ENTRIES) ||
2150                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2151                               MAX_RX_BUFFERS) ||
2152                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2153                               MAX_RX_JUMBO_BUFFERS) ||
2154                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2155                               MAX_RSPQ_ENTRIES))
2156                         return -EINVAL;
2157
2158                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2159                         for_each_port(adapter, i) {
2160                                 pi = adap2pinfo(adapter, i);
2161                                 if (t.qset_idx >= pi->first_qset &&
2162                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2163                                     !(pi->rx_offload & T3_RX_CSUM))
2164                                         return -EINVAL;
2165                         }
2166
2167                 if ((adapter->flags & FULL_INIT_DONE) &&
2168                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2169                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2170                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2171                         t.polling >= 0 || t.cong_thres >= 0))
2172                         return -EBUSY;
2173
2174                 /* Allow setting of any available qset when offload enabled */
2175                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2176                         q1 = 0;
2177                         for_each_port(adapter, i) {
2178                                 pi = adap2pinfo(adapter, i);
2179                                 nqsets += pi->first_qset + pi->nqsets;
2180                         }
2181                 }
2182
2183                 if (t.qset_idx < q1)
2184                         return -EINVAL;
2185                 if (t.qset_idx > q1 + nqsets - 1)
2186                         return -EINVAL;
2187
2188                 q = &adapter->params.sge.qset[t.qset_idx];
2189
2190                 if (t.rspq_size >= 0)
2191                         q->rspq_size = t.rspq_size;
2192                 if (t.fl_size[0] >= 0)
2193                         q->fl_size = t.fl_size[0];
2194                 if (t.fl_size[1] >= 0)
2195                         q->jumbo_size = t.fl_size[1];
2196                 if (t.txq_size[0] >= 0)
2197                         q->txq_size[0] = t.txq_size[0];
2198                 if (t.txq_size[1] >= 0)
2199                         q->txq_size[1] = t.txq_size[1];
2200                 if (t.txq_size[2] >= 0)
2201                         q->txq_size[2] = t.txq_size[2];
2202                 if (t.cong_thres >= 0)
2203                         q->cong_thres = t.cong_thres;
2204                 if (t.intr_lat >= 0) {
2205                         struct sge_qset *qs =
2206                                 &adapter->sge.qs[t.qset_idx];
2207
2208                         q->coalesce_usecs = t.intr_lat;
2209                         t3_update_qset_coalesce(qs, q);
2210                 }
2211                 if (t.polling >= 0) {
2212                         if (adapter->flags & USING_MSIX)
2213                                 q->polling = t.polling;
2214                         else {
2215                                 /* No polling with INTx for T3A */
2216                                 if (adapter->params.rev == 0 &&
2217                                         !(adapter->flags & USING_MSI))
2218                                         t.polling = 0;
2219
2220                                 for (i = 0; i < SGE_QSETS; i++) {
2221                                         q = &adapter->params.sge.
2222                                                 qset[i];
2223                                         q->polling = t.polling;
2224                                 }
2225                         }
2226                 }
2227                 if (t.lro >= 0)
2228                         set_qset_lro(dev, t.qset_idx, t.lro);
2229
2230                 break;
2231         }
2232         case CHELSIO_GET_QSET_PARAMS:{
2233                 struct qset_params *q;
2234                 struct ch_qset_params t;
2235                 int q1 = pi->first_qset;
2236                 int nqsets = pi->nqsets;
2237                 int i;
2238
2239                 if (copy_from_user(&t, useraddr, sizeof(t)))
2240                         return -EFAULT;
2241
2242                 /* Display qsets for all ports when offload enabled */
2243                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2244                         q1 = 0;
2245                         for_each_port(adapter, i) {
2246                                 pi = adap2pinfo(adapter, i);
2247                                 nqsets = pi->first_qset + pi->nqsets;
2248                         }
2249                 }
2250
2251                 if (t.qset_idx >= nqsets)
2252                         return -EINVAL;
2253
2254                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2255                 t.rspq_size = q->rspq_size;
2256                 t.txq_size[0] = q->txq_size[0];
2257                 t.txq_size[1] = q->txq_size[1];
2258                 t.txq_size[2] = q->txq_size[2];
2259                 t.fl_size[0] = q->fl_size;
2260                 t.fl_size[1] = q->jumbo_size;
2261                 t.polling = q->polling;
2262                 t.lro = q->lro;
2263                 t.intr_lat = q->coalesce_usecs;
2264                 t.cong_thres = q->cong_thres;
2265                 t.qnum = q1;
2266
2267                 if (adapter->flags & USING_MSIX)
2268                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2269                 else
2270                         t.vector = adapter->pdev->irq;
2271
2272                 if (copy_to_user(useraddr, &t, sizeof(t)))
2273                         return -EFAULT;
2274                 break;
2275         }
2276         case CHELSIO_SET_QSET_NUM:{
2277                 struct ch_reg edata;
2278                 unsigned int i, first_qset = 0, other_qsets = 0;
2279
2280                 if (!capable(CAP_NET_ADMIN))
2281                         return -EPERM;
2282                 if (adapter->flags & FULL_INIT_DONE)
2283                         return -EBUSY;
2284                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2285                         return -EFAULT;
2286                 if (edata.val < 1 ||
2287                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2288                         return -EINVAL;
2289
2290                 for_each_port(adapter, i)
2291                         if (adapter->port[i] && adapter->port[i] != dev)
2292                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2293
2294                 if (edata.val + other_qsets > SGE_QSETS)
2295                         return -EINVAL;
2296
2297                 pi->nqsets = edata.val;
2298
2299                 for_each_port(adapter, i)
2300                         if (adapter->port[i]) {
2301                                 pi = adap2pinfo(adapter, i);
2302                                 pi->first_qset = first_qset;
2303                                 first_qset += pi->nqsets;
2304                         }
2305                 break;
2306         }
2307         case CHELSIO_GET_QSET_NUM:{
2308                 struct ch_reg edata;
2309
2310                 memset(&edata, 0, sizeof(struct ch_reg));
2311
2312                 edata.cmd = CHELSIO_GET_QSET_NUM;
2313                 edata.val = pi->nqsets;
2314                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2315                         return -EFAULT;
2316                 break;
2317         }
2318         case CHELSIO_LOAD_FW:{
2319                 u8 *fw_data;
2320                 struct ch_mem_range t;
2321
2322                 if (!capable(CAP_SYS_RAWIO))
2323                         return -EPERM;
2324                 if (copy_from_user(&t, useraddr, sizeof(t)))
2325                         return -EFAULT;
2326                 /* Check t.len sanity ? */
2327                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2328                 if (IS_ERR(fw_data))
2329                         return PTR_ERR(fw_data);
2330
2331                 ret = t3_load_fw(adapter, fw_data, t.len);
2332                 kfree(fw_data);
2333                 if (ret)
2334                         return ret;
2335                 break;
2336         }
2337         case CHELSIO_SETMTUTAB:{
2338                 struct ch_mtus m;
2339                 int i;
2340
2341                 if (!is_offload(adapter))
2342                         return -EOPNOTSUPP;
2343                 if (!capable(CAP_NET_ADMIN))
2344                         return -EPERM;
2345                 if (offload_running(adapter))
2346                         return -EBUSY;
2347                 if (copy_from_user(&m, useraddr, sizeof(m)))
2348                         return -EFAULT;
2349                 if (m.nmtus != NMTUS)
2350                         return -EINVAL;
2351                 if (m.mtus[0] < 81)     /* accommodate SACK */
2352                         return -EINVAL;
2353
2354                 /* MTUs must be in ascending order */
2355                 for (i = 1; i < NMTUS; ++i)
2356                         if (m.mtus[i] < m.mtus[i - 1])
2357                                 return -EINVAL;
2358
2359                 memcpy(adapter->params.mtus, m.mtus,
2360                         sizeof(adapter->params.mtus));
2361                 break;
2362         }
2363         case CHELSIO_GET_PM:{
2364                 struct tp_params *p = &adapter->params.tp;
2365                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2366
2367                 if (!is_offload(adapter))
2368                         return -EOPNOTSUPP;
2369                 m.tx_pg_sz = p->tx_pg_size;
2370                 m.tx_num_pg = p->tx_num_pgs;
2371                 m.rx_pg_sz = p->rx_pg_size;
2372                 m.rx_num_pg = p->rx_num_pgs;
2373                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2374                 if (copy_to_user(useraddr, &m, sizeof(m)))
2375                         return -EFAULT;
2376                 break;
2377         }
2378         case CHELSIO_SET_PM:{
2379                 struct ch_pm m;
2380                 struct tp_params *p = &adapter->params.tp;
2381
2382                 if (!is_offload(adapter))
2383                         return -EOPNOTSUPP;
2384                 if (!capable(CAP_NET_ADMIN))
2385                         return -EPERM;
2386                 if (adapter->flags & FULL_INIT_DONE)
2387                         return -EBUSY;
2388                 if (copy_from_user(&m, useraddr, sizeof(m)))
2389                         return -EFAULT;
2390                 if (!is_power_of_2(m.rx_pg_sz) ||
2391                         !is_power_of_2(m.tx_pg_sz))
2392                         return -EINVAL; /* not power of 2 */
2393                 if (!(m.rx_pg_sz & 0x14000))
2394                         return -EINVAL; /* not 16KB or 64KB */
2395                 if (!(m.tx_pg_sz & 0x1554000))
2396                         return -EINVAL;
2397                 if (m.tx_num_pg == -1)
2398                         m.tx_num_pg = p->tx_num_pgs;
2399                 if (m.rx_num_pg == -1)
2400                         m.rx_num_pg = p->rx_num_pgs;
2401                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2402                         return -EINVAL;
2403                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2404                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2405                         return -EINVAL;
2406                 p->rx_pg_size = m.rx_pg_sz;
2407                 p->tx_pg_size = m.tx_pg_sz;
2408                 p->rx_num_pgs = m.rx_num_pg;
2409                 p->tx_num_pgs = m.tx_num_pg;
2410                 break;
2411         }
2412         case CHELSIO_GET_MEM:{
2413                 struct ch_mem_range t;
2414                 struct mc7 *mem;
2415                 u64 buf[32];
2416
2417                 if (!is_offload(adapter))
2418                         return -EOPNOTSUPP;
2419                 if (!(adapter->flags & FULL_INIT_DONE))
2420                         return -EIO;    /* need the memory controllers */
2421                 if (copy_from_user(&t, useraddr, sizeof(t)))
2422                         return -EFAULT;
2423                 if ((t.addr & 7) || (t.len & 7))
2424                         return -EINVAL;
2425                 if (t.mem_id == MEM_CM)
2426                         mem = &adapter->cm;
2427                 else if (t.mem_id == MEM_PMRX)
2428                         mem = &adapter->pmrx;
2429                 else if (t.mem_id == MEM_PMTX)
2430                         mem = &adapter->pmtx;
2431                 else
2432                         return -EINVAL;
2433
2434                 /*
2435                  * Version scheme:
2436                  * bits 0..9: chip version
2437                  * bits 10..15: chip revision
2438                  */
2439                 t.version = 3 | (adapter->params.rev << 10);
2440                 if (copy_to_user(useraddr, &t, sizeof(t)))
2441                         return -EFAULT;
2442
2443                 /*
2444                  * Read 256 bytes at a time as len can be large and we don't
2445                  * want to use huge intermediate buffers.
2446                  */
2447                 useraddr += sizeof(t);  /* advance to start of buffer */
2448                 while (t.len) {
2449                         unsigned int chunk =
2450                                 min_t(unsigned int, t.len, sizeof(buf));
2451
2452                         ret =
2453                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2454                                                 buf);
2455                         if (ret)
2456                                 return ret;
2457                         if (copy_to_user(useraddr, buf, chunk))
2458                                 return -EFAULT;
2459                         useraddr += chunk;
2460                         t.addr += chunk;
2461                         t.len -= chunk;
2462                 }
2463                 break;
2464         }
2465         case CHELSIO_SET_TRACE_FILTER:{
2466                 struct ch_trace t;
2467                 const struct trace_params *tp;
2468
2469                 if (!capable(CAP_NET_ADMIN))
2470                         return -EPERM;
2471                 if (!offload_running(adapter))
2472                         return -EAGAIN;
2473                 if (copy_from_user(&t, useraddr, sizeof(t)))
2474                         return -EFAULT;
2475
2476                 tp = (const struct trace_params *)&t.sip;
2477                 if (t.config_tx)
2478                         t3_config_trace_filter(adapter, tp, 0,
2479                                                 t.invert_match,
2480                                                 t.trace_tx);
2481                 if (t.config_rx)
2482                         t3_config_trace_filter(adapter, tp, 1,
2483                                                 t.invert_match,
2484                                                 t.trace_rx);
2485                 break;
2486         }
2487         default:
2488                 return -EOPNOTSUPP;
2489         }
2490         return 0;
2491 }
2492
2493 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2494 {
2495         struct mii_ioctl_data *data = if_mii(req);
2496         struct port_info *pi = netdev_priv(dev);
2497         struct adapter *adapter = pi->adapter;
2498
2499         switch (cmd) {
2500         case SIOCGMIIREG:
2501         case SIOCSMIIREG:
2502                 /* Convert phy_id from older PRTAD/DEVAD format */
2503                 if (is_10G(adapter) &&
2504                     !mdio_phy_id_is_c45(data->phy_id) &&
2505                     (data->phy_id & 0x1f00) &&
2506                     !(data->phy_id & 0xe0e0))
2507                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2508                                                        data->phy_id & 0x1f);
2509                 /* FALLTHRU */
2510         case SIOCGMIIPHY:
2511                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2512         case SIOCCHIOCTL:
2513                 return cxgb_extension_ioctl(dev, req->ifr_data);
2514         default:
2515                 return -EOPNOTSUPP;
2516         }
2517 }
2518
2519 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2520 {
2521         struct port_info *pi = netdev_priv(dev);
2522         struct adapter *adapter = pi->adapter;
2523         int ret;
2524
2525         if (new_mtu < 81)       /* accommodate SACK */
2526                 return -EINVAL;
2527         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2528                 return ret;
2529         dev->mtu = new_mtu;
2530         init_port_mtus(adapter);
2531         if (adapter->params.rev == 0 && offload_running(adapter))
2532                 t3_load_mtus(adapter, adapter->params.mtus,
2533                              adapter->params.a_wnd, adapter->params.b_wnd,
2534                              adapter->port[0]->mtu);
2535         return 0;
2536 }
2537
2538 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2539 {
2540         struct port_info *pi = netdev_priv(dev);
2541         struct adapter *adapter = pi->adapter;
2542         struct sockaddr *addr = p;
2543
2544         if (!is_valid_ether_addr(addr->sa_data))
2545                 return -EINVAL;
2546
2547         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2548         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2549         if (offload_running(adapter))
2550                 write_smt_entry(adapter, pi->port_id);
2551         return 0;
2552 }
2553
2554 /**
2555  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2556  * @adap: the adapter
2557  * @p: the port
2558  *
2559  * Ensures that current Rx processing on any of the queues associated with
2560  * the given port completes before returning.  We do this by acquiring and
2561  * releasing the locks of the response queues associated with the port.
2562  */
2563 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2564 {
2565         int i;
2566
2567         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2568                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2569
2570                 spin_lock_irq(&q->lock);
2571                 spin_unlock_irq(&q->lock);
2572         }
2573 }
2574
2575 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2576 {
2577         struct port_info *pi = netdev_priv(dev);
2578         struct adapter *adapter = pi->adapter;
2579
2580         pi->vlan_grp = grp;
2581         if (adapter->params.rev > 0)
2582                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2583         else {
2584                 /* single control for all ports */
2585                 unsigned int i, have_vlans = 0;
2586                 for_each_port(adapter, i)
2587                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2588
2589                 t3_set_vlan_accel(adapter, 1, have_vlans);
2590         }
2591         t3_synchronize_rx(adapter, pi);
2592 }
2593
2594 #ifdef CONFIG_NET_POLL_CONTROLLER
2595 static void cxgb_netpoll(struct net_device *dev)
2596 {
2597         struct port_info *pi = netdev_priv(dev);
2598         struct adapter *adapter = pi->adapter;
2599         int qidx;
2600
2601         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2602                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2603                 void *source;
2604
2605                 if (adapter->flags & USING_MSIX)
2606                         source = qs;
2607                 else
2608                         source = adapter;
2609
2610                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2611         }
2612 }
2613 #endif
2614
2615 /*
2616  * Periodic accumulation of MAC statistics.
2617  */
2618 static void mac_stats_update(struct adapter *adapter)
2619 {
2620         int i;
2621
2622         for_each_port(adapter, i) {
2623                 struct net_device *dev = adapter->port[i];
2624                 struct port_info *p = netdev_priv(dev);
2625
2626                 if (netif_running(dev)) {
2627                         spin_lock(&adapter->stats_lock);
2628                         t3_mac_update_stats(&p->mac);
2629                         spin_unlock(&adapter->stats_lock);
2630                 }
2631         }
2632 }
2633
2634 static void check_link_status(struct adapter *adapter)
2635 {
2636         int i;
2637
2638         for_each_port(adapter, i) {
2639                 struct net_device *dev = adapter->port[i];
2640                 struct port_info *p = netdev_priv(dev);
2641                 int link_fault;
2642
2643                 spin_lock_irq(&adapter->work_lock);
2644                 link_fault = p->link_fault;
2645                 spin_unlock_irq(&adapter->work_lock);
2646
2647                 if (link_fault) {
2648                         t3_link_fault(adapter, i);
2649                         continue;
2650                 }
2651
2652                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2653                         t3_xgm_intr_disable(adapter, i);
2654                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2655
2656                         t3_link_changed(adapter, i);
2657                         t3_xgm_intr_enable(adapter, i);
2658                 }
2659         }
2660 }
2661
2662 static void check_t3b2_mac(struct adapter *adapter)
2663 {
2664         int i;
2665
2666         if (!rtnl_trylock())    /* synchronize with ifdown */
2667                 return;
2668
2669         for_each_port(adapter, i) {
2670                 struct net_device *dev = adapter->port[i];
2671                 struct port_info *p = netdev_priv(dev);
2672                 int status;
2673
2674                 if (!netif_running(dev))
2675                         continue;
2676
2677                 status = 0;
2678                 if (netif_running(dev) && netif_carrier_ok(dev))
2679                         status = t3b2_mac_watchdog_task(&p->mac);
2680                 if (status == 1)
2681                         p->mac.stats.num_toggled++;
2682                 else if (status == 2) {
2683                         struct cmac *mac = &p->mac;
2684
2685                         t3_mac_set_mtu(mac, dev->mtu);
2686                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2687                         cxgb_set_rxmode(dev);
2688                         t3_link_start(&p->phy, mac, &p->link_config);
2689                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2690                         t3_port_intr_enable(adapter, p->port_id);
2691                         p->mac.stats.num_resets++;
2692                 }
2693         }
2694         rtnl_unlock();
2695 }
2696
2697
2698 static void t3_adap_check_task(struct work_struct *work)
2699 {
2700         struct adapter *adapter = container_of(work, struct adapter,
2701                                                adap_check_task.work);
2702         const struct adapter_params *p = &adapter->params;
2703         int port;
2704         unsigned int v, status, reset;
2705
2706         adapter->check_task_cnt++;
2707
2708         check_link_status(adapter);
2709
2710         /* Accumulate MAC stats if needed */
2711         if (!p->linkpoll_period ||
2712             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2713             p->stats_update_period) {
2714                 mac_stats_update(adapter);
2715                 adapter->check_task_cnt = 0;
2716         }
2717
2718         if (p->rev == T3_REV_B2)
2719                 check_t3b2_mac(adapter);
2720
2721         /*
2722          * Scan the XGMAC's to check for various conditions which we want to
2723          * monitor in a periodic polling manner rather than via an interrupt
2724          * condition.  This is used for conditions which would otherwise flood
2725          * the system with interrupts and we only really need to know that the
2726          * conditions are "happening" ...  For each condition we count the
2727          * detection of the condition and reset it for the next polling loop.
2728          */
2729         for_each_port(adapter, port) {
2730                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2731                 u32 cause;
2732
2733                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2734                 reset = 0;
2735                 if (cause & F_RXFIFO_OVERFLOW) {
2736                         mac->stats.rx_fifo_ovfl++;
2737                         reset |= F_RXFIFO_OVERFLOW;
2738                 }
2739
2740                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2741         }
2742
2743         /*
2744          * We do the same as above for FL_EMPTY interrupts.
2745          */
2746         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2747         reset = 0;
2748
2749         if (status & F_FLEMPTY) {
2750                 struct sge_qset *qs = &adapter->sge.qs[0];
2751                 int i = 0;
2752
2753                 reset |= F_FLEMPTY;
2754
2755                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2756                     0xffff;
2757
2758                 while (v) {
2759                         qs->fl[i].empty += (v & 1);
2760                         if (i)
2761                                 qs++;
2762                         i ^= 1;
2763                         v >>= 1;
2764                 }
2765         }
2766
2767         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2768
2769         /* Schedule the next check update if any port is active. */
2770         spin_lock_irq(&adapter->work_lock);
2771         if (adapter->open_device_map & PORT_MASK)
2772                 schedule_chk_task(adapter);
2773         spin_unlock_irq(&adapter->work_lock);
2774 }
2775
2776 static void db_full_task(struct work_struct *work)
2777 {
2778         struct adapter *adapter = container_of(work, struct adapter,
2779                                                db_full_task);
2780
2781         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2782 }
2783
2784 static void db_empty_task(struct work_struct *work)
2785 {
2786         struct adapter *adapter = container_of(work, struct adapter,
2787                                                db_empty_task);
2788
2789         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2790 }
2791
2792 static void db_drop_task(struct work_struct *work)
2793 {
2794         struct adapter *adapter = container_of(work, struct adapter,
2795                                                db_drop_task);
2796         unsigned long delay = 1000;
2797         unsigned short r;
2798
2799         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2800
2801         /*
2802          * Sleep a while before ringing the driver qset dbs.
2803          * The delay is between 1000-2023 usecs.
2804          */
2805         get_random_bytes(&r, 2);
2806         delay += r & 1023;
2807         set_current_state(TASK_UNINTERRUPTIBLE);
2808         schedule_timeout(usecs_to_jiffies(delay));
2809         ring_dbs(adapter);
2810 }
2811
2812 /*
2813  * Processes external (PHY) interrupts in process context.
2814  */
2815 static void ext_intr_task(struct work_struct *work)
2816 {
2817         struct adapter *adapter = container_of(work, struct adapter,
2818                                                ext_intr_handler_task);
2819         int i;
2820
2821         /* Disable link fault interrupts */
2822         for_each_port(adapter, i) {
2823                 struct net_device *dev = adapter->port[i];
2824                 struct port_info *p = netdev_priv(dev);
2825
2826                 t3_xgm_intr_disable(adapter, i);
2827                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2828         }
2829
2830         /* Re-enable link fault interrupts */
2831         t3_phy_intr_handler(adapter);
2832
2833         for_each_port(adapter, i)
2834                 t3_xgm_intr_enable(adapter, i);
2835
2836         /* Now reenable external interrupts */
2837         spin_lock_irq(&adapter->work_lock);
2838         if (adapter->slow_intr_mask) {
2839                 adapter->slow_intr_mask |= F_T3DBG;
2840                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2841                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2842                              adapter->slow_intr_mask);
2843         }
2844         spin_unlock_irq(&adapter->work_lock);
2845 }
2846
2847 /*
2848  * Interrupt-context handler for external (PHY) interrupts.
2849  */
2850 void t3_os_ext_intr_handler(struct adapter *adapter)
2851 {
2852         /*
2853          * Schedule a task to handle external interrupts as they may be slow
2854          * and we use a mutex to protect MDIO registers.  We disable PHY
2855          * interrupts in the meantime and let the task reenable them when
2856          * it's done.
2857          */
2858         spin_lock(&adapter->work_lock);
2859         if (adapter->slow_intr_mask) {
2860                 adapter->slow_intr_mask &= ~F_T3DBG;
2861                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2862                              adapter->slow_intr_mask);
2863                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2864         }
2865         spin_unlock(&adapter->work_lock);
2866 }
2867
2868 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2869 {
2870         struct net_device *netdev = adapter->port[port_id];
2871         struct port_info *pi = netdev_priv(netdev);
2872
2873         spin_lock(&adapter->work_lock);
2874         pi->link_fault = 1;
2875         spin_unlock(&adapter->work_lock);
2876 }
2877
2878 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2879 {
2880         int i, ret = 0;
2881
2882         if (is_offload(adapter) &&
2883             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2884                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2885                 offload_close(&adapter->tdev);
2886         }
2887
2888         /* Stop all ports */
2889         for_each_port(adapter, i) {
2890                 struct net_device *netdev = adapter->port[i];
2891
2892                 if (netif_running(netdev))
2893                         __cxgb_close(netdev, on_wq);
2894         }
2895
2896         /* Stop SGE timers */
2897         t3_stop_sge_timers(adapter);
2898
2899         adapter->flags &= ~FULL_INIT_DONE;
2900
2901         if (reset)
2902                 ret = t3_reset_adapter(adapter);
2903
2904         pci_disable_device(adapter->pdev);
2905
2906         return ret;
2907 }
2908
2909 static int t3_reenable_adapter(struct adapter *adapter)
2910 {
2911         if (pci_enable_device(adapter->pdev)) {
2912                 dev_err(&adapter->pdev->dev,
2913                         "Cannot re-enable PCI device after reset.\n");
2914                 goto err;
2915         }
2916         pci_set_master(adapter->pdev);
2917         pci_restore_state(adapter->pdev);
2918         pci_save_state(adapter->pdev);
2919
2920         /* Free sge resources */
2921         t3_free_sge_resources(adapter);
2922
2923         if (t3_replay_prep_adapter(adapter))
2924                 goto err;
2925
2926         return 0;
2927 err:
2928         return -1;
2929 }
2930
2931 static void t3_resume_ports(struct adapter *adapter)
2932 {
2933         int i;
2934
2935         /* Restart the ports */
2936         for_each_port(adapter, i) {
2937                 struct net_device *netdev = adapter->port[i];
2938
2939                 if (netif_running(netdev)) {
2940                         if (cxgb_open(netdev)) {
2941                                 dev_err(&adapter->pdev->dev,
2942                                         "can't bring device back up"
2943                                         " after reset\n");
2944                                 continue;
2945                         }
2946                 }
2947         }
2948
2949         if (is_offload(adapter) && !ofld_disable)
2950                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2951 }
2952
2953 /*
2954  * processes a fatal error.
2955  * Bring the ports down, reset the chip, bring the ports back up.
2956  */
2957 static void fatal_error_task(struct work_struct *work)
2958 {
2959         struct adapter *adapter = container_of(work, struct adapter,
2960                                                fatal_error_handler_task);
2961         int err = 0;
2962
2963         rtnl_lock();
2964         err = t3_adapter_error(adapter, 1, 1);
2965         if (!err)
2966                 err = t3_reenable_adapter(adapter);
2967         if (!err)
2968                 t3_resume_ports(adapter);
2969
2970         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2971         rtnl_unlock();
2972 }
2973
2974 void t3_fatal_err(struct adapter *adapter)
2975 {
2976         unsigned int fw_status[4];
2977
2978         if (adapter->flags & FULL_INIT_DONE) {
2979                 t3_sge_stop(adapter);
2980                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2981                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2982                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2983                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2984
2985                 spin_lock(&adapter->work_lock);
2986                 t3_intr_disable(adapter);
2987                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2988                 spin_unlock(&adapter->work_lock);
2989         }
2990         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2991         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2992                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2993                          fw_status[0], fw_status[1],
2994                          fw_status[2], fw_status[3]);
2995 }
2996
2997 /**
2998  * t3_io_error_detected - called when PCI error is detected
2999  * @pdev: Pointer to PCI device
3000  * @state: The current pci connection state
3001  *
3002  * This function is called after a PCI bus error affecting
3003  * this device has been detected.
3004  */
3005 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3006                                              pci_channel_state_t state)
3007 {
3008         struct adapter *adapter = pci_get_drvdata(pdev);
3009         int ret;
3010
3011         if (state == pci_channel_io_perm_failure)
3012                 return PCI_ERS_RESULT_DISCONNECT;
3013
3014         ret = t3_adapter_error(adapter, 0, 0);
3015
3016         /* Request a slot reset. */
3017         return PCI_ERS_RESULT_NEED_RESET;
3018 }
3019
3020 /**
3021  * t3_io_slot_reset - called after the pci bus has been reset.
3022  * @pdev: Pointer to PCI device
3023  *
3024  * Restart the card from scratch, as if from a cold-boot.
3025  */
3026 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3027 {
3028         struct adapter *adapter = pci_get_drvdata(pdev);
3029
3030         if (!t3_reenable_adapter(adapter))
3031                 return PCI_ERS_RESULT_RECOVERED;
3032
3033         return PCI_ERS_RESULT_DISCONNECT;
3034 }
3035
3036 /**
3037  * t3_io_resume - called when traffic can start flowing again.
3038  * @pdev: Pointer to PCI device
3039  *
3040  * This callback is called when the error recovery driver tells us that
3041  * its OK to resume normal operation.
3042  */
3043 static void t3_io_resume(struct pci_dev *pdev)
3044 {
3045         struct adapter *adapter = pci_get_drvdata(pdev);
3046
3047         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3048                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3049
3050         t3_resume_ports(adapter);
3051 }
3052
3053 static struct pci_error_handlers t3_err_handler = {
3054         .error_detected = t3_io_error_detected,
3055         .slot_reset = t3_io_slot_reset,
3056         .resume = t3_io_resume,
3057 };
3058
3059 /*
3060  * Set the number of qsets based on the number of CPUs and the number of ports,
3061  * not to exceed the number of available qsets, assuming there are enough qsets
3062  * per port in HW.
3063  */
3064 static void set_nqsets(struct adapter *adap)
3065 {
3066         int i, j = 0;
3067         int num_cpus = num_online_cpus();
3068         int hwports = adap->params.nports;
3069         int nqsets = adap->msix_nvectors - 1;
3070
3071         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3072                 if (hwports == 2 &&
3073                     (hwports * nqsets > SGE_QSETS ||
3074                      num_cpus >= nqsets / hwports))
3075                         nqsets /= hwports;
3076                 if (nqsets > num_cpus)
3077                         nqsets = num_cpus;
3078                 if (nqsets < 1 || hwports == 4)
3079                         nqsets = 1;
3080         } else
3081                 nqsets = 1;
3082
3083         for_each_port(adap, i) {
3084                 struct port_info *pi = adap2pinfo(adap, i);
3085
3086                 pi->first_qset = j;
3087                 pi->nqsets = nqsets;
3088                 j = pi->first_qset + nqsets;
3089
3090                 dev_info(&adap->pdev->dev,
3091                          "Port %d using %d queue sets.\n", i, nqsets);
3092         }
3093 }
3094
3095 static int __devinit cxgb_enable_msix(struct adapter *adap)
3096 {
3097         struct msix_entry entries[SGE_QSETS + 1];
3098         int vectors;
3099         int i, err;
3100
3101         vectors = ARRAY_SIZE(entries);
3102         for (i = 0; i < vectors; ++i)
3103                 entries[i].entry = i;
3104
3105         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3106                 vectors = err;
3107
3108         if (err < 0)
3109                 pci_disable_msix(adap->pdev);
3110
3111         if (!err && vectors < (adap->params.nports + 1)) {
3112                 pci_disable_msix(adap->pdev);
3113                 err = -1;
3114         }
3115
3116         if (!err) {
3117                 for (i = 0; i < vectors; ++i)
3118                         adap->msix_info[i].vec = entries[i].vector;
3119                 adap->msix_nvectors = vectors;
3120         }
3121
3122         return err;
3123 }
3124
3125 static void __devinit print_port_info(struct adapter *adap,
3126                                       const struct adapter_info *ai)
3127 {
3128         static const char *pci_variant[] = {
3129                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3130         };
3131
3132         int i;
3133         char buf[80];
3134
3135         if (is_pcie(adap))
3136                 snprintf(buf, sizeof(buf), "%s x%d",
3137                          pci_variant[adap->params.pci.variant],
3138                          adap->params.pci.width);
3139         else
3140                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3141                          pci_variant[adap->params.pci.variant],
3142                          adap->params.pci.speed, adap->params.pci.width);
3143
3144         for_each_port(adap, i) {
3145                 struct net_device *dev = adap->port[i];
3146                 const struct port_info *pi = netdev_priv(dev);
3147
3148                 if (!test_bit(i, &adap->registered_device_map))
3149                         continue;
3150                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3151                        dev->name, ai->desc, pi->phy.desc,
3152                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3153                        (adap->flags & USING_MSIX) ? " MSI-X" :
3154                        (adap->flags & USING_MSI) ? " MSI" : "");
3155                 if (adap->name == dev->name && adap->params.vpd.mclk)
3156                         printk(KERN_INFO
3157                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3158                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3159                                t3_mc7_size(&adap->pmtx) >> 20,
3160                                t3_mc7_size(&adap->pmrx) >> 20,
3161                                adap->params.vpd.sn);
3162         }
3163 }
3164
3165 static const struct net_device_ops cxgb_netdev_ops = {
3166         .ndo_open               = cxgb_open,
3167         .ndo_stop               = cxgb_close,
3168         .ndo_start_xmit         = t3_eth_xmit,
3169         .ndo_get_stats          = cxgb_get_stats,
3170         .ndo_validate_addr      = eth_validate_addr,
3171         .ndo_set_multicast_list = cxgb_set_rxmode,
3172         .ndo_do_ioctl           = cxgb_ioctl,
3173         .ndo_change_mtu         = cxgb_change_mtu,
3174         .ndo_set_mac_address    = cxgb_set_mac_addr,
3175         .ndo_vlan_rx_register   = vlan_rx_register,
3176 #ifdef CONFIG_NET_POLL_CONTROLLER
3177         .ndo_poll_controller    = cxgb_netpoll,
3178 #endif
3179 };
3180
3181 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3182 {
3183         struct port_info *pi = netdev_priv(dev);
3184
3185         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3186         pi->iscsic.mac_addr[3] |= 0x80;
3187 }
3188
3189 static int __devinit init_one(struct pci_dev *pdev,
3190                               const struct pci_device_id *ent)
3191 {
3192         static int version_printed;
3193
3194         int i, err, pci_using_dac = 0;
3195         resource_size_t mmio_start, mmio_len;
3196         const struct adapter_info *ai;
3197         struct adapter *adapter = NULL;
3198         struct port_info *pi;
3199
3200         if (!version_printed) {
3201                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3202                 ++version_printed;
3203         }
3204
3205         if (!cxgb3_wq) {
3206                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3207                 if (!cxgb3_wq) {
3208                         printk(KERN_ERR DRV_NAME
3209                                ": cannot initialize work queue\n");
3210                         return -ENOMEM;
3211                 }
3212         }
3213
3214         err = pci_enable_device(pdev);
3215         if (err) {
3216                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3217                 goto out;
3218         }
3219
3220         err = pci_request_regions(pdev, DRV_NAME);
3221         if (err) {
3222                 /* Just info, some other driver may have claimed the device. */
3223                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3224                 goto out_disable_device;
3225         }
3226
3227         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3228                 pci_using_dac = 1;
3229                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3230                 if (err) {
3231                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3232                                "coherent allocations\n");
3233                         goto out_release_regions;
3234                 }
3235         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3236                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3237                 goto out_release_regions;
3238         }
3239
3240         pci_set_master(pdev);
3241         pci_save_state(pdev);
3242
3243         mmio_start = pci_resource_start(pdev, 0);
3244         mmio_len = pci_resource_len(pdev, 0);
3245         ai = t3_get_adapter_info(ent->driver_data);
3246
3247         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3248         if (!adapter) {
3249                 err = -ENOMEM;
3250                 goto out_release_regions;
3251         }
3252
3253         adapter->nofail_skb =
3254                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3255         if (!adapter->nofail_skb) {
3256                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3257                 err = -ENOMEM;
3258                 goto out_free_adapter;
3259         }
3260
3261         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3262         if (!adapter->regs) {
3263                 dev_err(&pdev->dev, "cannot map device registers\n");
3264                 err = -ENOMEM;
3265                 goto out_free_adapter;
3266         }
3267
3268         adapter->pdev = pdev;
3269         adapter->name = pci_name(pdev);
3270         adapter->msg_enable = dflt_msg_enable;
3271         adapter->mmio_len = mmio_len;
3272
3273         mutex_init(&adapter->mdio_lock);
3274         spin_lock_init(&adapter->work_lock);
3275         spin_lock_init(&adapter->stats_lock);
3276
3277         INIT_LIST_HEAD(&adapter->adapter_list);
3278         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3279         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3280
3281         INIT_WORK(&adapter->db_full_task, db_full_task);
3282         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3283         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3284
3285         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3286
3287         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3288                 struct net_device *netdev;
3289
3290                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3291                 if (!netdev) {
3292                         err = -ENOMEM;
3293                         goto out_free_dev;
3294                 }
3295
3296                 SET_NETDEV_DEV(netdev, &pdev->dev);
3297
3298                 adapter->port[i] = netdev;
3299                 pi = netdev_priv(netdev);
3300                 pi->adapter = adapter;
3301                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3302                 pi->port_id = i;
3303                 netif_carrier_off(netdev);
3304                 netdev->irq = pdev->irq;
3305                 netdev->mem_start = mmio_start;
3306                 netdev->mem_end = mmio_start + mmio_len - 1;
3307                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3308                 netdev->features |= NETIF_F_GRO;
3309                 if (pci_using_dac)
3310                         netdev->features |= NETIF_F_HIGHDMA;
3311
3312                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3313                 netdev->netdev_ops = &cxgb_netdev_ops;
3314                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3315         }
3316
3317         pci_set_drvdata(pdev, adapter);
3318         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3319                 err = -ENODEV;
3320                 goto out_free_dev;
3321         }
3322
3323         /*
3324          * The card is now ready to go.  If any errors occur during device
3325          * registration we do not fail the whole card but rather proceed only
3326          * with the ports we manage to register successfully.  However we must
3327          * register at least one net device.
3328          */
3329         for_each_port(adapter, i) {
3330                 err = register_netdev(adapter->port[i]);
3331                 if (err)
3332                         dev_warn(&pdev->dev,
3333                                  "cannot register net device %s, skipping\n",
3334                                  adapter->port[i]->name);
3335                 else {
3336                         /*
3337                          * Change the name we use for messages to the name of
3338                          * the first successfully registered interface.
3339                          */
3340                         if (!adapter->registered_device_map)
3341                                 adapter->name = adapter->port[i]->name;
3342
3343                         __set_bit(i, &adapter->registered_device_map);
3344                         netif_tx_stop_all_queues(adapter->port[i]);
3345                 }
3346         }
3347         if (!adapter->registered_device_map) {
3348                 dev_err(&pdev->dev, "could not register any net devices\n");
3349                 goto out_free_dev;
3350         }
3351
3352         for_each_port(adapter, i)
3353                 cxgb3_init_iscsi_mac(adapter->port[i]);
3354
3355         /* Driver's ready. Reflect it on LEDs */
3356         t3_led_ready(adapter);
3357
3358         if (is_offload(adapter)) {
3359                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3360                 cxgb3_adapter_ofld(adapter);
3361         }
3362
3363         /* See what interrupts we'll be using */
3364         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3365                 adapter->flags |= USING_MSIX;
3366         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3367                 adapter->flags |= USING_MSI;
3368
3369         set_nqsets(adapter);
3370
3371         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3372                                  &cxgb3_attr_group);
3373
3374         print_port_info(adapter, ai);
3375         return 0;
3376
3377 out_free_dev:
3378         iounmap(adapter->regs);
3379         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3380                 if (adapter->port[i])
3381                         free_netdev(adapter->port[i]);
3382
3383 out_free_adapter:
3384         kfree(adapter);
3385
3386 out_release_regions:
3387         pci_release_regions(pdev);
3388 out_disable_device:
3389         pci_disable_device(pdev);
3390         pci_set_drvdata(pdev, NULL);
3391 out:
3392         return err;
3393 }
3394
3395 static void __devexit remove_one(struct pci_dev *pdev)
3396 {
3397         struct adapter *adapter = pci_get_drvdata(pdev);
3398
3399         if (adapter) {
3400                 int i;
3401
3402                 t3_sge_stop(adapter);
3403                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3404                                    &cxgb3_attr_group);
3405
3406                 if (is_offload(adapter)) {
3407                         cxgb3_adapter_unofld(adapter);
3408                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3409                                      &adapter->open_device_map))
3410                                 offload_close(&adapter->tdev);
3411                 }
3412
3413                 for_each_port(adapter, i)
3414                     if (test_bit(i, &adapter->registered_device_map))
3415                         unregister_netdev(adapter->port[i]);
3416
3417                 t3_stop_sge_timers(adapter);
3418                 t3_free_sge_resources(adapter);
3419                 cxgb_disable_msi(adapter);
3420
3421                 for_each_port(adapter, i)
3422                         if (adapter->port[i])
3423                                 free_netdev(adapter->port[i]);
3424
3425                 iounmap(adapter->regs);
3426                 if (adapter->nofail_skb)
3427                         kfree_skb(adapter->nofail_skb);
3428                 kfree(adapter);
3429                 pci_release_regions(pdev);
3430                 pci_disable_device(pdev);
3431                 pci_set_drvdata(pdev, NULL);
3432         }
3433 }
3434
3435 static struct pci_driver driver = {
3436         .name = DRV_NAME,
3437         .id_table = cxgb3_pci_tbl,
3438         .probe = init_one,
3439         .remove = __devexit_p(remove_one),
3440         .err_handler = &t3_err_handler,
3441 };
3442
3443 static int __init cxgb3_init_module(void)
3444 {
3445         int ret;
3446
3447         cxgb3_offload_init();
3448
3449         ret = pci_register_driver(&driver);
3450         return ret;
3451 }
3452
3453 static void __exit cxgb3_cleanup_module(void)
3454 {
3455         pci_unregister_driver(&driver);
3456         if (cxgb3_wq)
3457                 destroy_workqueue(cxgb3_wq);
3458 }
3459
3460 module_init(cxgb3_init_module);
3461 module_exit(cxgb3_cleanup_module);